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Abstract. We study the macroscopic limit of an appropriately rescaled stochastic
Ising model with long range interactions evolving with Glauber dynamics as well
as the corresponding mean field equation, which is nonlinear and nonlocal. In the
limit we obtain an interface evolving with normal velocity 8κ, where K is the mean
curvature and the transport coefficient θ is identified by an effective Green-Kubo
type formula. The above assertions are valid for all positive times, the motion of
the interface being interpreted in the viscosity sense after the onset of the geometric
singularities.

1. Introduction

Stochastic Ising models with long range interactions were introduced by Kac,
Uhlenbeck and Hemmer in [KUH] (see also Lebowitz and Penrose [LP]) to justify
the validity of the Van der Waal's phase diagram, as the interaction range y"1

tends to infinity. For a very comprehensive description of the equilibrium theory of
systems with long-range potentials we refer to the paper by Hemmer and Lebowitz
[HL].

Stochastic Ising models with Kac potentials evolving in time with Glauber
dynamics - each spin undergoes in a random way a finite number of flips - have
a surprisingly rich structure and exhibit a great variety of physically interesting
effects like spinodal decomposition, development of interfaces, etc. We refer to the
papers by De Masi, Orlandi, Presutti and Triolo [DOPT1,2,3] for a systematic
study of some of these properties as well as to the ones by Comets [C], Comets
and Eisele [CE] and Lebowitz, Orlandi and Presutti [LOP] for other non-equilibrium
properties for systems with Kac potentials.

The mesoscopic limit of the ferromagnetic stochastic Ising model evolving with
Glauber dynamics, i.e. the behavior of the model as y —» 0 when space is rescaled
by y and time is kept fixed, was studied by De Masi, Orlandi, Presutti and Triolo
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in [DOPT1], who obtained a mean field equation, which is a nonlocal, nonlinear
evolution equation, for the limiting averaged magnetization. Since in the meso-
scopic limit time is not rescaled, each individual spin in a time unit undergoes only
a finite, random number of flips. The deterministic behavior described by the mean
field equation is a mean field effect due to the scaling of the interaction: many
spins (infinitely many in the limit y —> 0) feel essentially the same potential and
while each of them behaves randomly, their average evolves deterministically, due to
a law of large numbers effect. The full interaction only arises at longer times, when
each spin, after many flips, reaches a (local) equilibrium distribution.

Here we study the macroscopic limit, i.e. the behavior as y -» 0 when both space
and time are rescaled simultaneously, of the ferromagnetic stochastic Ising model
with Kac potentials and Glauber dynamics as well as the long time behavior of the
corresponding mean field equation and the propagation of the resulting interfaces.

Before we describe our results we need to remind the reader of some of the
rather important progress, which has been made during the last few years, to
describe geometric evolutions, i.e. motion of (generalized) hyper surf aces, past the
first time at which singularities occur. It is well known that surfaces evolving with
normal velocity depending on the curvature tensor, the direction and the position
may start smooth and yet develop singularities in finite time. It is, however, import-
ant both from the mathematical point of view as well as for applications to find
a way to interpret this evolution past singularities. One of the most successful ideas
in this direction, known as the level set approach, is to represent the surface as
a level set - for definiteness the zero level set - of the solution of a certain dege-
nerate parabolic partial differential equation, known as the geometric pde associated
with the motion. The mathematical theory of the level set approach was developed
by Evans and Spruck in [ES] for motion by mean curvature and Chen, Giga and
Goto in [CGG] for more general situations using the theory of viscosity solutions for
second-order pde's. We refer to the User's Guide by Crandall, Ishii and Lions [CIL]
for a detailed overview of theory of viscosity solutions as well as to the papers
by Soner [Sol], Barles, Soner and Souganidis [BSS] and Ishii and Souganidis
[IS] and the references therein for alternative formulations, extensions, discus-
sion, etc.

Our first result in this paper is about the asymptotic behavior of the mean
field equation. We prove that in the asymptotic limit λ —» 0, when space and time
are scaled by λ~l and λ~2 respectively, the mean field equation yields an inter-
face, which propagates with normal velocity equal to θκ+A, where K is the mean
curvature, A is some appropriate constant and θ > 0 is a transport coefficient,
which is related to the mobility and the surface tension of the interface. This evo-
lution is global in time; past the singularities it is interpreted in the viscosity sense.
The novelty of the result, besides dealing with a highly nonlinear, nonlocal equa-
tion, is the identification of θ, through a Green-Kubo type formula, which does
not appear either at the microscopic level (i.e. the Ising model) or at the level of
the mean field equation and it is actually related to an averaging effect, which is
taking place during the limiting process.

Our second result states that in the asymptotic limit 7 —» 0, when space and time
are scaled by y~lλ~l(y) and λ~2(y) respectively, where y~p λ(y) —> oo as y —» 0
for some p* > 0, the average magnetization develops an interface which moves as
the one for the mean field equation. We also prove that, with the same scaling, with
large probability the spins align themselves to form clusters, which are separated
by (random) interfaces close to the evolving macroscopic interface.
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In addition to being interesting (at least we hope so) from the point of view of
both mathematics and statistical mechanics, our results may be thought of as provid-
ing a justification, from microscopic considerations, to phenomenological theories of
phase-transitions like sharp-interface models derived by thermodynarmc arguments
(see Gurtin [G]) and sometimes by scaling of a Landau-Ginzburg model (see Allen
and Cahn [AC]). Finally, our results may also be thought of as providing a theo-
retical justification of the validity of some Monte Cαrfo-type methods, which have
long been implemented in the physics literature, to approximate mean curvature
evolution at any time. Notice that the stochastic spin dynamics are unaffected by
the possible appearance of singularities in the flow.

A result similar to ours about the asymptotic behavior of the mean field equa-
tion was obtained, independently and at the same time, by Jerrard in [J] for
a different nonlinear (but local) equation proposed by Penrose in [P], which is
a local approximation of the mean field equation studied here. Our proof here applies
to this equation as does the proof of [J] to ours. Macroscopic limits for stochastic
Ising models with nearest neighbor interaction (in two space dimensions) have been
studied by Spohn [Sp]. We also remark that the authors in [KS] studied the macro-
scopic behavior for all times of an Ising model with Glauber-Kawasaki dynamics,
which involve a nearest neighbor interaction spin flip delocalized by a rapid stirring
mechanism. Finally, the asymptotic behavior of the mean field equation and the
macroscopic limit of the Ising model for the specific scaling λ(γ) = (logy"1)"1/2,
under the assumption that the resulting interface is smooth, which, of course, is true
only for small time in general, was also studied by De Masi, Orlandi, Presutti and
Triolo in [DOPT1] and [DOPT3]. (See also Bonaventura [B] for a related result
under the same smoothness assumption, for the macroscopic limit of the Glauber-
Kawasaki model.)

The paper is organized as follows: In Sect. 2 we describe the Ising model and
the Glauber dynamics and recall the result of [DOPT1] about the mesoscopic limit.
Section 3 discusses the properties of the mean field equation and recalls the weak
theory of propagating fronts. In Sect. 4 we state and discuss in detail our results,
which we then prove in Sect. 5 (asymptotics of mean field equation) and 6 (macro-
scopic limit of the Ising model). In the last section we also state some consequences
and generalizations of the results.

2. Ising Models with Long Range Interactions and Glauber Dynamics

Here we describe, in a rather brief way, general ferromagnetic Ising models, i.e. spin
systems, with long range interactions, given by Kac potentials evolving according
to Glauber dynamics. For a much more involved and considerably more enlightening
discussion we refer, for example, to the papers by De Masi, Orlandi, Presutti and
Triolo [DOPT1,2] and Comets [C] as well as the monograph by De Masi and
Presutti [DP] and the references therein.

Ising models are spin systems flipping between ±1 at random on a lattice,
which is chosen to be the N-dimensional hypercube ΊLN . A spin configuration σ is
an element of the state (configuration) space

We write σ = {σ(x) \ x G ΈN} and call σ(x) the spin at x.
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The dynamics of the model consist of a sequence of flips. If σ is the configu-
ration before a flip at x, then after the flip the configuration is

We assume that a flip occurs at j, when the configuration is σ, with a rate cy(x, σ),
given by:

cy(x,σ) = e_βhy(x}

where β > 0 is the inverse temperature and

> 0 is the external magnetization field, Jy is the fee potential

and y"1 > 0 is the interaction range.
The potential J is assumed to satisfy:

J : JR.N — » [0,oo) has compact support and is symmetric i.e.
J(x)=J(\x\) (xetϋN). (2.1)

The Glauber dynamics is a Markov jump process on Σ with generator given by

Lyf(σ) = Σ cy(x,σ)[f(σx) - /(σ)] ,
*ez"

acting on cylindrical functions / on Σ. (See Liggett [L] for the precise definitions.)
The solution of the equation

•Γ Ί f f f

Jtft = L>ft' /0 = /

is given by

where eL"'t(σ,σ/) are the transition probabilities of the process.
The full-stochastic jump process σt is constructed as follows: The initial con-

figurations σ° are randomly distributed according to some measure μ7 on Σ. Given
a σ°,σt = σ° for an exponentially distributed waiting time with rate ^2yc(y,σQ), σt

jumps to a new configuration σ1 = σx with probability c(x9σ
Q)/^2 c(y,σQ). Then

σt = (j1 for another exponentially distributed waiting time with rate Σvc(^'σ1)'
etc. Notice that, in view of the positivity of J, the probability of a spin flip at c is
higher when the spin at jc is different from that of most of its neighbors than it is
when the spin agrees with most of its neighbors. Thus the system prefers config-
urations in which the spins tend to be aligned with one another. This property in
the language of statistical mechanics, is referred to as ferromagnetism.

The particular choice of the Glauber dynamics is made in order to describe the
transition (evolution as / —> oo) of the initial measure μy on Σ towards the Gibbs
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measures (equilibrium measures) of the ferromagnetic Ising model. It turns out that
in the presence of an external magnetization field, i.e. when h Φ 0, there is a unique
Gibbs measure. The same is also true when h = 0 but only for subcritical inverse
temperatures β ^ βl, where βy

c is some constant determined by the specific model.
On the other hand (see ([L]), when β > βl there are more than one equilibrium
measures, i.e. phase transitions take place.

A very basic question in the theory of stochastic Ising models with Kac
potentials is the behavior of the system as the interaction range tends to infinity,
i.e. y —> 0. The passage in the limit 7 —> 0 of quantities like the thermodynamical
pressure, total magnetization, etc. is known as the Lebowitz-Penrose limit (see
[LP, HL, DP], etc.).

Along these lines De Masi, Orlandi, Presutti and Triolo (see [DOPT1]) studied
the asymptotics, as y —> 0, of the averaged magnetization

mj(X,t) = Έ],σt(x) ((x.OeZ^xEO.oo)) (2.2)

of the system, where JEy

7 denotes the expectation of the Glauber process starting

from a measure μy, and obtained a mean field equation

mt + m - tanh β(J * m + h) = 0 in R^ x [0, oo), (2.3)

where J * m denotes the usual convolution in JR.N.
This equation is one of the points of interest of the paper. For completeness we

state below the theorem of [DOPT1] which relates (2.2) and (2.3). To this end, we
need to introduce for each n G TL^ the sets

Z? = fe = (*!,...,*„) e (ΊLNT I *ι Φ ... Φ*π} . (2.4)

Theorem 2.1. ([DOPT1]). Assume that the Glauber process has as initial measure
a product measure μy such that

(*€Z r t),

where mo is Lipschitz continuous and (2.1) holds. Then, for each n G 2Z+,

/ » \ »
lim sup E»"/ Γί^te) — Γl'w(v^/jO — 0 ,

where m is the unique solution of '(2.3) with initial datum m§.

Theorem 2.1 was proved in [DOPT1] under the assumption that in addition to
(2.1) J is also in C3. A more careful look at the proof reveals, however, that (2.1)
suffices.

3. The Mean Field Equation - Generalized Motion of Hypersurfaces

(i) Properties of the mean field equation. We begin rewriting the mean field equa-
tion as

-0 in R*x[0,oo), (3.1)
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where λ,a e IR. The reason for setting h — λa in (2.3) will become clear later in
the paper. Equation (3.1) is, of course, nonlinear and nonlocal, due to the presence
of the convolution. Nevertheless, since J ^ 0, (3.1) admits a comparison principle
between solutions, i.e. if wι,W2 solve (3.1), then

if wi ^ w2 on IR^ x {0}, then HΊ ^ w2 on IR^ x (0,oo) . (3.2)

In this paper we will need a more detailed comparison, which we state later in this
section.

The mean field equation admits three steady state solutions mj aλ < mQβ aλ <

m~o a ;, i.e. solutions of the algebraic equation

m = ttmhβ(Jm + aλ) (3.3)

provided

β J > 1 , (3.4)

where

J= fJ(r)dr = fJ(\r\)\r\»-ld\r\9 (3.5)

and

\aλ\ ^ α0 for some αo > 0 . (3.6)

In the case λa = 0,

Wβ0 = ±mβ and m£0 = 0 . (3.7)

Observe that the steady state solutions are equilibria of the underlying ordinary
differential equation, with m^aλ being the stable and m°β aλ the unstable one.

An issue which we will study in this paper is whether solutions of (3.1) converge
to the stable equilibria, as t — > oo, and, if yes, to identify the regions in 1R^ x
(0, oo), where they converge to mί λ and mjaλ

A crucial tool towards studying this question is the existence of special solutions
of (3.1), known as traveling waves, of the form

m(r,t) = q(r-c*(a)t^) (3.8)

which connect the stable equilibria, i.e.

q > 0 in IR and q(±oo,aλ) = mfeaλ . (3.9)

The existence of such solutions is equivalent to the existence of a pair (q,cλ(a))
solving

cλ(a)q(ξ, aλ) + q(ξ, aλ) = tanh β[J * q(ξ, aλ) -h aλ] (ξ 6 R) , (3.10)

where

J(0= / J((? + \r'\
2f2dr' . (3.11)

KN~>
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It turns out (see Theorem 2.4 of [DGP]) that there exist positive constants
and «3 such that the following hold uniformly for all λ sufficiently small:

67

(i) lim
£—>±00

(ii) lim

(iii) lim

(iv) a3 ^

and

\q(ξ,aλ)-

\q(ξ,aλ)±

= 0 ,

1 = 0 ,
'

J * q(ξ, aλ)

q(ξ,aλ)
> a-i

3 '

for all unit vectors e G

and

(i) cλ(a) —» 0,#( ,taλ) —> q( , 0) and q( ,aλ) —> q( ,0) as
the last two limits being uniform in R ,

(ii) λ~lcλ(a) —» c(α) as A —> 0

and

(iii) c(d) -» 0 as

(3.12)

> 0 ,

(3.13)

We conclude our discussion about the basic properties of the mean field equation
with a lemma about a strict local comparison between solutions of equations like
(3.1). Since its proof is a straightforward modification of an analogous result in
[DOPT2] we omit it.

Lemma 3.1. Let the bounded functions m and m satisfy

mt -\-m — tanh β[J *m + h]^.Q in R^ x [a, b]

and
mt-\-m — tanh β[J * m — h\ ^ 0 in R^ x [α, b] ,

where h,h,b-ae [0,1]. There exists C = C(||/ή||oo> Woo) < β such that for all
L > 0 and all (r,t) e B(09L) x [a,b],

m(r9t) - m(r,t) ^ sup

h)C(t-a).

D
(ii) Weak front propagation. Next we recall the definition of generalized motions
of surfaces with normal velocity

(3.14)V = θκ

where θ > Q,A € R and K is the mean curvature.
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As mentioned in the Introduction such evolutions can start out smooth and yet
develop singularities at a later time. A great deal of work has been done over
the last few years in order to interpret the evolution past singularities, the main
idea being representing the surface as a level set, for defmiteness the zero level
set, of the solution of a certain degenerate parabolic partial differential equation.
The mathematical theory of the level set approach was developed by Evans and
Spruck in [ESp] for motion by mean curvature and Chen, Giga and Goto in [CGG]
for more general situations using the theory of viscosity solutions. We refer to the
User's Guide by Crandall, Ishii and Lions ([CIL]) for a detailed overview of the
theory of viscosity solutions as well as to the papers by Soner [S], Barles, Soner
and Souganidis [BSS], Ishii and Souganidis [IS], Katsoulakis and Souganidis [KS],
etc. for alternative formulations, extensions, discussion, etc.

Let ΩQ c IR^ be open and

(3.15)

The generalized evolution Γt of ΓQ is defined as

where w is the unique viscosity solution of

{
/ \

wt-θ toll-£&=&$£ JD2w-A\Dw\ = 0 in R"x(0,oo),

w = rf0 on R^x{0}, (3.17)

and
Γ dίst(r,Γo) if r G ΩO >

\—dist(r,Γo) if r G Ω0 . (3.18)

For the details and justification of the above definition we refer to the references
mentioned above.

4. The Main Results

(i) Asymptotics of the mean field equation. The first result of the paper is about
the asymptotics, in the limit λ —* 0+, of the following rescaled version of (3.1):

mλ

t + λ~2[mλ - tanh β(Jλ * mλ + λa)] = 0 in R^ x (0, oo) , (4.1)

where

Equation (4.1) follows from (3.1) by writing

mλ(r,t) = m(λ-lr,λ-2t) ((r,/) e R" x (0,oo)) .

In the limit λ —> 0 and for supercritical inverse temperatures /?, i.e. when (3.4)
holds, we show that there exists a transport coefficient

+ e . y,0)(e y)2dydξ / f-^A-dξ , (4.2)
/ i — q {ς,v)
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where e,e are two orthogonal unit vectors in IR^, such that the solution mΛ of
(4.1) converges at each point of JR.N x (0, oo)\|Jί>0 Γt x {t} to the stable steady

solutions raί0 of (4.1). The surface Γt, which is known as the antiphase boundary,

is moving with normal velocity

Y = θκ + c(a)9 (4.3)

where c(ά) is given by (3.13). As a matter of fact we show that mf' -> mJ0 inside

the front and mA -> m^Q outside. Note that due to the symmetry of J,θ in (4.2)

is independent of the particular choice of e and e. Finally, all the above will be
proved under the assumption the system begins at a local equilibrium, i.e. that

mλ = q (^,aλ\ on R" x {0} , (4.4)
\ / /

where d$ is the signed distance function from a closed set ΓQ C IR^ and q is the
traveling wave associated to (4.1) such q(0,aλ) = 0. We will discuss in a future
work how to eliminate this restriction. The precise result is:

Theorem 4.1. Assume (2.1) and (3.4) and let mA be the solution of (4.1) with
initial datum (4.3), where ΓQ — dΩo, ΩQ c JR.N being open. Then, as λ — » 0+,

mA — > < locally uniformly in
( mw {̂  < 0} ,

where mί0 are given by (3.3), w is the unique solution of (3. 11) with initial datum

do, θ is given by (4.2) and A = c(a), the latter given by (3.13).

As mentioned in the Introduction, under the additional assumption that ΓQ is
smooth and only for the time interval during which the evolution (Γt)t^v remains
smooth, Theorem 4.1 was proved (for a = 0) by De Masi, Orlandi, Presutti and
Triolo in [DOPT3].

A result analogous to Theorem 4.1 but for a local approximation of (4.1) in [P]
was proved independently by Jerrard (see [J]). We remark that results analogous
to Theorem 4.1 but for the reaction-diffusion equation were first obtained in this
generality by Evans, Soner and Souganidis in [ESS] (see also [BSS]). We refer to
these works for the history of the problem as well as more recent papers.

Notice that Theorem 4.1 yields no information for the limit of mA on the
front, which may have, in principle positive TV-dimensional Lebesgue measure, i.e.
fattening may occur. For general conditions for non- fattening we refer to [BSS].
In the case of the reaction-diffusion equation, information about the limit where
fattening occurs was obtained by Ilmanen in [I] (see also Soner [So2]). We hope
to return to this issue for the problem at hand in a future paper.

We conclude the first part of this section with a brief discussion about the ideas
involved in proving Theorem 4.1. The proof is based partially on refinements of
a number of ideas introduced by Barles, Soner and Souganidis in [BSS] to study
asymptotic limits of general reaction-diffusion equations. The approach of [BSS] is
different from the one introduced by Evans, Soner and Souganidis in [ESS] to study
the asymptotics of the Allen-Cahn equation. The difference is that [ESS] constructs
super- and sub-solutions of the reaction-diffusion equations. On the contrary [BSS]
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studies the problem at the level λ = 0 using a number of sophisticated and new
techniques to compensate for the lack of estimates. There is, however, a serious
difficulty to apply directly [BSS] to (4.1). This is due mainly to the highly nonlin-
ear form of the equation and to some extent its nonlocal character and is related
to the identification of the transport coefficient θ in (4.3). This coefficient comes
up because of an averaging effect occurring in the limit λ [ 0 of the jump process,
corresponding to the linearization of (4.1) around q. To study this averaging from
the analytical point of view, we need to employ ideas from the theory of homoge-
nization for viscosity solutions, which were introduced by Lions, Papanicolaou and
Varadhan [LPV] and further developed by Evans [E]. The combination of analytic
techniques from both propagation of fronts and homogenization is nontrivial. Our
paper as well as Jerrard's ([J]) are the first ones in this direction.

(ii) Macroscopic limits of the ferromagnetic Isίng model The second major result
of the paper is about the existence of a macroscopic scaling of the form

where λ(y) is to be determined, so that in the limit the appropriately rescaled aver-
aged magnetization yields an interface moving according to a macroscopic equation
of the type given by (4.3). As a matter of fact one would like to obtain, and we
do so below, a propagation of chaos type result at this scaling. Such a result, of
course, should be global in time, i.e. to hold past the geometric singularities, since
the spins, by definition, are not sensitive to the regularity of the macroscopic profile.

As in the case of the asymptotics of the mean field equation, here we will assume
that our initial measure is at a local equilibrium. More precisely, we assume:

(i) μy is a product measure on Σ

and

(,eZ"λ (4.5)

where q is the traveling wave corresponding to (3.1) with a = 0 and #(0,0) = 0,
c/o is the signed distance function from a closed set ΓQ C R^ and λ(y) will be
specified below.

To state our result we need to introduce some notation and special sets. To this
end, for γ > 0, and p\ > 0 set

(4.6)

where p\ is to be chosen and [— R,R]N denotes the hypercube of side R in
Let w be the solution of the geometric pde

-
\Dw\

= dQ on R^ x {0} , (4.7)

and define, for t > 0, the sets

' P] = {x G ΈN : wθα(y);t,0 > 0} ,

and

. Nj = {xeZN : w(γλ(γ)x,t) < 0} , (4.8)
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and

M^t = {xe^:XieQyn(Py

tUNj)} ( f > 0 ) , (4.9)

where TL^ is given by (2.3).
Our result is:

Theorem 4.2. Assume (2.1) and (3.4). There exists a p* > 0, given by Lemma 6.4,

such that for any λ(y) such that y~p*λ(y) —> +00 as y —> 0, z/ (4.5) Λo/ίfe
/or a// f G (0,oo),

lim sup -^ Π (-1) = 0(λ),

with the limit local uniform in t, where Nj and M"t are given by (4.8) and (4.9).

Before we continue we remark that the critical p* in Theorem 4.2 is independent
of the particular value of the inverse temperature β. Finally, notice, as in Theo-
rem 4.1, Theorem 4.2 yields no information when fattening occurs. We hope to
return to this issue in a future paper.

Theorem 4.2 is the first global result showing the convergence (macroscopic
limit) of the scaled averaged magnetization of the ferromagnetic Ising model with
Kac potential to the mean curvature flow with the appropriate transport coefficient
past the first time geometric singularities occur. A short time result, i.e. the con-
vergence as long as the geometric flow is smooth, was proved in [DOPTl]. An
analogous result but for nearest neighbor interaction Ising models in two dimen-
sions (where the curvature motion is always smooth) was obtained by Spohn in
[Sp]. When the dynamics of nearest neighbor model are coupled with Kawasaki
dynamics at infinite temperature, which tend to delocalize the interactions, the
macroscopic limit was studied by Bonaventura (see [B]) for smooth motions (i.e.
for small time) and by the authors (see [KS]) in the generality of Theorem 4.2 and
even when fattening occurs.

We conclude with a brief discussion of the proof of Theorem 4.2. We show, see
Sect. 6 below, that the spin dynamics are close with respect to some seminorm and
for short times to the solution of a discrete version of the mean field equation. On the
other hand, this solution is close (in the L°°-norm and for short times) to the solution
of the mean field equation - all the above are made precise in Sect. 6. In summary,
we show that the spin dynamics are equal, in a heuristic sense, to the solution of
the mean field equation for short times plus an error. This suggests that we should
discretize in time (as it was done before in, among others, [DP, B, KS, DOPTl],
etc.); the errors, however, add up! To overcome this difficulty, we introduce mean
field equations with αΦO, i.e. we speed up (or down) the geometric motion or in
the language of statistical physics we introduce a small external magnetization field.
Using the sharp comparison principle stated in Sect. 3 we are then able to absorb
the error at each time step and to conclude using Theorem 4.1.

5. Proof of Theorem 4.1

Here we present the proof of Theorem 4.1. Since it is rather long, we are going to
split it into a number of propositions and lemmas with the hope that in this way
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it will become more transparent. Throughout this section we will be using x, y etc.
to denote points in R^. Since there will be no mentioning of the particle systems
here, this will not create (we hope) any confusion.

Proof of Theorem 4.1. 1. The comparison principle for Eq. (4.1) and assumption
(4.4) yield that

mλ e (mj^m^) in R7^ x (0,oo) (5.1)

hence we can introduce the change of variables

on R"x[0,oo). (5.2)

2. Next we define the upper- and lower-semicontinuous functions

z*(*,f) = ϊδnχ f zλ(y,s) and z*(x,t) = lim zλ(y,s), (5.3)

as well as their regularizations (in x)

z(x,t)= supN{z*(y,t)-\x-y\}

and

(x,t)= mf {z*(y,t)+\x —y\} . (5.4)

3. Let /* be the extinction time of the front (Γt)t^o evolving according to
(4.3), i.e.

t* = sup{Γ : {x e R^ : w(jc,0 > 0}Φ0 for ί G [0,Γ)} ,

where w is as in the statement of the theorem.
Below we use the following proposition. Since its proof is rather long and

complicated, we postpone it until after the proof of the theorem.

Proposition 5.1. Under the assumptions of Theorem 4.1, the function z Λ O (resp.
z_ V 0) is a sub- (resp. super-) solution of the geometric pde (3.17) with A — c(a} in
JBiN x ((),**]. Moreover, z Λ 0 = dQ Λ 0 and z V 0 = dQ V 0 on JR.N x {0}. Hence,
by the standard comparison principle for viscosity solutions,

zΛO ^ w Λ O ^ w Λ O g z VO ow R^ x [0,ί*] . (5.5)

D

4. The conclusion of Theorem 4.1 follows now immediately in R^ x (0,ί*].
Indeed, (5.3), (5.4) and (5.5) yield

z* g w in {w < 0} and z* ^ w in {w > 0} . (5.6)

We can now conclude using (5.1), (5.2) and the fact that

=-/w« if ξ < 0 and lim^ ,Aβ = m^ if ξ > 0 . (5.7)
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5. To go beyond the extinction time ί*, we argue exactly as in [ESS], observing
that

{(x,f) : w(*,0 < 0} = U {(*,0 : wδ(x,t) < 0} ,
<5>0

where, for each δ > 0, wδ is the unique solution of (3.17) with A — c(a) and
initial datum J0 + δ. This together with the fact that distance between two surfaces
evolving according to (4.3) increases in time, concludes the proof. D

We continue preparing the ground towards the proof of Proposition 5.1, which
is, of course, the heart of our argument and which will follow from the two lemmas
we state below.

To this end, if

7 = sup{7' : |z*|,|z*| < oo in R*x[0,7')},

then we have:

Lemma 5.2. Under the assumptions of Theorem 4.1, T is positive.

Lemma 5.3. Under the assumptions of Theorem 4.1, the conclusions of Proposi-
tion 5.1 hold in JR.N x [0,7].

We postpone the proofs of Lemmas 5.2 and 5.3 for later in this section and we
continue with the proof of Proposition 5.1.

Proof of Proposition 5.1. 1. If z Λ O (resp. z V O ) is a sub- (resp. super-) solution
of (3.17) in IR^ x [0,7), then zΛO is a sub- (resp. super-) solution of (3.17) in
IR" x [0,7].

This is a standard observation in the theory of parabolic equations, provided
z Λ 0 and z V 0 are bounded. In our context we can always reduce to this situation
by considering the functions φ(z Λ 0) and φ(z V 0), where φ : IR — > IR is strictly in-
creasing and continuous and using the fact that the scaling properties of (3.17) imply
that φ(zΛθ) is also a sub- (resp. super-) solution. We conclude by applying φ~l.

2. In view of Lemmas 5.2 and 5.3 and the above observation, it suffices to show

recall t* is the extinction time of the front (A)^0

3. Suppose that
T < t*.

Then Lemma 5.3 and the observation above yield that

»

z Λ 0 ^ w Λ 0 and z V 0 ^ w V 0 on IR^ x {T}

and

{x G ΈLN : w(;c, 7) < 0} Φ0 and {x e R^ : w(x, 7) > 0} Φ0 ,

i.e. there exist x,x G IR^ such that

z(jc, J7) < 0 and z(x, 7) > 0 .

Since z and z are respectively upper- and lower-semicontinuous functions, there
exists an ε0 > 0 such that

z(3c, Γ + ε) < 0 and zfe 7 + ε) > 0 for ε <Ξ ε0
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But then the definitions of z,z,z* and z* yield, for all y G IR^ and ε € (0,εo],

-\x-y\ ^z*(j,Γ + ε) ^z*(j,Γ + ε) g |jc - 7!

which, of course, contradicts the definition of T. D

To prove Lemmas 5.2 and 5.3 we will need a technical lemma, which we state
and prove below.

Lemma 5.4. Assume that J satisfies (2.1) and let ξ— > q(ξ,aλ) be the unique
traveling wave solution of (3.1) with q(Q,aλ) = 0. If e is a unit vector in JR.N and
ξ,τ e 1R are such that sgn(ξ)(τ -1)^0, then

JJ(\yMt + τe - y,aλ)dy ^ $J(\y\)q(t + e y,aλ)dy . (5.8)

Proof 1. In view of the symmetry of J, it suffices to assume that e = (1,0,...,0),
in which case (5.8) reduces to

/to = fJ(\y\Wξ + τyiVy * Mbltoίξ + y\Wy = /(i) ,

where to simplify the notation we dropped the dependence of q on aλ.
2. To conclude it suffices to show

sgn(0/'(τ) ^ 0 .

To this end, assume ξ > 0 (the argument for ξ < 0 is similar) and compute

/(τ) = fJ(\y\)q(ξ + τyι)yιdy = / J(b|)[ϊ(ί + τ^) - q(ζ - τyι)yι]dy

I J(\y\ )lq(ξ + τ

For yi G [Q92ξ/τ] we have — ̂  ^ ζ — τy\9 so (̂ί — τj^i) ^ ^(ξ + τ^i) and on
[2{/τι,+oo), (^-τ^<-ί<0, thus q(ξ + τyι) = q(-ξ - τyι) ^ q(ξ - τyλ).
Hence /x(τ) g 0. D

Next we prove Lemma 5.2.

Proof of Lemma 5.2. 1. Let M0 : R^ — •> 1R be a smooth approximation of do from
below such that, for some δ > 0,

sign(M0)(|£>Mol - 1) ̂  0 on IR^ and |£>M0| = 1 if 0 g M0 ^ ^ - (5.9)

2. Define the function

where α > 0 is to be chosen below and t E [0,ί], where ί > 0 is so small that
αί < (5 for / G [0,ί]
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3. We claim that M^ is a subsolution of (4.1) for λ ^ λ0(α,(5). Indeed insert
M_λ in (4.1) and compute -to simplify the notation we drop the dependence of q
on aλ - recalling that q satisfies (3.10):

= Mί + λ~2{^ - tanhβ[Jλ * MA + aλ]}

where

Aλ(x, t) = β/tanh' β[J * q + 0Λ, -f- σ(Jλ * g - J * g)]d<τ
o

and

„

here j3 denotes the unit vector in the direction of /?, J is given by (3.11) and q is
evaluated at λ~l(M_Q(x) — at).

The properties of q and tanh yield the existence of a constant b > 0 such that

0 ^^A(jc,0 ^ 6. (5.10)

Rewriting B/l(x,t) as

^V~, ~ + D M o ( χ ) . y \ \ d y

v ^ / J
and using Lemma 5.4 together with (5.9) we get:

Bλ(x,t) ^ λffJ(\y\)q ( ~° —— +^M0(Λ:)
o \ ^

| pM0(^ + λy) - Mo(*) ~ o rf

/I /
1 1

x //(Z)2M0(jc + λσσy)y, y)σdσdσdy .
o o

Using the above inequality and (5.10) together with the fact that

q(ζ + A) = q(ζ)(l+0(A)), (5.11)

which follows immediately from the properties of the traveling wave and, finally,
employing (3.12)(iv) and (3.12)(ii), we get

^ \q[-Λ + b] for λ ^ λo(u,δ),
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where the constant b depends on the b in (5.10), the constants in (5.11) and
(3.12)(iv) and, finally, the second-derivatives of M0. Choosing α > b we conclude

^ 0 for λ ^ λ 0(fl,<5).

3. Since, by construction MO ̂  d^ we have

M_λ ^ mλ on R^ x [0,f] .

The definition of MΛ and (5.2) then yield

MoOO - α' ^ zA(*,0 for (jc,ί) G R7^ x [0,ί] .

4. A similar argument shows that

zλ(x,t) ^ MoOO - αf for (χ,t) € ΊR.N x [0,7] ,

where MO is an approximation from above of c?o and α and 7 are chosen appropri-
ately.

5. It is immediate that for all (x9t) G 1R.N x [0,£Λϊ],

MoOO - αί ^ z*θM) g z*(x,t) ^ MO(JC) - άί ,

hence T > 0. D

An immediate consequence of the last inequalities in the proof of Lemma 5.2
is the following lemma.

Lemma 5.5. z* = z* = dQ on Ί&N x {0}.

Proof. 1. It is immediate from (4.4), (5.2) and (5.3) that

z* ^ rfo ̂  z* on R^ x {0} .

2. The last inequalities, in the proof of Lemma 5.2 also yield

MO g z* ^ z* ^ Mo on R* x {0} ,

where M0 and MO are approximations of c?o from below and above respectively.
Letting M0 | ί/o an^ ^o I ̂ o? we conclude. D

We are finally in a position to proceed with the proof of Lemma 5.3, which
again will be split into two parts. Before we go into this, however, we need to
introduce some new auxiliary functions.

To this, define

zλ(x, 0 = inf {zλ(y, t) + \x - y\}
yeiR^

and

zλ(x,t) = sup {zλ(y9t) -\x- y\} . (5.12)

The following lemma plays a fundamental role in the analysis below.

Lemma 5.6. Under the assumptions of Theorem 4.1 and for any T1 € (0, Γ), the
functions zλ, z and z* satisfy the following:

(i) \Dzλ\ g 1, and \Dz\ g 1 in R7^ x [0,Γ7],
(ii) lim zλ(y, s) = z(x, t) in R^ x [0, Γ],



Generalized Motion by Mean Curvature 77

(iii) sgn(z*)(\Dz*\ - 1 ) ^ 0 in Ί&N x [0,7"],
(iv) |£>z| = 1 orc R* x (0, r] Π {z > 0},
(v) If y(x,t)eΊ&N is such that z_(x,t) = z*(y(x,t)) + |jt - y(x9t)\ for some

( x 9 t ) e R* x [0,7"] Π {z > 0}, fλέ?Λ z*(Xjc,0,0 = 0

z(x,t) = dist(x, [y : z*(y9t) = 0}) .

The corresponding dual statement holds true for ZA, z and z*.

Proof 1. (i) and (ii) are immediate from the definitions of zx, z and z*.
2. In view of (3.10) and (5.2), we have

/ VΛ Γ 1 1 Γ /z;Λ
λq(Ύ) \zϊ--cλ(a)\ H - t a n h j 8 J * i ( τ )

\ Λ / L λ \ L V 7 1 /

z;Λ
-

L \ ^ /

where to simplify the notation we suppressed the explicit dependence of q on aλ
and zλ is evaluated at (jc, ί)

After some elementary manipulations, the expression above can be written as:

λq (ή - C^f] - jB/tanh' \βίJ(\y\)q ( y + e y) dy + aλ
\ Λ / 0 [ \ Λ /

for any unit vector e in R7^, where again we suppress the arguments of zλ when
this does not create any confusion.

3. If feί) 6 R^ x (0,ΓX] is such that

z*(x,/) > 0,

then there exists (xχ,tχ) — > feί) such that z^(x;u,i;,) — >• ^*feί) as —* oo.
Evaluating the above equality at (jq,^), expanding ZΛ around this point up to

second order in x and using the asymptotics of q and (3.13) as well as the fact that

J0 tanh;[ ]dσ is positive and bounded away from zero and sending λ j 0, we get

sgn(z*) J(\y\)[e-*%nz*^Dz* ' y - e-sgn(z*)«}e y^dy = 0 ,
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or equivalently

PXM)[e~aiZ)z* ' y -e-^e * y]dy ^ 0 for all \e\ = 1 . (5.13)

Now pick e such that Dz* = \Dz*\e and consider the function

It is immediate that G is convex, G(l) = 0 and G'(0) = 0. Hence G(τ) ^ 0 if and
only if τ ^ 1, thus (5.13) yields

\Dz+\ ^ 1 a t f e j f ) .

Of course, all the arguments above must be interpreted in the viscosity sense -
here to simplify the presentation we chose to argue as if all functions involved were
smooth.

An analogous argument in {z* < 0} concludes the proof of (iii).
4. If the minimum in (5.4) is achieved at y(x9t)^x9 (iv) is immediate. If

y(x9t)=x, then (iv) follows from (i) and (iii), since, in this case, z*(x9 t) =
z(*,0>0.

5. We introduce the auxiliary functions ηn G C2(1R) such that

ηn(0) = 0, ^(0) =l,ηn> -n, 0 < η" < - on R and ηn(ζ) j ζ as n -> oo ,

and define

ίηn(z*(y,t)) + \x - y\} .

It is immediate that zn [ z as n -> oo and \Dzn\ ^ 1 on R^ x [0,ΓX]. Finally,
if yn(x,t) e R^ is such that

Zn(x,t) = ηn(z*(yn(x,t),t) 4- \x - yn(x,t)\ , (5.14)

then, passing if necessary to a subsequence,

yn(x,t) -> y(x,t) and z ( x 9 t ) = z*(y(x,t\t) +\x- y(x,t)\ .

Observe now that the definitions of z_n and yn(x,t) yield

η'n(z*(yn(x9tlt))\Dz*(yn(x9t),t)\ £ 1 ,

which in turn, in view of the choice of the ηn's9 contradicts (iii), unless

z*(yn(x,t\t) £ 0 ;

the case z*(yn(x9t)9t) < 0 is ruled out similarly using (iv).
All the above need, of course, to be interpreted in the viscosity sense if / > 0.

As a matter of fact (iii) holds in {z* =t=0}; a simple and standard argument in the
theory of viscosity solutions then yields that (iii) holds on {z*( ,0 + 0} for all
t G (0, T']. Finally, if t = 0, the conclusion follows from the fact that z* = c/o on

R7^ x {0}.
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6. Finally observe that the arguments of steps 4 and 5 above prove the claim
for any minimizing y(x,t), which can be obtained as a limit of yn(x, t). On the
other hand, a more careful look and routine arguments involving making minima
to be strict one's, yields the claim for any minimizing y(x9t). D

The last but also very important issue remaining towards completing the proof
of Lemma 5.3 is the identification of the transport coefficient θ in (3.15). This
unfortunately cannot be done at the level of the ZΛ'S. Instead we need to introduce
correctors, as it is done when studying problems in homogenization. This, of course,
is not unreasonable, since, as mentioned in Sect. 4, an averaging is indeed taking
place at the level of the underlying stochastic process, which corresponds to the
linearization of (4. 1 ) around q.

Below we introduce the correctors; as usual to simplify the notation we will
suppress the explicit dependence of q on aλ.

For d,& G 1R, λ > 0, and for all e,e G JHN such that \e\ = e\ = 1 and e e = 0
a corrector Qλ : R — > IR is the unique solution of

e y}(έ ' y}2dy] *
= βJJ(\y\)<ί(ξ + e y)[Q\ξ + e y)-Qλ(ξ)]dy (5.15)

with the properties

0;'(0) = 0, }Qλ(ξ)} ^ C\ξ\, \Qλ\ ^ C (5.16)

for some constant C. The existence of such a QA follows - its uniqueness is deter-
mined by (5.16) - using Fredholm alternative type of arguments provided

*/ = θλ^ , (5.17)

where

In view of the properties of the traveling waves ξ ι-» q(ζ,aλ) at the limit λ —> 0,
it follows that

θλ-^θasλ-^0, (5.19)

with

θ = f [$$J(\y\mm + e y)(e yfdydξ] (j dξ , (5.20)

where now in (5.20),
= q(ξ,Q). (5.21)

In preparation for the proof of Lemma 5.3 we state and prove the following
lemma; its proof goes along the lines of analogous results in [BSS], which, however,
need to be modified to account for the correctors.
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Lemma 5.7. Under the assumptions of Lemma 5.3, z (resp. z) is a super- (resp.
sub-) solution of (3.17) with A = c(a) in {z > 0} Π R^ x (0, Tf) (resp. {z < 0} Π
R*x(0,Γ')).

Proof. 1. Let (jc0,ί0) E {z > 0} (Ί R^ x (0, T r ) be a strict minimum of z- φ, for
some smooth test function φ. Without any loss of generality, we may assume

z ^ φ on R^ x [0,Γ'] with equality only at (*o,*o) - (5.22)

We want to show

Φ, - θ tr \I - DΦ®φy
Φ] D2Φ - c(a)\Dφ\ ^ 0 at (*„, ί0) . (5.23)

2. In view of Lemma 5.6 (iv), we have

\Dφ(x0,t0)\ = l. (5.24)

3. Consider the corrector Qλ defined by (5.15) and (5.17) for

j/ = φt(xo,tQ)-c(a) and ^ = ̂  , (5.25)

where θλ is given by (5.18). Again recall that we will be writing q for q( ,aλ)
throughout this proof.

4. In view of the properties of Qλ, the map ξ -+ ξ-\- λ2Qλ(ξ/λ) is 1-1 and onto,
hence we can write

zλ = wλ -f λ2Qλ (^-] on R^ x [0, T'} , (5.26)
\ / /

for some functions wλ : IR7^ x [0, Γ] -> 1R and

on R" x [0, Γ;] . (5.27)
\ Λ

It is immediate that
w* -z* and w* =z* . (5.28)

Define
(5.29)

Our assumptions on T' immediately deliver, for all ( c, t) 6 R^ x [0, T']9

lim w^y,^) - z(x,ί) . (5.30)

5. Lemma 5.6, (5.22) and (5.30) yield the existence of and (xλ,tλ) — > (XQ^Q) as
/I — > 0, such that

(Λ:A,/;O is a minimum of wλ - φ and WA(Λ:;L,/;L) -> z(Λ:0,ίo) (5.31)

actually (5.30) yields the existence of (jc^2,ίim) — » (^o?^o) along a sequence Am — > 0,
but for notational simplicity we only write λ — > 0 below.
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Let (yA,tλ) and (>Ό^O) be points at which the inf is attained in (5.29) and
(5.12) respectively. Without any loss of generality we may assume that

and (5.32)

, wλ ^ Ψλ with equality at (yλ,tλ),

where

Ψλ(x,s) = φ(x + xλ - y\s) . (5.33)

Using now Lemma 5.6(v) and (5.28), it is easy to see that

limwλ(yλ,tλ) = 0. (5.34)

Arguing as in Step 4 of the proof of Lemma 5.6 we also get

sgn(w\y\tλ))(\Dwλ(y\tλ)\ - 1 ) ^ 0 , (5.35)

and using (5.24) and (5.34),

\DΨλ(y\tλ)\ = \Dφ(x\tλ)\ -» 1 as λ -> 0 , (5.36)

the latter following from (5.31) and (5.24).
6. We now turn to the equation satisfied by the wx's, which we evaluate at

(yλ,tλ). In everything that follows below to simplify the notation we will not be
writing the arguments of zλ and WΛ and almost never write the ί-argument, unless
it is necessary. We will also write q, q, q and Q, Q without their arguments, which
are z λ / λ and wA/λ respectively - recall zλ — WA -f λ2Q(wλ/λ) - and as before we
will not exhibit the dependence of q and Q on λ. Finally, all the calculations below
must be interpreted in the viscosity sense. On the other hand, keeping in mind that
eventually the paper must end at some point, we present them as if everything were
smooth.

A simple computation and Eq. (3.10) yields, at (yλ,tλ):

-tanh[j8[(J * q) + aλ]} = 0 .

Rewrite the above equality as

\
Λ

q + Q} < - i^(fl)l - 1 (tanh [β(Jλ * q + aλ)]
/ A J A I

Γ / fwλ / W A \ \
-tanh \β( JJ(\y\)q — + λβ _ +Dv/ 3;

L V V Λ \ Λ / /

^-i {tanh \β (fJ(\y\)q (Z^+Dw* j) + aλ} dy\
Λ I L \ \ Λ / / J

(5.37)
/ J J

where Dwλ is the unit vector in the direction of Dwλ.
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The inequality in (5.37) is not a misprint. It is there, due to the ellipticity of
the nonlocal equation, when we use the test functions Ψ instead of the w^'s.

7. Set Dw'1 = e and write DwA = τe. In view of (5.35) we have

sgn(M/)(τ- 1 ) ^ 0 .

On the other hand, since ξ ι-> ξ + λ2Q(ξ/λ) is 1-1 and β(0) = 0,

sgn(wA) =

Applying Lemma 5.4 with ξ = zλ/λ and using the above, we see that the
expression in the right-hand side of (5.37) is nonnegative.

Hence

T +QA /

-tanh \β (fJ(\y\)q (^ + λQ + Dwλ y] dy + aλ ^ 0 ,
L V \ λ /

and, after some elementary calculus,

0, (5.38)

where

Aλ = fβϋuύi' (β \jJ(\y\)q (^+λQ + Dwλ y] dy + aλ
o I L V Λ /

+ σ\Jί*q- fJ(\y\)q (^ + λQ + Dwλ y] dy\}\ dσ . (5.39)
L V Λ / J J )

8. We concentrate for the moment on the term multiplying Aλ in (5.38), which
for definiteness we call Bλ:

Bλ =Jλ*q- fj(\y\)q - + λQ + Dwλ y dy

+ λQ { -̂ r-1 }+DwA y + pCA] dpCΛdy ,

(5.40)
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with

83

0(λ2) + λ
( /
\Q(
I \

y + 0(λ)

(5.41)

Notice that the last curly bracket in Cλ is of order O(λ), since \Q\ ^ C. Finally,
we remind the reader that all the above calculations are done for the smooth test
function Ψλ and not for wx, hence we obtain the O(λ) in Cλ by expanding the
smooth test function.

It is also clear that

CΛ = 0(λ).

The properties of Q and (5.34) also yield

(5.42)

(5.43)

In addition, (3.12) implies, for some constant C and all ξ E 1R,

(5.44)

Combining all the above and once more (3.12) we obtain

(5.45)

Finally, using (5.36), (5.42), (5.43) and (5.44) we conclude

q(-Γ+Dw* y)(l+o(l».
A

(5.46)
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8. We now return to (5.39). A combination of (5.36), (5.40), (5.42) and (5.45)
delivers

Aλ = fβtanti \β \fJ(\y\)q (^ + λQ + Dwλ y} dy + aλ + σBλ] } dσ
o I L \ λ J J J

= βtoΩhf \β

(5.47)

Notice that in the above expression q and q are now evaluated at wλ/λ instead of
zλ/λ.

Now using (5.41) and (5.46), Bλ becomes

= lJ(\y\)q (1 +o(l))λ1-(D2wλy,y)
z

(5.48)

Substituting (5.47) and (5.48) in (5.38) and using (3.12) (ii) we get

— + o(λ) dy ^ 0 ,

where the last inequality is of course interpreted in the viscosity sense.
9. Replacing WA by Ψλ (see (5.33)) and making the obvious simplifications we

obtain:

) y

-Q

] x \l-(D2Ψ(X

λ,tλ)y,y)}
/ LZ J

(5.49)
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We may now replace Ψt(xλ,tλ), DΨ(xλ,tλ) and D2Ψ(x\tλ) by ^(JCQ^O),
DΨ(xQ9tβ) and D2Ψ(xQ,to) respectively by making an error, (see (5.44)), of the

Recall now that Q solves

e y)-Q(ξ)]dy,

for

e = Dφ(xQ9to) and somee G 1R.N such that e\ = 1 and e e — 0 .

Substituting in the previous inequality we get

, - c(a)}
2

^ o(\)q , (5.50)

where wλ is evaluated at (yλ,tλ).
10. We now turn to the term

,tϋ) y)(D2φ(x0,t0)y,y)dy.

Assuming for simplicity, in (5.50) Dφ(xQ9to) = en, writing y = Σ"=ι y^i and using
the symmetry of J ', for any ξ E IR, we obtain

J'J(\y\)q(ξ + en y)(D2φ(XQ,tϋ)y,y)dy =

Inserting the above identity with ζ — λ~lwA(yλ,tλ) in (5.50), yields

,t0) y] (e yj*

y

(en y)2dy{(DλφDφ(xQ9yQ)9Dφ(xθ9tQ)} £ o(\)q ? , (5.51)

where again wλ is evaluated at (yλ

9t
A).

Recalling (see 3.10(v)) that for all ξ e IR,
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and

as well as the Lipschitz continuity of Q, we let A j 0 and obtain, for some μ > 0,

( l - D~<®^~\ D2z - c(a)\Dz\ ^ μ(D2z_Dz,Dz) in {z > 0} . (5.52)

To conclude we argue exactly as in the proof of Lemma 5.2 of [BSS] in order
to drop the right-hand side of (5.52). This is based on the observation that since
\Dz_\ = 1 in {z > 0}, then roughly speaking

D2zDz = 0 a.e.

For all the details we refer the reader to the proof of Lemma 5.2 of [BSS].
1 1 . The arguments for z are similar.
We are finally ready for the proof of Lemma 5.3. D

Proof of Lemma 5.3. 1. For δ > 0 consider the smooth functions ^ : IR — >• IR
such that

ψδ = 0 on (-00, -δ], \l/'δ ^ 0 in IR and lim ψδ(s) = s+ , (5.53)
<5— »Ό

and define

vδ = toGO . (5.54)

2. Let (jco, fo) G R^ x (0, T f ) be a strict minimum of v$ — φ for some smooth
function φ. If Z(JCQ, ίo) > 0> we conclude easily using the fact that (3.15) is geo-
metric, i.e. invariant under increasing changes.

Let now (jt0, to) G {z ^ 0} Π R^ x (0, 7"). The Lipschitz continuity of υδ in c
implies that ^ — 0 in a ball around x0? hence

Dφ(x0, ί0) = 0 .

In this case we may assume

hence we only need to show that

Φt(XQ, *θ) ^ 0 .

Set

V6(y,s) = Ψy(z*)

and notice that

lim vλ

δ(y, s) = v&(x, t ) .
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Thus v$ — φ has a local minimum at (JCΛ, tλ) such that (xλ, tλ) — > (XQ, to) as λ — > 0.
Furthermore, using (5.49) with β = 0 we get

^ aλ(x\ y\ tλ)JJ(\y\)q y + β φW, fλ);v, jO + 0(1)
V x / l z

where aλ(xλ, yλ, tλ) > 0 and ZA is evaluated at (yλ, tλ).
Sending λ j 0 we obtain

o, to) ̂  0 .

The above yield

- θ tr / -

hence vs is a supersolution in {z ^ 0}. We conclude letting δ j 0. D

6. Proof and Corollaries of Theorem 4.2

(i) Proof of Theorem 4.2. As before we organize the proof of Theorem 4.2 in a
series of lemmas, which we give and prove below. At the end of the section we
also state some immediate corollaries.

At this point we want to remind the reader that we return to the convention
of Sects. 2-4 denoting points in TLN by x,y, etc. and points in IR^ by r, r', etc.
Finally throughout this section we will denote all uniform constants by C, keeping
of course in mind that they may change from place to place.

An important ingredient in the proof will be the mean field equation

mt+m- tanh/?(J * m) = 0 in 1R^ x (0,oo) , (6.1)

and its discretized version

m] + my - tanhβ(Jy om

y) = 0 on ZN x (0, oo), (6.2)

where Jy o / is the discrete convolution on ZN, i.e.

Λ ° /CO = Σ Jy(χ>y)f(y) (6 3)
ez"

We write m( , | σ) and my( , | σ) to denote the solutions of (6.1) and
(6.2) respectively with initial datum

m(r,0 | (τ) = 0(r) (r 6 R") (6.4)

and
wy(jc,0 I σ) = σ(x) (jc G Z*), (6.5)

where, for x G Z^,
gf(yx) = σ(jc), (6.6)

respectively.
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The first lemma estimates the difference of the solutions of the discrete and
continuous mean field equations. Since its proof is a straightforward application of
GronwalΓs inequality, we omit it.

Lemma 6.1. There exists a constant C > 0 such that for all t > 0,

sup \my(x,t σ) — m(yx,t \ σ)| ^ Cecty .
x£ΈN

D
Next we state an estimate on the fluctuations of the stochastic process {<7t}t^o

around the solution my( , | σ) of (6.2) in terms of the correlation functions,
also known as the v-functions,

vy

n(x,t I (7) = E

where, for each n G N, x_ G ΊL^ - see (2.4) for the definition of Z%. The following
estimate on the ^-functions is proved in [DOPT1] under the condition that the
potential J is C3. A careful examination of its proof, however, reveals that (2.1) is
enough.

Lemma 6.2. Assume (2.1). Then for any δ > 0 and n ^ 1 there is a constant
cn > 0 such that

sup sup sup\vl(x,t I σ)| ^ cny~? .

It is important to have an I00 -norm type estimate on the difference σt —
my( ,ί I σ). Lemma 6.2, however, does not yield such an estimate, since it does
not allow a straightforward application of Chebyshev's inequality. To overcome this
difficulty, following [DP, B, KS], etc., we introduce the following y-seminorm on
ZN:

||/||y,^sup|r(/)/W|, (6.7)
xes

where

ξ>δ, (6.8)

with 0 as in Lemma 6.2. Here, S is a subset of ZN and 1 1— > T y ( t ) is the semigroup
associated with the equation

u] = ayu
y + β(Jy o u

y - Jy#uy) in 7LN x (0, oo) , (6.9)

where

αy = βjγfi - 1 and Jy,0 - ΣΛ(0, y) , (6.10)
y

which is the linearization of (6.2) around my = 0. For a given / e L°°(ZN)9
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here
' Pt(x,y) = p](ΰ,χ - y} and

with
=0 n

w=0 (6.12)

c* — βJ7$ and 7^(0,%) — Σ Λί^'^O "
χι , ~,χn-ι

i.e. pyt(x,y) is the transition probability of a jump process with intensity βjγ(x,y).
In preparation for the statement of the next lemma and for each t > 0, we

introduce the sets

: k ^ k(y) = (6.13)

where A is as in the statement of Theorem 4.2, K* > 0 is to be chosen below,
s e [1, 2), and

(6.14)

notice that Qy,k(γ) — Qy, the latter given by (4.6).
For k € yKj let ^ = sγκ k and denote by σ^ the spin configuration at time

t = tfc. Then, given any ζ > 0, define

for all k 6 ̂ } , (6.15)

</}, (6.16)

ΊP =

H] =

and

Lemma 6.3.
min( ~2,—j-]

Proof. 1. It is obvious that it suffices to establish (6.18) for Hj and HQ separately.
2. For y G %N write

py(y) = pγ*(0,y) . (6.19)

(6.17)

(6.8). Then for any T > 0, s G [1,2) and all ζ < ζ* =
> K*, there exist cm > 0 such that, for all m ^ 1,

cmym . (6.18)

Then

supPJ

>r

where

(6.20)

(6.21)
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Using Chebyshev's inequality with power 2n we get

PI \Ep7(y)[σ(l\y)->»7(y>tι I ̂ (0))] > / )

< y~2nζ y^
— * Z_-/

3. Lemma 6.2 yields

" 2 n

Σ

I 2n

IH
ιί=l

. (6.22)

/Π{«
V=ι

^ cz-/*1 (6-23)

4. The term on the right-hand side of (6.22) with the j>/'s pairwise equal is
bounded as follows:

Σ
y\ Φ Φ^/f L/=l

where 22w follows from the obvious fact that

supsup[|σ(;c)| 4- |my(x,

(6.24)

^ 2 .

To estimate the right-hand side of (6.24) we write

(6.25)

where

«=ι
;(0,X) and lj(jc) = if * = 0 , (6.26)

0 otherwise .

Using (6.25) and (6.26) and performing the obvious algebraic manipulations we
get

Σ
^ i Φ Φ^ Iι=l

Λ-l

(6.27)

where cw = O(n).
Applying Minkowski's inequality to the right-hand side of (6.27) and using

(6.26) we obtain

In view of the above, (6.27) becomes

Σ
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hence, going back to (6.24),

Σ
I ΛI/=I J L v=ι /

(6.28)
where again cn denotes a uniform constant of order n.

5. Since all the other terms appearing in the sum on the right-hand side of
(6.22) can be bounded by a combination of terms as in (6.23) and (6.28), using
(6.20) and (6.21), we obtain

(6.29)
By choosing

r „ . N ~
C < C = mm

and taking n large we conclude.
6. The inequality for H^ follows as above, the only difference being that, in

view of (4.5) (i), step 4 is trivial. D

The next lemma is the basic step in the proof of Theorem 4.2. To state it we
need to introduce the solutions MA and Mχ of the initial value problems

Mλ

t + Mλ - tanh[β(J * Mλ + aλ)] = 0 in R* x (0, oo) ,

( reR"),
V \ " /

and
f* + M!" ~ tanh[β(J * M_λ - aλ)] = 0 in R" x (0, oo),

Γ*(r,0) = q fd*W-ε,-λa\ (r G R*) ,

where α, ε > 0, do is as in (4.3) and the traveling waves are normalized so that

In view of the asymptotic properties (3.12) of the g's, for each fixed a and ε,
we may choose λg = λ0(a,ε) so that for all λ ^ Λ,Q,

- ,0 J g q (^^-9λa\ on R" . (6.32)

Lemma 6.4. For any δ > 0, choose ξ > <5, ζ < C* — miπ y» ^4

min(C, ξ, 1) αnrf A = λ(γ) such that y~p* λ(y) —> +00 αί y —> 0, with p* —

min[l — jc*,ί — κ*,ξ — fc*]. Lei M", MA fte solutions of (6.30) αra/ (6.31) am/
choose λ small enough so that (6.32) /zoWs. Γ/zew ί/zere w y0 > 0 such that, for

sup sup (my(^:, ft+1 - ft | σ(/:) ) - Mλ(γx,

sup sup
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sup sup (Mλ(yx,tk+ι)- - tk

sup sup (M(x9tk-tk-ι

Proof. 1 . We only prove the first inequality, the second follows similarly.
2. Applying Lemma 3.1 on IR7^ x [tk H-y's^+i] we obtain

k)

m(yx,tk+ι)-M (yx,tk+ι) ^

sup (m(yy,yξ \ σ(k}) - M\yy,tk +

-Cβλa(tM -tk-yξ).

Since x G βy,A:+ι, we have

m(yx,tk+\)-M (yx,tk+\) ^

sup - M\yx, tk + γξ))+ + β(tk+ί - tk

- Cβλa(tM - f t - yξ) . (6.33)

3. Employing the variation of constants formula associated to the semigroup Γ7,
as well as Lemma 6.1, we get

and

m(yx9y

M'(γx,tk

,ξ

4. Thus

sup (m(γx,γξ \ σ(k)) - M\yx,tk + yξ))+

£Q-;,k

^ sup (Γ'(yξ)[σ(k\ ) - M\y ,

- 7 ) ,

0(yξ + y ) .

(6.34)

(6.35)

+ 0(yξ + y ) . (6.36)
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Furthermore (6.33), (6.36), the definition of H\ and Lemma 6.1 yield,

sup (m\x, tk+l - tk\σ(k)) - M\yx9 tM))

sup (my(X9tk - tk-ι\σ(k~V) - Mγx,tk))+

€Q~tk

+ β(tk+ι -tk- yξ) + 0(yξ + y) + / ] - Cβλa(tM - tk - yξ) ,

for all σ G Ή].
5. The choice of λ implies the result for y sufficiently small.

Lemma 6.5. There exists yo > 0 such that for any y G (0,y0) and all x G QΊ

Ή] and k = l , . . . , J

D

σ G

Proof. 1 . In view of Lemma 6.4, we only need to prove

M\yx^} ^ m\x9tλ\σ^) ^ MV^i) for x G QΊtl .

Next we only prove the first inequality, the second following similarly.
2. Arguing as in the proof of Lemma 6.4, using the definition of H\ and (6.32),

which of course needs y small, we get

sup

sup
n Λ % λ

- 0(yξ + y)] - Cβλa(tι -

Choosing y sufficiently small we conclude.

We are now in a position to present the proof of Theorem 4.2.

9 0 ) \ ( x )

D

Proof of Theorem 4.2. 1. Let t > 0 and consider the partition of the interval
[0,d-2] given by (6.13).

2. Fix x G Έ%. Then

Us*
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v_,TFy

Λ#; <τ(*("/)-i)

We denote the terms in the right-hand side of the last equality by (I), (II), (III)
and (IV) successively. Below we analyze each one of them separately.

3. For each n G N, Lemma 6.3 yields a uniform constant Cn such

(I) = 0 -

and

(IV) = EU(l-χ r:
I ' - - • * = £ J

4. Using Lemma 6.2 we obtain the following, uniform in y, bound on (II):

(II) = EA l 7< χ^j Efl

5. Finally

for some constants c, . In addition, Lemmas 3.1 and 6.5 and the fact, in view of
(6.32), that

M_λ ^Mλ on R" x(0,oo),

yield

Thus

Lemma 3.1 again yields

osϋft

as 7 —> 0, ε —> 0 and a —> 0 successively and locally uniformly in U/>of ?
provided that |yAx| stays bounded.

(6.37)
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6. Summing up the estimates for the terms (I)-(IV), we obtain, for x G P\ U7V/"

(6.38)

Using Theorem 4.1 we conclude as soon as we estimate the 0(1) in (6.38).
4. To this end assume that (x,t) G ZN x (0,oo) is such that x G P] - if x G Nj

we argue similarly - and observe that the proof of Theorem 4.1 yields

_

with the 0(1) uniform for \yλx\ bounded.
An elementary estimate also shows:

w - δ - c(a)t ^ w-a ^ wa ^ w + δ + c(α)ί on R^ x (0, oo) .

Let us now assume, without any loss of generality, that yλx — > r G R^ and that
w(r,ί) = 77 > 0. Choosing ε,α and y sufficiently small and using (3.12) and (3.13)
we then have

- - mβ + e'Vί mfa - q ( ,̂ -λa) ^

a,Ί a\n
- O(λa) + — e~v~ ,

a\

where the estimate on /wt ̂  — πiβ is an immediate consequence of the fact that they
satisfy (3.3).

We conclude remarking that the dominant term in the error on the right-hand
side of (6.38) is of order λ. D

The following is an immediate consequence of the previous proof and
Lemma 6.3.

Corollary 6.6. Under the assumptions of Theorem 4.2,

sup P( sup T\yξ)[σίλ-2(x) - (lPt(x)mβ - lNt(x)mβ))] > yζ + λ(γ)\
'

^ Cnf ,

for all n and cn as in Lemma 6.3 and t* is the extinction time of Γt. D

To prove Corollary 6.6 we argue as in the proof of Theorem 4.2. The only
difference is that we use //Mype sets which are defined for one time step but k(y)-
times together with a variance of Lemma 6.5 at each iteration. Finally we can get
a uniform estimate in time after a careful look at the proof of Lemma 6.3.

(ii) Remarks and generalizations. In the case of non-zero external magnetization
field h one obtains different limits. More precisely, if h — λa, as y — > 0, a straightfor-
ward modification of the proof of Theorem 4.2 will yield a front, at the macroscopic
limit, moving with normal velocity

V = θK + c(ά) ,

where c(a) as in (3.13).
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If on the other hand, \h\ ̂  h$ as y —» 0, then we need to use a different scaling,
namely (%,/) —•» (yAx, Aί)? in which case, the resulting front moves with velocity

V = φ),

i.e. there is not a transport coefficient. The proof of this statement goes along the
lines of the proof of Theorem 4.2, hence we choose not to present any details.
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