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Abstract: We study the generalizations of the well-known Lieb-Thirring inequality
for the magnetic Schrόdinger operator with nonconstant magnetic field. Our main
result is the naturally expected magnetic Lieb-Thirring estimate on the moments
of the negative eigenvalues for a certain class of magnetic fields (including even
some unbounded ones). We develop a localization technique in path space of the
stochastic Feynman-Kac representation of the heat kernel which effectively estimates
the oscillatory effect due to the magnetic phase factor.
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1. Introduction

In this paper, we discuss generalizations of the magnetic Lieb-Thirring inequality
obtained in [LSY-II] for the constant magnetic field. The main goal is to obtain
reasonable estimates for the moments of the negative eigenvalues of the three-
dimensional Pauli operator with external potential (describing a nonrelativistic spin-
1/2 electron in an electromagnetic field). The basic difference from the previous
related works is that we focus on a nonhomogeneous magnetic field.

For the possible applications of this inequality, especially its role played in the
proof of the semiclassical formulas, we refer to the papers [LSY-I] and [LSY-II].
Here we just note two requirements that a useful Lieb-Thirring type estimate is
expected to fulfill:

• it must be comparable (up to universal constants) with the corresponding semi-
classical formula;

• apart from the necessary integrability conditions (which make the semiclassical
formula finite) no extra condition should be imposed on the external potential
(since in the applications the external potential is usually chosen to be an effective
potential whose detailed properties might not be known).

In addition to these basic requirements, we mention that in the related works
([Sob, LSY-I, LSY-II], etc.), special attention is devoted to the case of a strong
magnetic field. We also found it physically interesting, and at the same time math-
ematically difficult, and hence challenging, to treat strong (even unbounded) non-
homogeneous magnetic fields.

There is a vast literature of various spectral studies in the case of the homo-
geneous magnetic field, but results, especially quantitative ones, are fairly rare for
the nonhomogeneous field (see [AHS, CdV, AC, M-1990, M-1991, T]). The techni-
cal reason for this (apart from the obvious physical relevance of the constant mag-
netic field) is twofold. First, the Schrόdinger operator with constant magnetic field
(without external potential) is exactly solvable, and after decomposing the operator
according to the Landau levels one obtains a simplified (lower dimensional) setup,
so the additional effect of the external potential becomes easier. Some version of
this strategy has almost always been used in any work concerning homogeneous
magnetic field.

The second technical difficulty is that perturbations of the magnetic field can
be much less controlled than that of the external potential. Naively, one would
expect that a local change of the magnetic field does not have a large effect on
local quantities observed far away, but the magnetic vector potential, appearing
in the operator is a nonlocal quantity (i.e. it undergoes a nonlocal change with a
long tail even under local perturbation of the field itself). This is the source of the
Aharonov-Bohm effect.

Out basic method is stochastic via the Feynman-Kac formula, which is valid
under fairly general conditions on the magnetic field. The analysis of the stochastic
oscillatory integral in the Feynman-Kac formula involves a new localization tech-
nique in path space which enables us to estimate the heat kernel of the Pauli oper-
ator (without external potential). The key idea of this technique has been presented
in the simplest possible setup in [E-1994(a)] yielding new pointwise estimates on
the magnetic heat kernel. In the present paper we refine this technique to obtain
a stronger estimate (unfortunately under more restrictive conditions) which can be
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combined with the Birman-Schwinger principle (in order to include the external
potential) to obtain the desired Lieb-Thirring inequality.

2. Definitions, Conjectures, Results

The three-dimensional Pauli Hamiltonian is

Hpauh :=H£βlί/|.+ F I:= Kp - A) - σf + F I , (1)

acting on L2(R3, C2), the Hubert space of a spin- 1/2 particle. Here σ = (σ\, GΊ, σ3)
stands for the vector of Pauli matrices, A is the vector potential of the underlying
magnetic field B(x) = rotA(x), x £ R3, I is the 2 x 2 identity matrix and p = — /V.
Throughout this paper we assume that A, divA and B are in L2

loc.

2.L Magnetic Field with Constant Direction. In most of our work (except
Theorem 2.4), we consider a nonhomogeneous magnetic field with constant di-
rection, i.e. assume that B(x) = (0, 0,£(x)) G R3. By divB = 0 the function #(x)
depends only on the first two coordinates of x = (x\, X2, ^3) € R3> which we
will denote by x := (x\, x%) £ R2. We do not specify the gauge A(x) here, but
we will always restrict ourselves to an appropriate two-dimensional gauge, i.e.
A(x) = (A\(x\ A2(x), 0) =: (A(x), 0) (depending only on x). We will use the con-
vention that A = (A i, A2, AΪ) denotes a vectorfield in R3 and A — (A\, A2) denotes
the associated two-dimensional vectorfield, similarly to the convention on the points
x <E R3 and jc G R2.

Under these conditions VLpauiί decouples into two operators of the form
(p — A)2 ± B -h F acting on the spin-up and spin-down subspaces, respectively. If
B(x) ^ 0 (as in our main Theorem 2.2), then for the upper bounds on the moments
of the negative eigenvalues the difficult part is to study the negative eigenvalues
Ei ^ E2 ^ - - ^ 0 of

/ / 0 : = ( p - A ) 2 - 5 + F . (2)

The contribution from the eigenvalues E{ ^ E'2 ^ ^ 0 of the other operator
H\ := (p — A)2 -h B -f V can be estimated by the eigenvalue moment of (p — A)2 -f
F. Following the simplest standard proof of the nonmagnetic Lieb-Thirring inequal-
ity and applying the diamagnetic inequality, one obtains

ΪK / |K(x)l!^dx with K := n ( 4 f ( 2 7 + 3) (3)

(see also Remark 4 after Theorem 2.4). Here, and in the sequel, |F|_ denotes the
negative part of F.

Remark. We are not aware of any general theorem that would apriori ensure the
selfadjointness of HPauiι or HQ (after imposing some L^-bound on F). The usual
theorems about the perturbation of a selfadjoint operator do not seem to work if B is
unbounded (which will be our main concern). Nevertheless, the way we will prove
our Lieb-Thirring inequalities for unbounded fields implies almost immediately that
the operator is semibounded (so it has a self-adjoint extension) and has no negative
essential spectrum. The details are found in Appendix A.
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The naive conjecture for the moment of the negative eigenvalues is the
following:

Naive conjecture. Assume that B has constant direction and B(x) ^ 0. Then for
any y > 1/2 there exist two absolute constants C\(γ) and C2(y) such that for the
moments of negative eigenvalues of HQ we have

2(y)J |F(x)|L+3/2dx, (4)
i R3 R3

if the integrals above are finite.

Remark. 1. This conjecture is based on the following heuristic argument (see also
[LSY-II], where the conjecture was proven for a constant magnetic field). The two-
dimensional unperturbed operator

H:=(pι-Al)
2 + (p2-A2)

2-B = (p-A)2-B (5)

is nonnegative and has a nontrivial zero energy spectral projection PQ with a kernel
PQ(X> y\ whose diagonal element PQ(X, x) is more or less equal to B(x)/2π. For
more precise statements see [E-1993]. Recall that HQ — H + p\ + K, so over each
point x G R2 the operator p2 -f V acting on a one-dimensional fiber gives rise to

/R |F(jc, jc3)|^1/2dx:3 as a contribution to the eigenvalue moment. Multiplying it by

the density states ^ B(x)/2π and integrating over x £ R2 one obtains the first term
in (4). The second term comes from the contribution of the strictly positive part of
the spectrum of H and it has the form as of the usual Lieb-Thirring inequality. The
reason for is that (1 — PQ )H can be estimated from below by the two-dimensional
free Laplacian (in some suitable sense).

Remark. 2. The conjecture above is not true without any further condition on B.
A counterexample is provided in Appendix B. The spirit of this counterexample
suggests a simple but necessary modification in (4), namely B(x) on the right-
hand side must be replaced by a screened version of B(x) with screening length
~B(x)~1/2, i.e. by

B(X):=(B*ΦB(xf/2)(x), (6)

where Φ ^ 0 is a C°° -function supported on the unit disc with /Φ = 1, and
Φε(x) := ε2Φ(εx).

Our methods are too weak to deal with magnetic fields if there is a substantial
difference between B(x) and B(x); more precisely, whenever we are able to prove
(4), the conditions will automatically imply that B(x) and B(x) are comparable,
uniformly in x. Therefore we will concentrate on proving (4). The, discussion of a
different (much rougher) modification of B is found in [E-1994(b)].

First we present a simple Lieb-Thirring type estimate.

Theorem 2.1. Assume that B has constant direction, B(x) = (0, 0, B(x)) with
B = B< + £>, where B< eL°°(R2),B> €/^(R2) (for some p > 1) and B> ^ 0,
furthermore |F|_ € Z7+1/2(R3) Π Z7+3/2(R3) for some y > 1/2 (in case of p = 2
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the condition B>^Q can be dropped). For the negative eigenvalues E\^p ^
we have

})/|F(x)|L+ 1 / 2dx
R3

(7)
R3

where
T^ye

AI .=
π(4y2- 1) 1 -λ

and
3 2>'+V £2

2(
2 *

-l)(2y + 3) λ\\-e-^ '

0 < λ < 1 and μ > 0 being free parameters. The constants k^(p) and
Cd(p)(d — 2, 3) depend only on the exponent p and dimension d:

d(p-l) 2p

(where Γ denotes the gamma function), while kd(p) can be expressed by the
Mittag-Leffler functions (see Remark 3.1 in [C]). In case of B> =0, one can
always replace kι(p) by 1 in (8).

Remark. L We remark that the above estimate is not consistent dimensionally, un-

less B> = 0 (bounded field), since \\B<\\00 and ||^>||^/(/?~1) scale differently. This
discrepancy is especially striking when we take the Planck constant into account
(see later). We believe that one should be able to replace the power p/(p— 1)
by 1 in (7).

Remark. 2. Theorem 2.1 does not impose any further condition B apart from
B G L°° + Lp, even B ^ 0 is not assumed. But the estimate is weaker than (4) un-
less we have positive lower and upper bounds 0 < BQ fg B(x) ^ C BQ (in which
case the constants in (4) will depend on C). For magnetic fields that are close
to zero on some domain, (4) would definitely be stronger than (7). At the same
time, the counterexample in Appendix B shows that the vanishing magnetic field
might cause troubles in the original conjecture. Therefore we will impose a uni-
form positive lower bound on B, and we then address the question of eliminating
the condition on the upper bound and obtaining the conjectured form (4) instead
of (7). Although the necessary conditions given in Theorem 2.2 below are still
very restrictive and the proof of this theorem requires a conceptually new approach,
we do obtain the original form, (4), of the naive conjecture by imposing these
conditions.

Theorem 2.2. Assume that the magnetic field with constant direction (B(x) =
(0, Q,B(x))) has a positive lower bound

0 < £0 ^ B ( x ) , (10)
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B(x) is continuously differ entiable, and for some constant c it satisfies

\B(x)-B(y)\ £c.d(x)\x-y\ (11)

for any x, y G R2, where

31/6

. (12,

Then there exist two constants C\ and €2 depending only on c such that the
estimate (4) is valid with

C2

0 < λ < 1 is a free parameter.
For example, the conditions (10) and (11) are clearly satisfied with c = c(c*)

///or some c* and for all x,

£o ^ B(x) ̂  c*£0(l + W)6/3? and \VB(x)\ ^ c*£3/2(l + |jc|)~1+6/37 . (14)

Remark. 1. The condition (10), (11) essentially impose an upper bound on the
gradient of B. Only a small gradient is allowed in the regions where B(x) is large.
Alternatively, the theorem can be formulated in the following way:

Alternative Formulation of Theorem 2.2. Let c' := B~l/2 supx(| VZ?(;c)| |Z>(;c)|31/6),
where b(x) := B(x)/Bo is the dimensionless magnetic field. Then (4) is valid
with constants C\(y), €2(7) which depend on c' in a monotone increasing way.
Especially, they blow up as BQ —* 0.

Remark. 2. The exponent 31/6, which appears in (12) and determines the maximal
growth rate of B at infinity (compare with (14)), is necessary for the following
proof, but, as we remarked above, the conjecture (4) is expected to hold under much
more general circumstances. Therefore this exponent only expresses the limitations
of our method and does not have any physical meaning.

Remark. 3. The relations (10), (11) and (12) are almost homogeneous in the mag-
netic field therefore we have a semiclassical statement as well. If we include the
Planck constant in the original Pauli Hamiltonian, [(/φ — A) σ]2 + V I, then HQ
becomes

"/ Δ \ 2 B V

~h+hϊ ' (15)

so the magnetic field must be rescaled by h~l. Notice that this change makes the
conditions even weaker (moreover they become irrelevant in the h —> 0 limit). The
estimate for the eigenvalue moment is

Since C2(y) is not the semiclassical constant, the second term becomes relevant
only for large magnetic field (B g: h~}).
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Before going into the details of the proofs, we would like to mention very
briefly two other results related to the naive conjecture (4) which can be found in
the author's Ph.D. Thesis [E-1994(b)].

One can try to check the naive conjecture directly for exactly solvable models. It
turns out that for the "Coulombic" magnetic field, B(x) := b/\x\ (with b > 0), the
operator (with the natural gauge choice) H := (p - A)2 - B is exactly solvable (and
actually it has dense point spectrum in the interval [0, b2], similar to a phenomenon
investigated qualitatively in [MS]). Using explicit formulas for the eigenfunctions,
one can estimate the spectral density of H with a precision that is sufficient to
prove (4). The proof involves various estimates on the asymptotic behavior of the
Laguerre polynomials. The significance of this result is that the Coulombic magnetic
field is neither bounded from above nor has a positive lower bound (so Theorem
2.2 does not apply), and it shows that the conjecture can be valid even for magnetic
fields with a singularity. (Theorem 2.1 can be applied, but it gives a weaker bound
than (4).)

The second, related result deals with the azimuthally symmetric situation.

Proposition 2.3. Assume that B(x) = B(\x\) ^ 0 and V(x) = V(\x9x3) (where
\x := -y/χ| _j_ χ2^ anc[ fef a^ ._ ( i / r ) JQ B(s)sds be the absolute value of the nat-
ural radial gauge. Then for any y > 0 there exists a universal constant c(y) such
that

neZR 0
-B(r)+V(r,x3)+[--a(r)

n

Γ
(17)

The main idea of the proof is that one can investigate the problem separately in each
angular momentum sector (so that the magnetic field becomes an effective potential)
and apply a modified version of the idea of [L]. This estimate is not comparable
directly to the original form of the conjecture, but imposes no condition on the
magnetic field apart from the symmetry, so it might be useful in some situations
when Theorems 2.1 and 2.2 do not apply.

2.2. Magnetic Field with Arbitrary Direction. Here we give a different Lieb-
Thirring type inequality which is valid for any bounded magnetic field, possible
with some weak singularities B(x) G L°°(R3) + L2(R3) (it is not assumed that the
field has constant direction}.

Theorem 2.4. For any magnetic field B = B< + E> with B< €l°°(R3),B> G
Z2(R3) and for any external potential V with |F|_ € /7(R3) ΠZ/'+3/2(R3) (for
J = l ) j the negative eigenvalues E\^p ^ E^p ^ ^ 0 0/H/^/, satisfy

Σ \Ei,pp ^^ι,p(2||B< 11^ + 9c3(2)||B> ||')3/2 / | F(x)|Ldx
I R3

(18)
R3

with

Kl'p ''= π3/2
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and
kl(2)

2'P 22 _ l)(2y+3) ' (1 - e~^)2 '

μ > 0 is a free parameter, and c3(2), £3 (2) are defined in Theorem 2.1
Or B> = 0, &3(2) caw be replaced by 1).

Remark. 1. This inequality is essentially different from the naive conjecture (4)
(exponents are different), and, naturally, the heuristic argument given there is not
valid for a magnetic field with variable direction. One might naively think that
assuming |F|_ £ I)'(R3)nΓ/+3/2(R3), the estimate (18) is better than (7) for small
11̂  < I I oo (and assuming for the moment that B> = 0), although the conditions are

weaker. The point is that the constant in front of the / |F|!^~3/2 term is bigger in
(18), more precisely by a simple Holder's inequality

(20)

justifying that (7) together with (3) is, in fact, a stronger estimate than (18) (by
appropriately tuning the free parameters in K\ and K2 one can always achieve that

2£3/2/3 ^ 2^2KιtP and l/3+K + K2 ^ K2,P).

Remark. 2. Let us introduce the Planck constant into Hpauh and into the estimate
(18) (assuming again that B> = 0, since that term is not correct dimensionally and
causes a blow up of order h~6 in the semiclassical statement). One obtains that after

the main term (A"3 / |K|!_+3/2) the next term is /Z-3/2||B< ||̂ 2 / \V\L. This does not
mean any ambiguity about the /z-power of the second term when compared with
(16). One should again keep in mind that the constant in front of the main term is
not optimal; the second term in both estimates (7) and (18) becomes relevant only
if A||B< || ̂  is at least of order 1.

Remark. 3. The general conjecture for any (possible unbounded and/or variable di-
rection) magnetic field, analogous to (4), would be that under some minor condition
on B,

Σl^,pl7 ^ Ci,p(7)J |B(x)||F(x)|!_+1/2dx + C2,Xy)/ |K(x)|L+3/2dx (21)
'' R3 R3

for 7 > 1/2. This estimate would be consistent with the conjectured semiclassical
formula. Theorem 2.4 is much weaker than (21). There is a possible intermediate
estimate.

Σ|£/,/>Γ ^ C*P(y)J |B(x)|3/2 |F(x)lLdx + C*P(y)/ |F(x)|L+3/2dx (22)
i R3 R3

for y ^ 1. It is clear by Holder's inequality, that (21) is stronger than (22) (not
bothering about the constants). On the other hand, the relation between Theorem
2.4 and (22) is clearly the same as the relation between Theorem 2.1 and Theorem
2.2. One can try to apply the ideas of the proof of Theorem 2.2 to prove (22)
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(under some conditions similar to those in Theorem 2.2). The stochastic reflection
method, leading to Main Lemma 6.2 in Sect. 7, still works in higher (especially
in three) dimensions, see [E-1994(a)]. For the three-dimensional Pauli operator one
needs a generalized Feynman-Kac formula which includes a Poisson process as
well (see Proposition 4.2), but the reflections can be done and the necessary esti-
mates can be obtained uniformly for each realization of the Poisson process. There
is no spectral gap (in the case of a field with constant direction it is implied by the
positive lower bound on the magnetic field via supersymmetry - see Sect. 6), but
one can still cut the spectrum into two parts at a level L — Bo := infx|B(x)| (see

Sect. 3). Unfortunately, this takes into account all the low lying states of Hpαw//

with an equal weight, although they do not contribute equally to the negative
eigenvalues (higher energy states are expected to contribute less). This overesti-
mate explains why we obtain the rougher estimate (22) instead of (21). There
are some other technical difficulties, especially about the validity of the Feynman-
Kac formula for the Pauli operator with a truly unbounded magnetic field (not
just weak singularities), but these are probably tractable. The point is that without
the spectral gap (e.g. for variable direction field) our heat kernel method is very
likely able to prove only (22), but not (21). We do not see any way for the mo-
ment to overcome the absence of supersymmetry in the general three-dimensional
case.

Remark. 4. We briefly remark that if the so-called electron g factor is smaller than
2 (see [FLL]), then one can easily reduce the magnetic Lieb-Thirring inequality
to the standard non-magnetic one (see [LT]). In this case one considers H^ :=

(p - A)2 - !<r B instead of H£αM/ϊ, and clearly

H, = |((p - A)2 - σ B) + (l - I) (p - A)2 gr (l - |) (p - A)2 . (23)

Plugging this estimate into the full Birman-Schwinger kernel KE (see (46) later),
taking the trace of its square and applying the diamagnetic inequality we can follow
the standard proof of the usual (non-magnetic) Lieb-Thirring inequality. The result
is (for y > 1/2)

for the moments of the negative eigenvalues of Hc; -f V .

3. Separation of the External Potential

For the proof of Theorems 2.1 and 2.2, we follow the method of [LSY-II]. The key
idea is to split the Birman-Schwinger kernel (recall that H — (p - A)2 - B)

1/2 1/2

(25)
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(E > 0) into a lower and an upper part at level L, KE = K^L +KgL, defined as

-f
1/2

1/2 IT* 1/2

1/2

(26)

(27)

where we let PL be the spectral projection onto [0, L] in the spectrum ofH (which is
nonnegative), and let ΠL := PL® Id be its natural extension to L2(R3). (According
to the heuristic argument outlined in the previous section we should choose L = 0,
but sometimes the splitting is technically more convenient at a positive L.) Using
Lemma 2.3 in [LSY-II] (about the compactness of these operators see Appendix A)
we have

\r <- (ι 1 \—ITW£"< Λ _i_ 1 ~2 y ιγ ι^-> \2η ί^Q\
™E =r V L — A) IΓ^A£ ) ~r A LT\\ΓLg ) J , {Zθ)

for NE, the number of eigenvalues of HQ := H -f p\ + V less than —E (0 < λ < I
is a free parameter, E > 0). Naturally

E \E,

(29)

Using that

PL g ~'H (30)

(for any t ^ 0), a simple calculation, similar to (2.15) in [LSY-Π], shows that

^ Tr

1

V2Z

p

V + 2

-J
'»3

1/2

Λ

£-

2

1/2

^f>~tH(τc r^dx ΠΠC V ' yvlΛ. , ^ J 1 y

where the diagonal element of the heat kernel is defined for almost all x as follows:

e~tH(x, jc) := Γ \e~tH!2(x, y)|2 dv , (32)
R2

and e~tH/2(x,y) denotes the heat kernel of H (its existence will be discussed in
Proposition 4.1). Here we have used that

Ύr(UAU) = ffU2(x)\Al/2(x,y)\2dydx (33)

if A Ξ^ 0, A1/2 has a kernel and U is a multiplication operator. The point is that
calculating the Hilbert-Schmidt norm of UA1/2 instead of the trace norm of UAU
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allows us to pass to the integral of the kernels without worrying about the existence
of the diagonal element A(x,x). If one defines

A(x) = A(x,x) := , y)\2άy , (34)

then Ύr(UAU) = fU2(x)A(x)άx is straightforward. This idea will be used several
times in the sequel.

Then, still following the technique of [LSY-II], we obtain

άE £
97+1

(35)

(recall that for the moment t and L are free parameters).
If we choose 1 = 0, then we can see that PQ has a kernel with well defined

diagonal function PQ(X,X) (defined via the zero energy eigenfunctions of H exactly
as it was done in [E-1993]), and in this case the estimate (35) can be replaced by

dE <;
2> +ι

(36)

(use directly the kernel of PQ in (31)). Naturally, if PI(X,X) makes sense (or is
defined as in (34)), then (36) is valid for any L (simply skip the estimate (30)).

For the contribution of the upper part, for each E > 0, L ^ 0 we will present
an operator ME,L which commutes with H + p2, satisfies

(1 - ΠL) (H + P* + " (1 - ΠL) ^ ME,L , (37)

and ME,L has a kernel. Then, using that Ίΐ(Ul/2AUl/2)2 <; Ύr(UA2U) for nonneg-
ative operators, we obtain

Ίr[(K>L}2] ^ Tr
E_

E 2

41

MJ jL(x,x)dx . (38)

As we will show later,

:=/|M^(x,y)|2dy:g^

D3 \/£

77-3/2 d£dx

for almost all x and for some L-dependent number C(L), therefore

00 2 - 1 °° E 2

0 R3 0 2 -

2>'+7/2

.. I T \

R3

^ C(L)
(4y 2-l)(2y

(39)

(40)

Combining (29), (35) and (40), we can reduce the proof of Theorems 2.1 and
2.2 to the following two propositions (recall that the diagonal elements are defined
as in (34)).
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Proposition 3.1. Under the conditions of Theorem 2.1 for almost all x we have

with t = (L+ \\B< H^ -f c2(p)\\B> \\p

p

/(p 1))~1. Furthermore, for any positive β, the
operator

(42)

satisfies (37) and for β := (p<||00 + c2(p)\\B> \\p

p

/(p~ }Γl ,

with C(L):= (43)

for almost all x.

Remark. After proving this proposition, we choose L :— μβ~l to finish the proof
of Theorem 2.1. D

Proposition 3.2. Under the conditions of Theorem 2.2 there are two constants C\
and C2 depending only on c, and there is an operator ME,O satisfying (37) (with
L - 0) such that

Po(x,x)^Cι B(x), (44)

and

(45)

/m/?/y Theorem 2.2 t zYz (29), (36) αw^/ (40).

For the proof of Theorem 2.4, we use a different idea (invented in [LSY-III]) to
split the Birman-Schwinger kernel and to separate the external potential. Since the
magnetic field has variable direction, we cannot decompose H/>αw// into two operators
acting on Z,2(R3). Let Π/, be the spectral projection of Hpflw// := [(p — A) σ]2 onto
[0, L], and recall that ΠL, as well as Hjαι///, acts on L2(R3,C2). Define the Birman-
Schwinger kernel of the full Pauli operator (E > 0)

K.
1/2 1/2

(46)

where we conveniently omitted the identity matrices, but the operator of multiplica-
tion by a function U on R3 should be understood as U I acting on £2(R3, C2).
As before, let KE = K£L +K|L, where

K < —
£,L • —

1/2

K > —
£,I • —

1/2

1/2

1/2

(47)

(48)



Magnetic Lieb-Thirring Inequalities 641

Instead of (28), we use the following idea (see [LSY-III]) to estimate N#, the
number of eigenvalues of HpβW/7 less than —E:

NE = #{ev/s of KE bigger than 1}

^ #{ev/s of K|L bigger than 1/2} + {ev/s of K|L bigger than 1/2}

^ #{ev/s of V+-
1/2

Πi

1/2

bigger than E/4} + 4Tr([K|J2)

^ #{ev/s of ΠL| F|_ΠL bigger than £/4} + 4Tr([K|J2) , (49)

where we have used that the positive spectrum of X*X and XX* are the same.
Therefore,

^ 4'yTr

^ 4^Tr

' +4y / Tr
0

0

oo

- 4y / Tr
o

(50)

for any positive t, using that Π^ ^ eίLexp(— tH°Pauli). Note that we have used
Ύτ(UAU)y ^ Ύτ(WA?W) which requires γ ^ 1 (while Theorems 2.1 and 2.2
required only γ > 1/2).

We will again present an operator M^/,, commuting with Ή^auil9 such that

- ΠL) (51)

then following (38) and (40), the proof of Theorem 2.4 is reduced to the following
proposition.

Proposition 3.3. Under the conditions of Theorem 2.4,

etle~tHP™n(x,σ,x,σ) ^

f x e R 3

9C3(2)||B> \\4

2 (52)

{0,1}) for t := (2||B< \\^ + 9c3(2)||B> \\4

2 + L)~\ Furthermore,

1 β
-——,
1 — £ "

(53)



642 L. Erdos

satisfies (51) and for β := (2||B<||00 + 9C3(2)||B>||^r1,

. ,54,

case o/B> =0, the factor kτ,(2) can be replaced by 1 everywhere.

4. Feynman-Kac Formulas

4.7. Two- Dimensional Case. The proofs of Propositions 3.1 and 3.2 rely on the

magnetic Feynman-Kac formula for the two-dimensional Pauli operator. Let E0^
denote the expectation for the two-dimensional Brownian bridge W(s)(Q g s ^ 2t)
under the conditions W(0) = x and JF(2ί) = y.

Proposition 4.1. Lei A be a vectorfield on R2 swc/z //z#ί ^4 G Z/oc, div^4 G L/oc

and B :— rot^4 G L2

loc. Furthermore, we assume that the following conditions are
satisfied:

(i) either B = B< + B> with B< G LP (for p > \) and B> ^ Q(B> ^0 can
be dropped for p = 2);

(ii) or A and άivA do not grow faster than some polynomial at infinity, further-
more let B \— rot^4 G C1 and assume that 0 rg B(x) ^ c0(|^|2~e 4- 1) wziA ^ome
positive ε and CQ.

Then the heat operator exp (—///) of the two-dimensional operator H := (p —
A)2 — B has a kernel D^\x,y) defined by

(55)

where

ΨA,B(W) := -i } A(W(s)) oάW(s) -f i } B(W(s))ds
o 2 o

2ί / 2ί ] 2ί

- -z/^(^(j))dίΓ(5)H- - f άivA(W(s))ds + - f B(W(s))ds (56)

0 ^ 0 ^ 0

(as w^wa/, /F(^F)dPΓ denotes the Ito integral, while fF(W)odW is the
Stratonovich integral). Under conditions (i) for almost all x

R2 '»

(57)
(kι(p} can be replaced by 1 if B> — 0). Under conditions (ii) there exists a
continuous function Γ(t,x): [0, oc) x R2 —> R+ such that

\D(t\x,y)\ ^ ̂ ^ e-T . (58)
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If, in addition, B is continuously differentiable, and A and άivA are continuous
then D(t\x,y) is continuous and e~tH maps L2(R2) into C(R2).

Remark. 1. The kernel of the heat operator is defined only almost everywhere,
while D^\x,y) is defined for all x,y. What we are going to prove is that D^\x, y),
as defined above, can be a realization of the heat kernel.

Remark. 2. If we know that A and div^ί are continuous, then it is enough to assume
that B is continuous for the continuity result. But usually only B is given, and then
for choosing a continuous gauge with continuous divergence we had better assume
Be C1.

Remark. 3. Under the conditions (i) (actually much less is needed), the continuity
of the heat kernel Qxp(-tH)(x,y) in t,x,y is proved in [BHL]. We do not want to
use this result here (and therefore we keep on defining the diagonal element as in
(34)), since we shall apply a parallel argument for the full Pauli operator Hpαw//,
where the continuity of the heat kernel has not yet been established. The continuity
result in Proposition 4.1 under the conditions (ii) is not covered by [BHL].

Proof. The proof of this proposition under the conditions (ii) is found in [E-1993].
The only difference between this proposition and the statement in Appendix B of [E-
1993] is that in (58) we take into account the \/t singularity, so Γ(t,x) is continuous
for t ^ 0, while the corresponding function in Eq. (71) in [E-1993] was continuous
only for t > 0.

Now let us consider the conditions (i). First we show that the expectation value
in (55) is absolutely convergent. Let $? := — A — B acting on L2(R2), then by the
usual Feynman-Kac formula exp(—1&?) has a continuous kernel (see [S-1982]),
defined as

e"^(x vV- — e(JL^E2t'ye?f2QB(W(s}}ds (59}e (x>y)-4πt °'* ' ( }

which, in particular, shows that the expectation on the right-hand side of (59) is
finite for all x, y. Then obviously the right-hand side of (55) is well defined and
finite.

Next we prove the estimate (57) (notice that the diagonal elements exp (—tH)
(x,x) are defined separately as in (34)). For the heat kernel of ffl we have

, x)άy
R2

oo (60)

with fx(y) := e~tj^/2(y, x ) (here || || denotes the operator norm from Lp to
Lq). Using Carmona's bounds (see Proposition 3.1 and Remark 3.1 in [C]) one
obtains

e-'*(XtX) g Mί£) . exp[ί(||5<||00 + c2(p)||5>||f -")] . (61)



644 L. Erdόs

Using that \D(t/2\x,y)\ <, e-tje/2(x,y) for almost all x,y, (57) follows.
To prove that D^(x,y) is actually the heat kernel, first recall that for A G L2

loc,
div A G L2

loc and a bounded function U we have (in an almost everywhere sense)

4πt O'x

(see [S-1979(a)]). For B >^ 0 let Un := B< + mm(n,B>) be an increasing se-
quence of functions, then (62) is valid for Un. When taking n —> cxo limit, the right-
hand side converges to the right-hand side of (55), using the dominated convergence
theorem on the path space and the finiteness of (59). As to the left-hand side, it is
enough to show that Qxp(—tHn) —» exp(—tH) strongly, where Hn := (p — A)2 — Un

(here Hn is not a Pauli operator, since Unή= rot A, but U is independent of A in
(62)). Using that Hn \ H ^ 0, we conclude that Hn —> H in a strong resolvent
sense (see [K, VIII. 3.11]), which, in particular, implies the strong convergence of
the heat kernels.

If p = 2 and B> has no definite sign, then instead of the last paragraph one uses
the same argument as in the proof of Proposition 4.2 below to show that D^\x,y)
is really the heat kernel. D

4.2. Three-Dimensional Case. For the proof of Proposition 3.3, we need a Feynman-
Kac formula for the three-dimensional Pauli operator Hpαw/ί. The expectation of the
three-dimensional Brownian bridge W(^), with constraints W(0) — x, W(2ί) = y,
is denoted by E^'x

y. We shall also need a pure Poisson process v(s) with unit jump
rate (Edv(s) = as) and with initial value v(0) = 0 or v(0) = 1. Let v(s) denote v(s)
modulo 2, which is a Poisson process on Z2. The "Poisson bridge" is defined as
a Poisson process v(s) with endpoints satisfying v(0) = σ and v(2t) = σf for some

fixed σ, σ' G {0,1}. The corresponding expectation is denoted by E0^ (it depends
only \σ — σ'\).

Proposition 4.2. Let A be a vectorfield on R3, such that A G L2

OC(R3) and div A G

L2

OC(R3). Furthermore, let the vectorfield B = (B\, B2, B^) admit a decomposition

B = B< + E> such that E< Gl°°(R3) and B> GL2(R3). (For B := rot A we
will get back the Pauli operator, but this relation is not necessary for the present
statement.) Then

exp(—ί[(p - A)2 - σ B]) (in particular Qxp(-tHQ

Paulί)) (63)

has a kernel D(ί)(x, σ, y, σ') defined as

(64)
where

ΨA,B(W,v) := e>2ίexp (-if A(W(ί)) o dW(ί) + \ /
V o 2 o

it
+/log

o
. (65)
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Furthermore, we have for the diagonal elements

|D(/)(x, σ, x, σ)| := Σ / D('/2)(x, σ, y, σ')Ό(t/2\y9 σ7, x, σ)dy
σ/ R3

ϊ . ^VTΛ Γ / r 9 l l R < l l -u Q^/ r 9MlR > ||4γi
^ , (66)

(π03/2

(αn^/ £3(2) cα« Z?^ replaced by 1 //B> =0).

Remark. The unusual factor in (64)

β(σ, σ', 20 : - e~2'(cosh (20 - e~2t(σ - σ')2)

= e~2ί(cosh(20 l(σ = σ') + sinh(20 l(σφσ'))

= Prob{(-l)σ/ = (-l)v^)+σ| = Prob{v(20 - σ7 |v(0) = σ} (67)

comes from the normalization of the Poisson bridge: E2/'^ (1) = 1.

Proof. The proof is basically given in [DJS], where it is proved that

//(x, σ) := Σ / D(r)(x, σ, y, σ')/o(y,σ')dy (68)
σ' R3

satisfies dft/dt = — [(p - A)2 - σ B]/, with the initial condition /o, i.e.

/, = e-'[<P-A)2-σ B]/o (69)

The calculation given in Appendix 2 of [DJS] is rigorous for smooth A and B.
(Except that the divergence term is omitted, but it can obviously be incorporated
into the potential term. Probably the authors assumed that the vector potential is
divergence free, although they did not say so.) For the Ito calculus extended to
the joint Wiener-Poisson process, it is enough if all data and ft(x,σ) are C2 (see
[GS]). To prove the smoothness of /f, notice that for any fixed realization of the
Poisson process the function

(x,y)-E^x

yΨ(W,v) (70)

is smooth using an argument similar to Appendix B of [E-1993] and the Taylor
expansion of the data. Moreover, the estimates are uniform in v, so we conclude
that D(ί), the average of the functions (70) is also smooth.

To justify that (64) is really the heat kernel for more general data, first we show
that the double expectation on the right-hand side (64) is absolutely convergent.
Clearly

x exp J \B3(W(s))\ds + / log \ (B2(W(s)) + ̂ (W(j))) 1/2 dv(s)
o o λ )
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using that for the exponential moment of the Poisson integral we have (with the
convention that e~°° = 0)

/it \ cosh ( / ' F(τ)dτ)
1C exp (S logF(τ)dv(τ) j = - ̂ ΰ* (?2)

and a similar expression for E '̂σ
σ ... if σΦσ', but then one has sinh's instead of

cosh's on the right-hand side of (72). For a step-function F, these formulae easily
follow from the basic addition rules of the cosh and sinh, and from the fact that

= , , <?** . = COSh(2te')

n=o (Zn)i cosn zr

and similarly
F2/,

°'

2/, σ' _α(v(20-v(0)) _"
" sinh2/

for σφσ'. For a general measurable nonnegative function F, use a limiting argument.
Let jtf := -A- 2|B| on I2(R3), then the heat kernel is

e-"(x, y) = ^JLp . e-^E^V? «*<'»"* (75)

by the usual Feynman~Kac formula and it is continuous (see [S-1982]). In particular,
(75) is finite for all x, y, which, together with (71), shows that D(/)(x,σ, y, σ7) is
well-defined for almost all x, y. To prove (66) we use (see (71))

|D('/2)(x, σ, y, σ')| g e'tjίf/2(x, y) (76)

(for almost all x, y) and Carmona's bounds. The calculation is similar to (60) and
(61).

Now let us given general data (A, divA e L2

loc, B = B<+B>, with B< G I00,
B> € L2), then one can choose a sequence of smooth data Aπ and Bm — B^-hB^,
such that Aπ — >A in L2 and almost everywhere (by passing to a subsequence),
and the same is true for divAΛ, B^ and for B^ with uniformly bounded B^, and
bounded B^ (the limits are taken independently n,m —> oc). Note that A, divA and
B< are not necessarily in L2, just in L2

OC, nevertheless one can approximate them
by smooth functions in Z2-sense (i.e. the difference in L2 goes to zero). Then by the
dominated covergence (use (66)), the right-hand side of (64) converges (as n,m -*
oo independently). For the strong convergence of exp(—/[(p ~~ A«)2 ~ σ ' BW]) (in
some convenient order of the limits) it is enough to show the strong resolvent
convergence (these operators are uniformly semibounded as it can be seen from the
argument below). First use that for any fixed m,(p — AΛ)2 - σ Em converges to
(p — A)2 — σ Bm in a strong resolvent sense. This follows from Theorem 15.4 in
[S-1979] about the strong convergence of Rn(E) := ((p - Aw)2 -f E)~1

9 and from
the representation (for some large E >

((p - A,)2 - σ Em +E)~l = (1 ~ Rn(E)σ B^)-1^^) . (77)

Finally, we have to show that H — σ Bm converges to H - σ B in a strong
resolvent sense, where H := (p — A)2. Using that

(H - σ Bm +£)-' = R(E)(l - (σ Bm)R(E)Γl (78)
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(where R(E) is the resolvent of H), it is enough to show that for some large E
the norm of (σ Bm)R(E) is uniformly bounded by 1/2, and that (σ Bm)R(E)
converges to (σ E)R(E) strongly. Both statements easily follow from the facts
that ||Bm - B||2 -* 0 and that R(E) maps L2 into any Lq with q ^ 2 with arbitrarily
small norm (if E can be chosen large). For the contracting properties of R(E) one
uses the diamagnetic inequality and the corresponding statements for the resolvent
of the free Laplacian. D

5. Bounded Magnetic Field with Weak Singularities

In this section we prove Propositions 3.1 and 3.3. The first part of Proposition 3.1
(estimate (41)) immediately follows from (57).

For the other statement, first use the simple fact that for any β > 0,

(79)

If u^L. Fix β:=(\\B<\\^+c2(p)\\B>\\p

p

/(p-l)Γl and apply this inequality
for the spectral resolution of H + p\, which is bigger than L on the subspace
Ran(7 — ΠL\ This implies immediately that ME,L defined in (42) satisfies (37)
(since all the operators commute with ΠL, it is enough to check (37) on Ran(/7£)
and on Ran(7 - ΠL) separately; the first is trivial, the second follows from (79)).

By Proposition 4.1, for the kernel A/^^x, y) we have

|M£;i(x,y)| ί —S—L . e-(J^e-l?\rt'\X,y)\dt . (80)

Therefore, using \D^\x, y)\ rg e~tj^(x> y) and (61) we have

M\ L(x, x) =
R3

(4πί)1/2(4π,s)1/2 -dydsdt

(81)

The last integral is estimated by 3 to obtain (43). D
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The proof of Proposition 3.3 is very similar to the previous proof, we just have
to use Proposition 4.2 instead of Proposition 4.1. Inequality (52) is obvious from
(66). Finally, the proof of (54) is completely analogous to the second part of the
proof of Proposition 3.1 using

IMz? τ(\: rr v rτf}\ < Γ t>~ t"2p~ l^(^ \\c\t (R1\|-LTAzι,LV^? ^5 J? w )\ •=. * or J ^ VΛ> j /*J t V 0 ^/

llίr1. π

6. Unbounded Magnetic Field; Reduction to the Main Lemma

In the rest of the paper we present the proof of Proposition 3.2. In Sect. 5 we
have heavily used the essentially global boundedness of B (with some weak sin-
gularities), since this allowed us to estimate the magnetic heat kernel in the most
trivial way (diamagnetic inequality and estimating the fB(W(s))ds term basically
by the supremum norm, or by Carmona's bounds in case of the singularities).
If we do not want to assume essential boundedness, or we wish to obtain the
"real" estimate (4) instead of (7), then we have to analyze the local behavior of
H = (p-A)2-B.

Lower part of the spectrum; proof of (44) . The first inequality in Proposition 3.2
is a straightforward consequence of Lemma 6.1 below. At this point we still do
not make use of the oscillation effect in the magnetic Feynman-Kac formula due
to the —ifAodW term. The proof of the second inequality (45) is much more
difficult because we have to exploit the full power of this oscillation. We will
compare the heat kernel of H with that of the operator with constant magnetic
field. This is the content of the Main Lemma 6.2, formulated at the end of this
section.

First, we prove the following technical estimate which will be used throughout
our stochastic analysis.

Lemma 6.1. Let F : R2 — > R be a measurable function with \F(w)\ ^ rf|w|,

furthermore assume that 0 < t ^ l/Bo,d ^ cB0 for some positive BQ and c.
Then there exist two constants C^ = C^(c) and C^ = C^l\c) depending only
on c such that the following estimates hold for z (Ξ R2:

Q ]j(W(s))ds^ ί C<°>exp (^ (83)

and

exp p(W(s))άs £ C^d(\ + ί2)exp -

(84)

Proof. Consider the absolute value process r(s) := \W(s)\ (Bessel process), and use
the upper bound for \F\ to transform (83) and (84) into inequalities on r(s). There
is an explicit formula for the exponential moment of the integral of r2(s), so we
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estimate r(s) from above by K +Mr2(s\ where K := WQt2d/π2 and M := l/(4/Q.
Therefore

\ jF(W(s))άs) £ eκdt Eexp j^/
z o / V z o

(85)

where & :— \/Md ^ ̂ , i.e. 2fo ^ π/10, and E denotes the expectation for the
process r(s). Here we used the analytic extension of the Laplace transform of

/0

/ r2(s)ds given, for example, in [Y,p.l7] or in [E-1994(a)]. The analytic extension
is possible for Ίbt < π. Using that (1 - 2btcot(2bt)) ^ 1/10 and 2bt ̂
for 2bt ^ π/10, we easily obtain (83).

For (84), one applies Holder's inequality,

uozί^/^(^))dί

= 2

x exrf/ - e~ Jo Γ ^^ , (86)

using (83) and r(s) g K + Mr2 (5-) as above. Differentiating the explicit formula (see
(85)) for E exp((62/2)/r2(ls

>y,s') with respect to b one can estimate the obtained
expression for 2bt 5̂  π/10 as follows:

E (bfr2(s)άs} exp (ζ J r2(s)άs] rg (const) - t2 exp ( ̂ -] (87)
V o / \ z o / \z u ί/

(by (const) we shall denote universal constants, not necessary the same ones).
Combining this with (86) and with the conditions on t and d, one obtains (84). D

Now we can easily prove (44):

etB(x) / ι It \

P0(x9x) ^ e-ίH(x,x) ^ -r-E2/'; exp - f ( B ( W ( s ) ) - 5(^))d^ . (88)
4πr \z Q /

Choose t := l/^(x) and apply the estimate (83) from Lemma 6.1 with F(w) :—
,g(jc + w) - 5(;c) using (11) and (12). D

Upper Part of the Spectrum; Proof of (45). To treat the contribution from the
upper part of the spectrum of H first we have to present an operator ME, o with a
kernel satisfying (37), and prove (45).
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The first idea is to realize that (/ — P$)H(I — PO) = 2$o because of the spectral
gap (the spectrum of H has a gap of size at least 2#0 above 0, for details see
[CFKS]). On the other hand, for u ^ 2£0,

e~tu ^ (const) (e~tu - e~
(t^u} (89)

with β := 1/(2£0), therefore

(/ - P0)e~ίH(I - PO) ^ (const) (e~tH - e~
(tJrβ}H} (90)

as operators on Z,2(R2). (Note that it is enough to check this inequality on Ran(7 —
PO), where H ^ 27?0 — β~l, since on Ran(P0) both sides are 0.) Extending this
inequality to Z,2(R3) and multiplying it with exp[— t(p\ + f )] we obtain

(/ - Πo (/ - /70) £ (const) <Γ (e-^ - β " ^ ) (91)

(here we use that if 0 ^ A ^ B, and C ^ 0 commutes with A and 5, then AC ^
). Then we use the idea (79) again, namely that

β < E^
^ (const) fe-'V+ΊJdt (92)

U -f 2

if ii ^ jβ-1.
Therefore, by (91) and (92)

β / „ , 2+ε\
• fdt(I-Πo)e-t(H+p*+τ)(I-IIo) ^ Λfe,0 , (93)

o

where

o

so (37) is satisfied.
By Proposition 4.1 (and especially by the estimate (58)), it is clear that

Λ/E,O(X» y) exists for xφy, and

β 1 —(x—y)2

Afe,o(x, y) ^ (co/wf) jf-3/2 ' e Wt Γ(t,x)dt < oo . (95)
0

Therefore Mj 0 has a kernel even for x = y, since using the estimate (95),

Mj0(x,x) =
R3

n n

^ ί +\ Γ Γ Γ(t,x)Γ(s9x) Λ A+ ^ / Λx:Λ^ (const) J J 3/2 Q>yd/ < oo (96)
0 0 (•* + 0

(the existence of M| 0(x, y) for xφy is even more obvious).
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Calculating M| 0(x, x) from (94) one obtains

Mjt0(x,x) - (const) fdtfds / dy Lr'O'a+f) (e~
tH - e-('+/0")l (x, y)

0 0 R3 L \

Ψ?+f) (e-*H _ e-«+«//)l (y, x). (97)

The main point in this computation was that we wanted to estimate the pro-
jected resolvent kernel by the heat kernel (so that we could use the Feynman-
Kac formula). On the other hand, the heat kernel is always larger than the ground
state projection kernel PQ, which grows linearly with B (this is why we had to
treat its contribution separately), but we need a ^-independent estimate. There-
fore we have to deal with the difference of two heat kernels, so that P0 is
cancelled.

The next problem is that we will be able to estimate the heat kernel effectively
from above (via Feynman-Kac), but obtaining the lower bound is much harder.
The best thing we can do is to introduce an approximating Hamiltonian Hc with
constant magnetic field, use that e~tHc — e~

(t+^Hc can be exactly calculated, and
prove that e~tH — e~tHc is small. This last statement can be proved only for small
t, this is why the truncation in the limit of integration in (92) was needed (this step
shows implicitly that the positive lower bound on B(x) is necessary for the proof).
So we anticipate the following Main Lemma:

Main Lemma 6.2. Assume the conditions of Theorem 2.2 and choose a gauge
A = 04,0) so that A satisfies the conditions (ii) of Proposition 4.1. Fix x, y E R2

and let B := B(x\ For any z = (z\, z2) G R2, define the following divergence free
gauge (written as a \-form on R2):

Az(u) := -y-[Oι -z\)du2 - (u2 -z2)du\\ , (98)

generating the constant B(z) magnetic field: rotAz(u) = B(z). Let Hc :=
(p — Ax)2 — B be the operator with the constant B = B(x) magnetic field. Then
there exist a real number φ — φ(x,y) and a constant C — C(c) depending only
on c (the constant appearing in (11) in Theorem 2.2), such that for any t ^ I/BQ
we have

> (99)

or, equivalently,

2t,y

-
^ C - e~^~ . (100)

Estimating (e~^t+^Hc —e~tHc)(x,y) is easy using the explicit formula (see e.g.
[S-1979]):

(loi)
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and its derivative with respect to t. Notice that

const (χ-y)2Kέ-)*" (102)

independently of B, although e τHc itself grows linearly with B. Therefore, using
the Main Lemma 6.2 foτt^β= l/(2#o)> we have

(e~tH -

£ (const)
J

(103)

Now we plug this estimate into (97). The dy integration is done explicitly, and then
we arrive at the following complicated ds and at integral

(97) < C" f at

,+β dτ dζ

s+β
I I

5- -f

dτ s+jS

, (104)

where C7 depends on the constant C obtained in the Main Lemma 6.2. The right-
hand side of (104) is monotone increasing in β and we need a β — l/(2Bo}-
independent estimate for (45), so we can take immediately β = oo:

00 00 1 .,

(97) ZC'fdtf ds-^L^ e-^τ

τ-, ^ H-2 Γ -

o o

t s

00 00

ζ(ζ

^ C7 / at /
0

1

oo oo

< C7 (co/wί) f at f
o o

+

C; (const) OO OO

(105)
V-C 0 0

(using that log(l H- u) ^ \/ΰ\ which proves (45), and so Theorem 2.2.
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7. Proof of the Main Lemma

This section contains the essence of the whole proof; we compare the heat kernel
of the operator with a nonconstant field with that of the operator with the frozen
constant field. We use a localization technique in path space; a similar method has
been used in [E-1994(a)], but the present setup is more complicated since we need
better estimates. Nevertheless, the intuitive idea of the method outlined in Sect. 2
of [E-1994(a)] might help to understand the present proof.

Introduce the following notations:

Fz(w) := B(z + w) - B(z) , (106)

/ i \
Gz(w) := ftFz(tw)άt Oιdw2 - w2dwι) , (107)

Vo /

then Gz is a 1-form generating Fz, i.e. dGz(w) = Fz(w) (we use the canonical iden-
tification between 1 -forms A = A\άx\ + AΪ&XΊ and vectorfields A — (A\,A^) without
any further comment).
Let

Al(u) := A(u) - Gz(u - z) , (108)

then d^4z (u) = B(u) — Fz(u — z) = £(z), so Al and Az both generate the constant

B(z) field. Therefore, there is a function φz : R2 — > R such that Al — Az -fdφz.
The phase difference φ = φ(x,y) in the Main Lemma 6.2 will be given as φ :=
φx(x) - φx(y).

We will not give the exact value of C = C(c), but it is explicitly computable
from the proof below. Also, we will use the same letter C for various positive
constants depending only on c.

First we eliminate some extreme cases.

Case I (short time). If Bt ^ 1 (recall that B :— #(jc)), then by the roughest estimate

LHS of (100) g eδί +E^/e5

^ eBt ί + C(0) e ^ C e , (109)

using Lemma 6.1.

Case 2 (large distance). If (jc - y)2 ^ \6Bt2, then Bt ^ (x- y)2/(\6t\ so one
can use the same rough estimate (109) as above to obtain

LHS of (100) ^ e^$- ( 1 + C(0)eίτ j ^ C e(JL^- . (110)

So from now on we can assume that Bt ^ l,(jt - y)2 ^ \6Bt2 and we have to
bound the expression

/ :=



654 L. Erdόs

from above (for brevity, we use a straightforward shorthand notation when it makes
no confusion).

7.7. A Sequence of Stopping Times. Let ε := 2t/([Bt] -f 1) (here [] denotes the
integer part) and we define a sequence of stopping times τ, inductively as follows.
Let τ0 := 0, Xj := W(τj) and for j *> 0 let

where

^2t and (112)

which is also a stopping time (if there is no such r then we stop defining the
sequence τ/). The crucial idea is that Sj+\ is the first time when the flux of the
frozen constant magnetic field B(XJ) between the Brownian curve starting at time τy

from the point Xj and the corresponding chord reaches π/2 in absolute value. After
that, we look for the next stopping time with the same property, but for technical
reasons we have to discretize the set of the starting times, this is why we introduce
the τ's.

Let τn(ψ) be the last stopping time defined above (n(W) g [tB] -f 1 = 2t/ε is
an integer valued random variable). Define J^n :— {W\n(W) = «}, then clearly
P(UnJί?n) = 1, and define the /h reflection 7): 3tfn -> Jί?n(Q £ j ^ n - 1) in the
following way. It will affect only the {W(s)\τj ^ s -^ Sj+\} part of the Brownian
bridge, so let [Tj(W)](s) :— W(s) for s < τ}r or s > Sj+\. For τ} ^ s ^ ^+1, let
[Tj(W)](s) be the geometric reflection of W(s} onto the segment [W(ij\ W(sj+ι)].
By the strong Markov property, 7} preserves the probability measure and the se-
quence of stopping times τ7, and 7} is an involution. These last two statements
follow from the crucial relation:

(113)

for any τj ^ r ^ Sj+\, where W :— Tj(W} for simplicity.
Define the following stochastic integrals for 0 ^ y ^ n = n(W) for paths W

belonging to ffln\

Nj(W) = NJ := - / / GW(τJ\W(s) - W(τj)) o άW(s)

(114)

Mj(W)=Mj := -

Lj(W) - τ,) ,

(115)

(116)
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where τw+ι :— 2t (it might be that τn = 2t, then Nn = Mn = Ln = 0). Let TVy :=
Nj(TjW) and M/ := Mj(TjW) be the same quantities for the Γ7-reflected path. Then,
for 0 5s y ^ n — 1 we have \Mj — My1 = π by the careful definition of the stopping
times, since

\Mj-Mj\ =

τ/+l

s/+ι

o άW(s) -

_ Γ

(117)

using first the fundamental theorem of calculus for the Stratonovich integral, then
the fact that Az is divergence free, so its Ito and Stratonovich integrals are the same,
and finally the relation (113) and the definition of Sj+\.

We shall decompose the quantity / to be estimated (see (111)) according to the
disjoint events ffln\

j

Λ=0

with
-i Axo,>dW+Bt\

(118)

(119)

The n — 0 case must be treated separately; on this event the contribution from
both terms in (111) is proportional to B, but they will cancel each other. In operator
language this corresponds to the ground states; we know that the heat kernel contains
the ground state projection, which is proportional to B, but we need a ^-independent
estimate. On the other hand, we wanted to estimate the heat kernel only on the
subspace orthogonal to the ground states, which allowed us to subtract another
heat kernel (namely that of the constant magnetic field) having more or less the
same ground state projection as H ' . This was the essence of the calculation in
Sect. 6.

7.2. Estimating 70 (No Reflection). Using the notations above, we have

\\) . (120)

We have to treat the largely deviating bridges separately. Let R := 8/\/# and let

E:={W(s): sup \W(s) - x\ ^ R} (121)

be a measurable subset of the path space. By standard large deviation estimate (see
e.g. [S-1984]) for the complement of E we have

n-4Bt (122)
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and on the subset Ec', the left-hand side of (120) can be easily estimated by

S eB>

< c (123)

using Lemma 6.1 again (now use it with 2FX instead of FJ, so the constant C
obtained here is essentially C(0)(2c) with the notations of Lemma 6.1).

On the subset £, by the general estimate \eix+γ - 1| ^ \X\ + |7|e |r | for real
numbers X and 7, we have

N°-l

ϊeBΈ2''x
y χ(E $Gx(W(s)-x)άW(s) fdivGx(W(s)-x)ds

(124)

Notice that we have replaced the Stratonovich integral by the Ito integral plus the
divergence term. The reason is that the Ito integral is a martingale so the calculations
become easier.

We estimate each term in (124) separately. For the last term use that

\Fx(W(s)-x)\ ^ cd(x)\W(s) - x\ ^ cd(x}R (125)

on the event E to obtain that

Last term on the RHS of (124) g em^J (^ ̂ cd(x)Rt - ecd(x}Rt . (126)

For estimating the probability of Jfo, we recall Lemma 4.1 from [E-1994(a)] (in a
simplified form)

Lemma 7.1. For any x,~y e R2 let

B
(u) - (W2(u} - (127)

be the random flux process of the two dimensional Brownian bridge under the
constraints W(Q) = 3c, W(2Ί) — ~y for the constant magnetic field B. Assume that

Bt > c (128)
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for some positive c, then there exists a constant C = C(c) depending only on c
such that

sup \ξ(s)\ < - ^ C(\+Bl)e~
V O < Λ <2/ ^ /

D (129)

By the definition of A* (see (98)) and the sequence of stopping times τ7 , we have

fAx(W(u))dW(u) < ^ ) ^ (const)(\ Λ-Bt)e~Bt

(130)
after applying Lemma 7.1 (recall that Bt ^ 1). Plugging (130) and the value
R := 8t\/B into (126), we have

Last term in (124) ̂  (const)Bt - \f~Bt1 cd(x) - ^v^'2^) ^ c (131)

by (12) and t ^ 1/50.
The estimate of the divergence term in (124) is similar. By the definition of Gλ

(see (107)) clearly

|divGv(w)| <Ξ |w sup |VFV

[0, w]
sup sup d(u) ,

[.γ, \'+vv]

(132)

since the function cd(u) clearly dominates \VB(u)\ by (11) ([x, x -f w] C R denotes
u — xthe segment joining x and x -f w). For

\B(x) - B(u)\ ^ c

especially B(u) ^
8c) (recall that

^ R we have

Bo
(133)

? which implies, in particular, that B(u) ^ B(x)/(l +
, therefore

B(u) ^ and d(u) ^ Cd(x) (134)

(recall that C denotes different positive constants depending only on c). Therefore
for paths in E,

\divGx(W(s)-x)\ ^ \W(s)-x\ sup d(u) ^ CRd(x) , (135)

which allows us to estimate the divergence term in (124) as follows

Second term on the RHS of (124) ^ CeBrtRd(x)PQ

t\y(^0) ^ C . (136)

Finally, we have to estimate the first term on the right-hand side of (124). This
is much harder since one cannot plug an upper estimate on the integrand into a
stochastic integral. First, we have to estimate the stochastic integral by an ordinary
integral using the Kolmogorov inequality for martingales. This is the content of
Lemma 4.3 in [E-1994(a)] which we recall here for convenience:
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Lemma 7.2. Let W be the Brownian bridge in R2 with W(Q) = 0 and W(2Θ) = z.
Then for any function H:R2 —> R2 with at most polynomial growth and μ ^ 1
integer,

( 20 \2μ ι

f H(W(s))dW(s) ^ (const)μμ4μ/\z2μ + θμ) E1/4 —
0 / ™ 0

(137)

Before applying this lemma we have to separate the χ(^Q Γ\E) factor since on
a restricted set the stochastic integral is not a martingale.

Let μ := [Bt] (integer part) and use Holder's inequality

it
/ Gx(W(s) - x)άW(s)
o

» / 9, \ l-2ΊΪ / 9, /2 / λ'Λ*e (PO /(^o)) EO'/ / Gx(W(s) - x)dW(s) . (138)

For the probability of J^Q we use the same estimate as before; notice that this factor
still cancels eBt essentially, since

^ ((const)(l +Bt)e~Bt)l~ £ (const)(l + Bt)e~Bt , (139)

since Bt ^ 2μ by Bt ^ 1. For the other term in (138), we use Lemma 7.2 to obtain

RHS of (138)
j_

1 It \ 8/ι

Q'/- / \Gx(W(s)-x)\*μds
' 2ί o /

-

^ (const)cd(x)Vt(Bt)5'3 1 + ̂ — ̂ - ESV-JK^J-JC)!16^ , (140)
V l / V ' Zίo /

where, in addition to some arithmetic estimates, we have used that

\Gx(w)\ £ \w\ sup \Fx(u)\ ^ \w\ sup \B(u + x) - B(x)\ ^ cd(x)\w 2 ,
«G[0,w] w€[0,w]

(141)
based upon (107).

Estimating the expectation in (140) is standard; one uses the following repre-
sentation for the Brownian bridge:

, (142)

where b(u) is the standard two-dimensional Brownian loop under the constraints
6(0) = fe(l) = 0. We denote by E& the expectation with respect to the measure
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of b(u). Therefore

1 2ί
ϊA y A r I

1 2ί 16μ 2' / S \ lβμ

— Γ (\χ — v\ £) ds -f E/,4- Γ(208/I 6 I — ) <<•) j j \ i i 2ί / 2.ί <J ^ ' V o * /zί o o v z r /

)" (|jc-y| l 6 μ + (208μ(8μ)!) , (143)

using the explicit formula for the moments of b(u)\

Eb\b(u)\2m = (2m - 1)!! - (2w(l - w))m (144)

for any positive integer m.
Plugging (143) and μ ^ Bt into (140), and using Stirling's formula to estimate

the factorial we get

/ ( _ γ\}/2

RHS of (138) ^ (const)cd(x)^t(Bt)513 ( 1 + ̂ — -̂ J ((* - y)2 + 5ί2)

(jc-v)2 (-Y-V)2

^ (const)cd(x)(Btf/3t3/2 έ?-τr- ^ Cβ~8Γ- , (145)

which finishes the estimate of IQ.

7.3. Estimating In for n ^ 1 Using Reflections

Decomposition of the path. We first note that for n ^ 1 the contribution to (119)
from the operator H° (with frozen constant field) is zero, since

^

(146)

(where W := T§W\ because the difference of the phase factors is exactly π (see
(117) with j = 0). We use the shorthand notation E = E '̂/ and similarly P = P '̂/.
Therefore, only

E [(1 - χ(#0))e-lf?W»od'r(,Hl />»W*1 = g E L^n} ή eNi+ίM,+L\
I J «=1 \ 7=0 /

(147)

remains to be estimated.
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The basic idea is that on the set 3Cn we consider all the 2n paths of the form T-W
together, where σ E {0, 1}" and Tσ- = T°°T?1 . . . Γ^1 . Therefore

> Σ ΓΪ

χ

7=0
(148)

Clearly, Mn,Nn and £„ do not depend on σ, and

Σ "Π (eiM+τ-w^N+τ-wλ = ±nf[elMJ^nγ[
σ€{0,l}"y=0 ^ ' y=0 7-0

using (117). Putting (147), (148) and (149) together, (100) will follow from

nγ[ (eNJ -

- ^

(149)

Σ H
/ J s^fl

«=1 L

and from

rt-1

n n£) Π
y=o

c (iso)

E
x (.x_y)

L / ) \eN«\eL» } ^ C - e"ττ- , (151)

where

sup \T*-W(s) - x\ ^ R\ .
)

(152)

The left-hand side of (151) is estimated very crudely as follows (using that E is
invariant under the reflections)

rt-1

L H S o f ( l S l ) ^ Σ^E χ ( J f Λ n £ ) Π
«=ι 2 y 7=

^ e5'P1/2(£c) E'

Now use Lemma 6.1 and that

P(EC) ^ 2[Bt]+l
^ (const)e~

m

(153)

(154)

(since n(W) ^ [J5ί] + 1 for each path) to obtain (151).
For the proof of (150), we are going to split the path W : [0,2ί] —> R2 into

pieces according to the stopping times τ, = εkj (integer kj is defined as τ7 /ε). First,

we split the event Jjfn Π E by defining

Ej := \ W(s):n(W) > j and for σ e {0,1} sup \T?W(s)-x\ ^ R \

(155)
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with the remark that if sup|^(5 )| < π/2 for εkj ^ s ^ &kj+\ (i.e. εkj+\ — 2t and
there is no reflection 7}), then only σ = 0 should be considered in the definition of
Ej. These events clearly depend only on the corresponding part of the path W(s),
and

Π (Ejnj^n) = E π j ^ n . (156)

Furthermore, let Xj := W(τ}) = W(εk}), and let

ξj(S):= }A

be the flux process starting at τ7 = εkj from the point Xj. We decompose the path
(and the corresponding measure) at times τ7 using the strong Markov property of
the Brownian bridge to get the following formula (δ := ε/2):

LHSof d*ιd*2...cbcn

Σ

I (•*•/+! xj ) \ \
PXΠ I — 1

(2πε(kj+l -kj))

exp(~

(2π(2ί

(y χn)2 \
2(2t-εkn)J

-ε*n))

— e

sup \ξj(s)\ < - ^ sup \ξj(s)\

(En) s u p \ξa(s)\ < : , (157)

where, in the case of τn = ε^ = 2ί, the exponential factor containing 2ί - ε^n in
the denominator is considered 1.

Local estimates. The following lemma contains the necessary local estimates for
various factors of (157):

Lemma 7.3. The following upper bounds hold:

Last line of (157) ^ CBt, (158)

wd for any j

The jth factor in the third and fourth line of (157) ^
c

w (159)
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Proof. Estimating the last line of (157) is easy. If 2t — εkn then it is simply 1, so
we can assume that 2t — εkn ^ ε (recall that 2f/ε is an integer). Use that on the
event En we have (for εkn ^ s ^ 2t)

\F*»(W(s)-Xn)\ = \B(W(s))-B(xn)\ ^ cd(Xn)\W(s)-xn\ ^ Cd(x)R (160)

by (134) and \W(s)-xn\ ^ \W(s) -x\ + |jc -xn\ ^ 2R. Now use Lemma 7.1 with
B :=B(xn) and

27 := 2t - knε ^ ε ̂  \/B ̂  C/B(xn) = C/B (161)

(by (134)) to estimate the probability in the last line of (157) and combine it with
(160) and the definition of Nn to obtain

Last line of (157) ^ e(t-δkn}B(Xn}ecd(x)RtC(l + B(xn)(t - knδ)}e-
(t-δk"}BM

^ CBt (162)

(in the last estimate we used again (134)).

To estimate the third and fourth line of (157), we use Holder's inequality for
each fixed j with exponents P and P/(P — 1), where P :— 2[tB(xj)] + 2 (depending
on 7), and we omit a part of the conditions on ζj(s). Therefore

<^+1 {KE^-e^ AI V*/^
lk

k'^
Xl+ίχ(Ej)χ(Tj exists)|e^ -

ol- . v . I

x {P

sup _\ξj(s)\<-^ J.UP \ξj(s)\

l/P

\-\IP

sup \ξj(s)\ < -
n 2

(163)

The second factor is estimated by Lemma 7.1 if kj+\ — 1 > kj (in which
case B(xj)(kj+\ — I - kj)ε ^ C, so the condition (128) is satisfied), otherwise it is
simply 1. So

Second factor on the RHS of (163) ^ {C(l +

^ CtB e

by (134) and by the definition of P.
For the first factor in (163) use that

and recalling the definition of Nj (see (114) with W(τj) = Xj) we have

>(W(s)-XjY ''-"• ' - ^~x/}άs

(164)

(165)

!G»(W(S)-Xj / di i-jc/)ds (166)
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and similarly for Nj, using the simple estimate \elX+γ — 1 rg \Y\eY + \X\ as before.
On the event EJ9 we have \W(s) ~ xj\ ^ 2R and \W(s) -Xj\ ^ 2R for the reflected
path F := 7}fΓ. Therefore (using (134)),

\ F x ' ( W ( s ) - X j ) \ ^ 2cd(xj)R ^ Cd(x)R ,

\divGxJ(W(s)-Xj)\ ^ Cd(x)R ,

\ G x J ( W ( s ) - x j ) \ ^ cd(xj)\W(s) - xj\2 ^ Cd(x)\W(s) -

(167)

(168)

(169)

similarly to (125), (135) and (141), and the same estimates are valid for W(s) as
well. Remark that (169) is valid for any path, while the first two inequalities are
valid only for paths in Ej.

So to estimate the first factor on the right-hand side of (163), we first sep-
arate the six different terms obtained in (165) and (166); using the Minkowski
inequality then we treat each of them separately. The \^fFxfds\pQxp(ζfFxJds)

and the \^fdivG*Jds\p terms are estimated directly by (Cd(x)tR)p

 e

cd(x}tRP and
(Cd(x)Rt)p, respectively (τ/+ι - τ, is roughly overestimated by 2t).

For the stochastic integral, we use Lemma 7.2 (here with μ = P/2, recall that
P is even) and (169) to obtain a bound

/
1/4

(170)

with 2ηj := τj+\ - τ, and W*(s) := W(s + τy). Recall that we had to omit χ(£/)χ(7}
exists) since the martingale technique of Lemma 7.2 is not valid for restricted
processes. Using the crudest estimates ηj ^ t, Xj — xJ+\\ ^ 2R and the scaling

(171)

where b(u) is the standard Brownian loop, we have

LHS. of (170) g

g (Cd(x)P2/3f(Rp + tp/2)(R2p + ((const)tP)p),

using the moments of the standard Brownian loop as well.
Collecting the estimates for the terms in (166) we have

(172)

First factor on the RHS of (163)

S [(Cd(X)tR)p(ecd^tRP + 1) + (Cd(x)P2l3}p(Rp + tp/2)(R2p + ((const)tP)p)]

C

i/p

^ Cd(X)t3/2(Bt)n/6 ^ (173)
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where, in the calculation, we used that Bt ^ 1, the explicit value of R = %t^fB and
P = 2[tB(xj)] + 2 <, CBt (by (134)). The last line of (173) shows that the critical
exponent in the definition of d(x) (see (12)), determining the maximal growth
rate of B(x) at infinity, must be at least 31/6 in order to obtain the C(Bt)~3

estimate which is necessary for the rest of the proof. This completes the proof of
Lemma 7.3. D

Finally, after estimating the last three lines of (157) by quantities independent
of jc/s (see (162), (163), (164) and (173)), we can drop the condition |jc —Xj\ ^ R
on the range of integration and use the semigroup property of the heat kernel to
perform the x} integrations. Therefore

LHS of (150) g Σγn Σ ( τ£l )" CBt. (174)

Finally, use that kn ^ 2t/ε = [Bt] + 1, therefore the sum over all possible

0 < k\ < < kn contains altogether ί ) choices. So eventually, we have

LHS of (150)
- πtί 2« n

c \ [Bt]+\

CBt ^ C (175)

using Bt ^ 1, [Bt] + 1 ^ 2Bΐ and the fact that the function

X
C X

-X (176)

is bounded uniformly for X ^ 1 by a constant depending only on C (use it for
X \— 2Bt). The estimate (175) finishes the proof of Main Lemma 6.2 and
Theorem 2.2. D

Appendices

A. Selfadjointness and Negative Essential Spectrum

Here we clarify some point about the selfadjointness and the negative essential
spectrum of H/>αM//, and we show that the various Birman-Schwinger kernels used
in the proofs are compact.

Let us start with the Birman-Schwinger kernels (see (25)-(27) and (46)-(48)),
which are apriori defined on C£° as \V + E/2\- G Ll for any E > 0. Assuming
that the right-hand side of each Lieb-Thirring inequality (see (4)^ (7) and (18))
is finite, we have shown, in particular, that Tr(A^L), Tr[(^L)

2] and Tr(K^L)2]
are finite (since these quantities are monotone decreasing functions of E, and their
integrals were shown to be finite, see (35) and (40)), therefore Kg L,K^ L and K^L

are compact. It is easily seen from (49) that for ρ > 0,

#{ev's of K|L bigger than ρ} ^ (const) - ρ~7JΊ*Ί- < °° (177)
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(where the constant depend on £, ||B|| and y), in particular, K^L is also compact.
Therefore the Birman-Schwinger kernels KE and K# are compact operators. This
information has been used in (28) and in (49). Moreover, this shows that |F +
E/2\- is a relatively compact perturbation of H -f p2 -f E/2 and of Hpαw// + E/2.
Therefore

σeSs(UE) = σess (H°Pauli + f) C [|, oo] (178)

with UE := Ή$*auli+E/2 - \V + £/2|_, which is bounded from below being a rel-
atively compact perturbation of a positive operator. But

77 -̂ > T T 17 (Λ'ΊC\\— h ^ LJ£ — -c , (l /y)

so, in particular, H/>ΛM/j is bounded from below, and therefore it has a selfadjoint
extension. Furthermore, using that if two operators X ^ Y are bounded from below,
then inf σess(X) ^ infσess(Y), we have

mfσess(HPauli) ^ mfσess(UE-E) ^ -- (180)

by (179). Since this is true for any E > 0, we obtain that Hpaun has no negative
essential spectrum. The same statement for HQ is proved similarly.

B. Counterexample

For any y ^ 0 and given constants C\ and CΊ we construct a special magnetic field
B(x) and potential F(x) such that the yth moment of the negative eigenvalues of
HO is not bounded by

ί. (181)
R3 R3

The key idea is that we will choose B and V such that their supports be disjoint,
so the first term disappears in the possible bound (181). Then we will show that
the sum of the negative eigenvalues behaves at least like (const)N if we rescale
the magnetic field by TV2, but this rescaling clearly does not effect the bound (181).

For the proof, choose a one-dimensional potential v with |t?|_ £ Z5/2(R) such
that p2 -I- v(xι) has a negative eigenvalue —λ, and let ψ(xι) be the corresponding

normalized eigenfunction. (E.g. t;(jc3) = x2 — 2,-λ = -I,i^(x3) = π~1/4e~V2.) Let
F(x) := t;(jC3)χ(|jc| ^1), i.e. the potential is supported in a cylinder built over the
unit disc in R2; and let B(x) = 7V2χ(|jt| ^ 1) where TV is a free positive parameter,
B := N2. In this case the conjecture (4) says that

(182)
/ R

independently of B = N2. On the other hand, we will show that X^-I-E/I7 ^
(const) TV. Notice that B(x) is not continuous since the calculation happens to
be simpler in this way, but the same idea easily provides a counterexample with a
C°° magnetic field which is sufficiently close to B(x).
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We will use the complex notation z := x\ + 1x2 for x = (x\,X2) in the plane
of the first two coordinates. As it is explained in the proof of the Aharonov-
Casher theorem (see [AC, CFKS, Sect. 6.4]), the ground state eigenfunctions of
H = (p-A(x))2 — B(x) can be found in the form of eh^g(z), where h satisfies
—Δh(z) = B(z) and g(z) is analytic.

In our case let h(z) be the following function:

J -B/4 for |z| ^ 1

'" I -£(log|z|2 - |z|2)/4 for |z| > 1,

then clearly —Δh(z) = £(z) for the #(z) — 5(x) defined above. The functions

2~5/4 for |z| ^ 1

for Izl > 1

(183)

(184)

(n = 0,1,2,...) are ground states of H, and they are orthogonal in L2(C) = L2(R2).
Define Fπ(\) := fn(x)\l/(x3), then HFJ^RS, = \\fn\\L2(Λ2), and they are all linearly

independent since they are in different angular momentum sectors. By the variational
principle (applied separately to each sector)

AΓjv-1

Σ
n=Q

(Fn,H0Fn) (185)

where KN is any integer (to be determined later) not greater than the number of
negative eigenvalues (with multiplicity). Computing

fck (186)(Fn,H0Fn) = ||V^||22 / \fn(x)\2άx - λ /

(using HO = H + pi + V and Hfn = 0), we have that

^v-i
^ Σ

where

τ =

"
H/.IIL =

(187)

(188)

is the ratio of the norms of /„ outside and inside the unit disc.
The inside norm is easily computed: ||/n||

2

n = -^\e~BI2. The outside norm can
be estimated from above as follows (in polar coordinates):

1

2π

y B

n+B/2

(189)
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The gamma integral is estimated by the Stirling formula, yielding

|,2 < const B/2
\\Jn\\out = /»

for n ^ (e - 2)£, so Tn ^ c0^= = c0^ with some universal c0 > 0.

Choose
Nλ

KN:= (191)

([*] denotes the integer part), then by (186) there are at least KN negative eigenval-
ues, since (Fn,HoFn) < 0 for 0 ^ n ^ KN - 1 (and n ^ (e — 2)B is also satisfied).
So by (187) and (191)

. „ v- (const) N , (192)-

where this last positive constant depends on everything except N. D
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