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Abstract: We construct a Markov partition for a Feigenbaum-like mapping. We
prove that this Markov partition has bounded nearby geometry property similar to
that for a geometrically finite one-dimensional mappings [8]. Using this property,
we give a simple proof that any two Feigenbaum-like mappings are topologically
conjugate and the conjugacy is quasisymmetric.
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0. Introduction

Markov process has been introduced by Sinai and Bowen, etc. in the study of
dynamical systems in the 1960's. Sinai [16] and Bowen [2] constructed a Markov
partition for a hyperbolic dynamical system. Using Markov partitions, they related
hyperbolic dynamical systems with symbolic dynamical systems. Thus hyperbolic
dynamical systems can be studied topologically through symbolic dynamical sys-
tems rather easily. Indeed, to construct a Markov partition for a dynamical system
is quite important in the study of dynamical systems. In this note, I shall give
a construction of a partition for a Feigenbaum-like mapping. I shall prove that
this partition has all but finiteness properties as those of a Markov partition for a
hyperbolic dynamical system. It will be called an (infinite) induced Markov parti-
tion. A Feigenbaum-like mapping is definitely not hyperbolic for its critical orbit
is recurrent. However, from the construction and properties of this induced Markov
partition, one can study topologically and geometrically a Feigenbaum-like mapping
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by using methods in hyperbolic dynamical systems. Moreover, using the properties
of induced Markov mappings, I give a simple proof that any two Feigenbaum-like
mappings are topologically conjugate and the conjugacy is quasisymmetric in this
note. The same idea has been successfully used to give a construction of a certain
Markov partition of the Julia set of the Feigenbaum quadratic polynomial. This
partition enables us to prove a long standing conjecture that the Julia set of the
Feigenbaum quadratic polynomial is locally connected. The proof of this theorem
and its generalization will be written in a forthcoming paper [9].

This paper is organized as follows: I shall introduce notations and review some
known results in Sect. 1. In Sect. 2, I shall construct the induced Markov map from
a Feigenbaum-like mapping and prove one of the main results, i.e., this Markov
map has bounded nearby geometry. In the last section, I shall apply the property of
bounded nearby geometry to prove another main result, i.e., any two Feigenbaum-
like mappings are topologically conjugate and the conjugacy between them is
quasisymmetric.

1. Infinitely Renormalizable Unimodal Mappings

Suppose / is the interval [—1,1]. A continuous function / from / into itself is called
a unimodal mapping if f{x) — h(—\x\γ) for some real number y > 1 and some
homeomorphism h from [—1,0] onto [—l,A(0)]. The Schwarzian derivative S(g) of
a C3-diffeomorphism g from an interval onto another interval is, by definition,

A unimodal mapping f(x) — h(-\x\y) is called a S-unimodal if h is a C3-diffeomor-
phism from [-1,0] onto [-1, A(0)] and satisfies that S(h)(x) ^ 0 for all x in [-1,0].

A S-unimodal mapping / is said to be renormalizable if there is a subinterval
J — [—a, a] of / for some a > 0 and an integer n ^ 2 such that fon are mono-
tone when restricted on [-α,0] and on [0,α] and fon(J)cJ and foi(J)ΠJ =
0,0 < i < n. One can normalize J to / by a linear transformation α(x) = px such
that ^ ( / ) = α" 1 o fon o α is a unimodal mapping again (see below). To fix nota-
tions, I always assume that n ^ 2 is the smallest such integer and J is the biggest
such interval. Thus one can say that / is once «-renormalizable and ^ ( / ) is the
renormalization of / .

Suppose / is a once n\-renormalizable S-unimodal mapping. If ^ ( / ) is once
ri2-renormalizable, then / is said to be twice («i,w2)-renormalizable. Further, / is
&-times («i,«2,...,«,0-renormalizable if &oι(f) is ni+\-renormalizable for 0 ^ / <
k and is infinitely (n\,ri2,...,nk,...)-renormalizable if $oι(f) is ni+\-renormalizable
for every integer / §: 0. A S-unimodal mapping / is infinitely (n\,ri2,...,«*,...)•
renormalizable if and only if there is a sequence {4 = [—α ,̂«A:]}£i of nested
intervals so that foπlk is monotone when restricted on [—ak,0] and on [0,α^],
foi(Ik)nl£ = 0 for 0 < i < mk, and fomk(h) C Ik, where mk = []f=1 w/. An in-
finitely («i,«2> ,«^ )-renormalizable ^-unimodal mapping / is said to be of
bounded type if {nk}

(^zl is a bounded sequence, otherwise / is said to be of un-
bounded type. In particular, if all nk = 2, then / is called a Feigenbaum-Coullet-
Tresser-like mapping, in short, Feigenbaum-like mapping [3-5].

Suppose f{χ) — h{—\x\y) is an infinitely («i,«2,...,«yb )-renormalizable 5-

unimodal mapping and /w* = Π/=i n* L e t ^°k(f) = α ^ 1 ° f°mk ° α* b e t h e
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&th-renormalization of / , where o(-k(x) = — pkx is the linear rescale from
/ = [-1,1] to Ik = [—aioak], where α* = \pk\ and Ik = [—flyt,̂ ] is the maximal
interval containing 0 such that

a. fomj{ is monotone when restricted on [—cik,0] and on [0, ak],
b. / o m * ( 4 ) C /*, and f°Vk)nlϊ = 0 , 0 < i <mk,
c. / o m * has exactly two fixed points pk and qk in /# which are also periodic points
of / of period m .̂

Suppose c(i) = /Oί'(0) is the zth critical value of / . For each * > 0, let Ik(i) =
foι(Ik) and Pk(i) = foι(Pk) be the images of /# and ^ under the /th-iterate of
/ . Then Ik(i) is an interval bounded by pk(i) and c(z') for 0 < / < mk. Note
that h(0) — Ik is an interval bounded by —pk and /?# and h(mk) is an interval
bounded by pk and c{πik). The mapping /|/fc is fold from Ik onto /*(1) and all
other mappings f\h(i) from 4(/) to /*(/ -f 1) are homeomorphisms for 1 rg / < πik
(see Fig. 1). Hence the &th-renormalization can be written into a form &ok(f)(x) =
Ajfe(—|jc|y) as a S-unimodal mapping, where hk = α^1 o f°(mk-1) o ho <χk is a diffeo-
morphism from / into hk(I), where &k(x) = \pk\yx

The nonlinearity N(g) of a C2-diffeomorphism g from an interval onto another
interval is, by definition, N(g) = g"Ig'. The a priori real bounds for the nonlineari-
ties of renormalizations of/ have been found in [18] (see also [6]). These a priori
real bounds depend only on the power law -\x\y.

Lemma 1 (Bounded and eventually universally bounded). There is a universal con-
stant C(y) > 0 and a sequence {C(k,y)}£™ of positive real numbers such that
C(k,γ) -> C(y) as k -> oo and

Remark 1. For a C2-diffeomorphism h, N(h~ι)(x) = -h"(y)/(h'(y))2, where x =
h(y).

The proof of Lemma 1 can be found in [12,18]. The next two lemmas are
actually two steps in the proof of Lemma 1. I would like to highlight them. I shall
first state a well-known result (see [12,18, etc.]) to estimate the nonlinearity of a
C3 -diffeomorphism.

Lemma 2 (C3-Koebe distortion lemma). Suppose g is a C3 function on an open
interval J = (ayb) and S(g)(x) ^ 0 for all x in J. Then

\N(g)(χ)\ S
d(x,dJ)

c ( 2 )



354 Y. Jiang

RU2) 14(0) lk(0)

LI*(0)

Fig. 2.

for any x in J, where d(x, dJ) = min{|x - a\, \x — b\} is the distance between x and
the boundary of J.

The second one is about Koebe space around every interval 4(z) (see [12,18]).
Let ξk = {4(0}/2(Γ for & = 1, 2,... be the hierarchical system induced from / .
For each interval /*(/), use LΙk(i) and RIk(i) to denote the intervals in ξk adjacent
to 4 ( 0 and in the left and right sides of /*(*)> respectively, (there is only LIk{\)
or RIk(2) in ξk). Let LI^{i) be the smallest interval containing LIk{i) and the left
end-point of /#(/) and let Rl^ii) be the smallest interval containing RIk(i) and
the right end-point of Ik(i) for / = 0 or 3 ^ i < mk. Let Uf(2) = [-l,c(2)] and

[c(l),l] (see Fig. 2).

Lemma 3. There is a universal constant C(γ) > 0 and a sequence {C(k,y)}£™ of
positive real numbers such that C(k,y) —> C(γ) as k —• oo

min{|ZJ+(0)|, |

2. Markov Maps Induced From Feigenbaum-like Mappings

Suppose f(x) — h(—\x\y) is a Feigenbaum-like mapping. The hierarchical system
ξk — {-WOK^o"1 for Λ: = 1, 2,... of / is quite simple. For each k > 0, the interval
4(0) is bounded by a periodic point pk off of period 2k~λ and —pk The mapping
/° 2 |4(0) has two fixed points pk and pk+\> Every interval hi}) in ξk contains
only two intervals 4 + i ( 0 and h+\(2k + /) in ξk+\ which have a common endpoint

Λ + 1 ( 0 for 0 ^ ΐ < 2*.
Using the sequence of nested intervals {4(0)}^ 1 ? I construct a partition in

/ = [—1,1]. Let P_ o and PQ be the closures of the left and right connected compo-
nents of /\/i(0). Inductively, let P-k and Pk be the closures of the left and right
connected components of 4(0)\4 + i (0). Finally set P^ — {0}. The collection β0 =
{P-0iPθ9P-uPu. .,P-k,Pk,...,Poo} forms a partition of / = [-1,1] (see Fig. 3),
that is, Pi and Pj have disjoint interiors for /Φy and / = Poo U \Jj*Li(P-k
Let F be the function defined as F(0) = 0 and

F(x) -

/ o 2 (x),

/o 2(x),

Then F is continuous on / (see Fig. 3).
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Fig. 3.

Lemma 4. For every even integer k = In ^ 0, F(P±k) = \J™kP-i U Ui=*+i

and for every odd integer k = 2« + 1 > 0, F(P±k) = U/Ξ*+i ̂ -< u UΞjt ^

It can be seen from Fig. 3.

From Lemma 4, the mapping F and the partition β0 satisfy the Markov property
in the sense that the image of every element in the partition β0 is the union of some
intervals in the partition β0. Thus I call F the induced Markov mapping from / .

Let g±i = (F\P±i)~ι be the inverse branches of F for 1 ^ / < oc. Suppose

w = iQίx • • ik_x is a finite sequence of Z - Z U {-0}. It is said to be admissible
if the range Pη of gtι is contained in the domain Flι_χ{Piι_x) of gi{_x for / =
1 , . . . , £ - 1. For an admissible sequence w = ki\ • ik-u define the composition
gw Jg{ o g o . . . o gik^ m Use Γ>(̂ w) to denote the domain of gw and \D{gw)\ to
denote the length of the iterval D(gw).

Definition 1. We say the induced Markov map F from f has bounded nearby
geometry if there is a constant C = C ( / ) > 0 such that

(i) c-1 ^ IΛl/IUSt+i^Ί ̂  c a n d c-^lP-itl/IUΐfc+i^.Ί^c f o r a11

i ^ 0, and

(ii) \N(gw)(x)\ ύ C/\D(gw)\ for all x in D(#vv) and all finite admissible sequence

w of Z.

Remark 2. Condition (ii) implies that the distortion | log(\gw(x)\/\θw(y)\)\ °f Gw
at any x and j> in D(gw) is bounded by C. Condition (i) is an analogy to bounded
nearby geometry defined in [8] for geometrically finite one-dimensional mappings.

Theorem 1. Suppose f(x) = h(-\x\y) is a Feigenbaum-like S-unimodal mapping.
Then the induced Markov mapping F from f has bounded nearby geometry.



356 Y. Jiang

Before proving Theorem 1, I shall prove some useful lemmas.

Lemma 5. Suppose h from [—1,0] to R1 is a C3 orientation-preserving diffeo-
morphism and S(h)(x) ^ 0 for all x in [—1,0]. Suppose φ is a linear fractional
transformation satisfying that

(a) φ(a) = h(a) for a = 0 and — 1, and

(b) N(h-ι)(-l) ^ N(φ-ι)(-l).

Then φ(x) ^ h(x) for all x in [-1,0].

Proof Let Z = h~{ o φ. Then Z(«) = a for α = 0 and - 1 and for x in [—1,0],

S(Z)(x) = (φ'(x))2 . (Si*" 1 ))(<£(*)) ^ 0 .

The goal is to show that Z(x) ^ x for x in [—1,0].
Using (b), one can get N{Z){-\) ^ 0. This implies that Z " ( - l ) ^ 0, and

moreover,
Z(x) ^ F(JC) = - 1 + Z ' ( - l ) ( x + l )

for small x + 1 ^ 0. Thus Z(x) ^ F(x) for all x in [-1,0] since S(Z)(x) ^ 0 for
all x in [-1,0]. In particular, Z(0) ^ F(0). Hence Z ' ( - l ) ^ 1. Therefore, Z(x) ^
x for all x in [-1,0] because S(Z)(x) ^ 0 for all x in [-1,0]. So φ{x) ^ A(JC) for
all JC in [-1,0].

Let SF(γ,C) be the subspace of S-unimodal mappings /(x) = h(—\x\y) so that
^(x)) ^ - C .

Lemma 6. 77*ere w a constant C\ — C\(y,C) > 0 such that /(0) ^ Ci /or
infinitely renormalizable mapping in SF(γ, C).

Proof Suppose /(x) = h(—\x\y) is a mapping in SF(γ,C). Since /z is a C3

orientation-preserving diffeomoφhism and S(h)(x) rg 0 for all x in [—1,0], one can
compare h with some linear fractional transformation φ(x) = (ax + b)/(cx + d). Let
φ be the linear fractional tmsformation satisfying that (a) φ(a) = h(a) for <z = — 1
and 0, and (b) N(φ-ι)(-l) = - C . Then

Φ(x) — -γ; : TT — 1 .

2 ^ Λ -r i) -r y(o)+i 2

From Lemma 5, φ(x) ^ /z(x) for all x in [—1,0].
Suppose, at the moment, c — /(0) > 0 is a variable. Let C\ — C\(y,C) > 0 be

the smallest solution of φ(-\c\y) = 0. Then for 0 < c < Cu / o 2 (0) ^ φo2(0) =
φ(—\c\y) > 0. This says that f°2 has an attractive fixed point and thus is not once
renormalizable. Hence /(0) > C\ if / is infinitely renormalizable.

For a S-unimodal mapping /(x) = h(—\x\y) with /(0) > 0, let ^/ be the fixed
point of / in (0,1).

Lemma 7. There is a constant C2 = C2(y,C) > 0 such that q/ ^ C2 /or all in-
finitely renormalizable f is SF(y, C).

Proof Let
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and C2 be the fixed point of φo(-\x\y) in (0,1). Take

φ() 1

2 /(o)+i 2

Then the fixed point qf of φ(—\x\y) in (0,1) is greater than C2 since /(0) > C\.
But qf ^ qf > C2.

Proof of Theorem 1. Suppose $ok(f) = hk(-\x\y) is the &th-renormalization of

/ . It is the rescale of f°2 |4(0). From Lemma 1, there is a constant C — C(f) >

0 such that maxxehk([^m)\N(h^ι)(x)\ ^ C for all k ^ 0 (set h0 = h). Now

Lemma 7 says that there is a constant C2 — C2(y, C) > 0 so that

14(0)1 = L

for all k ^ 0 (set 70(0) = 7).
Following Lemma 3, there is a constant C3 = C?>(f) > 0 such that

" 3

for all k ^ 0 since 4+i(2^) is either Ll£+l(0) or JR7^.J(O). This implies that

1
S C4 =

2C3 +

for all k ^ 0.
Now take C5 = max{C2~

1,C4}. Then

^-1 < l4+i(0)| < r

for all it ^ 0.
Since Ik(0)\Ik+}(0) is the closure of U£*+i(^-i UΛ), and |P_^| = |P^|, (i) of

Definition 1 is verified.
Now let me prove (ii) of Definition 1. For an integer / φ 0, gι can be extended

to the interval % | = 7 | J |_1(2|l'l~1)U7>(gfl )U7| l |(2l1"1) as a C3-diffeomorphism and
S(gt)(x) ^ 0 for all x in Ω^. For go and #_o, without loss of generality, we may
assume that they can be extended to the interval Ωo = (—00, -1] UD(g0) U7i(l)
and S(go)(x) ^ 0 and S(go)(x) ^ 0 for all x in Ωo. _

Suppose w = /ô 'i * h-\ is an admissible sequence of Z = Z U {—0} and
gw — giQ o giχ o o ̂ _ r By the definition of an admissible sequence, one can
check that

|ίo| ύ \U\ ύ ύ \h-\I
Hence gw can be extended to the domain Ω|ίit_1| as a C3-diffeomorphism and
S(θw)(x) ^ 0 for all x in Ω(/>t_1 j . We note that D(gw) = D(gikι) and the inter-
vals Ώ|;| are nested for |/| = 0,1,.... Then (ii) of Definition 1 follows now from
Lemmas 2 and 3.

Remark 3. In [10], there is a more general discussion of the induced Markov map
from an infinitely renormalizable *S-unimodal mapping.
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3. Conjugacies Between Feigenbaum-like Mappings

It is known that two Feigenbaum-like S-unimodal mappings are topologically con-
jugate. The proof of this depends on two deep facts, kneading theory developed by
Milnor and Thurston [14] and non-wandering interval theorem proved by Gucken-
heimer [7] and de Melo and van Strien [13]. Using Markov partitions constructed
in this note, I can set a topological model for all Feigenbaum-like mappings as
Sinai and Bowen [2,16] did for hyperbolic dynamical systems. Applying Theo-
rem 1, I give a simple proof of that two Feigenbaum-like S-unimodal mappings are
topologically conjugate.

Suppose / is a Feigenbaum-like mapping and βo — {P±k}(^Lo U {Poo} is the
induced partition and F is the induced Markov map. Let A = (a/,-) be the bi-
infinite matrix so that cty = 1 if Pj C F(Pt) and a^ — 0 otherwise. From the
construction of F, we can see that 1. for i = ±2n,n ^ 0 , ^ = 1 if and only if
\j\ > \i\ or j = -2n; 2. i = ±(2n + 1) > 0, n > 0, atj = 1 if and only if \j\ > \i\
or j = In + 1. Now consider the symbolic space ΣA — {w = iQi\ 44+i \h £
Z U {oo}, aikik+ι = 1,k = 0,1,...} with product topology and the shift map σA(w) =
h " ikh+\ '" if w = ki\ - - hh+\ _^

A sequence Wk = hh - h of Z is admissible if aiιiι+ι = 1 for 0 ^ / < k.
For an admissible sequence Wk — ioi\ • ik, define gWk — glQ o giχ o o gik

and PWk = gWk(F(Pik)).

Lemma 8. Suppose f is a Feigenbaum-like S-unimodal mapping and F is the
induced Markov map. Then F is semi-conjugate to σA, this means that there is a
continuous surjective map H from ΣA to I such that F o H = H o σA.

Proof. For any w = i§i\ ikik+\ " ' i n ΣA, Wk = h ik is admissible for every
k ^ 0. Applying Theorem 1, Π J S o ^ contains only one point xw. Set H(w) = xw.
It is a continuous map from ΣA to / from Theorem 1. Since | J W PW/c = I, where
Wk runs over all admissible sequences of length k + 1, H is surjective. Moreover,
every point x has at most two preimages in ΣA under H and only a boundary
point x of PWR for some admissible w* has two preimages. Now it is easy to see
F o H(w) = H o σA(w).

Theorem 2. 4̂fly two Feigenbaum-like mappings f and g are topologically
conjugate.

Proof Suppose F and G are the induced Markov maps from / and g. Let H\
and H2 be the semi-conjugacies from F and G to σA. From the proof of Lemma
8, H — H\ oH^1 can be defined as a homeomorphism of / and F oH — H o G.
Hence F and G are topologically conjugate. Furthermore, H is also the conjugacy
between / and g.

A homeomorphism H of/ = [—1,1] is said to be quasisymmetric [1] if there
is a constant C > 0 so that for any x and jμ in /,

, < \H{x)-H{z)\ <

= |i/(z)-#(>oi = '
where z = (x -{- y)/2. Furthermore, I can use a similar method to that in [8] to
prove

Theorem 3. Suppose f and g are two Feignbaum-like mappings and H is the
conjugacy between them. Then H is quasisymmetric.
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Proof. Suppose βoj — {P±kj}<tLo U {poo,f} is the induced Markov partition from
/ and βOig = {P±kίg}(ULo U {Ax>,#} is the induced Markov partition from g. Let
βkj = {PWkj\wjc be an admissible sequence of ZU{oo} of length £ + 1 } and
βkg = {PWkig\wk is an admissible sequence of Z U {00} of length k -f 1}. They are
called induced &th-partitions of / = [—1,1] from / and g. From Theorem 1, there
is a constant C > 0 so that

^ — < c

and

= II | ° ° P . .

for all / in Z and all admissible sequences Wk of Z of length k -f 1. This exactly
means that the hierarchical system {j8jt,/}j£o and {βk,g}^o satisfy a similar property
to bounded nearby geometry defined in [8] for a geometrically finite one-dimensional
mapping. Now using a similar argument to the proof of Theorem B in [8], one can
prove that H is quasisymmetric. However, for the sake of completeness of this note,
I shall write down the proof in more details.

I first construct a little different sequence of nested partitions {rjk,f}fLo °f ^ —
[—1, 1] from βo,f Let ηoj consist of one interval /. Cut / into three intervals
Lo = P-o,f, M) = cl (U/ΞiC^-ί,/ u pι, /))» where cl means closure, and Ro — P o ,/
(see Fig. 4). Then ηh f - {Lo, Mo, Ro}.

The map F is a diffeomorphism when restricted on LQ or RQ and F(LQ) =
F(RQ) = LQU Mo. Cut LQ (respectively, Ro) into two intervals LoLo and LoMo
(respectively, RoLo and RoMo) which are preimages of Lo a n < i M) under F|Lo
(respectively, F|i?0). And cut Mo into three intervals L\=P-\,f, M\ —
cl ^J^L2{P-ιj UP,;/)), and R\ = P\j (see Fig. 5). Then

Now I shall define ηKff for n ^ 3 inductively. Suppose ηHtf has been defined
for some n ^ 2 and contains Ln_i =/ > _( n _i) j /, Λfn_i = c / ( | J ^ ( P _ Z j / U P^/)),
and Rn-\ = Pn-\ff. Cut Mn_ } into three intervals Ln=P-nj, Mn —

(ΐ )), and ^ r t =Pn,f For an interval 7φM«_i in fyΛs/ , there

Fig. 4.

M l R
1 I

Fig. 5.
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is the maximum integer / ^ 1 such that Foι\J is a diffeomorphism. Then FΌl(J)
is either 1) Λfrt_/_i or 2) L ^ U M ^ or 3) ft_iUMfl_/. In case 1), cut J into
three intervals f = {JLn-U JMn-U JRn-ι} which are the preimages of Ln-i9 Mn-ι
and Rn-i under Foι\J. In case 2), cut J into two intervals β = {JLn-i, JMn-ι}
which are the preimages of Zπ_, and Mw_/ under F°' |7. In case 3), cut J into two
intervals f = {JMn-j, JRn-i,} which are the preimages of Mπ_/ and /?„_/ under
F o / μ . Then

ηn+i,f = { / k e */„,/} U {!„, A/n, Λπ} .

Therefore I have defined a sequence η/ — {7/«,/}^o °f n e s t e d partitions from
j8o,/. Similarly, one can define a sequence ηg = {f/n?g}^0 of nested partitions from

βo,g

From the construction of η/ and Theorem 1, r\f has bounded and bounded
nearby geometry which is defined in [8]. More precisely, there is a constant C > 0
such that (BG) {bounded geometry): for any intervals J C T with / in ηn+\ and
T in 77M, « ^ 0, |./|/|7Ί ^ C, and (BNG) (bounded nearby geometry): for any
intervals J\ and J2 in ?/„ with a common endpoint, n ^ 1, |/i|/|Λ| ^ C.

The statement (BG) follows from Theorem 1 and the construction of η/ directly.
To prove the statement (BNG), one need to check when the common endpoint point
q of J\ and J2 is a preimage of a fixed point pk of F under F. In this case, let
JXi = F o / (J i) and J2j = Foi(J2) for / ^ 0. Then there is the biggest integer j ^ 0
such that F o y | J i U/2 is a diffeomorphism. So FOJ(q) = p±k. Therefore there exists
another integer m^j such that both of Fom\J\ and F°im+{)\J2 are diffeomoφhisms
and J\tfn = J2,m+\ — Pk or ^-it This implies that J\j — J2, /+i for all 7 < / ^ m.
In particular, J\tJ =Jij+\- So Jiy — F(J2j). From Theorem 1, there is a constant
Co > 0 such that C" 1 ^ F ;(x) ^ Co for all x in P ± i t and k ^ 0. Hence

Applying Theorem 1 again, there is a constant C\ > 0 such that
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Similarly, one can prove that ηg has bounded and bounded nearby geometry ((BG)
and (BNG)) too.

Now I use the property of bounded and bounded nearby geometry ((BG) and
(BNG)) of r\f and ηg to prove that h is quasisymmetric (refer to [8]). For any
x < y in /, let z — (x -f- y)/2 be the midpoint between x and y and N > 0 be the
smallest integer such that there is an interval J in % / contained in [JC, y]. Let J be
the interval in τ/#_i5/ containing J. Then the union of J and one JJ of its adjacent
intervals in ηN-\j contains [x, y] (see Figs. 7,8 and 9). Because of bounded and
bounded nearby geometry ((BG) and (BNG)) of ηg (and refer to Figs. 7,8 and 9),
there is a constant C2 > 0 such that

\H(J)\
\H([x9z])\

^ C 2 and
\H(J)\

9 y])\
^ C2

N-1

N

N+N

H(JJ) H(J)

N-1
N

H H(J)

H(x) H(z) H(y)

Fig. 7.

JJ

J 2

H(J) H(JJ)

H(J)

H(x) H(z) H(y)

Fig. 8.

N-1

N

N+N,

JJ

J, J

H(JJ)

H H(J)

V H(x) H(z) H(y)

Fig. 9.
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Since r\f has bounded geometry (BG), the maximum length of intervals in ηn^f

tends to zero exponentially, that is, there is a constant C3 > 0 and 0 < λ < 1 such

that

max \J\ ̂  C3λ
n

for all n ^ 0. Thus there is a constant integer N\ > 0 (does not depend on N)

such that there are intervals J\ and J2 in Y\N+N\ contained in [x, z] and [z, y],

respectively. This implies that H(J\) and H(Jι) are contained in H([x, z]) and

//([z, j ] ) respectively because H is the conjugacy.

Because of bounded and bounded nearby geometry ((BG) and (BNG)) of ηg

again, there is a constant C4 > 0 (see Figs. 7,8 and 9) such that

λ \H(x)-H(z)\
C* = \H{z)-H{y)\ ~ 4 '

which means that H is quasisymmetric.

Remark 5. The quasisymmetric property of a conjugacy is first studied in [18] for

complex quadratic-like Feigenbaum-like mappings by using the complex method.

The proof of Theorem 3 here is for more general unimodal mappings and is a real

method developed from [8,10]. A different approach to the proof in the general

case was tried in [15]. This theorem can be also proven for infinitely renormaliz-

able S-unimodal mappings of bounded type (see, for example, [10]). However, for

infinitely renormalizable 5-unimodal mappings of unbounded type, it is still an open

question. In [11,17], a result about infinitely renormalizable quadratic polynomials

of unbounded type has been announced recently.

Acknowledgement. I would like to thank the referee for valuable suggestions.
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