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Abstract: The tangent bundle ?Γχ of a Calabi-Yau threefold X is the only known
example of a stable bundle with non-trivial restriction to any rational curve on
X. By deforming the direct sum of &χ and the trivial line bundle one can try to
obtain new examples. We use algebro-geometric techniques to derive results in this
direction. The relation to the finiteness of rational curves on Calabi-Yau threefolds
is discussed.

0. Introduction

In [W] Witten posed the following question:

Can one deform the vector bundle 3~χ 0 &χ to a stable vector bundle whose
restriction to any rational curve is nontrivial?

Here &χ is the tangent bundle of a Calabi-Yau threefold X and Θx is the trivial
line bundle on it. He showed that such deformations are of significance in string
theory (existence of flat directions in the superpotential). In fact, (X,^χ) seems to
be the only known example for a pair (X,E) consisting of a Calabi-Yau manifold
X and a stable vector bundle E with nontrivial restriction to any rational curve. A
positive answer to the above question would provide an example with a rank four
bundle whose Chern classes are those of X. This problem and certain generalizations
of it were also formulated in problem 77 in Yau's recent problem list [Y].

This paper grew out of the attempt to understand the problem in algebro-
geometric terms and to use the available techniques in deformation theory to derive
some first results in special cases. In particular we prove:

• Let X be embedded as a hypersurface and assume that it can be deformed in
the ambient space to another Calabi-Yau threefold X' not isomorphic to X with
X Π J ; Φ 0 (e.g. X is a complete intersection). Then 3χ 0 &χ can be deformed
to a stable bundle (1.3).

• For the generic quintic X C P4 there exists a stable deformation of 3χ 0
Θx whose restriction to all lines, i.e. rational curves of degree one, is not
trivial (3.3).
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For a fixed (—1,—l)-curve on a quintic it is easy to find a stable deformation of

^x θ Gx with non-trivial restriction to this curve. Since Clemens' conjecture [C] is

still open, we can only prove

• For any quintic and a fixed rational curve Pi — > X C P4 of degree < 20 the

bundle $χ φ φx admits a stable deformation with non-trivial restriction to this

curve (3.3).

The infinitesimal deformations of 3~x θ (9X are parametrized by the vector space

The spaces Hι(X,Ωx) and Hι(X,3ΓX) have been intensively studied in the frame-

work of mirror symmetry, whereas, in general, nothing seems to be known about

the third space Hλ{X,$nd{3Γx)) on the right-hand side.

We try to attack the problem by introducing a vector bundle F. Choosing an

ample line bundle j£? on X, or a Kahler metric ω, we can define a vector bundle

F by means of an extension

0 —>φ χ — > F —> 3χ —>0

given by ci(JSf) G Hι(X9Ωx) (resp. [ω] G Hι(X,Ωx)). If F is associated to i f it

can be interpreted as F = Q)x(££), the sheaf of differential operators of order < 1

on ££. The above sequence in this situation is the symbol sequence. The vector

bundle F is the natural bundle associated to the Kahler manifold (X, ω). It can

also be regarded as a deformation of 3~x 0 Gx and, in fact, any neighbourhood of

3χ 0 Gx in its deformation space contains F. In particular, small deformations of

F also represent deformations of 3ΓX 0 Θx itself.

An analogous problem was treated in [Ti2] in the case of a Fano 72-fold which

is Kahler-Einstein. Tian showed that the extension

0 —,(f) χ —>p —> &χ —>0

given by c\(X) admits a Hermite-Yang-Mills metric. Such a metric cannot exist

in the case of a Calabi-Yau manifold but after deforming the holomorphic structure

of F. This is essentially the above question.

In Sect. 1 we consider the special case of a Calabi-Yau threefold deforming as

a hypersurface to a non-isomorphic Calabi-Yau manifold. Here F is described in

terms of the sheaf of logarithmic differential forms on the ambient space. We will

explain how a stable deformation of F can be constructed by means of a deformation

of X. Sect. 2 is devoted to the study of the deformations of £ΓX and 3~x 0 Gx in

the general case. Motivated by Sect. 1 we define a map Ξ\Def(F) — > Def(X)

between the space of deformations of F on X and of X itself whose tangent map

ξ : H\X,$nd(F)) — > Hι{X,3Γx\ under an additional assumption (9), is shown to

be surjective. Easy arguments in deformation theory (cf. Appendix B) show that

&x θ Gx admits a stable deformation if the image of Ξ is of positive dimension.

The surjectivity of ξ says in particular that 9~x 0 Gx infinitesimally deforms to a

stable bundle. The results will be applied to complete intersections, where Ξ itself

is surjective, and compared with Sect. 1 in the case of a quintic hypersurface.

The problem of how to control the restriction of deformations of ?Γχ θ Gx to

rational curves contained in the Calabi-Yau manifold is dealt with in Sect. 3. It

will be explained that this problem is closely related to Clemens' conjecture about
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the finiteness of rational curves on the generic quintic. A reformulation of this
conjecture says that for the generic quintic X and any rational curve C C X the
cohomology Hι(C,^χ\c) vanishes. Section 3.1 states that for the generic Calabi-
Yau manifold at least the homomorphism Hλ{X,3Γx) —> Hι{C,$~x\c) vanishes. The
appendices collect some facts about the deformation theory of manifolds and bundles
which are used in Sects. 1-3. Some of the results there might be of independent
interest (A.3, B.I, B.7). For readers not familiar with deformation theory Appendix
A may also serve as an introduction.

Notation: A Calabi-Yau threefold in this paper will be a (mostly projective) three
dimensional manifold X with trivial canonical bundle and vanishing Hι(X,Θx).
Frequently, we will use the vanishing of Hι(X,J£n) (i — 1,2) for any ample line
bundle «£?. This follows from Kodaira's vanishing theorem.

1. Logarithmic Differentials

We start out with the following

Proposition 1.1. Let ^ be a line bundle on a smooth manifold Z and f, f be
sections of <£ defining two distinct smooth irreducible hypersurfaces X',X C Z.
Then there exist two families of vector bundles {Gt} and {G[} on X with the

following properties:

i) Gt^G't for ί + 0.
z extensions of Ωx by G

and of Θx by Ωx given by cλ{Θx{X)) e Hι(X,Ωx\ resp.
ίi) Go and G'o are the extensions of Ωx by Θx given by δ(ff\x) e Hι(X,&~χ)

Here δ denotes the boundary homomorphism H°(X,Θ(X)) —> Hι(X, 3~x) given
by the normal bundle sequence 0 —> ?ΓX —> $~z\x — > &x(X) —* 0 and the iso-
morphism S£ \χ = Θχ{X). In order to prove the proposition, we first have to in-
troduce some notation and basic diagrams. Let Z be an arbitrary smooth manifold
and X' C Z a smooth irreducible hypersurface. The sheaf Ωz{Xr) of differentials
with logarithmic poles along X' is locally generated by dx\/x\,dx2,.. ,dxn, where
(x\,...,xn) is a local chart and x\ = 0 is the equation for X'. The sheaf Ωz{X') is
in fact locally free and fits into the following two exact sequences.

0 — * Ωz —> Ωz(Xf) —-> Gx, —> 0 , (1)

0 —-* ΩZ(X') —+ ΩZ{X') —* Ωχl(Xf) —+ 0 . (2)

The homomorphism Ωz{Xr) —> Gx> is locally given by Σfidxi ι-» {x\ f\)\x> The
surjection in (2) is by definition the canonical homomorphism Ωχ —• Ωz\χ> —> Ωx>
twisted by GZ(X').

Let X be another smooth irreducible hypersurface in Z. How do the sequences
(1) and (2) restrict to XΊ We treat the cases X = X' and X^X' separately.

First, let X ~ X'. Then {\)%ΘX splits into the two short exact sequences

0 —> Θx(-X) —> Ωz\χ -^Ωx—>0 (3)
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and

0 — > Ωx — - ΩZ(X)\X —>ΘX—*O. (4)

Use ^Όrz((9χ,Θχ) = Gx(-X) and the local description of the homomoφhism

Ωz -» Ωz{Xr). Analogously, (2) 0 &x splits into

0 — + β * - + Ω z W U — > ^ — ^ 0 (5)

and

0 — (PΛ — Ωz{X)\χ —-> % ( X ) — * 0 . (6)

Obviously, (3) and (6) 0 Θχ(—X) are just the dual of the normal bundle sequence

of X C Z. It is also easy to verify, that (4) and (5) as extensions of Θx by Ωx are

given by c\(Θχ(X)) G Hι(X,Ωχ) (up to multiplication by non-zero scalars).

Now, let J φ J ' . Then the restrictions of (1) and (2) to X remain exact (use

— 0). They fit into the commutative diagram:

0 —+ Ωz\χ
= 1

0 —> Ωz\χ

y, we have

0—>

®x'nx —> Ω

0
i

— Ωz(X')\χ
i

—> Ωz(^)U
1

OH* 7)!*
1
0

0
1

Ωz\x —>
i

hίZ\Λ )\x >

i

z(X')\x'nx —>
i
0

— > C

—^ ΩzC

- ^ Ω^

0
1

Qztni
1

Ωz(^')l
1

Ωχ/(X;)|^
i
0

0
1

1

X')\χ
i

<xf)
i
0

X

X

rfnx

In particular, ί2 z (X ; ) | χ is isomoφhic to the kernel of the composition Ωz(X')\χ —>

Ωzί-^ΌU'ΓLY ~~* ̂ / ( X ^ l ^ / n z As X ; approaches X the second homomoφhism de-

generates to the restriction of the canonical homomoφhism Ωz —> Ωx twisted by

Θ(Xf) to Γ n l . For this to happen, Θ(X) and ^ ( X ; ) must be isomoφhic. This

gives rise to the following definition.

Definition 1.2. The sheaf G(X',X) on X is defined as the kernel of the composition

Ωz(X')\x — Ωz(X')\x'nx —* Ωχ(X')\x'nχ.
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G(Xf,X) replaces Ωz{X')\χ in the diagram above at the limit point X1 =X.
Using

0
i

Ωx

i
0 — > Ox — + ΩZ(X')\X — + ΩX(X') — + 0

=1 i
0 — + G(X'9X) —> ί W ) k —^ Ωχ(X')\χ*nx — + 0

I
0

we can write G(X',X) as an extension

In particular, G(X',X) is locally free. Now we can prove 1.1.

Proof of 1.1. G't for all t is defined as Ωz(Xt)\χ, where Xt is the hypersurface
given by tf -f- (1 - 0 / We define Gt as the kernel of the surjection

"^Z \Λ "^Xf X. ^^X.ι \X. (~\X.

twisted by Θ(X'). In particular, G'o = Ωz(X)\χ, Go = G(X\X) and Ĝ  = G't for
/ φ θ . It remains to prove that (7) is the extension given by δ(fr\x). First, we
dualize the diagram above and obtain

0 —> έFχ(-X') —> $~z(-X')\x — y ®x —* 0

1 I -I
0 — > Fx — > G{X',X)* — > Θx — > 0 .

Thus the extension class η of the second sequence is given by the image of

leH°(X,Ox) under H°(X,ΘX)
 δ^—^Hι(X^χ(-X')) - ^ Hι(X,^χ). The com-

mutativity of the diagram

H°(X,ΘX) ^—l H\X,Jχ(-X))

•f'l -f'i

H°(X,OX(X')) Λ H\X^X)

implies δ(f'\χ) = η. D

We are going to apply 1.1 to the case of a Calabi-Yau threefold. Let X be a
three-dimensional Calabi-Yau manifold. As explained in the introduction, we try to
obtain stable deformation of 2Γχ 0 Θx by deforming a non-trivial extension

0 — > Θ X — > F —>*Γχ — > 0

given by a Kahler class ω G Hι(X,Ωχ). As 3~χ and &χ are stable vector bundles
of the same slope the bundle F is semistable. Moreover, in order to deform F to a
stable bundle it is sufficient to find a small deformation F' of F with H°(X,F')ή=0.
Here we use the fact that 0 has no deformations (for this kind of arguments cp.
Appendix B).
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Corollary 1.3. Let X be a Calabi-Yau manifold embedded as a hyper surface in a

manifold Z such that

- δ : H\X,Θ(X)\X) -> Hι(X,Jχ) does not vanish.

Then &χ Θ @χ deforms to a stable bundle.

Proof Choose / ' eH°(Z,Θz(X)) such that <5(/'|X)ΦO and apply 1.1. Consider

G;* as a deformation of F. Since H°(X,G%) = 0, we have H°(X,G'*) = 0 for small

t φ 0. Hence, for small t φ 0 the bundle G* is a stable deformation of F. D

Remark, o) In most of the cases Z will be a Fano fourfold with Kχ = (9Z(X)

i) Examples of Calabi-Yau threefolds satisfying the assumptions of the corollary

are all complete intersections in products of projective spaces.

ίi) From the proof we can also see that the rank four bundle Ωz(Xt) on Z is

stable with respect to (9(X). This has the flavour of [Ti2] Theorem 5.1.

Note that the two non-trivial extensions

0 —> Ωx —> F* —>ΘX —> 0

and

0 —>Θχ —> G(X',X) —>ΩX —> 0

both define simple vector bundles. Under the assumptions of the corollary they

define non-separated points in the moduli space of simple bundles. In this vein,

3~x Θ (9χ deforms to a stable bundle if two extensions of the above form define non-

separated points in the moduli space of simple bundles. By a result of Norton [No]

for non-separated points there exist non-trivial homomorphisms φ : G(Xf,X) —> F *

and ξ : F * —• G(Xf,X) with φ o ξ = 0 and ξ o φ — 0. These, obviously, always exist

for extensions of the form above, e.g. take the composition G(X',X) —> Ωx —> F *

and F * —>• ^ —> G(X 7 ,X). But in general the existence of such homomorphisms is

not enough to conclude that they define non-separated points in the moduli space.

We want to emphasize once more that the stable deformations of 3ΓX φ Θx we

obtained are given as Ωz(X')*\χ, where X' is a non-isomorphic deformation of X. In

Sect. 2 we will elaborate this idea and explain how deformations of X itself induce,

at least infinitesimally and under an additional assumption, stable deformations of

$~x Θ (9χ. It seems that under this additional assumption the unobstructedness of

a Calabi-Yau manifold may help to prove the existence of stable deformations of

2. Deformation of ZΓX and 3~χ®(9χ of a Calabi-Yau Threefold

Since a Calabi-Yau manifold has unobstructed deformations it is only natural to ask

if vector bundles living on the manifold have special deformational properties, too.

The most natural bundle on any manifold is the tangent bundle. For a Calabi-Yau

manifold it is a stable bundle of degree zero [Ts]. [Mi, Ts]. The tangent bundle of a

K3-surface, which could be considered as a two-dimensional Calabi-Yau manifold,

has unobstructed deformations. This is due to the vanishing of H2(X,

\
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Almost nothing seems to be known about the deformational behaviour of 3^x for
a Calabi-Yau threefold. In [EH] and [DGKM] the dimension oϊHx{XJnd(9~χ)) was
computed for a quintic hypersurface, it is 224 in this case, for a bi-cubic hypersurface
in P 2 x P2, here it is 176, and for some other complete intersections in the product
of two projective spaces. The following questions seem to be interesting in this
context.
Questions, i) Is there a Calabi-Yau threefold with Hx(XJnd{*Γx)) = 0?

ii) Is ό\mHx(X,$nd(3Γx)) invariant under deformation of XΊ Even for surfaces
I do not know the answer.

in) Is there a Calabi-Yau threefold such that Def(^χ) is not smooth?
For certain Calabi-Yau threefolds the deformations of ?ΓX and f j θ ^ can be

constructed in terms of a projective embedding of X. The additional assumptions
we need are formulated in the following two conditions.

1 Uc,(iO

The homomorphism Hι(X,3~x) > H2(X,3ΓX ® Ωx) vanishes. (8)

The homomorphism H\X,9λ{^)) > H2(X^\^) 0 Ωx) vanishes. (9)

For the definition of S$λ(££\ which is isomorphic to @)\{3?) if S£ is of rank one,
we refer the reader to Appendix A. We will indicate whenever we use either of
these conditions.

Remark. Since for Calabi-Yau manifolds the homomorphism H](X, &
Hλ(X,£Γx) is surjective, (9) implies (8). For complete intersections it is easy to
verify (9). In fact, the map in (9) factorizes through H2(X9@

l(£f) 0 ΩpN\x), since
ci(JSf) = c\(Θ(l)\χ) G Hι(X,ΩpN\x). We claim that this space vanishes. Using the
diagram

0

0

0

0

we get the exact

H\X,ΩPAX®

0
ΐ

ΐ

ΐ
Θ

T
0

sequence

0
ΐ

T

ί
0

ΩPN\X) - ^ H\X,®N+XΩ¥N(\)\X).

H2(X9ΩpN(\)\x) is zero by Kodaira's vanishing theorem. Hι(X,ΩpN\x 0 JίX/γ

is zero, since H°(X,φN+ι jVx/Ptl(-\)) -^ H°(X,J^X/PN) and H1(X,®

( - l ) ) = 0.
Other examples satisfying (9) are provided by double coverings of P3 ramified

along a smooth octic.
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The deformations of 3~χ will be investigated first. Choosing a high power ££n of the
ample line bundle S£ we obtain a projective embedding X C P # with <£n = 0 ( l ) | χ .
We want to use the normal bundle sequence

o —» zrx —* ^ p j x —> Λ^/P* —* o

to construct deformations of ^ by deforming the quotient &~pN\x — » ^x\pN-
Since X is a Calabi-Yau manifold, Hλ(X,Snd{^pN\x)) = 0. In fact, the next lemma
shows that under (8), at least infinitesimally, all deformations of 3^x are obtained
in this way.

Lemma 2.1. IfH2(X93Γx® ^~n) = 0 and (8) holds true, then ^

— > Hι(X, Snd(^χ)) is surjectίve. This is the tangent map of the locally defined
morphism of the Quot-scheme parametrizing all quotients of έ7~j>N \χ with fixed
Hilbert polynomial χ(J^χ/pN) to the deformation space Def(^χ) of'2ΓX.

Proof. The surjectivity is equivalent to the vanishing of the homomorphism

By Serre duality it is enough to show that H2(X, tfΌm(&'γN\χ,&'χ))
H2{X,$nd(3~χ)) vanishes. The natural homomorphism

which is given by applying Hom( ,^χ) to the Euler sequence

0 —> Θx —+ ΘN+ι^n —> 3Tj>N\χ —^ 0

is surjective, since the cokernel of this map is contained in 0 ^ + 1 H2{X,3ΓX <g>
J£~n). Therefore, it is enough to ensure that the composition HX(X,3ΓX) —>
H2{X,£nd($χ)) is the zero map. This is exactly (8). D

Since for a complete intersection X c P# the normal bundle Λ^χ/pN is isomor-
phic to 0JS?71', where S£ ^ ΘFN(\)\X, we get

Corollary 2.2. If X is a complete intersection Calabi-Yau threefold, then the tan-
gent bundle 3ΓX has unobstructed deformations.

Proof We know that H°(PN,ΘFN(\)) -> H\X,Se) is surjective. By Serre duality
we see that //3(X, J^*) -> H\X,φN+ι Θx) is injective. Hence H2(X,^~FN\X Θ JSP*)
vanishes. So we can apply 2.1. Since ^Vχ/pN = φ S£n%, the normal bundle itself is a
rigid bundle on X, i.e. Έxtι(J^χ/γ>N,J^χ/pN) — 0. Hence all the deformations of the
quotients ?ΓγN \x —» ^x/pN are induced by changing the maps only. In particular,
the corresponding Quot-scheme is smooth. Hence by 2.1 the deformation space

is smooth. D

Remark. This lemma has an interesting global aspect. Moduli spaces of stable vector
bundles on a ^3—surface are not unirational. Whereas in our situation the moduli
space parametrizing deformations of the tangent bundle is unirational, since it is
dominated by the space of all homomorphisms of 3~?N\χ to JίpN/χ.
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We want to come back to Witten's question and ask for deformation of 3χ Θ
Θx. First, we would like to see if there are stable deformations at all. It might
be interesting to look at this in a more general setting and to construct stable
deformations of a sum of two stable vector bundles on an arbitrary manifold. This
problem is dealt with in Appendix B.

Let F be the semistable vector bundle of rank four and degree zero defined
as an extension of &χ by &χ by a Kahler class. It encodes information about the
Calabi-Yau manifold.

X) and H2(X,F) ^ (Hι(X,Ωx)/ω<E)*
~ A smooth rational curve C C X is a (—1, — l)-curve if and only if Fc =

( 0 ( 1 ) 0 Θ(-l))Θ2. (Use that ω\c does not vanish.)
- The infinitesimal deformation space Hι(X,S'nd(F)) of the bundle F naturally

relates Hι(X,&~χ) and Hι(X, Ωx) by the following diagram of exact sequences.

0

I
Hι(X,Ωx)/ω<C

I
orn(ZΓx,F)) —> H\X,δnd(F)) - ^

ξ'i

The first two properties are easily derived from the definition. The diagram is pro-
duced by applying Hom( , F ) to the short exact sequence defining F and us-
ing Hι(X,F) = Hι(X,^χ). The cokernel of ξ' is the image of the homomorphism

H\X,δnd{^χ)) -> H\X,ΩX) which is dual to H\X^X) ^ H2(X,ΩX <g> ?ΓX\ If
[ω] is a Hodge class c\(££) such that (8) holds true, then the vertical sequence can
be completed to a short exact sequence, i.e. ξ' is surjective.

The space Hλ(X,$nd(F)) parametrizes all infinitesimal deformations of the bun-
dle F o n J , i.e. it is the tangent space of Def(F). The cohomology group Hι(X,^χ)
parametrizes the infinitesimal deformations of X itself (cf. A). Since a Calabi-Yau
manifold has unobstructed deformations and using the Kuranishi description of the
deformation spaces (cf. App. A), ξ : Hι(X,$nd(F)) —> Hλ{X,3Γx) induces a map
Ξ : Def(F) —>• Def(X), between the corresponding deformation spaces, which has
ξ as its tangent map. At the first glance this map seems to be quite artificial, but it
explains the phenomena of Sect. 1. As a consequence of (B.7) one proves

Corollary 2.3. If the image of Ξ is positive dimensional, then 3ΓX 0 Θx deforms
to a stable bundle. D

Using the map Ξ one can reformulate condition (9).

Lemma 2.4. If [ω] is a Hodge class satisfying (9), then Ξ is a submersion, i.e. ξ
is surjective. D

We say that 3~x 0 Θx deforms infinitesimally to a stable bundle if ξ does not
vanish.
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Remarks, i) Under the assumptions of (1.3) the map Ξ has positive dimensional

image. In fact, dimΙm(Ξ) ^ rk(<5), since d(Ξ(Ωz{Xt)*\x))/dt = δ(f).

iϊ) For complete intersection one can do better. On a complete intersection the

bundle F has unobstructed deformations. To verify this assertion one first shows that

for any Calabi-Yau manifold Hom(F, Jfχι?N) — > Hx{X,$nd(F)) is surjective, i.e.

all infinitesimal deformations of F are obtained as the kernel of a map ®N+ιJ£n — »

Λ^x/pN Of course, we assume n ^> 0. This is in analogy to (2.1), but here we do not

need (8) or (9). For complete intersections the normal bundle Λ^χ/pN is infinitesimal

rigid and the vanishing Hι(X9F(-l)) holds true (cf. (2.2)).

Hi) Moreover, for complete intersections the bundle ^x Φ Θx has unobstructed

deformations, since hλ{XJnd{?Γχ Θ Oχ)) = hι(X,δnd(F)) + 1 and the image of the

map C \ {0} x Def(F) -» Def(^χ Θ (9χ\ induced by (f,0) ι-> [tω], is of dimen-

sion 1 + dim Def(F). (We use that Defiβx Θ $ χ ) is still complete at the point

[tω] which corresponds to F). Thus one could also apply (B.I) in this case to

conclude the existence of stable deformations of 2ΓX θ Gx.

iv) Obviously, (2.2) and iΐ) go through for Calabi-Yau threefolds X C Pw with

rigid normal bundle satisfying (9) and H2(X,^χ(-l)) = H2(X,F(-l)) = 0. Along

the same line one can treat complete intersections in the product of projective spaces.

To conclude this section we want to present some further calculations in the

case of a quintic hypersurface. In the exact sequence

0 — > F — > θ 5 i f — > J^ 5 — > 0

the surjection Θ 5 = ^ — > ^ 5 is given by the restriction of the map

(df/dxQ,...,df/dx4)

Θ5^P4(1) >tfp4(5),

where X is defined by / G i/°(P4,0p4(5)) and the xz are coordinates of P 4 .

Obviously, this map is also surjective. Hence F is isomorphic to the restriction

of a vector bundle Ff on P 4 which is defined as the kernel of (df/dxi). For

any other f G i/°(P4,fi?p4(5)) defining a smooth quintic X' we also get a bundle

Ffi on P 4 . Its restriction to X can be regarded as a deformation of F. In this

way we can locally define a map |#p4(5)| —> Def(F). Note that Faf = Ff for

α G C*. Less geometrically, it can be described as follows. As we have seen

there is a map H o m ( θ 5 ^ , i? 5 ) —> Def(F) which is locally defined near (df/dxi).

The natural surjection Hom(Θ 5 %(l) ,#p 4 (5)) —> Hom(0p4,0p4(5)) has a section

/ ' -> W/dxi), which induces the above map |ύ?p4(5)| -^ Def(F).

Lemma 2.5. Let |0p4(5)| —> Def(X) be the locally defined natural map associ-

ating to a quintic its underlying manifold. Then the following diagram commutes:

[0P4(5)| —> Def(F)

\ 1

Def(X) .

Proof. This is a consequence of the commutativity of the following two diagrams.
5 5 —> Hom(F,if5)
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and
—> H\X,δnd(F))

I
—> Hι(X,F).

The first one is induced by the injection of (9χ into Θ 5 ^ 7 resp. F and the second
one by the boundary operator of

0 — > F — > θ 5 i ? — > J ^ 5 — > 0 . D

Note that |0p4(5)| —> Def(F) does not induce a section of Ξ. It is not hard to
see that the above map |$p4(5)| -+Def(F) coincides with X' ι-> ΩγA{X')*\χ, i.e.

x=Fr (cf. Sect. 1).

3. Restriction to Rational Curves

In the theory of Calabi-Yau manifolds it is important to know if there are rational
curves on the manifold, and if, how many. Since h°(X,J^C/x) - hι(X,Jfqx) = 0
by Riemann-Roch, one expects a rational curve C on a Calabi-Yau manifold X
to be isolated, i.e. C cannot be deformed in X (cf. Appendix A). Clemens con-
jectured that the generic quintic in P 4 contains only rational curves with normal
bundle isomorphic to Θ(—1)0 Θ(—l) (cf. [C, Kl]). The conjecture has been veri-
fied for curves of degree^ 9 ([Kl, KJ, N]). In particular, (—1,—l)-curves satisfy
Hι(C,J^c/x) = 0, i.e. they are infinitesimal rigid. Note that Hι(C,Jr

C/x) = 0 is
equivalent to Hι(C,&χ\c) = 0. We start with the following result.

Theorem 3.1. For the generic Calabi-Yau threefold X, i.e. generic in its Kuran-
ishi family, and any rational curve φ : Pi —> X, the restriction map Hι(X,^χ) —•
Hι(Pι,φ*(^x)) vanishes.

Proof Let 3£ -> T be the Kuranishi family of X. By [Ka, R, Ti, To] the base
space T is smooth (cf. A.I). Let Hilbd{9£ —> T) be the relative Hubert scheme (or
the Douady space) of morphisms of Pi to the fibres of 9C —> T of degree d. Pick
an irreducible component H of Hilbd(βC —> T). As we are only interested in the
generic Calabi-Yau manifold, we can assume that H dominates T. Let U C Hred be
a nonempty smooth open subset, such that U -> T is smooth. Denote θ£ x τ U by
2t. The sequence

restricts on J := f o to

0 — > «ΓX — > Ft\x — > 3TUfi ®Θχ — > 0 . (10)

We denote the corresponding extension class by η £Έxtι(&Ί/β<8) Θχ,^χ). This
sequence is in fact the pull-back of the universal extension of Θx by 2ΓX under the
Kodaira-Spencer map 3~u$ —> Hι(X9^χ). Since U —> T is smooth and ΘC —> T is
a complete family, the Kodaira-Spencer map is surjective. Therefore, it is enough
to prove that (10) splits on every rational curve φ : Pi —> X. Let φ : Pi x U —> ̂
be the universal curve. By y^φ and K̂"̂  we denote the cokernels of the natural
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homomorphisms 2Γγx —> φ*($~χ) and ^"p, —» φ * ( J Γ ^ ) , resp. If φ is an embedding,

yΓ φ and yΓφ are the normal bundles of φ ( P i ) in X and of φ ( P i ) in θt, resp. Thus

we obtain the commutative diagram

0 0

ϊ i

0 0

The sequence on the bottom, as an extension of 2Γυ$ ® Θpι by JV'φ, is given by the
image of w*(φ*(?/)), where w* : E x t ' ^ o 0 Θpι9φ*(#~χ)) -> Ext !(<%) 0 0 p , , ^ )
is induced by w. Since Hι(P\,&~pι) = 0, the map u* is injective. Thus it is enough
to show that u*(φ*((η)) = 0, i.e. that the bottom sequence of the diagram splits. The
homomorphism ^Pixc/tax-to} ~* Φ * ( ^ # ) induces a natural map ^plX{o}/p,xί7 —•
Jίφ. Since ^p^joj/Pjxί/ — «̂ ί/,o 0 ^p,, we can take this map to define the desired
splitting. D

Remark. Of course, if Clemens' conjecture holds true for X the assertion of the
theorem is obvious. On the other hand, one can try to attack the conjecture using
this result by proving that the above restriction homomorphism is always surjective.
For a quintic this is true if and only if for a curve φ : Pj —> X C P4, where X
is defined by / , the space H°(Fuφ*Θ(5)) is spanned by φ*(/7°(P4,0(5))) and
Σi==oH°(P\,φ*&(l))φ*(-£). In the cases of a quintic, of a complete intersection
of type (3,3) and of a complete intersection of type (2,4), (2,2,3) or (2,2,2,2),
this can be easily verified for curves of degree d 5* 7, d ^ 5 and d ^ 4, resp.

We come back to the restriction problem. Not every stable deformation of ?Γχ Θ
Θx is equally interesting for physicists. They ask for deformations whose restriction
to a rational curve is not trivial, i.e. not isomorphic to Θ®4. Every vector bundle on
Pi can be written as Θ0(tf/ ) and (a\,...,ar) is called its splitting type. For vector
bundles with trivial determinant, (a\,...,ar) — (0,...,0) is the generic splitting type.
So we are interested in stable deformations of 2Γχ Θ Θx with non-generic splitting
type on each rational curve. First of all, we recall that neither έFx Θ (9χ nor F can
have generic splitting type on a rational curve. Let φ : Pj —> X be a non-constant
morphism. Then the injection ^~Pl ^ φ*^χ excludes the triviality of φ*^χ, and
hence of φ*(<?χ θ Θx\ since 3TVχ g* 0 P l (2). The pull-back φ*ωeHι(VuΩ^) of
the Kahler class defining F can be interpreted as a non-trivial extension class giving
rise to the exact sequence

O ^ t f p , — > 0 P , ( 1 ) Θ 0 P , ( 1 ) — 0 P l ( 2 ) — > 0 .

Therefore, there is an injection $p,(l) θ $p t ( l ) —> F being part of the commuta-
tive diagram

0—> 0 P l —> 0 P l ( l ) θ 0 P l ( l ) — 0 P l (2) ^ 0
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Again, this excludes the triviality of φ*F. In general, there is no obvious reason
why not every deformation of ?Γχ or F should be trivial. In fact one can prove the
following.

Proposition 3.2. If X is a smooth quintic hyper surface in P4, then the generic
deformation of 3ΓX 0 Θx has trivial restriction to any given rational curve φ:
P{^X.

Proof Of course, it is enough to produce a deformation of 3~x 0 Θx or F, resp.
that restricts trivially, i.e. the pull-back under φ is isomorphic to the trivial rank
four bundle. The idea is to use Ωp4(X')\x as a deformation of F*, where X' is the
union of the coordinate hyperplanes Ho,H\,...,H4. As in Sect. 1 we have an exact
sequence

0 — * ΩF4 —> Ωp4(X'> —> ΘΘHι —* 0.

Analogously to the Euler sequence there also exists

0 —+ ΩP4(Xf) —+ Θ 5 0 P 4 — * 0 P 4 —> 0

locally given by d(Xi/xo)/(xi/xo) κ-> ex•• - eO Hence Ώp4(X') = 40p4. In particular,
φ*ί2p4(X/) = 40p,. Unfortunately, βp4(X /)|χ does not represent a deformation
of F* if X1 is not smooth. Instead of Ωp4(X')\χ consider 0L~ι(Θχ'nx), where
α : Ωp4(^Γ/)|Ar —> ®&H,\X a n ( i ^xnx' is considered as a subsheaf of 00//,. The sheaf
α - 1 ( 0 χ / n χ ) is a flat deformation of F*, though not locally free, and if the coor-
dinates Xf are chosen such that φ(P\)ΠHi ΠHj = 0 (/φy), then φ*α - 1(0χ/nx) =

More in the vein of Sect. 2 one can also argue as follows. The bundle F lives
in fact on P4 and is there isomorphic to the kernel of

ox,

This degenerates to (d(xoX\X2X3X4)/dxj). Via (αo? ,^3) •—• (̂ o-̂ o? •>
(—αo — ... — a^)x/\) its kernel is isomorphic to 40. As above, it needs a slight
modification to obtain a flat deformation of F.

Comparing the results of (3.1) and (3.2) in the case of a generic quintic we see
that in the commutative diagram

H\XJnd(F)) —» Hι(X,^Γx)

y-i βi

H\T>ugnd{φ*{F))) —» H\Vuφ*(^x))

the map α, which describes the tangent map of Def(F) —> Def(φ*(F)\ is never
zero, whereas β always vanishes. The surjectivity of α for all rational curves would
imply Clemens' conjecture.

Theorem 3.3. ΐ) For the generic quintic hypersurface I C P 4 the bundle ?ΓX 0 Θx

can be deformed to a stable bundle whose restriction to every rational curve of
degree one, i.e. a line, is nontrivial

ii) For any quintic I C P 4 and a fixed curve φ : Pi —• X of degree d < 20,
the bundle 3~x 0 Θx admits a stable deformation, such that the pull-back under φ
is not trivial.
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Proof, i) Let φ : Pi — > X C P4 be a non-constant map of degree d. By the same

arguments we used to prove the nontriviality of φ * F we can also derive the fol-

lowing diagram:

l) C

C φ * ( ^ ) ( - l ) C

Thus we obtain two sections sus2 e H®(¥\,&Θ?λ(d - 1)). If d = 1, there is a

nontrivial linear combination a\S\ + #2^2 (0/ £ £)> an element of Θ 5 / / ° ( P I , $ P , ) ,

whose first component vanishes. Deforming the equation / of X to f' = f-\-λχ*

will change the isomorphism type of X, if X was chosen generically. In particular,

the restriction of the associated bundle Ff to X defines a stable deformation of

F. Since φ*((d/7&z ) ) ( ^ i + a2s2) = φ * ( ( d / / ^ ) ) ( ^ i + a2s2) + φ*(5x4

0)(aιSι +
2̂̂ 2)1 = 0, αi^i + «2̂ 2 is in fact a section of φ*(F//)(—1) C Θ5$p1? too. This con-

tradicts φ*(Ff>)^ Θ®4.
ii) Let C be the image of φ and IQ be the ideal sheaf of C in P4. Using the

exact sequence

0 —> i/°(P4,/c(5)) —-> /f°(P4, ©(5)) —> //°(C, Θc(5)) —>

we have A°(P 4,/C(5)) ^ A°(P4,©(5)) - A°(C,fl?c(5)) ^ A°(P4,ί?(5)) - * ° ( P i , 0 P l

( 5 d ) ) = 1 2 6 - ( 5 r f + l ) . On the other hand, / Ϊ O ( X , ^ P 4 U ) - 24 and 24 <
126 — (5d -f- 1) — 1 by assumption. Hence //°(P4,/c(5)) under the restriction map
H0(P4,Θ(5))-+H°(X9Θχ(5)) cannot be completely contained in the subspace
H°(X9^p4\χ) which is the kernel of H°(X9ΘX(5)) -* H\X,*ΓX\ Thus we can find
a small non-isomoφhic deformation X' of X, such that C is still contained in X'.
As we have seen, ΩγA{X') restricts non-trivially to any rational curve contained in
X'. On the other hand ΩγA{X')*\x is a stable deformation of F . D

Remark. Yet, there is another way to attack the restriction problem in the case of the

quintic. We want to mention it briefly. As shown, all small deformations F1 of F are

given as the kernel of a surjection ®5Θχ(l) -» Θχ(5). If F ' * 9* ΩψA{X')\χ9 where X1

is a smooth quintic near X, this homomorphism was given by (df/dxi). One can use

these derivatives to define a morphism φ : X -> P 4 . Then F' = φ*(ΩpA(l)) Θ Gχ(\).

In particular, the restriction of F ' to a rational curve φ : Pi —> X of degree d is

trivial if and only if (φ o φ ) * ( Ω p 4 ( l ) ) = 5(Ppj(—4rf). Let the numbers at be defined

by (φ o φ ) * ( Ω p 4 ( l ) ) ^ e 0 P i ( - α i . ) . Then Γα, = 4 J and 0 ^ αj ^ ^ α 4 ([Ra]).

The general philosophy says that ( f l i , . . . , α 4 ) Φ ( d , . . . , ί / ) if f o < p maps Pi to a

special hypersurface, e.g. it maps to a hyperplane if and only if a\ = 0 . To construct

deformations of F with non-trivial restriction to all rational curves it would be

convenient to find a deformation X' of X such that the associated morphism φ :

X —» P4 has an image which is special enough.

Example. Let X be the singular quintic Ho U . . . U //4 = Z(xO ̂ i^2-^3^4) and let X 7 be

defined by / ' = t XQ + x$x\X2*3*4 Let 70? ? JV4 be the coordinates of P4 such that

Ψ* y* ~ ώΓ- Since X C Z( -^- -£-), the image of 1// is contained in the union of

the two hyperplanes defined by y\ and y2. Thus for any rational curve φ : Pi —> X

the bundle (^ o φ ) * ( Ω p 4 ( l ) ) 0 @vλ(d) is never trivial.
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A. Deformation Theory of Manifolds and Bundles

In this section we want to collect some general facts about the deformation of
varieties and vector bundles. Some of them we used tacitly throughout the text.

Let X be a compact complex manifold. Its infinitesimal deformations are
parametrized by the vector space HX(X,£ΓX). The obstructions live in H2(X,$χ)
and the versal deformation space Def(X), which always exists, is isomorphic to
Kχl(0), where Kχl : Hx{X,Jχ) —> H2(X,^χ) is the locally defined Kuranishi map
(cf. [Ko])

An analogous theory exists for deformations of X as a submanifold of Y. The
infinitesimal deformations can be identified with the elements of H°(X, Jίχ\γ\ where
Jίχ/γ is the normal bundle of X in Y. Again, there is an obstruction space which
can be identified with Hι(X,jVχ/γ) and a Kuranishi map κχ/γ : H°(X,jVχ/γ) —>
Hι(X,J^χ/γ), such that Def(X C Y) = Kχ,ι

γ(0). These two deformation spaces are
related as follows. If

0 —> FX —> &Ύ\χ —+ J^X/Y —> 0

is the normal bundle sequence of X in F, then the boundary maps induce the
commutative diagram (the Kuranishi maps are locally defined)

H°(X,jrχ/r) , Hι(
κχ/γl κχ

The associated morphism between the kernels Kχ,γ(0) —> Kχl(β) maps a deformation
X'cYofXcYtoX'. The Kuranishi description of Def(X) and Def(X C Y)
shows that they are smooth if the obstruction space H2(X,^χ) resp. HX{X, J^χ/γ)
vanishes. We shall say that X (the embedding X C Y) has unobstructed defor-
mations if Def(X), the versal deformation space of X (Def(X C Y) the ver-
sal deformation space of the embedding X c Y) is smooth. This is equivalent to
dimDef(X) = h\X^x) and dimDef(X C Y) = h°(X,jrx/γ), resp. In general, we
only have dimDef(X) ^ hι(X,&χ) — h2(X,^χ) and the corresponding formula for
Def(X C Y). In many cases X may have unobstructed deformations, even though
the obstruction space does not vanish.

Theorem A.I. ϊ) If X is a Kάhler manifold with K^n = Θx for some wφO, then
X has unobstructed deformations [Ka, R, To, 77].
iΐ) Let X be embedded in a compact Kάhler manifold Y. Then X C Y has
unobstructed deformations, if the embedding is semiregular [B]. D

From this one can conclude the following very easily:

Corollary A.2. For every embedding of a Calabi- Yau manifold X in P^ the em-
bedding I c P j v has unobstructed deformations.

Proof One has to use the following trivial fact: If X has unobstructed defor-
mations and X is embedded in Y, then X C Y has unobstructed deformations
if H\X,JίχfY) —> H2{X,3ΓX) is injective, e.g. if H\X^Y\X) = 0. This can be
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applied in our situation, since Hλ{X,3ΓγN\x) = 0, which follows from the Euler

sequence and Hι(X, Θx{ 1)) = H2(X, ΘX) = Q. •

The infinitesimal deformations of a vector bundle E on a fixed compact mani-

fold X are measured by Hι{X,Snd(E)) and the obstructions live in H2{X,$nd(E)).

The existence of the Kuranishi map KE '. Hλ(X,$nd(E)) — > H2(X,Snd{E)) gives

a lower bound for the dimension of the versal deformation space Def(E) by

hx{X,Snd{E)) - h2{X,Snd(E)). In fact, the image of the Kuranishi map is con-

tained in H2(X,$ndo(E)), where SΉdo(E) is the sheaf of traceless endomor-

phisms [K].

Example: If E is a stable vector bundle on a surface, then h°(X,S'nd(E)) = 1. The

Riemann-Roch formula in this case shows dimDef(E) ^ 4c 2 — c\ - 4χ(Θx) + 1.

Unfortunately, nothing like this holds for a vector bundle on a Calabi-Yau three-

fold. Serre duality here gives hι(X,δnd(β)) = h2{XJnd{E)\ i.e. potentially there

are as many deformations as obstructions.

We shall say that E has unobstructed deformations, if Def(E) is smooth. This is

equivalent to dimDef(E) = hx{X,Snd{E)). The only effective smoothness criterion

for Def(E) is the vanishing of H2(X, $nd$(E)). In [R] and [Ka] a more general

smoothness criterion is given, but I do not know of any case where it could be

checked and H2(X, $nd$(E)) does not vanish.

It might also be interesting to consider simultaneous deformations of a variety X

and a vector bundle E on X. It is not hard to see that in this case the tangent space

of the versal deformation space Def(X,E) is naturally isomorphic to Hι(X,@ι

Q(E)).

The obstructions take values in H2(X,&Q(E)). Here @Q(E) denotes the coherent

sheaf of differential operators on E of order £Ξ 1 whose symbol is contained in the

image of the diagonal map £ΓX — > ?ΓX ® Snd{E). Using the symbol sequence

0 — > Snd(E) — > @>\(E) — > Fx — > 0

we get the exact sequence

—> H2{X,Snd{E)) — • H2(X,

The maps between the involved tangent and obstruction spaces naturally commute

with the Kuranishi maps. Following an idea of Wilson [Wi] about the deformation

of rational curves in the Kuranishi family of X one can prove

Proposition A.3. Let X be a Calabί- Yau threefold and E a vector bundle on X

which does not move on X, i.e. dimDef(E) = 0, then E deforms with X in the

Kuranishi family ΘC —> Def(X), i.e. Def(X,E) —> Def(X\ given by mapping a

deformation (X',E') of (X,E) to X', is surjectίve.

Proof Since a Calabi-Yau manifold has unobstructed deformations, i.e. the
Kuranishi map κx \HX{X,3ΓX) —> H2{X,ZΓX) vanishes, the Kuranishi map

κ{XtE)
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has values in the image of H2{X,Snd{E)) — > H2{X^\{E)). By the above exact

sequence, and using H°(X,^χ) = 0 we get

dimDef(X9E) ^ h](X,@l(E)) - (h2(XJnd(E)

- d i m l m C / / 1 ^ ^ ) —> H2(X,£nd(E))))

= h\X,δnd(E)) + hι(X,^x) - h2(X,£nd(E))

= ά\mDef(X).

Since Def{X,E) —> Def(X) has zero dimensional fibre over the origin, it is in
fact surjective. D

In [Grl] Prop.3 Grothendieck proves that, if E is an vector bundle on an arbitrary
X, such that H2(X,£nd(E)) = 0, then E deforms with X in the Kuranishi family.
For a Calabi-Yau threefold H2(X,£nd(E)) = 0 is equivalent to H\X,Snd{E)) = 0,
i.e. E is infinitesimal rigid.

B. Deformation of Sums and Extensions of Stable Vector Bundles

Let X be a projective manifold with an ample divisor H. The slope μ(F) of a
sheaf F of positive rank is defined as the ratio (c\(F).HdιmX~ι)/rk(F). A vector
bundle E is called polystable if E can be written as a direct sum E\ θ θ En of
stable vector bundles Et of the same slope. One could ask, under which condition
such a polystable bundle deforms to a stable bundle. By the phrase "E deforms to
a stable bundle" we mean that there is a connected curve C and a vector bundle
& over C x X such that for some point 0 G C we have E = ${o}xχ and for some
other point t G C the corresponding bundle ${t}xx is stable. We will restrict here
to the case of polystable vector bundles E which are sums of two stable vector bun-
dles. The general deformation theory for such an E provides us with the existence
of the semi-universal deformation space Def(E) and a natural isomorphism be-
tween its tangent space and Hι(X, Snd(E)) = Hι(X, Snd{Eλ)) θ Hι(X, Snd{E2)) θ

Proposition B.I. Let E\ and E2 be two stable vector bundles of the same slope,
such that the dimension of Def(E\ 0 E2) can be strictly bounded from below by

άimDef(Ex) + dim Def(E2)

Then E\ θ E2 deforms to a stable bundle.

Proof. We abbreviate Def(E\ ζ$E2)by D. \ϊ $ over I x D i s the semi-universal
family, such that $$ = E\ θ E2, then we can assume that St is semistable for all t G
D, for semistability is an open property. If St is not stable, then there exists a stable
subsheaf OΦF c St with μ{F) — μ(Et) and torsionfree cokernel StjF. For t = 0
such a subsheaf is automatically isomorphic to one of the summands of l o - ^ i θ
E2. First, we recall, that there exist finitely many projective schemes M\, M2,...,Mn

all of which are moduli spaces parametrizing semistable sheaves, such that every
stable subsheaf F of St corresponds to a point of the union UMt. Furthermore,
we can require, that E\ and E2 only correspond to points in M\ and M2, resp. This
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is in fact an application of a result of Grothendieck [Gr2], which says, that the
set of Hubert polynomials of subsheaves O φ F c St with given slope and torsion-
free cokernel St/F is finite. In particular, there are finitely many projective moduli
schemes parametrizing all stable sheaves with these Hubert polynomials [Ma]. Then
we use the incidence varieties Zz = {(Ft,t) G Mi x D\ Hom(F,S't)ή=0}, which are
closed in Mι x D. Since for i > 2 the image of Z, under the second projection
Mt x D — > D does not contain 0, we can assume, by shrinking D, that whenever
F is a stable subsheaf of $t with torsionfree cokernel and μ(F) = μ(Ei), then F
corresponds to a point of the union M\ U M2. To finish the proof we only have to
show that under our asumptions the maps Zi==\^ —>• D are not dominant. We will
do it for i = 1. If Z\ — > M\ is the first projection, then the fibre over [E\] G M\ is
{t G Z)|Hom ( ^ i , ^ ) φ θ } . Since any nontrivial homomorphism E\ —> St is injective,
βt is in fact given as an extension of the form

0 —>EX — > δ t — > <$t/Eχ — > 0.

In addition, for t = 0 we necessarily have E2 = St/E\. Hence, locally around
0 G D, the sheaf St/E\ is a deformation of E2. Thus the dimension of the fibre
{t G Z)|Hom(£Ί,^)Φ0} at the point t = 0 is bounded by

dimM2 +hι(

Finally, dimZ! ^ dimMi + dimM2 + hι(X93Vom(E29E\)) < dimD. D

Some immediate consequences are listed in the next corollaries.

Corollary B.2. If X is a K3-surface, then £ΓX® Θx deforms to a stable bundle. D

Corollary B.3. If E\ and E2 are stable bundles such that their sum has unob-
structed deformations and both spaces Hι(X,Jtf?om(E\,E2)) and Hι(X,
Jήfom (E2,E\)) do not vanish, then E\ ΘE2 deforms to a stable bundle. D

Notice, that E\ and E2 have unobstructed deformations if E\ Θ E2 has. The following
is well-known.

Corollary B.4. If X is a curve of genus g > 1, and E\ and E2 are two stable
vector bundles of the same slope, then E\ Θ E2 deforms to a stable bundle.

Proof. On a curve any vector bundle has unobstructed deformations. Thus it is
enough to check that Hι(X,J^om(Eι,E2))ή^0. By Riemann-Roch its dimension is
bounded by rk(E{) τk(E2)(g - 1) > 0. D

Corollary B.5. Let X be a projective variety with hι(X,Θx) > 4h2(X,Θx), then
Θx 0 Gx deforms to a stable vector bundle.

Proof By the assumption dimDef(Gχ ® Θx) ^ 4hι(X,Θx)-4h2(X,Θx) > 3hι

ι D

More generally, the sum F Θ F, where F is a stable vector bundle, deforms to
a stable vector bundle if h\X,£nd(F)) > 4h2(X,£nd(F)).
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Instead of deforming the sum E\ 0 E2 directly one could first construct a non-

trivial extension

0 — > E 2 — > F — > E ι — > 0

given by an extension class η G Extl(E\9E2)\{0} and then try to deform the

bundle F .

Definition B.6. For every deformation of F over a parameter space D we define

the map ξ : TQ^ — > Ext1 (E2,E\) as the composition

Ext1 (F,F) -* Ext^F,^) -> Ext 1 ^,^),

where the last two maps are induced by the above extension.

Proposition B.7. If E\ and E2 are two stable bundles of the same slope but with

τk(E\) + τk(E2) and if F admits a deformation over an one-dimensional para-

meter space D such that ξ φ 0, then E\ Θ E2 deforms to a stable bundle.

Proof As in the proof of B.I it is enough to show that all small neighbourhoods

U of 0 G Def(E\ θ E2) contain a point t G U, such that the corresponding vector

bundle Ft does not admit any non-trivial homomorphisms E[ —>• Ft or Er

2 —* Ft for

small deformations E[ and E'2 of E\ and E2, resp. By the assumption about the rank

we can assume that Hom(E[,F) = 0 for all small deformations E[ of E\. Hence,

after shrinking D, one may as well assume that Hom(E[,F') = 0 for all deformations

F' of F parametrized by D. Since every open neighbourhood U contains a point

t with Ft = F , we can regard such an F1 also as a deformation of E\ θ E2. If

Hom(£'2 ? F
/ ) = 0, then F' is stable. Otherwise, it can be written as an extension

0 — > E ' 2 — > F f — > E [ — > 0 , (*)

where E[ and E2 are deformations of E\ and E2, resp. Note that there is only one
(up to scalars) homomorphism E2 —> F. Thus it is enough to show that ξ : Tp$ — >

Έxtι(E2,E\) vanishes, where P is the space parametrizing all the extensions of the

form (*). This can be easily concluded using the exact sequence

E x t 1 ^ ! , ^ ) —> TPfi —> Ext1 (E\,Eι) ® Ext1 (E2,E2),

and the following commutative diagram:

TP,o —-> Ext1 (E2,E2)

I
Ext1 (F,F) —> Ext\E2,F)

ϊ I i
Έxt\EuEx) — > Ext1 (F,Eγ) — > Ext\E2,Eι) D
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