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Abstract: It is shown that the perturbative expansions of the correlation func-
tions of a relativistic quantum field theory at finite temperature are uniquely deter-
mined by the equations of motion and standard axiomatic requirements, including
the KMS condition. An explicit expression as a sum over generalized Feynman
graphs is derived. The canonical formalism is not used, and the derivation proceeds
from the beginning in the thermodynamic limit. No doubling of fields is invoked.
An unsolved problem concerning existence of these perturbative expressions is
pointed out.

1. Introduction

The traditional way of describing thermal equilibrium states of an infinitely extended
quantum system, in particular of a quantum field theory, begins by restricting the
system to a finite volume F, defining the canonical or grand canonical equilibrium
by means of the familiar density matrices, and then going to the limit V —> oc
(the "thermodynamic limit") for the quantities for which this limit can be expected
to exist [1,2]. This applies especially to the correlation functions of the fields and
closely related objects like the expectation values of time ordered field products. Up
to now most actual calculations of such functions have been based on this approach,
using a Hamiltonian or Lagrangian formalism at finite V.

Another description of equilibria and their local disturbances, which can be used
directly in the thermodynamic limit, has been developed in the framework of the al-
gebras of local observables [3]. In this approach equilibrium states are characterized
through an analyticity requirement for correlation functions, the so-called KMS con-
dition. In the present paper we intend to show that this axiomatic method, suitably
adapted to a field theoretical context, is perfectly capable of handling dynamical
problems. More exactly, it will be shown that perturbative expansions for the cor-
relation functions of a relativistic field theory, and related functions, can be derived
directly in the thermodynamic limit, not making use of the canonical formalism,
but using as only inputs the equations of motion and the axiomatic requirements
that the correlation functions must satisfy. The result is represented as a sum over
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generalized Feynman graphs. For the special case of time ordered functions it agrees
with the well-known result of the canonical approach.

Dispensing with the canonical formalism is also a major difference between
our approach and thermo field dynamics [2,4], a Fock space method developed
by H. Umezawa and coworkers. We differ also from thermo field dynamics by
not invoking a doubling of fields, and by not assigning a basic role to particles,
including quasi-particles. We hold particles to be secondary objects of the theory,
of great phenomenological importance, but little fundamental significance. In this
respect we differ also from the views put forward by Landsman in ref. [5].

We consider only the Φ^-model, i.e. the theory of a scalar hermitian field Φ(x)
satisfying the equation of motion

(• + m2)Φ = - - N ( Φ 3 ) , (1.1)
6

where N stands for a normal-product prescription taking care of renormalization.
The restriction to Φ\ is merely a matter of convenience. The generalization of the
method to other models, including gauge theories in local gauges, is straightforward.

We are interested in the correlation functions

W(xu...,xn) = (Φ(Xι)...Φ(xH)), (1.2)

where (•) denotes the expectation value in a thermal equilibrium state with temper-
ature T ^ 0. These correlation functions describe the full physical content of the
theory: all observable quantities can in principle be derived from them (for examples
see e.g. [1,2]). This is so because knowledge of the W allows the reconstruction
of the full representation of the field algebra by means of the GNS construction
[2,3], which yields a Hubert space representation of the field algebra with a cyclic
vector I), such that {A) — (\R(A)\) for any sufficiently regular function A(Φ), with
R(A) its representative. All observables of the theory are supposed to be of this
form, and local disturbances of the equilibrium are created by applying suitable
functions F(Φ) to |).

More generally, we consider the set of functions (or rather, distributions)

(1.3)

Here the Xα are non-overlapping sets of 4-vectors JQ, the sa are signs, and
denotes respectively the time-ordered or anti-time-ordered product of the fields
Φ(Xi), Xi G X. If each Xa contains only one variable, then iV is the correlation
function W(X\,...,XN) irrespective of the choice of the signs sa. For N = 1 we
obtain the usual time-ordered and anti-time-ordered functions (Green's functions)
of the theory. In the sequel the signs sa will be frequently suppressed when they
are not essential to understanding.

In a previous work [6], henceforth quoted as V, we have derived perturbative
expressions for the functions Ψ" in terms of generalized Feynman graphs for the
case T = 0, in which case (•) denotes the vacuum expectation value. This derivation
uses neither the Hamiltonian nor the Lagrangian formalism, but is instead relying on
the Wightman axioms as an essential input. We propose to generalize this method
to the case T > 0. Our way of proceeding is closely modeled on that taken in V.
The ideas and results of that paper will be freely used. Equation (n.m.) of V will be
referred to as Eq. (V.n.m.). The method consists in solving the differential equations
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for W which follow from the field equation (1.1), by a power series expansion in the
coupling constant g, using the axiomatic properties of W as subsidiary conditions.

The paper is organized as follows. The assumptions on which the formalism is
based will be stated and discussed in Sect. 2. An explicit formal expression for the
Ψ"'s as sums over generalized Feynman graphs will be stated in Sect. 3 and shown
to possess the required properties. In Sect. 4 the ultraviolet (UV) divergences of
these graphs will be removed by renormalization. It will be pointed out, however,
that renormalization does not guarantee the existence of the resulting finite-order
expressions, on account of the local singularities of the integrands. This problem
remains unsolved. Finally we will show in Sect. 5 that the expressions of Sects. 3
and 4, provided they exist, are the only ones satisfying the assumptions stated in
Sect. 2.

2. Assumptions

In this section the assumptions on which our derivations are based, in addition to
the field equation (1.1), will be enumerated.

The following conditions for W and IV* are taken over unchanged from V:
a) The W and W are invariant under space-time translations and under space

rotations. Invariance under Lorentz boosts cannot be demanded for T > 0.
b) Locality holds, i.e. W(X) is invariant under the exchange of two neighbour-

ing variables x;,x/+i, if JCZ — x/+i is space-like.
c) The reality condition

1T(Xusi\...\XN,sN)* = ir'(XN,-sN\...\Xι,-sι) (2.1)

holds.
d) The functions ΊV are permutation invariant within each sector Xa, and they

satisfy the splitting property

^ ( . . . | X 1 U X 2 , + | . . . ) - i T ( . . . | X 1 , + | X 2 , + | . . . ) (2.2)

if xf > Xj for all xt G X\, xj G Xι. This property shall hold in every Lorentz frame,
not only in the rest frame of the infinite system under consideration. To that extent
we retain Lorentz invariance. These conditions are not merely a definition of time
ordering. That they can be satisfied is intimately connected with locality.

The cluster property needs a more careful discussion than it was accorded in V.
Let X, 7, be two non-overlapping sets of 4-vectors. Then the cluster property states
that

lim W(X, Y + a)= W(X)W(Y) , (2.3)
|α|-»oo

where Y + a means that all vectors in Y are translated by a, and a tends to infinity
in a space-like direction. Since derivation with respect to the coupling constant need
not commute with the limit in (2.3), we cannot expect Eq. (2.3) to hold separately in
each order of perturbation theory, except in the lowest, free, order. But perturbation
theory can also be viewed as an expansion in powers of %. And we can demand that
Eq. (2.3) hold for each W(X) in the lowest nonvanishing order in ft. This is all that
will be needed to establish uniqueness. We set c — 1, so that time and space have
the same dimension. The dimension of the field Φ is then [mass/length]1/2. In order
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to make the field equation (1.1) dimensionally consistent, the coupling constant in
the interaction term reads g/h, with a dimensionless g. We shall nevertheless set
% = 1 in our equations, and merely note the correct ft-exponents at the points where
they are essential.

The spectral condition of the vacuum representation does not hold at positive
temperatures. It is replaced by the KMS condition, which we use in its p-space
form (see [3], Lemma 1.1.1 of Chap. V). Define the Fourier transform Φ(p) of Φ
by

Φ(p) = (2πy5/2JdxeipxΦ(x), (2.4)

and the Fourier transform # ( P j | . . . \PN) of 1T(X\ | . . . \XN) accordingly. Let Pu...,
PNI QN+IT - » QM, M > N, be finite, non-empty sets of 4-momenta. Define

P°= Σ Pl (2-5)
Pi€UPot

Then the KMS condition states that

# ( Λ | . . . | ^ i e ^ i | . . . | β Λ / ) - ^ p ° # ( ρ ^ 1 | . . . | ρ M | p 1 | . . . | p ^ ) , (2.6)

where β = ~ is the inverse temperature.
The normalization conditions stipulated in V are taken over unchanged for the

case Γ = 0. They are the standard conditions demanding that m be the physical mass
of the particles associated with the field Φ at Γ = 0, and defining the coupling con-
stant g and the field normalization in terms of the Green's functions. In addition we
demand that Φ, considered as an element of an abstract, representation independent,
field algebra, is Γ-independent. This implies that the field equation is Γ-independent,
meaning that the parameters m and g and the subtraction prescription N do not de-
pend on the temperature. The prescription N is assumed to be the conventional one.
In particular it should not contain oversubtractions which would destroy the renor-
malizability of the theory. In perturbation theory the Γ-independence of N means
that the UV subtractions and the subsequent finite renormalizations have the val-
ues used at T = 0 for all T. Note that in the BPHZ method [7], which we will be
using, the subtractions do not involve prior regularizations or any formal juggling
with divergent quantities. The procedure is therefore well defined. For more details
we refer to Sect. 4. A nonperturbative definition of N can possibly be given with
the help of a Wilson expansion, as explained in Sect. IV.2. of ref. [7], i.e. by a
point-splitting method with suitable singular coefficient functions. Γ-independence
of N could then be defined as Γ-independence of these coefficients. We will not
explore this possibility any further.

Note that the parameter m is for Γ > 0 not the physical mass of a particle.
Quasi-particle masses are determined by the positions of the singularities of the
clothed propagator, which are Γ-dependent.

3. Unrenormalized Solution

The coefficient Wσ(X) of order σ in the power series expansion

oo

W{X)=ΣgσWσ{X) (3.1)
σ=0
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is determined as a solution of the system of differential equations

(Πi + m2)(...Φ(xi)...)σ = -U..N(Φ(xiγ)...)σ-i (3.2)
6

satisfying the subsidiary conditions described in Sect. 2. For σ = 0 the right-hand
side is zero, for σ > 0 it can be calculated if the problem has already been solved
in order σ — 1.

We first state a formal, unrenormalized, graphical representation for Wσ(X\ | . . . |
XN) and then show that it does indeed satisfy all the requirements.

For the free propagators we use the following notations. We define first the
p-space expressions

^ ^ i^-ΓΓ^, 0.3)

which are the usual vacuum propagators, and their thermal extensions

ύ+(p)=Δ+(p) + C(p), DF(p)=ΔF(p) + C(p) (3.4)

with the Γ-dependent correction term

Here δ+(p) = Θ(po)δ(p2 - m2) is the ^-function of the positive mass shell, and
co = (p2 + m2)1/2. Note that the additional term C is the same for D+ and Dp.

The x-space versions of these propagators are defined by

A. (x) = ίjd*pά. (p)e~ιp\ D (x) = ifd4pD (p)e~ipx . (3.6)

The thermal propagators (3.4-5) need not be taken over from the traditional
formalism. They can be derived in our framework by the methods that will be used
in Sect. 5 to establish uniqueness of our solution. But in the present section we rely
on an a posteriori justification, by showing that these forms give rise to expressions
with all the required properties.

# J is represented as a sum over generalized Feynman graphs which are defined
as follows. Draw first an ordinary Feynman graph of the Φ4 theory with \X\ =
^2a\X(x\ external and σ internal vertices. Here \Xa\ is the number of points in the set
Xa. The graph need not be connected, but must not contain any components without
external points. This graph is called the "scaffolding" of the generalized graph.
Next, it is partitioned into non-overlapping subgraphs, called "sectors," such that the
external points of a set Xα belong all to the same sector, but variables in different XΛ

to different sectors. There may also exist "internal sectors" not containing external
points. The sectors are either of type T+ or T~. For external sectors this sign is
given by sa. To each sector S we affix its number v(S) according to the following
rules:

i) v(*S) = α for the external Xa-sector.
ii) If Sx = sα+i there may be an internal sector with number α + \. Its type is

the reverse of the adjacent external sectors: sα +i = — s^. If sα = —5 α +i no

such intermediate internal sector exists.
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iii) If s\ = sN there may be an internal sector with number N -f ^ and sN+χ =

—sN. Equivalently we could give this additional sector the number | , but
we must choose one of these possibilities and use it consistently.

With a partitioned graph we associate a Feynman integrand, which we state
first in x-space. To the external points correspond the external variables x;. To
each internal vertex we assign an integration variable Uj9 j — l,...,σ. z, denotes
a variable which may be either external or internal. Within a T+ sector the usual
Feynman rules hold: each internal vertex carries a factor — ίg, a line connecting the
points z; and zj carries the propagator —iDf(zj — zf). In a T~ sector the complex-
conjugates of these rules apply. A line connecting points zi9Zj in different sectors,
with zx lying in the lower-numbered sector, carries the propagator —iD+(zi — zj).
The graph must be divided by the usual symmetry number if it is invariant under
certain permutations of points and lines.

In p-space, integration variables are assigned to the lines. The vertex factors in
T± factors are ψi(2π)4g and the propagators are £>F(P) or (Df(p)y respectively.
Lines connecting different sectors carry propagators D+(p), the momentum p flow-
ing from the lower to the higher sector. For each external point there is a factor
(2π)3//2. Momentum is conserved at each internal vertex.

For T — 0 the rule ii) governing internal sectors seems to differ from the cor-
responding rule in V, where instead of one (possibly empty) intermediate sector of
different type we had chains of intermediate sectors of the same type as the bracket-
ing external sectors. However, it can be shown with the help of Lemma V.3.1 that
the two formulations are equivalent. Graphs containing non-empty internal sectors
according to iii) vanish for T = 0, wherefore they do not occur in V.

For the Green's functions (N — 1) our rules agree with those of the conventional
real-time formalism. Our graphs are equal to those of the Keldysh formulation [8].

The first point to be checked is that the above prescription gives an unam-
biguous result for the correlation functions W. The problem is that in the definition
W(x\,. ..9xn) = i^(x\,s\ I... \xn,sn) the signs sα can be chosen arbitrarily. But it can
be shown that the sum over all graphs with the same scaffolding does not depend on
the choice of these signs. The proof is modeled closely on the corresponding proof
in V and will only be briefly indicated. Consider a given scaffolding. Let S denote
an internal Γ + sector, Sx an external T+ sector with external variable x,S and Sx

T~ sectors. A product SXS or the like denotes the sum over all partitions of a
given subgraph into two adjacent sectors SX,S. The propagators connecting these
two sectors are included. We will first show that the choice of s^ is irrelevant. The
graph's belonging to sN = -f or sN = - respectively differ only in the sectors with
number v(S) > N — 1. In the case SN-\ = +, si = — these variable sectors are (we
put xN =χ)Sx+ SSX for sN = +, and Sx + SXS for %• = - . But

is a special case of Lemma V.3.1, which remains valid for our new propagators.
Similarly, if s\ = s^-\ = -h we must show that

Sx -jr SXS -f- SSX -\- SSXS — Sx ,

or

(Sx + SXS -Sx- SSX) + S(SX + SXS -Sx- SSX) + (S + S + SS)SX = 0 ,
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which is correct because all three brackets vanish as a result of Lemma V.3.1. The
proof of independence on the other sα follows similar lines. The case 1 < α <
N is considerably simplified compared to V by the new formulation of the rules
concerning internal sectors.

Of the conditions stated in Sect. 2 invariance under translations and rotations,
and the symmetry of iV within T^ factors are trivially satisfied. That the equation
of motion (3.2) is satisfied, is shown exactly as in V. At the present formal level
the product 7V(Φ3) denotes Wick ordering :Φ3(x): with respect to the free vacuum
field.

The proof of the reality condition (2.1) and Ostendorf's proof [9] of the splitting
relation (2.2) can also be taken over unchanged from V. Since the non-invariant part
C(x — y) is the same in D+ and in Dp, the crucial relation Df(x — y) = D+(x — y)
if x° > y° holds in every orthochronous Lorentz frame. Hence the same is true for
the splitting relation. From this and the symmetry within sectors we can prove
locality. Let (x — y)2 < 0. Then there exist two Lorentz frames such that in one
x° > y°9 in the other x° < y°. Hence

Our propagators, being the 2-point functions of a free field, contain for dimen-
sional reasons a factor % (this refers to x-space). The vertices carry a factor h~\
so that the 2«-point function of order σ contains a factor hn+σ. The term of lowest
order in % is therefore the free σ — 0 expression. It is simply a sum over all possi-
ble products of free 2-point functions, and obviously satisfies the cluster property,
because D+(ξ) and Df(ξ) converge to zero if ζ tends to infinity in a space-like
direction. Hence our weak version of the cluster property is satisfied.

Yet to be proved remains the KMS condition (2.6). It is easy to see that a
graph contributing to the left-hand side of (2.6) becomes a graph contributing to the
right-hand side, if the directions of all lines connecting sectors with v(S) < N + I
to sectors with v(S) ^ N + I are reversed, and vice versa. This means that the cor-
responding propagators D+(k) are replaced by /)+(—k). From the definitions
(3.3—5) we find D+{k) = e^D+(-k). Hence the two variants of the considered
graph differ by the factor exp(j5^a&Q), the sum extending over the momenta of the
lines in question. But K = ^2ka is the total momentum flowing from the P-part
of the graph to the g-part, so that K° = P° as defined in (2.5). As a side remark
we note that a similar argument can be used to show that it is immaterial whether
extremal internal sectors are assigned the number ~ or TV + \.

4. Renormalization and the Existence Problem

As yet, the expressions derived in the preceding section have only a formal meaning.
There remains the question of the existence of the integrals symbolized by the
graphs.

The UV problem is concerned with the behaviour of the integrands at infinity in
momentum space. It can be handled exactly as was done in V for the vacuum case.
We note first that loop integrals over loops extending over more than one sector are
finite because of the strong decrease of D+(k) for ko —• — oo and momentum con-
servation: primitively divergent subgraphs exist only within sectors, where they can
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be treated with conventional methods. We choose BPHZ renormalization (see [7]),
which introduces suitable subtractions in the integrand, before integrating, thereby
avoiding the need for regularization. The subtractions are found by expanding the in-
tegrands of potentially dangerous subgraphs, the "renormalization parts," into power
series of sufficiently high degree in their external momenta. The temperature depen-
dent part C of the propagator Dp decreases exponentially fast at large momenta and
is innocent of any UV problems. We can therefore define the mentioned subtraction
terms using Δp instead of Dp inside the renormalization parts, without destroying
the UV convergence achieved by the subtraction. We also define the finite renor-
malizations of the BPHZ prescription to be Γ-independent, giving them the values
needed to satisfy the normalization conditions at T — 0 stated in V. These rules are
the expression of the required Γ-independence of the renormalization prescription
N in the field equation (1.1). An important effect of this limited subtraction is the
emergence for T > 0, of lines connecting a vertex to itself. But they carry the
propagator C(k), hence the loop integral over k exists, and is the same in T+ and
in T~ sectors.

But the UV problem is not the only existence problem we are faced with. There
is also the problem of the local singularities of the integrand, again in p-space. The
integrand is a product of distributions in variables which are quadratic functions of
a complete set of independent external and internal momenta. The variables in a
given subset of propagators may be dependent (i.e. their gradients in momentum
space may be linearly dependent) on certain manifolds, in which case the product
of propagators does not necessarily define a distribution. It is no longer clearly
integrable even in the sense of distributions. Contrary to assertions found in the
literature, the problem is not restricted to the case of two propagators separated by
a self energy insertion, and thus both depending on the same variable. As an example
of a more complex situation, consider the integral fdkD.(k)D.(p — k) over a two-
line loop, the dots standing for either 4- or F. The mass shell δ's in the two factors
coalesce at p = 0, hence the integral diverges at that point, and this singularity in
the external variable p (external to the considered 2-line subgraph) is not removed
by renormalization. Closer inspection shows that the singularity is of first order. A
chain of n two-line bubbles will then produce a singularity of order \p\~n, which
is not integrable for n ^ 4. Nor is it defined in another way as a distribution.
The remaining integration over /?, which may be an internal or external variable
of the full graph, is therefore not defined: individual graphs containing such chains
diverge. These divergences may cancel between graphs with the same scaffolding
but different sector assignments of the vertices in the chain. But we are not aware
of a proof to this effect, even for this still relatively simple example.

How is this problem solved in the vacuum case? This is easiest for the fully
time ordered function τ{P) = #XP,-h). If m > 0 this function is everywhere the
boundary value of an analytic function in complexified variables /?,-. The same is
true for the Feynman propagator (k2 - m2 + iε)~ι. For variables {/?,} in the domain
of analyticity of τ we can deform the integration contours for the internal variables
kj into the complex in such a way that they never meet the singularities at kj = m2.
The integrand is then a smooth function, and there are no problems with the local
existence of the integral. But the presence of a <5-term in Dp destroys analyticity,
so that the method does not work for positive T. For m = 0, Δp(k) is singular at
k = 0 and is there not a boundary value of an analytic function. The same holds
for τ at points where a partial sum of / /'s vanishes. These singularities can lead to
infrared divergences, which need special attention. An %-sρace method for achieving
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this, and also for proving existence of the general Ψ*σ, has been described in V.
It relies heavily on the fact that Δ+(ξ) is analytic in Im^0 < 0 and decreases at
least of second order for Im£0 —> — oc. But D+(ξ) is only analytic in the strip
—β < Im£° < 0, so that this method can also not be extended to positive T.

At present the problem of existence of iVσ remains unsolved.

5. Uniqueness

It will be shown that the expansion described in Sects. 3 and 4, assuming its exis-
tence in finite orders, is the only expression satisfying all the requirements.

Assume that uniqueness has been established up to order σ— 1. Let W^9 W2,
be two solutions of Eqs. (3.2) plus subsidiary conditions. Then their difference

hσ(xu...,xn)=WUxu...)-Wfal9...) (5.1)

satisfies the homogeneous equations

(Πi + ntι)hσ(...9xi9...) = 0 (5.2)

and all the subsidiary conditions. We want to derive the most general form of hσ.
The Fourier transform hσ(p\9.../?«) must contain a factor δ(pf — m2) for each /.
Define

hσ(...[x,y]...) = hσ(...9x9y...)-hσ(...y9x...) (5.3)

and let hσ(.. .[p,q]...) be its Fourier transform. As in V we can prove that
hσ(> ••[/?>#]•••) n a s its support contained in the manifold p + q = 0, and must there-
fore be of the form

Λ,(. ..[/>,*]...) = δ\p + q)δ{p2 - m 2){/+(p) + ε(A>)/-(p)} , (5.4)

where the dependence on the variables indicated by dots has been suppressed. By
locality the support of the function θ(x° — y°)hσ(... [x, y]...) is contained in the set
(x — y)εV+, the closed forward cone. Its Fourier transform

2π ^ *' [ ω(p) (po + is)2 -p2-m2 J ~^J(Po + is)2 -p2-

considered as a function of p -f q and p9 is in p analytic in the forward tube
{Im/7 G K+} and is polynomially bounded in the slightly smaller tube {Imp — a) G
F+} for any «G F+ [10]. The ^-dependent factors in the above expression have
the correct analyticity. In order for this to be the case for the full expression, the
p-dependent terms ω - 1 / + and / _ must be entire functions of p. Furthermore, they
must be polynomially bounded, hence they are polynomials. As a result we find

hσ(...[P>q]...) = δ\p + q)δ(p2 - m2){ω(p)F(p) + β(/70)G(p)} (5.5)

with F and G polynomials in p. F and G may also depend on the variables not
shown explicitly, and factors only depending on those other variables have been
omitted.
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Consider next the double-commutator function

hσ(...[[x9y]9z]...) = hσ(...[x9y]z...)-hσ(...z[x9y]...). (5.6)

By locality its support is contained in the set S = {(x - z)2 ^ 0 or (y — z)2 ^
0}. But by transforming (5.5) into x-space we find that the right-hand side of
(5.6) depends on x and y only in the combination x — y, i.e. it is invariant under
simultaneous translation of x and y by the same 4-vector. But no subset of S, apart
from the empty set, is invariant under such a simultaneous translation. Therefore
we find

hσ(...[[x,y]z]...) = 0. (5.7)

Finally we find from the KMS condition (2.6) that

(1 -exp(-βpθι))hσ(pu...,pn) = hσ(pu...>pn)-hσ(p29...,pn,p\)

n

^ 2 , [PU Pi]- . , P n ) , (5-8)
ι=2

from which hσ can be obtained through division by (1 — exp(—/?/??)). Reinserting
the resulting expression in the terms on the right-hand side of Eq. (5.8), and iterating
this procedure sufficiently many times, we find that hσ(p\,...,p2n) must be of the
form

α = l

where the sum extends over all partitions of the In variables into n ordered pairs
(Pi*>Ph\ zα < joί, and F is a polynomial in p and ω(p/). The odd-point functions
vanish in Φ4 theories.

Now, if F is a genuine polynomial, not a constant, then the expression (5.9)
shows a bad high-energy behaviour for p^ —> oo, which would destroy renormal-
izability. Hence F must be a constant, and hσ has in x-space the form

pairings α

For dimensional reasons cσn must contain a factor hn, independently of σ. Insertion
of such expressions in the right-hand side of the equation of motion (3.2) leads to
terms of higher order in h. This means that the homogeneous terms (5.10) are the
contributions of lowest order to the 2π-point functions. Since their functional form
does not depend on σ, their contributions to W(x\,...,X2n) can be summed over σ,
in the sense of formal power series, to yield

as term of lowest order in ft. The normalization condition for the 2-point function
determines the value of c\ for T — 0 to be c\ = —ί. With a different choice of c\
for T > 0 our Γ-independent definition of the normal product N would no longer
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remove the ultraviolet divergences, i.e. such a choice would destroy the validity of

the field equation (1.1). Hence we must have

ci = -ί (5.12)

identically in g and T.
By our assumptions the expression (5.11) must satisfy the cluster property (2.3).

Using induction with respect to n one finds the unambiguous result

cn = (-i)n (5.13)

This value does not depend on g, which proves the desired unicity

Aσ = 0 (5.14)

for σ > 0. In the lowest order σ = 0, ho is the only nonvanishing contribution to
the 2fl-point function. It has the conventional free-field form, as has already been
anticipated in Sect. 3.

It is a curious aspect of this argumentation that it does not work in the free case
g — 0, where renormalizability is not at stake. For the free theory one could arrive
at the same results faster by postulating the usual canonical commutation relations.
For interacting fields this method is rather less convincing, because in that case the
CCR's have no rigorous meaning, since interacting fields cannot be restricted to
sharp times.

Acknowledgements. I am indebted to R. Baier and A.K. Rebhan for enlightening discussions and
comments, and for guidance to the literature on finite-temperature field theory.
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