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Abstract: We calculate a large £ asymptotic expansion of the exact surgery formula
for Witten’s SU(2) invariant of some Seifert manifolds. The contributions of all
flat connections are identified. An agreement with the 1-loop formula is checked. A
contribution of the irreducible connections appears to contain only a finite number
of terms in the asymptotic series. A 2-loop correction to the contribution of the
trivial connection is found to be proportional to Casson’s invariant.
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1. Introduction

A Chern—Simons action is an “almost” gauge invariant function of a gauge connec-
tion on a 3-dimensional manifold .#:

1 2
Ses = 5" Tr [ (A“a\,Ap + §A#A\,Ap> dx (1.1)
M

(a trace is taken in the fundamental representation of the gauge group G). A quan-
tum field theory built upon this action is topological. This means that a partition
function presented by a path integral over the gauge equivalence classes of connec-
tions

Z(M k) = [DA,e™Scstn] (12)

does not depend on the metric of the manifold .# and is therefore its topological
invariant. An exact calculation of this invariant was carried out by E. Witten in
his paper [1] on the Jones polynomial. The calculation requires a construction of
M by a surgery on a link in S (or in some other simple manifold, say S' x $?).
Reshetikhin and Turaev proved in [2] that Witten’s procedure really leads to a
topological invariant. Their proof does not use path integral (1.2) which is not a
rigorously defined object for mathematicians yet.

A Chern—Simons action enters the exponential of the path integral (1.2) with
an arbitrary integer factor k. Its inverse k~' (or rather 2mk~') plays a role of the
Planck constant 7, which appears in quantum theories and sets a scale of quantum
effects. A stationary phase approximation for the integral (1.2) in the limit of £ — oo
expresses a partition function Z(.#,k) as an asymptotic series in k~!. Physicists
call this series a “loop expansion,” because the terms of order k! =" come from the
n-loop Feynman diagrams.

The loop expansion of Z(.#,k) has been studied in [3,4 and 5], as well as
in papers [6 and 7] which were aimed at producing Vassiliev’s knot invariants.
Feynman rules were formulated, however the actual calculation of loop corrections
for particular manifolds went only up to the 1-loop order. The 1-loop correction was
found in [1, 8,9] to contain such invariants of the manifold .# as the Reidemeister—
Ray-Singer torsion, spectral flow and dimensions of cohomologies.

Thus there are two different methods of calculating Z(.#, k): a “surgery calculus”
of Witten—Reshetikhin—Turaev and a loop expansion which is a standard method of
quantum field theory. Both methods should give the same value of Z(.#, k) if the
path integral (1.2) has the properties that physicists expect it to have. D. Freed
and R. Gompf suggested to check this by computing an exact value of Z(.#,k)
for large values of k£ through the surgery calculus and then comparing it to the
quantum field theory 1-loop approximation. They carried out their program in [8]
for some lens spaces and Brieskorn spheres. A computer calculation showed a
close correspondence between the values of exact and 1-loop partition functions.
In a subsequent paper [9], L. Jeffrey used a Poisson resummation trick to derive
analytically a large k expansion of an exact surgery formula for lens spaces and
mapping tori. She also observed a correspondence between the surgical and 1-loop
expressions (at least up to some minor factors, which we will discuss in the next
section). Similar results were obtained in [10].

In this paper we carry out a large k£ expansion of an exact surgery formula
for Seifert manifold SU(2) invariants. We identify the contributions of all flat
connections and show that they correspond to the slightly modified 1-loop
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approximation formula of [8 and 9]. In contrast to the lens spaces, Seifert man-
ifolds have irreducible flat connections. We find rather surprisingly that although
the reducible connections contribute to all orders in loop expansion, the contribu-
tion of irreducible connections appears to be finite loop exact. We also find that
a 2-loop correction to the contribution of the trivial connection is proportional to
Casson’s invariant.

In Sect. 2 we review the basic features of loop expansion and surgery calculus.
Section 3 describes an application of the Poisson resummation to the surgery formula
for Seifert manifolds with 3 fibers. In Sect. 4 the asymptotic expansion of the surgery
formula for those manifolds is compared to the 1-loop formula. In Sect. 5 a Poisson
resummation is applied to a general n-fibered Seifert manifold and the contributions
of both irreducible and reducible flat connections are calculated.

Summary of the Results. For reader’s convenience we summarize briefly the main
results of the calculations in Sect. 3. We present the SU(2) Witten’s invariant of a
3-fibered Seifert manifold X (fll, Epz;’ -;131) as a sum over flat connections in the spirit
of Egs. (2.3) and (2.4). The structure of the flat connections is described in Sect. 4.

An irreducible flat connection is labelled by three integer numbers n;,n;, n3 and
a number 4 = 0, % Its holonomies around the fibers and along the central element
of the fundamental group are given by Egs.(4.2)—(4.4). The contribution of the
irreducible connection is 2-loop exact:

ny,ny,n3;/ 1 > > Y] i4i 3 si P Jsi
Zs(t 1512,133%) 3 exp [27-51'[(; (—r—n,z — q,-s,-/ﬂ)} ezm”’}TS’gn(ll!)slgn(P)
x 11 ! 2isin2 (r,— i+ ?>
IsSIZn | —n; + 54

=1/ | pil pi

i

e %9 (1.3)

Here

>

Nl

P = pipaps, H = p1p2g3 + p1g2p3 + 41 P2 P3s A=0,
i =ni+qiA, n €L, pisi — qiti = 1, Di>qi>Si>¥vi € 1L, (14)

s(g, p) is a Dedekind sum. For more details see Subsect. 4.1. The phase

. H 3 qi
¢ =3sign{ - | + > | 125(gi pi) — = (1.5)
P i=1 pi
is the 2-loop correction. As we will see, this phase appears in the contributions of
all flat connections.

A reducible connection is labelled by three integer numbers ni,n;,n3. Its
holonomies are given by Egs. (4.15), (4.16). The contribution of this connection
contains an asymptotic series of loop corrections:

3 . H i%sign(%) .
(ny,mpsn3) . Fi o o | € . —dn g
Z = —exp2niK —n; + —cy| —=——===-s1gn(P)e”
cst p L:z:lpi P 0] r——2K|Hl g ( )

3 - rinj+c
[I;_,2isin (27‘5’—1‘)[—)

2isin2ne

« 3> Ligmixy 7 (£ " (16)
27 ") |% ’ :

c=C(
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here ¢y = HZI 1p , for notations see Subsect. 4.2. A logarithm of this series has
to be calculated in order to put (1.6) into the form (2.4).

A reducible flat connection for which ¢y =0,1/2 (see “point on a face” in
Subsect. 4.3), contributes

ez Zsign( % 7)

\/2K|H|

x { &% 51gn(H / H2z sm rin; + CO>

+Z (SmK)_f <H> @)

.. rinji+co+e 3 . - rn+co
[T, 2isin (27‘5———11’ ) _]_[izl?.zsm <2n—pi )

" H _an
Zé:tl RONCY —exp 2niK [Z 2 + FC%] 2mc051gn(P)e 2z

X

2isin2me 4mie
e=0
(1.7)
The contribution of the trivial connection is
) 1Zsign( ) X 0] z P\’ H?-IZI. sin £
Z(mv) _ ~_e . P T 4 2 N il 6(2]) = P
ost V/8K|H| sign(P)e ;]j! 2iIK H ¢ 2isineg .
o=
(1.8)

A remarkable feature of this formula is that its full 2-loop term is proportional to
Casson’s invariant (4.14).

The formulas analogous to Egs. (1.6),(1.7) and (1.8) for the n-fibered Seifert
manifold are Egs. (5.49),(5.53) and (5.55).

2. Calculation of Witten’s Invariant

2.1. Loop Expansion. We start with a brief description of a stationary phase ap-
proximation to the path integral (1.2). The stationary phase points are the extrema
of the action (1.1). Since

oS 1

— = —&"F,,, 2.1

04, 2m P (2.1)
these extrema are flat connections, i.e. connections with F,, =0. The gauge
equivalence classes of flat connections are in one-to-one correspondence with the
homomorphisms

m()S5 G A:ixegx)EG | (22)

(G is a gauge group) up to a conjugacy, that is, the homomorphisms g(x) and
h~'g(x)h are considered equivalent.

Each stationary phase point 4 contributes a classical exponential exp[ikS;]
times an asymptotic series in k:

Z(M k) =S 2O k),  ZO(M k) = & (f k”"Aﬁ,’)) . (23)

i n=0
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Another form of presenting the same expansion is

ZO( k) = 3 AP exp ik [S,» +3 k-"sf,")] ) (2.4)
i n=2

Here S; are Chern-Simons invariants of the flat connections Aff), and S,S') are the
n-loop quantum corrections coming from the s#-loop 1-particle irreducible Feynman
diagrams. A set of Feynman rules for their calculation has been developed in [3],
however the actual calculations have been carried out only up to the 1-loop order.

Generally in quantum field theory a 1-loop factor is an inverse square root of
a determinant of the second order variations of the classical action taken at the
stationary phase point. However a gauge invariance of the action (1.1) requires a
gauge fixing and an introduction of the Faddeev—Popov ghost determinant (see [1]
for details). So for the Chern—Simons theory

|det (%A) |

4o = 7 - 2.5)
et (~itaL )]
Here 4 is a covariant Laplacian
4 =D,D*, D,=0,+4, (2.6)
acting on the Lie algebra valued functions, while L_ is
L= o] e

acting on the Lie algebra valued 1-forms and 3-forms. A differential d, is built
upon a covariant derivative D,,d% = 0 for flat connections.

According to [1], the absolute value of the ratio (2.5) is a square root of the
Reidemeister-Ray-Singer torsion tz(4). A detailed expression for the phase of that
ratio has been worked out in [8]. The 1-loop formula for Z(.#,k) presented there
is a sum (2.3) over the flat connections A®”) in which:

. SR 1 o) 1 e
Z(l)(/%’k) — e—lz(dlm G)(1+b )emeSCS‘CI% (A(l))€‘171’CQC] , (28)

here K = k + ¢, ¢, is a dual Coxeter number or, equivalently, a quadratic Casimir
invariant of the adjoint representation, o' is the first Betti number and /; is a spectral
flow. The factors Cy and C; reflect the presence of the 0-form (i.e. 3-form) and
1-form zero modes in the operators 4 and L_ of Eq.(2.5). These factors have to
be slightly modified from their original values in [8].

The zero modes are related to the eclements of the cohomology spaces
H M ,d ) and H'(M,d ). For each element of H there is a zero mode of
A and a zero mode of L_. For each element of H' there is another zero mode of
L_. It is also known that H° can be identified with a tangent space of the symmetry

group H; of the connection Aﬁf) . The group H; consists of the gauge transformations

that do not change Aﬂ). Equivalently, H, is a subgroup of G whose elements com-
mute with the image of the homomorphism (2.2). As for H', its elements represent

infinitesimal deformations of the connection Aff) which do not violate the flatness
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condition. This picture is reminiscent of the string theory. There the zero modes of
the ghosts ¢ and b were identified with the elements of tangent spaces of the sym-
metry group and moduli of the complex structure. However in our case generally
not all the elements of H' can be extended to finite deformations of flat connec-
tions. In other words, dimH' > dim X;(.#), where X; is a connected component
of the moduli space of flat connections.

Let us first assume that dim H' = dim X;. If operators A, L_ have zero modes,
then the Reidemeister torsion can still be obtained from Eq. (2.5) if the zero modes
and zero eigenvalues are removed from there. L. Jeffrey noted in [9] that r,’z/ % thus
defined is an element of A™*H° ® (A™*H"')*. She suggested to take a canonical
element v € (A™*H°)* derived from the basic inner product on H° which is a Lie
algebra of H;. A pairing of v and r,le/ 2 produces a volume form on the moduli space
X;. A sum over the flat connections in Eq. (2.8) then includes a natural integration
over X;. However, according to [9], this procedure does not quite agree with the
leading term in the 1/k expansion of Z(S?, k).

We propose a slightly different prescription. We take any element v € (A™*H0)*

and balance the integral over X,, defined by pairing of v and rg 2 with a factor of
1/Vol(H;), volume of H, being defined by the same element v.2 We show in the
Appendix why this factor should appear after the removal of the zero modes from
Eq. (2.5) by considering a simple finite dimensional version of a gauge invariant
path integral. We also demonstrate in the end of Subsect. 2.3 how our prescription
fits the value of Z(S?, k).

There is another consequence of dropping the zero modes from the determinants
in Eq.(2.5). Each non-zero mode of the operator A carries a factor of k/4n’ in
Eq. (2.5) and each non-zero mode of L_ carries there a factor® of (—ik/4n?)~/2.
By dropping the modes, we loose these factors. Therefore dropping an element of
H® produces an extra factor (ik/4n?)~'/> while dropping an element of H' creates
a factor (—ik/4n?)"2. Thus

-0
1 ik —(dim H")/2
- (X . 2.
Co Vol(H;) <4n2> (29)

We could also assume that
. (dim H')/2
ik

However the 1-form zero modes of L_ that can not be extended to finite defor-
mations of the flat connection, should not be simply dropped from Eq.(2.5). A
non-zero mode of L_ contributes to Eq. (2.5) through a gaussian integral

+oo ik ., ik \'?
—£o exp <H/bc ) dx ~ <—m> ) (2.11)

2 The factor 1/Vol(H;) appeared in slightly different circumstances in [11]. It also appeared in
[12] and [13] where the Alexander polynomial was produced from a Chern-Simons theory based
on a supergroup U(1[1). It was shown there that Vol(U(1]|1)) = 0, so that the flat connections for
which H; = U(1|1), gave infinite contributions to the partition function. These infinities helped to
explain the nonmultiplicativity of the Alexander polynomial which distinguished it from the family
of the SU(N) Jones polynomials.

3 Actually a partition function (1.2) has also a factor (# y# of all modes of 4—3# of all modes of L_

hidden in the integration measure ZA4,.
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A zero mode 1-form that hits obstruction contributes through the integral
+00 ik 1 /1 i\~
exp | —x*)dx~ =T (-)—— 2.12
Tow (gt ar~ar (3) (+55) @1
Therefore a corrected version of the formula for C; is

dim H' dim H! —dim X, dim H' +dim X,
ik 2 ik N~ & kN
G=|-13 - =|-— 2.1
! < 472 > ( 4n2> ( 472 ) (2.13)

and the 1-loop formula (2.8) takes the form

_dim 5O +dxm H!+dim X,

. - 1 1k : ¢
ZO(M k) = exp <2mKS(CS)) Vel (H)

dim H' + dim X;

X exp —i% [(1 +b")dim G + 2; + dim H® + ;

] . (2.14)
Note that there are additional numerical factors coming from Eq. (2.12) if dim X; #
dim H'!, however the power of k in the preexponential factor of Eq.(2.14) is
correct.

2.2. Surgery Calculus. Here we briefly present Witten’s recipe of an exact calcu-
lation of the partition function (1.2). Witten used the fact that the Hilbert space
of the Chern—Simons quantum field theory is isomorphic to the space of conformal
blocks of the level £ 2-dimensional WZW model based on the same group G. More
specifically, a Chern—Simons Hilbert space corresponding to a 2-dimensional torus
is equivalent to the space of affine characters of G (see, e.g. [14]).

Consider a path integral (1.2) calculated over a solid torus with a Wilson line
carrying representation ¥, of G going inside it. A denotes the shifted highest weight,
i.e. the highest weight of V4 is A4 — p, p being half the sum of positive roots of
G:p= %Z sea, - An inclusion of the Wilson line means that the integrand of

Eq. (1.2) is multiplied by a trace of a holonomy try, P exp( §A4,dx"). Such an integral
is a function of the boundary conditions imposed on 4, on the boundary of the solid
torus. Therefore it is an element |A) of the Hilbert space of T2. Witten claimed
that this element corresponds to the affine character of level & built upon V, and
that all such elements corresponding to the integrable affine representations form an
orthonormal basis in that Hilbert space.

The group SL(2,Z) acting as modular transformations on 72, generates canonical
transformations in the phase space of the classical Chern—Simons theory. Therefore
SL(2,Z) can be unitarily represented in the Hilbert space. This representation is
determined by the action of the matrices S and T

s= (9 1 r= (11 2.15
”(1 0)’ ”(0 1) (213)

on the affine characters. An action of a general unimodular matrix

MO = (Z Z) € SL(2,Z) (2.16)
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is determined by its presentation as a product

MPD = Tag...Tag (2.17)
The integer numbers a, form a continued fraction expansion of p/q:

1
P = —7—. (2.18)
q a1 — I

For more details on this construction, see e.g. [8] and [9].

A lens space L(p,q) can be constructed by gluing the boundaries of two solid
tori. The boundaries are identified trivially after a matrix SM(»~9) acts on one of
them, i.e. that matrix determines how the boundaries are glued together. Before the
gluing, each solid torus produces an affine character ¥, growing out of the trivial
representation, as a state on its boundary. Hence according to the postulates of a
quantum field theory, a partition function (1.2) is equal to a matrix element

Z(Up.q)k) = S, | (2.19)

here the tilde denotes a representation of the SL(2,Z) matrices in the space of affine
characters.

Note that the lens space depends only on the numbers p and g. Different choices
of the entries » and s of the matrix (2.16) correspond to different framings of the
same lens space. A framing is a choice of three vector fields which form a basis
in the tangent space at each point of the manifold. A phase of a partition function
Z depends on a choice of framing. Formula (2.14) gives a 1-loop approximation
to Z(M,k) in the standard framing. The surgical formulas should also be reduced
to the standard framing in order to yield a true invariant of the manifold. We will
discuss this reduction in the end of this subsection and in Subsect. 3.3.

Consider now a manifold S? x S!. A Seifert manifold X (%,...,;}p—""-) is con-

structed by cutting out the tubular neighborhoods of n strands going parallel to S!
and then gluing them back after performing the M(P-4) transformations on their
boundaries*. These transformations change the states on the surfaces of the solid
tori from |p) into

A7) = 32 | A)M (2.20)
A
Therefore an invariant of a Seifert manifold is given by a multiple sum
Z(X,k) = & ) ZA MEPYAD - MEAON g, (2.21)
JER n

Here the factor ¢’*% reflects the dependence of Witten’s invariant on the choice of
framing of X, s = 0 for the framing coming directly from the surgeries M (P40,
Ny, .4, is a Verlinde number, which is equal to the invariant of the manifold $? x S!
containing n Wilson lines carrying representations ¥, along S'. This number is
also “almost” equal to the number of times that a trivial representation appears in a
decomposition of a tensor product ®f':1 Va;- N4,..4, Will be equal to that number
if V,, are representations of the quantum algebra G,. An expression for Ny, 4, in

4 It is not hard to see that X(f) and X(gll, %) are the lens spaces.
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the case of n =3 and G = SU(2) is presented in Subsect. 3.1, a general case will
be considered in Subsect. 5.1.

As in the case of a lens space, the phase of a partition function (2.21) also
depends on the choice of numbers 7,5, Witten found in [1] that a change of
framing by one unit is accompanied by a change in that phase by {5, c¢ being a
central charge of the level £ WZW model.

To get a partition function Z(X,k) in the standard framing, we should choose,
according to [8],

b =

=1 j=

30+ Za(’)} (222)

in Eq. (2.21). Here aﬁ.i) form a continued fraction expansion of p;/q;, while

o = —sign (i > Zs1gn ( > + Snj Zs1gn(a( y. (2.23)

i=1 P i=1 i=1j=

2.3. SU(2) Formulas and Poisson Resummation. Explicit formulas for the SL(2,Z.)
representation in the space of affine SU(2) characters of level k£ were derived in
[9]. There are k + 1 integrable SU(2) representations with spins 0 < j < % We
use the shifted highest weight o = 2 + 1 instead of j and K = k + 2 instead of K,
so that 0 < o < K. The weight p is equal to 1 for SU(2).

The formulas for SN'“/; and T «p are well known:

~ 2 ~ o in
SO(B = ’[ 1-2' Sin E]%——ﬂ’ T{lﬁ = e’TeTiq’“zéaﬁ . (224)

A substitution of these expressions in the r.h.s. of Eq. (2.17) turns it into a multiple
finite gaussian sum. A summation over the intermediate indices goes from 1 to
K — 1. An application of the Poisson resummation formula in [9] converted that
sum into another gaussian sum with a summation interval independent of K:

. Slgn(q) e_%(p(M(Psq))

l
V2K |q|

X > Y pexp 2}( [poc —2uoc(ﬁ+2Kn)+S(,B+2Kn)] . (2.25)

~(p.q)
MO([J’ -

Here ®#(M) is a Rademacher phi function defined as follows

p“ — 12s(s, if ¢g%0
(p{p r}: (s,9) | q , (2.26)
q s - if g=0
a function s(s,q) being a Dedekind sum:
1=l 7wy amj
s(m,n) = ™ j; cot . cot —= . (2.27)
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We illustrate the use of the Poisson formula

+oo .
Y f)y=3 [ ™™ f(x)dx (2.28)

neZ meZ —oo
by explicitly deriving an expression for the matrix element

e~ TP K-
2K

~ap in
(ST 8)up = — > mppexp e [Pyt 29(ma+ )] . (229)

y=1 pppp==l1

This exercise will prepare us for the calculations that we will perform in Sect. 3.
We have to extend the summation range of y to Z in order to be able to
use Eq.(2.28). The summand in Eq.(2.29) is even and periodic with a period

of 2K. We first double the range of summation: Z _] 22 K Then a
formula
Z f(n) = th e? Ze*’”" f(n), if f(n)=f(m+N), (2.30)
neZ

and a Poisson resummation allow us to transform Eq.(2.29) into

ﬂ

(ST7S),s = — llm(Ke”z)Z S e exp o [ py? + 29+ paf)]
2K eod = 2K

i

= hm(Ks”z)Z Tdy © e
n€Zl —oco np= +1

X expﬁ [py* + 2y(uiot + o + 2Kn))| . (2.31)

Note that a change from a sum to an integral over y has been essentially accom-
plished through a substitution

B — B+2Kn, (2.32)

and a subsequent summation over # (actually we used p,n rather than n, this makes
no difference since we take a sum over n € Z). This is a trick that works for a
general expression (2.17). Just one substitution like (2.32) for an initial or final
index converts all the intermediate sums in Eq. (2.17) into gaussian integrals. This
is, in fact, the origin of the expression (f + 2Kn) in Eq. (2.25).

From this point we can proceed in two ways. A straightforward way is to
integrate the r.h.s. of Eq. (2.31) over y. Then, after neglecting some irrelevant terms
we get a formula

PP m iK —471,1(—2412
(STPS)xB = —e 4P [ —lim Y Y wme'? ‘2
2p F_)OIIEZ/IIZ +1

X exp [—%(maJruzﬁJrZKn)z . (2.33)
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The second exponential here is periodic in # with a period p. Therefore a second
application of Eq. (2.30), this time backwards, leads to the final expression

pa o [ in
(ST”S), ST mppexp | ———(uo + wf + 2Kn)?
SKan—O,ulz =41 Kp
(2.34)

An equivalent way to treat the r.h.s. of Eq.(2.31) is to notice that since an
integral over y is gaussian, a stationary phase approximation is exact. An array of
stationary phase points yy(n) = —2Kn/p and their contributions exhibit the same
symmetry properties as a summand of Eq.(2.29). Therefore an inverse use of
Eq. (2.30) shows that we can drop a factor (Ke'/?) from the rh.s. of Eq.(2.31)
and restrict the sum there to those values of n for which

0 =7u(n) =K. (2.35)

The formula that we get this way is slightly different in its form from Eq. (2.34).
For p-odd we get

fap in
STS), 1/ — - 2
( ZKszZilﬂlm CXP ( 2Kp(ﬂ10<+ﬂ2ﬂ) )

+ E exp (———(,u]oc + wp+ 2Kn)2> } (2.36)
n=1

The 1/2 factor in front of the first exponential here is due to the fact that the
stationary point y4(0) = 0 is on the boundary of the interval (2.35). There is another
such stationary point yg( p/2) for p-even.

In the next section we will apply Egs.(2.28) and (2.30) to formula (2.21).
Meanwhile we use Eq. (2.34) together with Eq. (2.19) in order to get an expression
for Z(L(p,—1),k) and check a factor of 1/Vol(H) in the 1-loop approximation
formula (2.14). In the large £ limit for odd p

Z(L(p,—1),k) = (ST"S)1,

in 2 n
meTdr 1/ 2K p i (237
e \/_n 2Kp,, e p ( )

The first term in the square brackets is a contribution of the trivial connection,
while the remaining sum goes over nontrivial maps m;(L(p,—1)) = Z, — SU(2).
The SU(2) subgroup H commuting with the image of w; is SU(2) and U(1)
respectively.

According to [8], a square root of the Reidemeister torsion of the trivial con-
nection is p~2 and that of a nontrivial one is 4 p~!sin?(27n/p). Therefore if
Eq. (2.14) is correct, then

Vol (SU(2)) = 4v2x?, Vol (U(1)) = 2v2x. (238)

The same value of Vol(SU(2)) is predicted by a large k limit of Z(S3, k), which
is equal to v/2mk 2. These values are what we expect since the group SU(2) is
a 3-dimensional sphere and U(1) is its big circle. The radius is equal to v/2.
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3. A Large k Limit of the Invariants of 3-Fibered Seifert Manifolds

3.1. Stationary Phase Points. Let us try to apply the Poisson formula (2.28) to
the partition function (2.21) for the case of n =3 in order to put it in the form
(2.3) or (2.4).

We start by giving an explicit expression for N,
cube

1.2y inside the fundamental

0 < a0 <K. (31)

According to its definition, Ny 4, = 1 iff o; + o + o3 is odd and the following 4
inequalities are satisfied:

a+op—o3 >0,
oy —op +oaz >0,
—op oy t+oa3 >0,

a +op+ay < 2K . (32)

Otherwise, N,, 4,4, = 0. We can drop a restriction on the parity of o) + o + o3 if
we change the formula (2.21) into

7 (X <& P2 &) ’k) =t T > %ezm(m,_az_%)

bl b
91 92 43 0<ay,,23 <K/I=O,%
~ (P14 i (P2:92) 375 (P3:43) 3
X Mall Moczl Mogl Noq,ocz,ag ’ (33)

here ]\7011,9!2,9(3 is a modified Verlinde number, ]Val,az% =1 in the whole region
defined by the inequalities (3.2). This region is a tetrahedron within the fundamental
cube (3.1) (see Fig.1). To simplify this picture we draw its section by a plane
o3 = const in Fig. 2 (region 1,).

Qzp
7l
S
. 'l
i 1
A
4
’ R
’ by
4 ' \
’ LY
ay aialh —— = \
R
r \‘\\
s
. v
’ + \
4 \
’
, \
4 1 \
A - B e o
S~ao < \
~~~~~~ K ~~_ \ Qy
..... AN
~~~~~ A
Qg

Fig.1. A fundamental tetrahedron.
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Fig.2. A section of the fundamental tetrahedron and its Weyl reflections by a plane 3 =const.

At this stage we could use a discrete stationary phase approximation method
described in Appendix A of [8], in order to get the 1-loop approximation of Z. The
stationary phase points inside the tetrahedron would correspond to the irreducible flat
connections. The conditional stationary phase points on the faces of the tetrahedron
would correspond to the reducible flat connections.

We use a different approach close to the one in Subsect. 2.3 in order to get the
full 1/k expansion of Z(X,k). We want to extend the sum in Eq.(3.3) from the

fundamental cube to the whole 3-dimensional space. We do this in two steps by

using the symmetries of the matrices M (l;q under the affine Weyl transformations.

These transformations include the ordinary Weyl reflections as well as the shifts by
the root lattice multiplied by K:

M= 0yl My =0 (3:4)

The easiest way to see these symmetries is to use Eq. (2.17) and expressions (2.24)
for Sa/g and Taﬂ

The first of Egs. (3.4) enables us to extend the sum over o, in Eq.(3.3) to a

bigger cube: Yo, ok 7§ Ky, 05 <K if we extend Ny, 4, as an anti-

symmetric function inside that cube (see the regions 2_, 3, and 4_ in Fig. 2). The

translational invariance of M,z together with Eq. (2.30) brings us to another formula
for Z:

Z = lim

e—0

17213
we: bg > E ! QM1 =y =3y —o3) = e+ +93)
8

41,402,053 €Z =, '

% M(m ql)M(pz,qZ)Mi];i’q})NOH,OQ,JC}. (3.5)

9([1 721

if we require N 2. 10 be a periodic function of its indices with the period of 2K
(see Fig.3).
A Poisson formula (2.28) transforms the sum over o; into an integral:

> = Jdudwdey Y ﬁé(al—n,)

%y,09,93 €L nynymy €L i=1
3
= [doujduydos >, exp (2mid oim, | . (3.6)
mymy,m3yE€L =1
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Fig.3. A section of the full array of tetrahedra by a plane o3 =const.

On the other hand,
™™ My = My pr2kgm » (3.7)

so the sum over m, and the exponential in the r.h.s. of Eq.(3.6) can be absorbed
by extending the sum over n in Eq. (2.25) to all integer numbers. Finally

ZXk) =" 212, , (3-8)
2 = P sign (qugaga) exp [~ 07 )| (39)
=i
. (QKe?Y 1 2mid [ 3 do i
) = lim L 3 N — e
e—0 8 22:0,% f 1o ,1;[1 \/ 2K|q,| ,u,g::!:l n,%l

X exp % [p,ocf —20,(2K(n, + q;A) + ;) + 5:(2Kn; + u,-)z] . (3.10)
1

We separated explicitly the phase factor Z; in order to simplify our formulas.

The integral in Eq. (3.10) is gaussian, but the function N say3; Carves a rather
complicated region out of the 3-dimensional a-space. A slice of that region for
o3 = const is depicted in Fig. 3. Fortunately, this region can be represented as a
linear combination of positive strips (double wedges in 3-dimensional space)

o —oa3+2Kl <oy <oy +oz+2KIl, el (3.11)
and negative strips
a3 — o +2Kl < op < —o3—og +2KI, [eZ.. (3.12)

Each strip (double wedge) is in turn a difference between two half-planes (half-
spaces). Overall we have a superposition of half-spaces

3
S, +2KI >0, vy =-—1, wvyv3==%1. (3.13)
i=1
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These half-spaces are related to the Bernstein—Gelfand—Gelfand resolution of affine
modules. We will use this relation in Subsect. 5.1.

A sign of the contribution coming from a half-space (3.13) is determined by
the product v,v3. Therefore we can change [ N s in Eq.(3.10) for

Z Z ViVvaV3 f . (314)

1€Z v25=+1 33 vis42KI>0

The stationary points of the phase in Eq. (3.10) are

o = 2K§%, here #i; = n; + i (3.15)
There are also conditional stationary points on the boundary planes
3
Svioy, +2K1=0. (3.16)
i=1
They are
2K
oA = Z2y,(n, — qico) (3.17)
Y2
here

H3
= — s P: .
P};(p} ) pP1p2p3

H=PZ% = P1P2q3 + Pr1@aps +qipaps (3.18)
J=1/Fi

|H| is the order of homology group of the Seifert manifold X ( L ' # ;’33) The
points (3.17) form a 2-dimensional lattice on the plane (3.16). Note that oc(cs')
not changed under a simultaneous shift

n—ni+qgm, med. (3.19)
Consider now an integral from Eq. (3.10) with a substitution (3.14):

3 do; in
J 11 exp [
23 v 2k1>0""! 2K qi| 2Kq,

1=

pio; — 20,(2K(n, + qid) + )

+ si(2Kn, + w )] . (3.20)

We dropped a regularization factor exp(—nstzloclz), while keeping in mind that it
will suppress a contribution of the stationary points (3.15) and (3.17) by its value
at those points. If a point (3.15) does not belong to the half-space of (3.20), then
the integral is equal to a contribution of the conditional point (3.17). If, however,
a point (3.15) is within the half-space, then we use an obvious relation

J =/~ f (321)

22 w20 R33 s oki<0

The first integral in the r.h.s. of this equation is purely gaussian, it is determined
by the point (3.15). The second integral is again determined by a conditional point
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(3.17). We will calculate both integrals in the next subsection. Here we just note
that as it follows from Eq.(3.21), a contribution of a point (3.15) to the integral
(3.20) is either zero or a quantity which does not depend on the half-space to which
it belongs. Therefore if a point (3.15) belongs to an array of tetrahedra whose slice
is depicted in Fig. 3, then its contribution to the whole expression (3.10) is equal
to the first integral in the r.h.s. of Eq.(3.21). If the point does not belong to the
array, then its contribution is zero.

The overall picture is this: we have two lattices (3.15) and (3.17). Z;, is equal
to the sum of the contributions of the points of these lattices. The lattices and
the contributions of their points exhibit the same symmetry under the affine Weyl
group transformations, as the summand of Eq. (3.5). Therefore by using the inverse
Eq.(2.30) in exactly the same way as we did in deriving Eq. (2.36), we drop the
factor (2Ke!/?)*/8 from the integral in Eq.(3.10). At the same time we restrict
the sum over n; to those stationary points (3.15) which belong to the fundamental
tetrahedron (3.2) and to those conditional stationary points (3.17) which lie on its
faces.

In other words,

Z(Xk) = Z Z Zs(tnl’nz’”};/') + Z Zé:‘l M2 "3)
l=0’%(n1,n2,n3)€St (ny,np,n3)€Cst
Zs(t"h"zm;/”-) _ ei¢f‘Z1Z§g’"2’"3;}‘), Zc(;ltl,ﬂz,”z) — €i¢ﬁZlZg?s’tnz’"3) ) (322)

Here St is the set of all triplets of integer numbers (n,,n,,n3) such that the points

o of Eq. (3.15) belong to the fundamental tetrahedron. Z;"S{ "2734) s equal to the

gaussian integral

do;

in
) €Xp ——
V 2K|ql| #zzil Zqu

[pz = 20;(2K(n; + qiA) + i) + 5:(2Kn; + i )2]) - (323)

Zé’é{”l”}’) 21u/fH (

The set Cst consists of all the triplets of integer numbers (n;,n,,n3) such that

the points cx(“t) of Eq.(3.17) belong to the faces of the fundamental tetrahedron.

Z{""2") is the contribution of the stationary point o™ to the sum of integrals

(n1n2,n3) 27l
Ly = —V1V2V3 ey J
/ 0 1 meZ [1(cs()]
1

E?:l v +2K1>0

y 1_31 _do; S yexp in
i=1 \ /2K |qi| ji=%1 2Kgq;
X [piof — 202K (n; + g2 + qim) + i) + s{(2Kn; + i )2]> ,

(3.24)
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(cst)

here ﬁagcs[)] denotes a contribution of the conditional stationary phase point o; = o

to the integral. We take the sum over m because of the invariance of oc,(CS‘) under
the transformation (3.19).

The stationary points that belong to the intersection of the planes (3.16) require
special care. Their contribution to the integral over the region carved by N aapay 1S
proportional to.the number of planes to which they belong. However the reduction
to the fundamental tetrahedron should also account for the fact that these points are
invariant under the action of a subgroup W’ of the affine Weyl group. Therefore
the total contribution of such points is equal to their contribution to the integral

(3.10) times a factor
# of planes
# of elements in W'~

(3.25)

This factor is similar to the factor 1/2 in Eq.(2.36). It is equal to % =1 for the
points on the edges of the tetrahedron and to 4§ = % for the points on the vertices
of the tetrahedron.

We can “unfold” the surface of the tetrahedron and require the points (3.17)
to belong to the intersection of the plane o + oy + o3 = 0 with the cube —2K <
o <0, 2K < oy <0, 0 < a3 < 2K. This intersection is an equilateral triangle
(see Fig. 4) consisting of 4 smaller triangles that can be mapped by Weyl reflections
onto the faces of the fundamental tetrahedron.

There is yet another way to view the fundamental set of conditional stationary
phase points. As we have noted, the triplets n, related by transformation (3.19)
define the same point through Egs. (3.17). A transformation

n; — n; +mp;, nj—n;j—mp, Ii¥j (3.26)
does not change ¢y and shifts o' by 2Km and oc§°5t) by —2Km, thus leaving them
within the same equivalence class of affine Weyl transformations. We can describe

a fundamental region of the conditional stationary phase points as a factor of a
lattice of all integer triplets »n; over a lattice generated by three vectors

E] = (qlan’q3)7 172 = (pl’ “Pz,o), 5‘3 = (Oa p2,—p3) . (327)

The number of triplets »; inside that factor is equal to the volume of a parallelopiped
formed by the vectors 7

9 D q3
# of conditional points = | p; —p, 0 |=|H]|. (3.28)
0 P2 —P3

We should be interested only in approximately half of the triplets, because the
volume of the prism built upon a triangle of Fig. 4 is twice as small as that of the
parallelopiped which is built upon the whole parallelogram. Thus the number of the
conditional stationary phase points within the fundamental domain is approximately
equal to half the rank of the homology group. This result is not surprising since
we intend to identify the conditional stationary phase points with reducible SU(2)
flat connections. The number of these connections is also approximately equal to
|H]/2.
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Fig.4. A fundamental triangle for reducible connections.

3.2. The Integrals

Stationary Phase Points. We start with the simplest case of a contribution of the
point (3.15) which is inside the fundamental tetrahedron (3.2) to the integral (3.23).
As we saw in the previous subsection, it is equal to the gaussian integral taken over
the whole a-space:

y 1 .3 +oo  do
Zg’slt’”z,”bﬂ): Ee21u/.1'[ Z M,f i

=l w=x1 —oo /2K|qi|

in .
X exp [piocf —20,(2K7A, + i) + s:(2Kn; + ui)z]
2Kq,
1 omiz 3 . s . . . .2
=Z;=e™ ] 2isin2n | —#, +s;4 ) exp2miK | —AF — qisiA7| .
2 i=1 le| i Di

(3.29)

Here Z; is a factor that will be present in all the subsequent expressions for the
contributions to Z;:

7 ﬁ Fsign(pgr) oy < in n ) (3.30)
— e 111 —_— . .
’ =1 P 2K pi

Conditional Stationary Phase Points. Consider now a contribution of the points

2K P 3. n
o = (i —qico), o= = > — (331)
pi HiZpi
which belong to the plane
o +op+o3=0. (3.32)
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The integral (3.24) can be extended to the whole a-space if we add an extra factor

+o00 400

(= —op —o3) = [ dx [ deexp [2mic(oy + o + a3 + x)] (3.33)
0 —00
to its mtegrand As a result, the full contribution of the point ol to Z(”C‘S{' 2m)
ny,hnyn 1 ) +o0 +0o niex 3 +oo dO(,‘
W =5 S MY [dx [de O] o [
}=0, % mEZ[g] —00 =1y,=%+1 —o0 2K!q|
X eXp2K [P = 202K (n; + qi(A+m = ¢)) + )
+ 5i2K (n; + gim) + ;']
o sign(H/P) [ S H
=Zy———— exp 2miK |0 + —cz]
NCT I ot e
3 . 1 .
DY {Hm exp [ZHiu,w] } 52 MY I(m),
;ll‘z’3=il i=1 Pi 2;:0’% mezZ
3.34
here ( )
+00 Wi
I(m)= [ dx exp |2mix(co +m + 1)+ —— ( + > . (3.35)
[g] 2K H ,Zl )2

We calculate the integral (3.35) in the spirit of remarks preceding Eq.(3.21). If
%(co +m+ 1) < 0, then the stationary point of the phase in Eq. (3.35) lies outside
the integration region, and the dominant contribution comes from the boundary point
x=0:

1 (in P & ) .
I(m):J;)ﬁ <2KH> Ofdx(x«l—z ) exp [2mix(co + m + A)]

(3.36)

x 3
X [fdx exp <2m’x(c0 +m+ A+e) +2m32&>}
0 i

1=1 e=0

If however g(co +m+ A) > 0, then we use a relation similar to Eq. (3.21):
[es] +00 0
Jdx= [dx— [ dx. (3.37)
0 —00 —00

The integral f dx is fully determined by the stationary phase point and therefore

has been accounted for in Eq.(3.29). The integral — fﬁoodx is dominated by the
boundary point x = 0 and leads to the same expression (3.36). Thus Eg. (3.36) is
valid if ¢y + m + A+0.



298 L. Rozansky

A Poisson formula (2.28) allows us to convert a sum over m back into a “dis-
cretization” of the integral over x:

l eZnii Z I(m)
2,120’% meZ

J . \
Jj=0J*

—0.1 =0 _
=0 ,5 X e=0

% 1 P j eZmeEl 1[]’1
=S —-@uK)? (=) * | ——F 3.38

jg)j!( k) (H) & | 2isin2n(cy + €) (3.38)
e=0

By substituting this expression into Eq. (3.34) and taking a sum over u; we get the
final expression for the contribution of the stationary point (3.31) to Z,:

—ifsien(%) 3 H
Zimmm) _ _7.¢ ~ ex 2niK{ —n? + —cz]
2est K] h Lyt
H?:12i sin (Zn%)

« 3L sminy7 (£ e (339)
=oJ! H ¢ 2i sin 2mc ’
c=Cq

A Stationary Phase Point on the Boundary. A stationary phase point (3.15)
presents a special case when it belongs to the boundary of one of the planes (3.13).
Suppose, that ocECSt) satisfy conditions (3.32). Comparing Egs. (3.15) and (3.31), we
see that this may happen if
co+4i=0. (3.40)
or, in other words, ¢ = 0, —%.
We can proceed with the same analysis as for an ordinary conditional station-

ary phase point up to Eq. (3.36). The integral /(0) requires a separate calculation.
According to Eq. (3.35),

3,

K|H| iz e
_ BN H | izsienapy _ d i
3 iP e Of X exp 2K

g

ﬁ
) (2/)927”2' i —1

K|H| ;z > 1 P
— > LD | pigsien(H/P) _ — (87K J
2 lP ¢ ;0,1( uk)” ( 2nis
e=0
(3.41)
The remaining part of Eq. (3.38) is equal to
x1 P / j i 2711523 & 1 1
—S—BmK) 7 [ =) &m0 | iz | —— — . (342
,;,j!( mik) (H) € ¢ 2isin2ne  4mie ) ||,_, (342)
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Adding 1(0) with an extra factor 7e*™ to this expression and substituting it into
Eq. (3.34) brings us to the formula

e""%Sig“(%) 3 7 H )
Z(npnzm}) =7 exp 2miK { 22 _02} £2mico
2,cst 2K|Hi p ;p: i P 0

ST 3 . ] . J .
X e’zslgn(%) IE [Elﬂﬁsm (znw> - ZL(&U’K)“’ <£> agzj)
8 | Plizi Pi i=oJ! H

3 . rinj+cote 3 . - rinj+c,
rinireoTe riniTco
[T, 2isin (27z o ) [T, 2isin <2n L )
X — - -
2i sin (27e) 4rie

(3.43)

e=0

Trivial Connection. In the case of ny = n; = n3 = ¢y = 0 the formula (3.43) re-
quires an extra 1/2 factor coming from the ratio (3.25). After some simplifications
it becomes

—iZsion( 2 ] 3 25 (i)
20 _ g€ “s'g"(”)i":l ENAY @(2/)w (3.44)
2,est 8K|H| j=oJ! \2iK H ¢ 2isine

e=0

3.3. Framing Corrections. Finally we have to simplify the product of the phase
factors e/*%Z;Z; which appeared at different stages of our calculations in the con-
tributions of all stationary points. We start with Eq. (2.22). According to [9],

o ti—1 .
Zay) —3) sign (aﬁ-”) = (M Py (3.45)
j=1 J=1

Also note that
(D(M(Piw%)) — 3Slgn(pqu) = (D(SM(p”q')) . (346)

The central charge of the SU(2) WZW model is

3(K —2)
c=———.

= (3.47)

Therefore the full framing correction is
A i [3 H
e = exp% {ZUD(M(”“"')) — 3sign( p;q;)) + 3sign <F)]
i=1

i [ ) oo (H
X exp — > Z:ld)(SM »4) + 3sign K (3.48)
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and the product of all three phase factors is

. 3% o 3
el¢fr Zl Z3 — ez%—sngn( % ) H Sign (pl )exp
i—1

1

iﬂ: . 3 ql
_ = il ) — 22 49
[Sngn (P) + . 1 (12s(q,,p, l)] (3.49)

1

We used the following property of the Dedekind sum in order to derive this formula:
s(m*,n) = s(m,n), if mm* = 1(mod n). (3.50)

Equation (3.49) together with Egs. (3.30),(3.39),(3.43) and (3.44) leads to the final
formulas (1.3)—(1.8).

4. One-Loop Approximation Formulas
4.1. Irreducible Flat Connections. Irreducible flat connections on a Seifert manifold

of the homomorphism (2.2) does not have continuous parameters. In the case of
G = SU(2) this simply means that the image of (2.2) is noncommutative.

The fundamental group 7; of the Seifert manifold is known to be generated by
the elements xj,...,x,, h satisfying relations

n
xPhii =1,  hy=xh  [u=1. (4.1)
1=1

The elements x; go around the solid tori that make up the manifold, while 4 goes
along the S' cycle of the “mother-manifold” S! x S? (see [15 and 8] for details).
Suppose that the image of /2 does not belong to the center of SU(2). Since
h commutes with all the elements of 7;, then the whole image of m; belongs to
U(1) C SU(2). Therefore H O U(1), so this is a reducible case. An irreducible
connection is produced only if the image of /# belongs to the center of SU(2):

2mil. 0
h$<e0 e-—27‘tii), }':0’

The images of the elements x; belong to the conjugation classes of diagonal matrices
whose phases we denote as u;:

4.2)

N —

4 e21tiu, 0
Xi—g; : ( 0 e 2m; gi - (4.3)

The first of relations (4.1) determines the possible values of these phases:

Ai
U= —,
pi
here the numbers 7; are defined in Eq.(3.15). The phases u; determine the map
(2.2) uniquely up to an overall conjugation if the number of the solid tori is n = 3.
If n > 3, then each particular choice of the phases u; corresponds to a connected
component of the 2(n — 3) dimensional moduli space of these maps, which is a

(4.4)
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moduli space of flat connections on a Seifert manifold. Such a connected component
is isomorphic to the space of flat connections on an n-holed sphere if the holonomies
around the holes are fixed by Eq.(4.3). We will discuss this subject further in
Subsect. 5.2. Here we specialize to the case n =3 and present the expressions
for the manifold invariants entering Eq.(2.14). A Chern—Simons invariant of an
irreducible flat connection on a Seifert manifold was computed in [17]:

31 3
Scs = S —(rin? = 2in; — qii*) = (p i — qisil ) (mod 1). (4.5)

=1 Pi i=1

According to [16], a square root of the corresponding Reidemeister torsion is

T;{/z = ﬁi|sin(2n¢,)| , (4.6)
=1 \/—l
here
b= A Tip ) (mod 1) (4.7)
Dbi )2

are the phases of the conjugation classes of the holonomies along the central fibers
of the solid tori that make up the Seifert manifold.
The spectral flow was calculated in [15]:

= -3+ 8S¢s + Z p‘il (Eﬂ) cot (n_l) sin’ [%(nn, — /1)] . (4.8)

1Pi 1= Di D

L. Jeffrey presented in her paper [9] a proof by D. Zagier of an equation

2 2 2}
(—1)sign (sin o mn—z’z) = exp— @— 22 Z 7T—qlsinzM , (49)
P P P p

20 p p

here n, p,q,r € Z, qr = —1 (mod p). A slight modification of that proof shows that
Eq. (4.9) works also for a half-integer n if we multiply its Lh.s. by an extra factor
of e?™_ Then an application of Eq. (4.9) with a substitution

q=r, r=gqi, n=rn — A (4.10)

to the r.h.s. of Eq. (4.8) leads to a formula for the exponential of the spectral flow:

. 3 -
exp (—%1,,) = —[]e*™*sign <sin o

=1 1

sin 2n¢l>

3
= —e™™ []sign (sin 27¢;); (4.11)
i=1

here we used the fact that 0 < ;’; < 1 because 0 < a(St) < K. Apparently the role

of the factor (—i)“ is to remove the absolute value from the sines in the square
root of the Reidemeister torsion (4.6). A similar effect was observed for lens spaces
in [9].

For an irreducible connection on a 3-fibered Seifert manifold X le, ;’22, f;;

dim H° = dim H' = b' =0 and dim SU(2) = 3 while H is a center of SU(2)
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which consists of 2 elements, Vol(H) = 2. Therefore according to Eq. (2.14), the
1-loop contribution of an irreducible flat connection should be equal to

2 . i
sin 27 (—r—n[ +s,~/1) exp 2miK <iniz - q,s,/lz) . (4.12)
=14/ pil pi Di
If we compare this expression to Eq. (1.3), then we see that® the exact contribution
differs from Eq. (4.12) only by a phase factor

m [ (HY 3 ,-
exp — % [3sxgn (F) 3 (12s(q,,p,-) - %—_)] . (4.13)

It comes from the overall phase factor Z1Z3Z; and can be interpreted as a 2-loop
correction according to Eq. (2.4). Note that this factor is the same for all the sta-
tionary phase contributions. It does not “feel” the background gauge field and seems
to be of “gravitational” origin. A similar 2-loop phase factor has been found in [10
and 9] for the lens spaces L(p,q) to be equal to exp [5z12s(q, p)]. S. Garoufalidis
noted in [10], that this phase is proportional to Casson’s invariant extended by K.
Walker to rational homology spheres. According to [18], this invariant is equal to
s(q, p) for the lens space L(p,q). C. Lescop computed the Casson—Walker invariant
for n-fibered Seifert manifolds in [19]:

1 Pn 1 P ",
y X —, ..., = = —— |2~
CW( (qn’ q)) 12H( ntap )

1 . H 4 qi
T [351gn <F> +i=1 <12s(q,~, pi)— ;)] . (4.14)

We see that the phase of (4.13) is indeed proportional to the second term in the
r.hs. of Eq. (4.14), however the first term (which is dominating in the limit of
large p;) is missing. We will see that the missing part appears in the total 2-loop
correction to the trivial connection, which includes some terms of the asymptotic
series together with the phase (4.13).

4.2. General Reducible Flat Connections. As we noted in the previous subsection,
the image of m; under the homomorphism (2.2) belongs to the U(1) subgroup of
SU(2) for the reducible flat connections. This generally happens when the image
of & does not belong to the center of SU(2):

27ic
4 [ e 0 1
h— < 0 e—21rico>’ c():I:O,E. (4.15)

Since 4 commutes with all x;, their images should also be diagonal. The first of
Egs. (4.1) again determines the phases:

27miu
4 (™ 0 n;i — q,Co
: s = —, 4.16
X; K ( 0 e—2mu,) u pz ( )

5 In assumption of pi, p2, p3, H > O.
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while ¢y is determined by the second equation in (3.31). The phases of the
holonomies going along the fibers of the solid tori are

¢ = —_——r"”’: “. (4.17)

A Chern—Simons action and a square root of the Reidemeister torsion are known
to be®

3 H, _
Scszzr—n + = |H|™?

2 (4.18
i=1Pi p 0 )

2sin(2mcy)

Reducibility of connection means that this time dimH® = 1, H = U(1), Vol(H) =
1/v/2.

All these formulas are compatible with the leading term in the 1/k
expansion of the conditional stationary phase contribution (1.6) at least up to
a phase factor. Indeed, we see that the 1-loop part of Eq.(1.6) (assuming that
1, b2, p3,H > 0) is equal to

, 3.
i - [I;., 2sin2né;) &, H
L 2miK —n; + — . 4.19
V2KH  2sin(27cy) exp 1; pi e P (4.19)

4.3. Special Reducible Connections. The special reducible flat connections are those
for which one or more sines in Eq.(4.18) are equal to zero. This amounts to a
condition that a stationary phase point «*" defined by Eq. (3.15) belongs to a face,
an edge or a vertex of the fundamental tetrahedron (3.2).

Point on a Face. Suppose that a condition (3.40) is satisfied for some value of
A. This means that the element % € m; is mapped, according to Eq.(4.15), to
eZm‘i. 10

0 1
hedron is, in fact, unconditional. The approximation (4.19) breaks down, the reason
being that Eq. (1.7) should be used instead of Eq. (1.6). Then the leading contribu-
tion to a partition function is equal to one-half of Eq. (4.12):

, so that the conditional stationary phase point on a face of the tetra-

1 3
!

sin 27 <iﬁ, +s,~)»> exp 2miK (iﬁ,z — q,s,/iz) . (420)
1/ IPI' i i

Let us reconcile this expression with Eq.(2.14). The fact that a denominator of
Eq. (4.18) is zero for ¢y = 0,% indicates a presence of 1-form zero modes in the
operator L_. Indeed, the first two conditions (4.1) fix the images of x; in SU(2)
only up to arbitrary conjugations because the image of / again belongs to the center
of SU(2). The last condition (4.1) says that the points x;,x,x; and x3x,x; = 1 form
a “curved” triangle inside SU(2). The size of the sides of this triangle is fixed by
the first condition (4.1), but their orientation is constrained only by a condition
that the triangle is closed. Such a triangle is a rigid object and can be rotated into

® See e.g. [13], where these quantities were calculated by using a U(1|1) Chern—Simons-Witten
theory.
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a predetermined position by an overall conjugation. This is why the irreducible
connections on a 3-fibered Seifert manifold have no moduli.

The rigidity of the triangle is considerably decreased if all three of its vertices
belong to the same big circle (see Fig.4), i.e. if the images of all x; belong to
the same U(1) subgroup of SU(2), as it happens for a stationary phase point on
a face. In this case, say, a middle vertex can be infinitesimally shifted in the
plane perpendicular to the line of the triangle, with the sizes of the sides of the
triangle changing only to the second order in the shift. Thus the operator L_
has two zero modes, dimH' = 2, however there are still no moduli, because an
obstruction prevents an extension of those modes to a l-parameter family of flat
connections.

The two zero modes form a 2-dimensional representation of U(1) which is a
symmetry group of the reducible flat connections. This means that the modes are
gauge equivalent. However a procedure of dropping the zero modes of 4 and L_
from the determinants of Eq.(2.5) amounts to neglecting the global U(1) gauge
transformations (see the Appendix). The integration in path integral (1.2) includes
the directions along both zero modes. The exponent corresponding to these directions
has no quadratic terms, the cubic terms are prohibited by the U(1) symmetry.
Therefore the dominating term in the exponent is generally of the fourth order
in coordinates along the zero modes. Each direction contributes an integral (2.12)
which results in the formula (2.13) for the factor C;. Since in our case dim H° = 1,
dimH'! =2, dimX = 0 we see that Eq. (2.14) predicts an overall power of K to
be equal to zero in agreement with the surgery asymptotics (4.20).

adjoint
U(1) action

~_r A

Z Z€ero

mode
Z€ro
mode

To Iy ¢

Fig.5. The zero modes of deformations of a degenerate triangle.
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Point on an Edge. Suppose that in addition to the previous conditions, one of the

phases ¢; is equal to zero or 5 This means that oc(s) equals either 0 to K, so that

a stationary phase point belongs to an edge of the tetrahedron (3.2).

Let, for example, ¢, = oc(ISt) =u; = 0. Then the image of x; in SU(2) is the
identity matrix. The triangle x;,x;x),x3x2x; = 1 is even more degenerate, because
its first side has shrunk. The rigidity of the construction is restored, the zero modes
of L_ disappeared, dim H' = 0. Since dim H® = 1, then according to Eq. (2.14) we
expect a contribution to be proportional to k~!/2. Indeed, the approximation (4.20)
breaks down and the first subleading term in Eq. (1.7) contributes

&2 1 3y H
\/271? o (Hz sm(2n¢,)> exp 2miK (_Zl;n% + Fﬂ) ) (421)
i=2 = 1

This expression is very similar to Eq.(4.19). We easily recognize the same con-
struction blocks assuming that now

1/2 s

Tp ——\/_ > H2sm(2nd>) (4.22)

Point on a Vertex. This is the case when the image of m; is a subgroup of the
center of SU(2), that is, cg, 1, P2, P3 = 0,%. Let us take a particular case of a
trivial connection, for which ¢y = ¢y = ¢ = ¢3 = 0. The Chern—Simons invariant
is zero, the square root of the Reidemeister torsion is known to be (see, e.g. [8])

=g g (4.23)

The group H is the whole SU(2), its volume in the proper normalization is 1/(v/27)
(see Eq.(2.38)). We also know that dimH® = 3, dimH' = 0. As for the phase
factor in Eq. (2.14), it is shown in [8] that for the trivial connection

exp_1—475[2Ia+3(1+b1)+dimH0+dimH‘]:1. (4.24)

Therefore, according to Eq. (2.14), the 1-loop contribution of the trivial connection
should be

Z =\2n(KH) 2. (4.25)

We get the same expression from the surgery calculus if we take the term with
j =1 1in Eq. (1.8).

2-Loop Correction. Let us use Eq.(1.8) to calculate the next subleading cor-
rection to the formula (4.25)". In other words, we are looking for a 2-loop
term S, as defined by Eq.(2.4) (note, however, that we are using now K =
k + 2 instead of k as an expansion parameter). One obvious source of S, is the
2-loop phase —i5 ¢ (see Egs. (1.5) or (4.13)). The other source is the j = 2 term in

71 am indebted to D. Freed for turning my attention to the 2-loop correction. 1 learned later
that a similar calculation was performed by J.E. Anderson.



306 L. Rozansky

the asymptotic series of (1.8). Actually, we have to take a logarithm of that series
to bring it to the form (2.4). At the 2-loop level of approximation this amounts to
dividing the j = 2 term by the leading j = 1 term. Since

H?_l 2isin (i> 16 [3

W= \Pi/ = — | 426

¢ 2isine P 2P ’ ( )
e=0

1=1

then the whole 2-loop correction S, is

nlpP /3 H 3 qi
S == |= 2 _ 1) — 3si — ) - 12s(g;, p;) —
2 2 {H (i=1pl ) sign <P> i=1< S(an pi) Piﬂ

= 6micw (4.27)

here Acy is a Casson—Walker invariant (see Eq. (4.14)).

4.4. Identification of Flat Connections. Throughout this section we identified the flat
connections of the Seifert manifold with the stationary points afSt) and a?’s" of the
surgery formula (2.21) by comparing the already known Chern—Simons invariants
(as well as the Reidemeister torsion and spectral flow) with the leading (in K !
expansion) part of the stationary phase contributions with the help of Eq.(2.14).
However there is a more direct method of identifying a stationary point of the
surgery formula with a flat connection of a manifold. Consider the Witten’s invariant
of the 3-fibered Seifert manifold equipped with the Wilson line going around the
i fiber (i.e., equivalent to the element x; € 7;(X)) and carrying the y-dimensional
representation of SU(2). According to [1], the surgery formula for this invariant
is

P p2 P3 i 1 2mA(l—ay —ay—a3)
Z(x (2,2 2 k) =eitn Z 1 ==
L) ) R o+

b b
91 92 43 0<ay.9,23 <Kj=q,1
: Ty
sin (B2~ (pra) ol « .
X P11 P2:42) 3~ (P3:43)
X : o Mdll Mdzl M(X}l NO‘]#Z#} . (4‘28)
sin (%)

As a result, a contribution of a particular special point o (i.e., either a stationary
(st)

point «,” or a conditional stationary point afcsr)) will acquire an extra factor
. oy
———sm (T> 4.29
sin ( 7 )
up to the corrections of the higher order in K~!. On the other hand, according to the

quantum field theory loop expansion, the 1-loop contribution (2.14) of a particular
flat connection A4, acquires an extra factor

e ow sin (2myu;
Tr,Pexp (z [ A#dx“) = s_m((27r—yu*)) , (4.30)
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here we used Eq.(4.3) for the holonomy along x; as well as the Weyl character
formula to calculate the trace. Comparing Egs. (4.29) and (4.30) we conclude that
for the flat connection corresponding to the special point of,

L (431)

This relation is compatible with Egs. (3.15), (4.4) and (3.17), (4.16).

From the physical point of view, we “measure” the observable
Tr,Pexp(i fx , Aydxt) for the contour x; and compare it to its classical value. By
performing this procedure for various contours we may reconstruct the holonomies

of the flat connection corresponding to a particular special point of the surgery
formula.

5. A Large k Limit of the Invariants of General Seifert Manifolds

5.1. A Bernstein—Gelfand-Gelfand Resolution and Verlinde Numbers. A calcula-
tion of Witten’s invariant for a general Seifert manifold can proceed along the
same lines as that for the 3-fibered one, described in Sect. 3. We will try again
to convert the sums in Eq.(2.21) into the integrals over the n-dimensional half-
spaces. We need a representation for Verlinde numbers N, ,, similar to that of
Subsect. 3.1. We will do this with the help of the Bernstein—Gelfand—Gelfand resolu-
tion, which presents a representation space of a Lie group G as a cohomology
over a complex of certain vector spaces (see e.g. a review [20] and references
therein).

We introduce the following notation. 4 with various subscripts will denote the
sets of weights of G coming with multiplicities. In other words, the elements of 4
are pairs (v,m), where v is a weight and m € Z is its multiplicity. The weights
form an abelian group. Consider its group algebra .o/ with the coefficients in

Z. There is a one-to-one correspondence between the sets 4 and the elements
of of:

4d— > mo. (5.1)
(v,m)€A

We define the sums and products of the sets 4 which parallel the operations in
/. The sum A4; + 4, consists of weights belonging to either of the sets 4,4,
and coming with the multiplicities which are sums of their multiplicities in 4, and
A,. To build a product 4, o 4, we take all the pairs of weights v; € 4y, v, € 45.
Their sums vy + v, appear in the product 4; o 4, with multiplicities m;m,. If the
same weight v appears more than once as a sum v; + v;, then we add all its
multiplicities in order to account for the similar terms. A sum ) _, F(v) is a
shorthand for 3, ,mF(v), in the same way a product [, ,F(v) is equivalent

to H(m)eA F™(v).

Consider a representation space ¥V, of a Lie group G with the shifted highest
weight A (we recall that a highest weight of Vy is 4 —p, p = %ZLEM A, Ay 18
the set of positive roots of G). A Weyl formula for the character of V4 as a function
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of the element x of a Cartan subalgebra, is a ratio

o -
)= Y et = ZWGW(_l)lw‘el[W(h) n
’ vEd [1,eq, A —e7% %)

Here 4, is the set of weights of V;, W is a Weyl group and |w| is a number of
elementary Weyl reflections (mod 2) whose product is equal to w.
An individual term in the formula (5.2) can be presented as a sum

(52)

elH=p] = x

: = (-1 ey, 53
Moen (=) (=1 vGZL;l()A) (5.3)

(=)

here A(Al) is the set of all the weights of the form

v=A—p—Zn,«/1,, n; ; 0 (54)
i

with multiplicity 1 (in fact, many weights may ultimately have a bigger multiplicity,
because generally the positive roots A; are not linearly independent). It follows from
Egs. (5.2) and (5.3) that
A= 3 (=D)M4Q, . (5.5)
weWw

The infinite dimensional modules of the Bernstein—Gelfand—Gelfand resolution con-
sist of vectors with the weights and multiplicities of AS()A).

The “classical” Verlinde numbers appear in the decomposition of the tensor
product

Vi ® Vi, = SN, Vit - (5.6)
A3
A product of characters decomposes as
()= 32 aa(x), (5.7)
A3€AA1’A2

here 44, 4, is the set of shifted highest weights of all representations appearing

in the decomposition (5.6) and coming with the multiplicities N AAl3Az. Note that we
raised a third index of Verlinde numbers. The indices are raised and lowered by
the metric Ny 4, which is equal to 1 if V4, and Vj, are conjugate representations,
and is zero otherwise. For G = SU(2) there is no distinction between the upper and
lower indices since Ny 4, = 0x;s,-

If we use the r.hs. of Eq.(5.2) for x4, and x4, and the middle expression of
Eq.(5.2) for yx,,, then we see that

SO% (=MDt x5 s i)t x (5.8)

WGWUEAAZ WEWA-}EA/HYAZ

Let us denote by 44y the set containing all the weights w(A), w € W with mul-
tiplicities (—1)™. Then it is easy to translate Eq.(5.8) into a statement about
sets:

AW(AI)OAAZ = Z AW(A3)o (59)
A3EAA1’A2
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Finally applying Eq. (5.5) to 4,4, we get

> (—1)l lAW(A,) o Am(/x y = > Aw(as) > (5.10)
wew A3€44, 4,
or equivalently,
Z (_1)IWl|+|W2]A$1)(A,)+w2(/12) Z Awiny - (5.11)
wipEW A3€44, 4,

It is easy to generalize this relation to a tensor product of n— 1 vector
spaces:

+otwy_q] 4(n—2)
Y (Ml g = 2 Awans (512)
WiseWy_ 1 EW A"EAA],..,,A"_I
here 4,4, .4, , is the set of weights A, taken with multiplicities NAAI'_’_‘ Ay while

A(A) contains all the weights
n
v=A—np—-3 % n,k, n, =0 (5.13)

coming with multiplicities 1 (before the counting of similar terms). There

are <m’—1i—71 }_ 1> ways in which a number m can be represented as a sum of

n non-negative numbers. Therefore we can say that A(A”) consists of the
weights

v=A-np->.nk, (5.14)
coming with multiplicities [], <n Z_; 1_ |

We need an analog of Eq. (5.12) for the case of affine Lie algebra (or a quantum
group G,). The affine Weyl group W is a semidirect product of # and an abelian
group T of translations by the elements of the root lattice multlphed by K. We
can not simply substitute ¥ for W in Eq.(5.12), because the previous reasoning
does not quite apply to the case of affine algebras (e.g. Eq. (5.7) is no longer valid).
Still it turns out that a simple modification of Eq.(5.12) makes it work for affine
algebras or quantum groups:

1w g | 4(1=2)
z%:Twl wz: 16W( D At(wl(Ax)+‘..+w,,-1(A,,_1))
,,,,, —

= Y Ay (5.15)

An€dy4,...4

n—1
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here 45,y is the set of weights w(A), w € W coming with multiplicities (— 1)1, |w|
counts only the number of reflections®.
The Lh.s. of Eq. (5.15) consists of all the weights

n—1

v= Y wild)—(n—=2)p =3 mii +KY midy, nom €L, n 20 (517)

i=1

coming with multiplicities

_HES n-3
P (L) (5.18)
For a given set of numbers m; and Weyl reflections w;, these vectors form a half-
space similar to that of Eq.(3.13). The r.h.s. of Eq. (5.15) consists of the highest
weights A, of integrable representations of an affine Lie algebra coming with multi-
plicities N/ﬁ" 4,_, together with all their images w(A,), w € W, whose multiplicities

have an extra factor (—1)"l. In other words, the r.h.s. of Eq. (5.15) consists of all
the weights 4, coming with the multiplicities N /fl" Ay which are Verlinde numbers

N/ﬁ’_’“ A, extended to all the weights of G by the affine Weyl group: the extended
numbers ]\7/’111" 4, , are invariant under the shifts of 7 and they are antisymmetric

under the Weyl reflections. Since the matrices M of Eq.(2.21) exhibit the same
properties under the action of W, we can use the extended Verlinde numbers as
defined by Egs. (5.15)—(5.18) in order to extend the sums in Eq. (2.21) from the
integrable highest weights to the whole weight lattice of G and to transform it into
a sum over the “half-spaces” (5.17),(5.18).

The Case of SU(2). Let us study specifically the case of G = SU(2). We recall
that the variables o play the role of shifted highest weights, p =1 and the only
positive root is equal to 2. Thus according to Eq.(5.15), we can drop Verlinde

8 The same equation can be derived directly from Verlinde’s formula

n
Nijoty = 2 (HSAA,> / st
Aed \i=1

(4 being the set of integrable highest weights), by expanding its denominator in a geometric series
similar to that of Eq. (5.3) and performing a Poisson resummation on A. In fact, A plays a role
very similar to ¢ in Eq. (5.27).

A generalised Verlinde’s formula

NO = ( SAA,) / sy (5.16)
1

A€d \u=

for the number of conformal blocks on a g-handled Riemann surface X, with » primary fields 77,
allows us to generalize the results of our calculations to the case of a Seifert manifold constructed
by a surgery on circles in S' x Z,. Equation (5.16) suggests that the presence of handles can be
accounted for by a simple substitution n — n + 2g in Egs. (5.17)~5.20) and (5.24). Thus only
a multiplicity factor N,(x) is affected (it is substituted by N,i2,), while other quantities, such
as Chern—Simons action of flat connections, remain unchanged, so that Eq. (4.5) is still valid in
agreement with [17]. We hope to discuss this subject further in a forthcoming paper.
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numbers N,, ,, from Eq.(2.21) if we take the sum there over all the n-dimensional
vectors (ay,...,0%,) satisfying an equation

M:

v, = (n — 2) + 2m + 2KI (5.19)
1

i

and coming with multiplicities

n—-3 "
(m+n_3)£11v,~. (5.20)

Here
VipeosVpr=xL, v, ==1, mleZ, m=0. (5.21)

The multiplicity appears as a new factor in Eq. (2.21) taking the place of Verlinde
numbers.
We can make a substitution
1

m= 5(x—n+2), (5.22)

so that Eq. (5.19) transforms into
n
> vy = x + 2KI (5.23)
i=1

and the multiplicity factor is

Hn~1 Vi .
Ali=17r — 0. 24
31— 3)1 e, 67D (524)

1+n even

Na(x) = —

The substitution (5.22) requires that x — n is even and x = n — 2. In fact we may
demand only that x = 0, because the fixed parity together with the last factor of
Eq. (5.24) eliminates all possible extra values of x.

5.2. A Contribution of Irreducible Flat Connections. The Witten’s invariant of an
n-fibered Seifert manifold is equal to a sum

Z (X <£l,,£)—f—>> = ei¢fTZ 2 Zvl:»-»vn_],—l;l’ (525)
a n leZ v=*I

1sisn—-1

M(Piﬂ:) ’ (5.26)

o1

Zvl,“.,v,,;l = }: Z Nn(x)H

n
x>0 g D vioy=x+2K] i=1

X—n even

here €'t is a framing correction given by Eq. (3.48) with a substitution Z?:n —
Yt

Similarly to Subsect.3.1 we turn a sum over «; into an integral by extending
the sum over n in Eq.(2.25) to all integer numbers. We take care of a condition
(5.23) by adding a factor

+o00 3
[ dcexp2mnic <x + 2KI — Zv,a,-) (5.27)
i=1

—00
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to Eq. (5.26). Another familiar factor

= Z exp 27id (Zoc, + n) (5.28)

2

guarantees together with the factor (5.27) that x — # is even. Finally since the factor
(5.27) makes x an integer, we can take an integral over x rather than a sum:

Zoy il = = Z e2’“’"f dx N,(x) f dc exp2mic(x + 2K1)
l

/—; — 00

Nl

n oo sign(g; 1 1
x I1 i f doyi 2B ) i oM

> i
=\ €Z =1 —oo v 2K|q;|

X exp %[p,-a% + 2042K (i + vigic) + i) + s:2Kni + ). (5.29)

We fix the numbers »; in order to study a contribution of a particular point
(3.15). After integrating over «; and ¢, a partition function becomes a product of
two factors Z, and Z,:

D = Lz (5.30)

2,st

Z("l

StV

Zy = ei%—”Sign(%) (H sign pz)

i=1

x exp—% [351gn ( ) Y <1zs(q,-,p,) - %)] . (53D

i=1 i

o—itsien(H) |

Z(”l Sl )) 2nijn

2 VIKH] 2,5,
X > [H,u, exp 2niK <;n — 8,qi A ) exp 2mip; (%ﬁi +s,~/1)]

1

XAV, e s Vi U s s 1) (5.32)

here

IR 1) = [dxNy(x - xo)exp| =L x—iv»&z (5.33)
1se-ey n’.ul""v#nv _i"g] n 0 p 2KH =~ lpi s .

) ‘
xo = 2KI — Y via™ (5.34)
=1

and we remind that oc(St) are defined by Eq. (3.15). We made a change of variables
X — X —Xp in derlvmg Eq. (5.33).

The integral (5.33) is gaussian apart from a polynomial factor N,(x — xp). This
integral is similar to the integral (3.35) and should be treated in a similar way.
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Here we are concerned with a contribution of a stationary phase point x = 0, which
contributes to the integral (5.33) if xo < 0.

Consider a specific point cxfso of Eq. (3.15). As we know from Subsect. 3.1, we
should limit our attention to the points belonging to the fundamental cube

0<a™ <K, (5.35)
We have to determine a set & of arrays (vi,...,v,—1;/) for which a stationary
phase point oY contributes to the integral (5.33). Then we should substitute a sum

i

N (x) = SNy (x + Sovial™ — 2K1) (5:36)
7 i~

i=1

instead of N,(x —x¢) in Eq. (5.33) and extend the integral over x to f_tf in order

to get a full contribution of the point ocESt) to the partition function (5.30).
Let & be the set of all arrays (vy,...,v,_1;!) for which

2K1 —

1

SN EY)
viop” 0, (5.37)
=1
then the sum (5.36) will contain infinitely many terms. However most of these terms
will cancel each other. Therefore we propose another procedure that will express
{9 as a finite sum. Suppose for simplicity that o$” +0. Consider a line in the
a-space

() =0, i=1,...,n—1; at)=ao". (5.38)
Obviously, o,(1) = ocfSt). Remember now that N is a Verlinde number. Therefore

NI =0 for ;(0). This means that all the terms in Eq. (5.36) cancel each other
and we may drop them altogether. As ¢ starts to grow, suppose that for some
value t,,

2KI — 3 viou(t,) = 0. (5.39)
i=1

If for ¢ > ¢, the Lh.s. of Eq. (5.39) is negative, then by passing ¢ = ¢, we gained a
contribution of the array (vi,...,v,—1;/) to Eq.(5.36) and the corresponding term
should be added there. If, however, for ¢ > ¢, the Lh.s. of Eq.(5.39) is positive,
then we lost the contribution of the array (vi,...,v,—1;/), and the corresponding
term should be subtracted. As a result,

n—1 n
N (x) = —3 sign (Zv,«x,) N, (x + Z:lvlocl@) - 2Kl> , (5.40)
7z i=1 1=

here a set ¥’ consists of all arrays (vi,...,v,_;/) such that for some ¢, € [0,1]
Eq. (5.39) is satisfied.
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Since o*"

and x:

are proportional to K, the function NV (x) is a polynomial in K
n—3 .
N(x) = S CK" > x! . (541)
J=0

A Verlinde number N 50 = N,fmt)(O) = (Cp is a number of the WZW conformal

blocks of »n primary ﬁelds v 450 on a sphere’. This number to the leading power

in K is proportional to the volume of the moduli space of flat connections on a
sphere with n punctures, the holonomies around which are fixed by Eq. (4.3). This
moduli space coincides with a connected component of the moduli space of flat
connections on the Seifert manifold, for which the map (2.2) is determined by
Eq. (4.3). Therefore the coefficient Cy is equal to the volume of that component of
the moduli space (calculated with the proper measure).

Let us substitute Eq. (5.41) into the integral (5.33) modified in order to get the

contribution of the stationary phase point oc(s ).

1= ek [a ( Z ”“)j (i”P 2) (542)
= KT x|{x+ ) vi— ) exp| =—=—x" | . .
P p) “P\2kH

i=

The dominant contribution comes from the term with j = 0. It is proportional to

K"3:

51gn(H 2K ‘H |
|P|

so that the whole 1-loop partition function contribution coming from the point (3.15)

is (for p1, p2, p3. H > 0)

I~ e CoK" 3, (5.43)

1 '
Zs(tnl,,.‘,nn,/v) ~ Ee 3T exp—— {3 + Z <12S(qi’ pl) 9q >j| K" 3C

1

n . 2i .
X ¥ T exp 2miK (—’ﬁf - s,qllz> 2 sin2n (iﬁ, + s,-)») . (5.44)
;_:0,% i=1 Di \/E i

Comparing this expression with Eq. (2.14) we note that dim H' = 2(n — 3), hence
the factor K"~3. Also an integral over the moduli space (which is included in the
sum over flat connections in Eq. (2.14)) produces its volume Cp.

In contrast to the results of Subsect. 4.1, the contribution of the irreducible flat
connection on an n-fibered Seifert manifold (n = 4) contains higher loop corrections
coming from the sum in Eq.(5.42). However the number of these corrections is
finite. The highest order correction is of the order of K°, so the number of loop
corrections is equal to half the dimension of the moduli space.

5.3. A Contribution of Reducible Flat Connections. A contribution of a conditional

stationary phase point (3.17) is easier to calculate than that of an unconditional one

oY, because the former involves an integral only over one half-space (5.23), to
g

which boundary it belongs. We will use an expression for Zé"cls’t'“’"") which is slightly

° The numbers a(sn are not necessarily integer, so in fact, we should take the closest integer

numbers. This does not change a conclusion that Cy is the volume of the moduli space.
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different from that of Eq.(5.32) and is a generalization of Eq. (3.34). We express
the multiplicity factor N,(x) of Eq.(5.24) as a derivative:

Ny(x) = v Pn=gztctn=) (5.45)
" (n=3)""° a=1

We also shift the integration range of x from x = 0 to x = 4 — n. The contribution
of the extra values of x is killed by the zeros of N,(x) (recall that x is actually
an even integer). After a shift in the integration variable x — x +n — 4 we get the
following expression for Z, (the other factor Z) is defined by Eq. (5.31)):

Z(nl,...,n,,)

2,cst

L . in r; .
— I: e 1451gn(p,q,)exp (__;)jl e2m/~n
i=1 2K p )],

1
)

) 1 3 s
X 3 fdx [(n_3)!5fl 3 a2

+00
] f dce—Znic(x+4—n+2K1)
a=

— 00

n +00 dO(,'
<[ 2w [ ———

i=1l y=%+1 —o0 2Klq,-|
X exp %}—‘[p,ozi2 — 2v;0,(2Kn; + 2Kq, (A +m — ¢) + w;)

+5,(2K (n; + qm) + 1:)*]

e_i%S‘g“(%) H ,

n ¥;
= exp2mik |> <’ + —c ]
xE T [gl pi' P

X oy []ﬁ[,u,- exp (27Il'#irinip+ CO)} % > > I(mA), (5.46)

Hisoitn=11 Li=1 i ,‘;0,% meZ

here ¢ is defined by Eq. (3.18), while

)

i P n e\
xexp{—2nix(co+m+i)+i—(x—n+4—zi)}

eZntco(n——4) =) ne3) 3
I(m,l):mofdx [82 )a2
[0]

2K H i=1Pi

ezﬂiCO(n~4) o0 1

ey

J
(n—3)! ],(SﬂiK)_f (g) o2 (n=3)
) y=0J:

. no _ 0 x
« {eans(Z,:l R 4) JdxaX exp[—2mix(co +m + A+ 8)]} (547)
0

a=
e=0
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General Reducible Connection. A sum over m and A converts an integral over x in
Eq. (5.47) into a sum over even Xx:

cho(n~4)oo 1 iy P J
—ZENW)-—jyz(MD QJ

,OlmEZ (

% agzj)agn—ﬁ) ezm'e(Z‘:' lp L bn— 4) Z a3 e~ 2mix(cote)

x=0 -1
2 Lyt (2 iy 548
”27“”)<H>8[%mM@+mH oW
&=

Therefore the total contribution of a general reducible connection is

ei§5ign( )

Zimem) — T sion(P)ex [351 n ( ) (12s i L >]
st T3 gn(P)exp — 2K g Z (gi> Pi) — )
n . H o0 J
x exp 2miK (Z in,2 + Fc%) > - (8mK) 4 (Z)

i=1 Fi =07
[T, 2isin (27[%) <40
[2i sin(27c)]"2 ' (5:49)

c=cq

x 92

Special Reducible Connection. If co + my + A9 = 0 for some values 1y = 0, 1

57> my €
Z, then a calculation of I(myg, A49) has to be performed separately:

I(mo, Ao)
21ucon 0o . in P n 2
- d [av' Nai ] 44—
(n—3)!f x N e 7 A R =
. b
e2micon oo ML= 1P [ Dy in P
= - dx|on= 2(”" +EL5) ]ex (——x2>
(n—3)! ({ bf TPk E
e2m’con _4 E in P
- d a(n 3) 2(x+n +24; IP;) m o,
AL x[ P\ K H

__Z __(87”]() J( ) 5(21)5('1 3)

2ms(n —4420 lp) a? (” 4+Ez lp.)

X . 5.50
% loga — 27ie (3:50)

[ ®
Iyl
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A remaining part of the sum (5.48) is

1 2mnc = — P ! (2/)
3 S I(mA) = e 3 -—(87IZK) I T 0,
/".+m/—;210 +0 JNO
21[182":1 % 1 eZﬂis(n—4) a(n-—3) 1
=17, , (5.51
” {e [(21’ sin 2me )2 + (n=3) ¢ % loga — 2mic | . (331)
a= &=

so that the whole expression for the contribution of a special reducible connection is

%Sig“(f’)

Z0m = _Z - Mnmgion(P) ex [351 n( ) ) (123 b Pi _111_>]
est 2K|H| gn(P)exp — 2K & ; @ p pi

n i H
x exp 2K (Z r—nf + —c%)

=1 Pi P
1 vin; + Co
X Q= 1 €Xp (2mu, )
2#1 ~~~~~ #n +1 |:H pi
1 o in P
(n—3) 2(x+n —4+24 ]P:) 2
< e ol Pk

o N T 215m(27t@)
+ Y (8miK) ™ (E) i =

=0 [2i sin(2me)}r—2

n—4 . rin+co+% loga
a2 H:’:I sin (27-5%
!

U ey
("*3)' ‘ 1loga — 2mie
a=1d 1g=0
(5.52)
It is not hard to see that the term
. AT [T, sin <2nr—_i"’+00;% "’g“)
S () : 5.53
(n—3)¢ 1loga — 2mie (3.33)

a=1

contains only the negative powers of ¢ in its Laurent series expansion. Therefore
the only purpose of this term is to cancel the negative powers of ¢ in the expansion

of the term
H?:l 2isin (277;’7L'Z'O_+E)
[2i sin(2me)]*—2 ,

so that the whole expression has a smooth limit of ¢ — 0.

(5.54)

Trivial Connection. When all n; = 0, Eq. (5.53) can be simplified. In particular, the
integral over x and the term (5.53) are both equal to zero after taking a sum over
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1. After adding a factor (3.25), a total contribution of the trivial connection is

(triv) e 3sie(z)

- in [, (HY & q
7 _ —__62“”100 sien(Plexp — — [381 n (“) + (125 > - _l—>j|
cst 22K |H| gn(Plexp — 7 | 3sign (5 )+ (126(a0 p) = -

J " 2isin (i)
« Sl (fm P 6(2/‘)1-1’_l RN ) (5.55)
ioJ' \2KH ) °  (2ising)"?

=0

As we have noted in the end of Subsect. 4.3, a ratio of the j =2 and j =1
terms contributes together with the phase ¢ of Eq.(1.5) to the 2-loop correction
S, as defined by Eq. (2.4). A simple calculation similar to that of Eq. (4.26) shows
again that S, is proportional to Casson’s invariant (4.14):

Sz = 67IACW . (556)

6. Discussion

In this paper we calculated a full asymptotic large k& expansion of the exact surgery
formula for Witten’s invariant of Seifert manifolds. We found a complete agreement
between our results and the 1-loop quantum field theory predictions thus extending
the results of the papers [8,9] on this subject. To achieve this agreement we had
to modify slightly the previous 1-loop formulas for the case of reducible flat con-
nections and for the case of obstructions in extending the elements of H' to the
moduli of flat connections.

It seems that the method of Poisson resummation used in our calculations can
be applied to Witten’s invariants of graph manifolds, i.e. manifolds constructed by
“plumbing” the Seifert manifolds (the solid tori parallel to the fibers are cut out of
Seifert manifolds and the corresponding 2-dimensional boundaries are glued together
after the modular transformations are performed). This method can also be applied
to the invariants built upon simple Lie groups other than SU(2). We showed that
the applicability of the Poisson resummation is based on Bernstein—Gelfand—Gelfand
resolution.

A rather surprising result of our calculations is the finite loop exactness of the
contributions of irreducible flat connections. This exactness in somewhat reminiscent
of the formulas of paper [11] in which Witten applied a localization principle to the
2-dimensional gauge theory. The order of the highest loop corrections is equal to
half the dimension of the moduli space of flat connections. This may suggest that
these corrections are related to some intersection numbers in the moduli space.

The contributions of all flat connections have a specific 2-loop phase correction
¢ (see Eq. (1.5)). This phase is the same for all flat connections of a given manifold.
In case of a 3-fibered Seifert manifold, ¢ is the only 2-loop correction for the
contribution of irreducible flat connections. The phase ¢ looks similar to Casson’s
invariant, however certain terms are missing there. It seems, however, that ¢ is
a manifold invariant in its own right. It would be interesting to understand its
topological nature.

The “missing terms” appear when the full 2-loop correction to the contribution
of the trivial connection is calculated. The trivial connection is reducible and its
contribution contains an asymptotic series in K~'. The whole 2-loop correction is a
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combination of ¢ and the second term in this series, and it turns to be proportional
to Casson’s invariant. We checked this observation for n-fibered Seifert manifold
and found a full agreement with the formula (4.14).

It is worth noting that the change in Casson’s invariant under a surgery on a
knot depends on the second derivative of the Alexander polynomial of that knot
(see e.g. [18] and references therein). This derivative is a second order Vassiliev
invariant of the knot and comes as a 2-loop correction to any (i.e., say, either
Alexander or Jones) knot polynomial if the latter is calculated through Feynman
diagrams. Thus a change in the 2-loop correction under a surgery on a knot depends
on a 2-loop invariant of that knot. We could go a step backwards and observe a
similar relationship between the self-linking number of a framed knot and the order
of homology group (or its logarithm) of the manifold!® (see e.g. [21]). Both objects
can be interpreted as 1-loop corrections. It would be interesting to derive a formula
(if it exists) expressing the change in the n-loop correction to the contribution of
the trivial connection under a surgery on a knot through Vassiliev invariants of this
knot up to order n.

Let us try to conjecture the formula relating Vassiliev invariants of a knot to
loop corrections of a trivial connection, basing on our formula (1.8). The higher
loop corrections to the contributions of the reducible connections (see Egs. (1.6)
and (5.49)) are proportional to the “derivatives” of the U(1) Reidemeister torsion.
This looks rather strange in view of the fact that the flat U(1) connections on
Seifert manifolds do not have any moduli along which they could be changed. We
therefore propose a different interpretation of these formulas.

Note that an equation

% L smixy~ (L) oo 6.1

25 6mK) 7 (7 ) &5 (6.1)
c=CQ

= isen( %) 2K§ +foodcf(c)exp [—2niK%(c —cp)? (6.2)

can transform the derivatives in Egs. (1.6) and (5.47) into an integral over c.
Equation (6.1) can be derived either by expanding f(c) in Taylor series at ¢ = ¢
and checking it for every term separately, or by noting that the 1.h.s. of Eq. (6.1)
is an exponential of the 1-dimensional Laplacian, which can be expressed through
the heat kernel. In particular, a contribution of the trivial connection (1.8) can be
cast in a form

iénsign(ﬂ) +o0 3 isin
Y enpye B ape s 2o (63)

B 2\/IP| — 0 2ism7;{—ﬁ

Here we made a substitution f§ = 2Kc¢/x.
The formula (6.3) can be given a following interpretation. We can construct a

Seifert manifold X (%, 5—22, %‘-) by a surgery on a link consisting of 3 “fiber” loops

linked to a “base” loop (see, e.g. [8], [19]). A surgery of the fiber loops produces
a connected sum of three lens spaces. We apply a Witten—Reshetikhin—Turaev for-
mula related to the final surgery on the base loop in order to find Witten’s invariant

10 [ am thankful to N. Reshetikhin for discussing the results of his research on this subject with
me.
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of X (51‘—, %, ;’—33). The Jones polynomial of the base loop can be expressed as a sum

over flat connections in the connected sum of lens spaces. A contribution of the
trivial connection turns out to be proportional to the integrand of (6.3) up to a fac-
tor sin(nf3/K ). Therefore expression (6.3) is actually a Witten—Reshetikhin—-Turaev
formula in which only a trivial connection part of the Jones polynomial is taken
and a sum over an integrable weight Z;,{: is substituted by an integral % fj;f dp.
We conjecture that these two changes in the Witten—Reshetikhin-Turaev formula
produce a trivial connection contribution to Witten’s invariant of the manifold con-
structed by a simple 77§ surgery on a knot belonging to some other manifold (in
case of a general surgery (2.16), only the n = 0 term should be retained in the sum
of Eq. (2.25)).

Consider now a logarithm of the trivial connection part of the Jones polynomial
of a knot. According to [6], the coefficients in its expansion in powers of 1/K
are Vassiliev’s invariants of the knot. A 1-loop piece in this expansion, which is
proportional to nf%/K, comes from the self-linking number of the knot. This number
can be fractional if the original manifold is nontrivial (for example, it is equal to
H/P in (6.3)). We conjecture that in the other terms appearing in the logarithm,
the power of f is less or equal to the negative power of K. Therefore, if we split
off the self-linking exponential factor and expand the remaining part of the Jones
polynomial in 1/K, then the gaussian integral in the modified Witten—Reshetikhin—
Turaev formula will produce the 1/K expansion of the trivial connection contribution
to Witten’s invariant of the new manifold. Each term in this expansion will be
expressed through a finite number of Vassiliev invariants of the knot. We hope to
present this calculation in more details in a forthcoming paper. Here we just want
to mention that its result seems to agree with Walker’s formula [18] for the Casson
invariant (if we assume that the Casson invariant is indeed proportional to a 2-loop
correction). This is partly due to the fact that the second derivative of the Alexander
polynomial is also a 2-loop correction to the Jones polynomial, as established by
D. Bar-Natan in his paper [6].
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Appendix

We present a simple finite dimensional example which illustrates the appearance of
the factor 1/Vol(H) in the gauge invariant theory. Consider a 2-dimensional integral

+o0 +o00o
Ioge = [ dXi [ dXpexp[2mik f(\/X} +X})] (A1)

for some function f(r). The integrand of this integral is obviously invariant under
the U(1) rotation around the origin. Let us treat it as a gauge symmetry. Then a
“physical” quantity would be an integral Iy, divided by the volume of the gauge
group Vol(U(1)) = 2n. A full machinery of Faddeev—Popov gauge fixing will lead
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to a well known expression for the “physical” integral:

1 auge ® .
Tohys = % = Ofdrr exp(2mik f(7)) . (A.2)

In order to parallel the discussion of Subsect. 2.1 we use a stationary phase approxi-
mation. Suppose that the function f(») has a critical point at » = rg, i.e. /(o) = 0.
We want to take an integral (A.1) over the vicinity of that point. We take a rep-
resentative point on the gauge orbit:

Xl = ro, X2 =0. (A3)

This is our “background gauge field.” A simplest choice for the gauge fixing con-
dition to impose on the fluctuations (x,x,) around the background (A.3), would be
x, = 0. However we make a different choice:

kxivi(XO, X] ) =0 5 (A4)
here v’ is a vector field representing the infinitesimal gauge transformation:

V(X X)) = ElX; . (A.5)

The gauge fixing (A.4) closely resembles a background covariant gauge fixing D,a,
of the Chern—Simons theory used in [1]. Indeed, for an infinitesimal gauge trans-
formation ¢, the analog of v' is D,¢ and Eq. (A.4) is similar to a condition

I(Du¢)au d’x =0 (A.6)
for any function ¢, which is equivalent to Dya, = 0.
By substituting Eqgs. (A.5) and (A.3) into Eq. (A.4) we get an explicit form of
the covariant gauge fixing condition:

]OCzl"o =0. (A7)
A Faddeev-Popov ghost determinant is a variation of the gauge fixing condition
with respect to the gauge transformation:

Agh = kr§ . (A.8)

We supplement a quadratic term inkf” (ro)x? in the exponent of Eq.(A.l) with
a gauge fixing term 27ikrgyx;. An integral over y produces a d-function of the
condition (A.7). Therefore an operator corresponding to a quadratic form in the
exponent of Eq. (A.1) is

f"(r) 0 0
L_ =ik 0 0 7| . (A9)
0 ro 0
The 1-loop “field-theoretic” prediction of the physical integral oy is

detd,, G z ro
] — g e21tlkf(lo) — el4 e27tlkf(r0) AlO
e fdet(—Lo) NGED) (10

in full agreement with the stationary phase approximation of the integral in the r.h.s
of Eq. (A.2).

Let us see now what happens in the special case when ry = 0. A background
point (A.3) lies at the origin and is invariant under the action of U(1l). In other
words, a “background field” has a U(1) symmetry, so it is similar to a reducible
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gauge connection of the Chern—Simons theory. A ghost determinant (A.8) has a
zero mode. The operator L_ is different from its ordinary form (A.9):

£70) 0 0
L_=ik( 0 f"(0) o) (A.11)
0 0 0

and it also has one zero mode. The prescription for the Reidemeister torsion (2.5)
in a similar situation was to drop the zero modes. Since no modes are left for the
ghosts, we have

Agp =1, (A12)

while
det(—L_) = —[kf"(0)]. (A.13)

A non-degenerate part of the operator (A.11) is the same as if we were calculat-
ing the stationary phase approximation of the integral (A.1) at the origin without
remembering the U(1) symmetry. The same is suggested by the ghost determinant
(A.12). In other words, we see that by dropping the zero modes of ghost determi-
nant and covariant gauge fixing we “forgot” about the U(1) symmetry. Therefore
if we substitute expressions (A.11) and (A.12) in the middle part of Eq.(A.10),
then we will get the whole integral I, rather than its physical “gauge fixed”
counterpart Ippys. So in order to get Iy from the determinants (A.11) and (A.12)
we have to add a factor 1/Vol(U(1)) “by hands” as we did in Eq. (2.9).
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