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Abstract. This paper gives a rigorous treatment of some aspects of diffraction by
aperiodic structures such as quasicrystals. It analyses diffraction in the limit of the
infinite system, through an appropriately defined autocorrelation. The main results
are a justification of the standard way of calculating the diffraction spectrum of
tilings obtained by the projection method and a proof of a variation on a conjecture
by Bombieri and Taylor.

1. Introduction

Diffraction by aperiodic structures has attracted a lot of attention since the discov-
ery of quasicrystals [50] (for references, see Sect. 6). This paper gives a rigorous
treatment of diffraction by aperiodic structures. A brief discussion of quasicrystals
is necessary before it is possible to state the results.

Quasicrystals are alloys having long-range order without being periodic. These
properties are inferred from diffraction experiments. Their diffraction spectrum con-
sists of bright spots (the "Bragg peaks"), which means that their structure has
long-range order (or, for short, "is ordered"). On the other hand the diffraction
spectrum has a symmetry that cannot occur in three-dimensional periodic structures
(the symmetry is "crystallographically forbidden"). The structure of quasicrystals,
therefore, is not periodic. This is where quasicrystals differ from crystals: the diffrac-
tion spectrum of crystals also consists of bright spots but their structure is periodic.

The structure of quasicrystals can, in first approximation, be modelled by ape-
riodic tilings like those obtained by the so-called projection method (see Sect. 5),
in the following way. Let X be the set of vertices of a tiling generated by the
projection method and consider

μ:= Σ^, (1.1)
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where δx denotes the Dirac delta function at x. Its Fourier transform μ can be
calculated (see Sect. 5) and is of the form

yex*

where the cy are complex numbers and X* is a countable set that is dense in space.
It turns out that for suitable tilings and for a suitable cut-off α,

Σ W2<5,
y£X*:\Cy\>aι.

gives a good description of the diffraction spectrum of certain quasicrystals if the

terms are interpreted as describing spots with an intensity proportional to \cy\ .
This recipe has been used for instance in [35, 36, 30, 10]. It is the standard way
of calculating the diffraction spectrum of structural models of quasicrystals.

The computation of μ (1.2) is possible because X is an infinite set. It follows
from standard references on diffraction [25, 14] that diffraction by an infinite system
is described by the Fourier transform f of the autocorrelation of the infinite system

y:=lim(2LΓd Σ δ*-y (1-3)
x,yeXΠ[-L,L]d

(this will be discussed in more detail in Sect. 4). Thus two questions arise: whether
the recipe that has been used in the quasicrystal literature [35, 36, 30, 10] gives
the correct result for tilings obtained by the projection method and whether there is
any relation between μ and γ in more general situations. This paper answers both
questions affirmatively. Theorem 5.4 shows that the discrete part of y is given by

Σ cy\
2δy >

yex*

which justifies the recipe used in the quasicrystal literature. More generally, Theorem
3.4 shows that the discrete part of γ is fully determined by the "Fourier coefficients"
of μ under (physically) fairly mild conditions on the set X. The arguments used
to prove these results also show that, in tilings obtained by the projection method,
every finite configuration of tiles occurs with a well-defined frequency and that the
cy in (1.2) define continuous eigenfunctions of an associated dynamical system.

The observation that in the limit of the infinite system diffraction is described by
the autocorrelation (1.3) makes it possible to solve another problem about diffraction
by aperiodic systems. The discovery of quasicrystals has raised the question which
configurations of atoms look ordered in diffraction experiments, in the sense that
their diffraction spectrum consists of bright spots. This problem has been addressed
in dimension one by Bombieri and Taylor [6, 7]. They have stated without proof
a condition on μ under which there should be a delta function at ξ in μ. Their
work has been fairly influential (for references, see Sect. 6). In Sect. 6 it will be
proved that their condition, slightly modified, gives the delta functions in the Fourier
transform of the autocorrelation of μ (instead of in μ). As noted above, it is the
Fourier transform of the autocorrelation that describes diffraction.

The point of view taken in this paper is that the set X of atomic positions is fixed
in space. One can, however, as is usual in statistical mechanics, also consider the set
of all the translates of X and close it in a topology of hard-sphere particle systems
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(see e.g. [29], Appendix B). This gives a compact space on which the group of
translations acts continuously, i.e. a dynamical system. Then the spectrum of trans-
lations acting as unitary operators on a suitable Hubert space (the L2 -functions with
respect to an invariant measure on the compact space) can be related to diffrac-
tion. This has been done by Van Enter and Miejdsz [19] for systems with X c TLd

and TLd -action, and for continuous systems with hard-core condition by Dworkin
[18]. These points of view are complementary. The "static" point of view naturally
leads to "dynamical" results, like the construction of continuous eigenfunctions from
the cy.

Several authors (e.g. [46, 43, 5, 42, 44, 51]) have recently studied so-called tiling
dynamical systems. These are the dynamical systems that result if one considers the
sets of translates of tilings, rather then sets of translates of sets of atomic positions.

The paper is organized as follows. Section 2 introduces and discusses the notion
of the autocorrelation. Section 3 contains general results on Fourier transforms of
unbounded measures and autocorrelations. These results are used in Sects. 5 and
6. Section 4 discusses why diffraction by infinite systems is described by the auto-
correlation defined in Sect. 2 and explains why one should consider diffraction by
infinite systems at all. This section can be read (almost) independently of Sects. 2
and 3. Section 5 contains the results on tilings generated by the projection method.
Section 6 discusses Bombieri and Taylor's conjecture and gives some references to
the literature on diffraction by aperiodic structures.

2. The Autocorrelation of Unbounded Measures

This section defines and discusses the notion of the autocorrelation of a measure. Of
particular importance for the discussion of diffraction will be the discrete measures
described in Example 2.1. For a general reference on measure and integration, see
[15]. Below, measures are complex measures unless stated otherwise.

A measure μ on IR^ is a linear functional on the space Jf of complex continuous
functions on IR^ of compact support with the property that for every compact subset
K of IR^ there is a constant UK such that

IM/)I ^ aκ\\f\\ ,

for all complex bounded functions with support in K; here || || denotes the supre-
mum norm. A measure is called positive if μ(/) ^ 0 for all / ^ 0. For every
measure μ there is a smallest positive measure p such that |μ(/)| ^ p ( \ f \ ) for all
/ € JΓ (see e.g. [15], Proposition 13.3.2). The measure p is called the absolute
value of μ and will be denoted by |μ|. A measure μ is called bounded if IμKlR^)
is finite, otherwise it is called unbounded. The set of measures on IR^ is given the
vague topology: a sequence of measures {μn} converges to μ in the vague topology
if lim^oo/α/) - μ(/) for all / G Jf.

For any function /, define / by f ( x ) := f(—x) and / by / := /, where the bar
denotes complex conjugation. Similarly, for a measure μ, define μ by μ ( f ) :— μ(/)
and μ by μ(/) := μ(/) and μ by μ := μ. Recall that the convolution μ * v of
two measures μ and v is defined by μ * v(/) := J μ(dx)v(dy)f(x -f j); it is well-
defined if at least one of the two measures has compact support. For every positive
number L, let Q, denote the closed cube of side L centered around the origin. The
characteristic function of a subset A of IR^ is denoted by 1 .̂
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The restriction of a measure μ to CL is denoted by μι. Since μι has compact
support,

/ :=L~~dμL* μL (2.1)

is well defined. Every vague limit point of the yL as L —> oo is called an autocor-
relation of μ. So an autocorrelation is by definition a measure. In this paper, all
measures that have an autocorrelation will have just one autocorrelation. It will be
denoted by y, or by yμ if the dependence on μ has to be stressed.

Let us give some examples. If for a function / on R the limit

1 T

Γ—»00 2T _γ

exists for all x then the function c is called the autocorrelation function of/ [52, 53].
It / is also locally L1 with respect to the Lebesgue measure λ then fλ is a measure
and the autocorrelation or fλ is easily seen to be cλ under the additional assumption
that / is bounded. For instance, every uniformly almost-periodic function (on R
or R^) has a unique autocorrelation (which is itself a uniformly almost-periodic
function). This shows that there are many measures that have an autocorrelation. It
also explains why we speak of the "autocorrelation" instead of the "autocorrelation
measure" or "autocorrelation function". We do not distinguish between a function
c and the measure cλ.

The following example describes a class of discrete measures and their autocor-
relations. They will be very important for the discussion of diffraction.

2.1. Example. Let X be a countable subset of R^ that is uniformly locally finite
in the sense that for every compact K C R^ there exists a constant UK such that
the number of points of X in K +x is bounded by aκ> uniformly in x; here K+x
denotes the set {z £ RJ | z — x £ K}. Later, X will be interpreted as a set of atomic
positions. Let δx denote the Dirac measure at x and consider the measure

μ:=Σ^ (2-2)

Let A be the set {x — y\ x, y £ X} of "interatomic vectors." Assume that A is locally
finite in the sense that every compact subset of R^ contains finitely many points
of A. Note that by definition a £ A implies — a £ A. For a £ A and positive L let
NL(O) be the number of occurrences of a in the cube C/,:

NL(a):=\{xeX\x<ΞCL and x-a£XΓιCL}\.

Assume that for all a £ A the limit

na := lim L~dNL(a) (2.3)
L—>oo

exists and that na > 0. Then μ has a unique autocorrelation y given by

7 := Σ/U, . (2.4)

This can be seen as follows. We have

χ-y
x,y€XΓ\CL a<EA
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since μι = ΣxexncL ^χ anc^ δx * δy — δx * δ-y — δx-y. Now choose N > 0 and an
/ G Jf with support in C#, so that /(α) = 0 if a g CN. Then

NL(a)δa(f).
V

Since the number of terms in the summation is finite, (2.3) gives

lim 7£(/)=Σ«α

Because AT and / were arbitrary, (2.4) is proven.
If Λf is the set of vertices of a tiling of JR.d that is either generated by the

projection method (see Sect. 5) or by a "primitive substitution" as described in e.g.
[20], then all hypotheses on X and A are satisfied.

A measure is called translation bounded ([1], p. 5) if for every compact set
K C Rrf there is a constant α^ such that

sup \μ\(K+x) ^ <*κ. (2.5)
jcGlR^

The measures in Example 2.1 are translation bounded by the assumption that X is
uniformly locally finite. Translation boundedness will be needed in the discussion
of the Fourier transform of measures. The following proposition shows that the
autocorrelations in Example 2.1 are translation bounded. It also implies that every
translation bounded measure has at least one autocorrelation, because it shows that
the set {y1} is precompact in the vague topology.

2.2. Proposition. If a translation bounded measure μ has an autocorrelation y,
then the measures {y1}^ and y are all translation bounded with constants oίκ

that are independent of L.

Proof Let K be compact subset of 1R^ and UK & constant satisfying (2.5). Then

£ \μL\*\μL\(K+x)

= f\μL\(ds)\μL\(K+x-s)

The first inequality uses a general property of the convolution (see e.g. [15], 14.5.2).
The last inequality uses the translation boundedness of μ and the fact that the number
of cubes of side 1 needed to cover a cube of side L is Ld. Hence

yL(K + x) ^ 2α*αc, for all L ^ 1 ,

for all x, which was to be shown. D

Different measures can have the same autocorrelation. If a translation bounded
measure μ has a unique autocorrelation γμ, then clearly yμ = yμ+v for every bounded
measure v. The following proposition gives a class of unbounded measures with the
property that they can be added to μ without changing the autocorrelation.

2.3. Proposition. Let μ be a translation bounded measure that has a unique
autocorrelation y. Let D C IR^ be such that

lim L~dλ(Dr Π CL) = 0 for all r > 0 , (2.6)
L— -> oo
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where Dr := {jc G IR^| dist(jc,£)) < r} and λ denotes the Lebesgue measure. Let v
be a translation bounded measure such that v(A) — 0 if A Π D = 0, for all compact
A c 1RΛ Then yμ = yμ+v.

Proof. By the linearity of the convolution product, it suffices to show that for every
φ G Jf such that 0 ^ 0 ,

lim L~dμL * vL(φ) = 0 and lim L~dvL * vL(φ) = 0 . (2.7)
L— >oo L— >oo

We only prove the first statement, the proof of the second one is similar. We have

]μι * vι|(Φ) ^ J>ι| (ώ)N(ΛW* + 0

Now / IviK^OCs + 0 is bounded in 5- since v is translation bounded; it is 0 if
(s — A) Γ\D = 0, where A denotes the support of φ. Therefore, (2.6) and the trans-
lation boundedness of μ imply (2.7). D

3. Measures, Distributions and the Fourier Transform

This section discusses the Fourier transformation of unbounded measures. It first
fixes notation and recalls some definitions. Then it states some results. The two
theorems will be used in the discussion of diffraction.

Let ̂  be the Schwartz space of rapidly decreasing test functions (see Sect. VII. 3
in [48]). The Fourier transform φ of φ G £f is defined by

φ(ξ) := fφ(x)e-2πidx , (3.1)

where { , ) denotes the Euclidean inner product in IRΛ The function φ is itself

an element of £f. It is sometimes convenient to write φΛ instead of φ. One has

φ(x) = Jφ(ξ)e2™dξ (3.2)

and 0ΛΛ = φ. The relation between the Fourier transform of φ and that of its
translate τaφ defined by τaφ(x) := φ(x — a) is given by

A tempered distribution is a continuous linear functional on £f (for the topology
on y, see [48]). The Fourier transform f of a tempered distribution T is defined
by

fφ := Tφ for all φ G SS

this is again a tempered distribution. Recall that the Fourier transform of the Dirac
measure at x is given by

4(0 - e-2π'<*'»

If a measure μ defines a tempered distribution Tμ by

Tμφ := fdμφ for all φ G ¥ ,

then the measure is called tempered. A sufficient condition for a measure to be
tempered is that it is slowly increasing in the sense that J(l + |jc|)~*|ju|(ίfa:) < oo
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for some k G IN (Theorem VII. VII in [48]). In particular, every translation bounded
measure is slowly increasing and therefore tempered. Often, no distinction is made
between a measure and the distribution it defines. For instance, we shall write μ
for Tμ.

The Fourier transform of a tempered measure is a tempered distribution; it may
or may not be a measure. For instance, if μ is positive definite in the sense that
μ(φ * φ) §: 0 for all φ G £f then μ is a positive measure by Bochner's Theorem
(see e.g. Theorem VILXVII in [48]). Every autocorrelation is a positive definite.
Hence the Fourier transform of an autocorrelation is a positive measure. Exam-
ples of measures whose Fourier transforms are not measures will be encountered
in Sect. 5.

Theorem 3.2 below shows that if μ is a translation bounded measure then the
"Fourier coefficients" of μ exist uniformly with respect to position; moreover, they
determine the discrete part of μ. It was derived in an attempt to prove a conjecture
by Bombieri and Taylor (see Sect. 6). Theorem 3.4 shows that the discrete part
of the Fourier transform of the autocorrelation of a translation bounded measure is
uniquely determined by the Fourier coefficients of the measure itself, provided these
exist uniformly with respect to position.

3.1. Proposition. Let μ be a tempered measure. Assume that μ is a measure. Let
{φn}^=\ be a sequence of test functions such that: (i) \φn\ ^ /, for all n, for
some f e Ll(μ)\ (ii) φn(ζ) = 1 for all n and ( iii) φn(t) — > 0 as n —> oo if tή=ξ.
Then

μ({ξ}) = lim μ(φn).
n— >oo

Proof Observe that μ — μ({ξ})δξ is a measure and that / G Ll(β — μ({ξ})δξ). By
the Lebesgue dominated convergence theorem

This implies the desired result, since by the definition of the Fourier transform

μ(φn) =

3.2. Theorem. Let μ be a translation bounded measure and suppose that μ is also
a translation bounded measure. Then

= lim n~d ( e'
M(M μ(dx)

π-»°° Cn+an

for every ξ G RJ and every sequence {an} c IRA

Proof The result would follow from Proposition 3.1 if it could be applied with

so by (3.2) one would have to take

These functions clearly satisfy conditions (ii) and (iii) of Proposition 3.1, but in
general not condition (1). However, it is possible to apply Proposition 3.1 to regu-

larizations \l/e

n of φn. The translation boundedness will enable us to take the limit
ε — > 0 and prove the theorem.
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We shall prove the theorem for ξ — 0. The general result then follows from
μ({ί}) = (δξ * μ)({0}) and (δξ * μ) - (e-2*'«. >μ)Λ .

Let ω be a positive, even C°° -function which is zero if \x\ > I and which is
normalized in the sense that / ω(x) dx = 1 (for a construction of such a function see
e.g. page 55 of [16]). For ε > 0 define ωε(x) := ε~dω(x/ε). The functions ω£ are
also positive, normalized, even C°° -functions and they vanish for \x\ > ε. Clearly,
ωε G y for all ε > 0.

Let
φn(x):=n~dlCn+an(x) ,

and define ^
i/^ := ωε*φn.

It can be shown that ι/^ — > </>w as ε — •> 0 Lebesgue almost everywhere, and, more-

over, that the convergence is uniform on sets on which φn is uniformly continuous

(see e.g. page 56 in [16]). Note that ψ£

n e Sf.
Let dCn denote the boundary of Cn and define

Kn := {xeCn\ dist(jc, dCn + an) ^ 2} ,

K'n := {x e RJ I dist(jc, dCn + an) < 2} .

Then for ε < 1 we have

ιtt(x) = φn(x) = n-
d, ifxeKn,

\φi(X)-φn(X)\^n-d, Ί ί x & K ' n . (3.3)

Let us now verify that the ψε

n satisfy conditions (i), (ii) and (iii) of Proposition
3.1. Since ωε is even we have

so |̂ | :g |αζ|. Since μ is translation bounded by assumption and aΓε G ,̂ we
have αζ G Ll(μ). This shows that condition (i) is satisfied with f — ωε. Condition

(ii) requires that ι/^(0) = 1 for all ε. This follows from αζ(0) = / ωε(x)dx = 1. If
ίΦO, then |̂ | is bounded by a constant times n~d. Thus condition (iii) is satisfied
too.

Proposition 3.1 now gives

μ({0}) — lim fψε

ndμ.
n—>oo

By (3.3) we have

\f(Ψn-ΦnW

for all n ana all ε < 1. Covering K'n by cubes of side 4 and using the translation
boundedness of μ one sees that \μ\(K^~) is bounded by a constant times nd~l. Letting
ε —> 0 then proves the theorem. D

3.3. Proposition. If μ is α tempered measure and μ is a positive measure, then μ
is translation bounded.
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Proof. Let A be a compact subset of IR^ and a E IRΛ Since |μ| = μ, we have to
show that μ(A -f α) is bounded in a. Let B :=A(J{x e^d \ άist(x,A) ^ 2}. Note
that lB+a * ω G ,̂ where ω is as in the proof of Theorem 3.2. Thus

μ(A + a)

uniformly in α, since Ϊ£+α = e-
2™(a>')\B . Π

3.4. Theorem. Let μ be a translation bounded measure that has a unique auto-
correlation y and suppose that for all ξ E JRJ,

mξ := lim LΓd / e"
2πi(M μ(dx) (3.4)

L-*°° CL+a

exists uniformly in a. Then
y({ξ}) = \mξ\

2

for all ζ.

Proof. The proof amounts to justifying an interchange of limits. Fix ε > 0. We
shall show that | ?({£}) — \mξ\2\ is bounded by a constant times ε.

Recall that y is a positive measure since y is positive definite. Hence Proposition
3.3 gives that f is translation bounded; Proposition 2.2 gives that y itself is transla-
tion bounded. By Theorem 3.2 and (3.4), respectively, there exists an M' such that
for all M > M',

\y({ξ})-M-dfy(dt}e-2^\ ^ε (3.5)
CM

and
\mξ -M~d / μ(dt) e~

2πi(ξj}\ ^ ε for all a e ^d . (3.6)
CM+a

Recall that y is the vague limit of the measures yL defined in (2.1). Let φη be a

continuous function that is zero outside CM+^, equals M~d\cMe~2lil^^ on CM and

is bounded by M~d . Then \\mL-^OGy
L(φη) — γ(φη). In combination with (3.5) and

Proposition 2.2 this gives that there exists a Kf such that for all K > K' ,

- M-dK-dfμκ(du)μκ(dv)lCM(u + v)e~2^u^ | ^ 2ε .

Take K' > M. The second term in the left-hand side equals

Restricting the first integration from CK to CK-M introduces an error that, by the
translation boundedness of μ, is bounded by oc/K for some constant α. Next, the
\cκ in the second integration can be dropped. Thus

y({ξ})-K~d / e-M(M μ(du) M-* / e~M(M μ(dv)\ g 2ε + oc/K .
CK-M CM-U

By (3.6) and the translation boundedness of μ we then obtain that there exist a K"
and a constant a' such that for all K > K" ,

which finishes the proof. D
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Most of this section is based on Sect. 4.3 in [28]. In particular, the proofs
of Proposition 3.1 and Theorem 3.2 can be found there. Theorem 3.4 generalizes
Proposition 4.3.6 in [28].

Instead of Proposition 3.3 we could have used, in the proof of Theorem 3.4,
a result by Argabright and Gil de Lamadrid ([1], Theorem 2.5) that shows that

y is translation bounded. We have included Proposition 3.3 for convenience of the
reader, since these authors use a definition of the Fourier transform that differs from
the definition in distribution theory. Gil de Lamadrid and Argabright also have a
result ([21], Theorem 11.4; it uses the same definition of the Fourier transform as
[1]) closely related to Theorem 3.2; we became aware of this after finishing the
proof of Theorem 3.2.

4. Diffraction and the Autocorrelation

This section explains why diffraction by infinite systems is described by the Fourier
transform of the autocorrelation, and that it is wrong in principle to describe it by
the Fourier transform of the mass density. Examples show that the two descriptions
in general give different results.

Texts on diffraction usually discuss diffraction by finite assemblies of atoms
and diffraction by crystals, i.e. infinite assemblies of atoms on a lattice. Consider
an assembly of N identical structureless atoms at positions x\9...,xN and model it

by the bounded measure p = Σ .=1 δx . If this assembly is irradiated by radiation

of wavelength λ from the direction <go, then the intensity of radiation scattered
elastically into the direction Q is given by

\E*~2m(q'Xj)> (4.1)

where q = (Q - QQ)/λ (see e.g. Chapter 5 in [14], or Sect. 2.2 in [25]). The func-
tion / is known as the "distribution of scattering power" ([14], p. 108) or as the
"diffracted intensity" ([25], p. 16). For a discussion of how /, which is a function
on 1R3, gives rise to diffraction spectra, which are two-dimensional pictures, see e.g.
Sect. 5.8 in [14].

Note that

The convolution product p * p is known as the "Patterson function" - although
here it is a measure - and as the "autocorrelation" (see e.g.[25], p. 32). (Note
that the autocorrelation as defined in Sect. 2 is zero for any bounded measure!)
The sequence / does not converge as N — > oo, not vaguely to a measure and not

even in the sense of distributions, since j I(q)[φ * φ}(q}dq ^ N f[φ * φ](q)dq,
for every φ G 3C . For infinite systems, therefore, one has to consider //TV, the
scattering power per atom [28]. This is analogous to the fact that for an infinite
statistical mechanical system it only makes sense to speak about the energy per unit
volume, or per particle; the total energy is not defined. If the infinite system has
a unique autocorrelation y in the sense of Sect. 2, then I/N converges vaguely to
y/y({0}) as N — ->• oo (observe that y({0}) is the particle density).

Recall from Sect. 3 that y is a positive measure. Like any measure, y can have a
discrete part, an absolutely continuous part and a singular continuous part. A discrete
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part (in addition to the point mass at 0, which is always present) is interpreted as
a sign of order, an absolutely continuous part as a sign of disorder, and a purely
singular continuous y as describing a kind of order between quasiperiodicity and
randomness [4, 3] (for other notions of order and their relations, see e.g. [41]). Now
I/N is a continuous function (i.e. a purely absolutely continuous measure) for every
N. Discrete or singular continuous parts only occur in the limit of the infinite system.
Again there is an analogy with statistical mechanics: like the partition function (cf.
e.g. [47]), the autocorrelation can only have singularities in the limit of the infinite
system.

Let us check what y looks like for a crystal. Suppose for simplicity that the
lattice is Έ? '. Let p be a decoration of the unit cell by N atoms (i.e. suppose that
in (4.1) the coordinates of the Xj lie between 0 and 1). Then the crystal structure
is modelled by

μ = P * Σ δn
nζZ3

Since the autocorrelation of Σn(EZ3<5n is Σnez
3^« ,

y = (p * p) * Σ δn ,

so that

by the Poisson summation formula. This is exactly the expression for the scattering
power of a crystal (see e.g. Sect. 6.1 in [14], or Chapter 4 in [25]). The same
argument works for an arbitrary lattice X, because the autocorrelation of Σxex^x
is given by oί^2xeXδX9 where α is the number of lattice points per unit volume.
Note that the expression (4.2) for γ can also be obtained from μ by replacing the
coefficients of the Delta functions in μ by their moduli squared. As stated in the
introduction, that is the procedure that is used to calculate the diffraction spectrum
of structural models of quasicrystals [35, 36, 30, 10]. The next section will justify
this procedure for tilings obtained from the projection method (Theorem 5.4).

In general μ and y are rather different objects. If μ is changed to μ' by moving
atoms then μ changes. But if not "too many" atoms are moved, i.e. if μ and μ'
differ on a set that is essentially (d — 1 )-dimensional, then yμ — yμ/ by Proposition
2.3. Hence yμ = γμ/9 too. The meaning of this is that "defects" can only be seen in
a diffraction experiment if they occur with a positive density.

So far, atoms have been structureless in the sense that they have been modelled
by delta functions. There is no loss of generality in this assumption. One can give
them structure (i.e. model them by a cloud of electrons) by convoluting the delta
functions with a function / describing the electron cloud. The autocorrelation y

then changes to (/*/)* y and y to |/|2f.

5. Diffraction and the Projection Method

The projection method is a method for generating aperiodic tilings of JR.d. (A tiling
of JRJ is a countable covering of lR.d by closed sets, which are homeomorphic
to closed balls, such that the intersection of the interiors of every pair of sets is
empty. The sets are called tiles.) Let X be the set of vertices of a tiling generated
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by the projection method, and μ = ΣX£χδχ- This section shows that μ has a unique
autocorrelation y, and that the discrete part of y is uniquely determined by μ. It also
shows that every finite configuration of tiles occurs with a well-defined frequency,
and shows how the discrete part of y is related to continuous eigenfunctions of
an associated dynamical system. But first the projection method will be described,
following [30, 39].

Let E\\ be a ^-dimensional linear subspace of Rw and let E^ be its orthogonal
complement. Let π" and π-1 denote the orthogonal projections on E\\ and E^ ,
respectively. Write x — (jc",*-1) for the decomposition of x G IR" on E\\ QtE^. For
every bounded subset K of £'-L, define the strip

Sκ :=K+E\\ = {xeRd\x± £K} ,

the set
Xκ:=πH(SκnZn),

which is a discrete subset of E\\, and the measure

μκ:= Σ δχ\\ (5-1)

on #11. Note that μκ is translation bounded. For reasons that will become clear
later, assume that the boundary of K (in E^ ) is contained in a finite number of
(n — d — 1 )-dimensional hyperplanes.

Of special interest is the case where K is the projection K on E^ of the unit cube
{x E IRΛ|0 <£ Xi ^ 1}, or translates K + 1 of K by vectors t G E^. If Sκ+t has no
point of V on its boundary, then t is called regular; otherwise / is called singular.
The set of regular t is of full Lebesgue measure in every bounded set of E^ [39]. If
t is regular then Sκ+t contains a unique surface consisting of translates of ^-facets
of the unit cube ([39], Remark VI.2.b). The projections of these facets of E\\ form
the tiles of a tiling of £""; the set of vertices of this tiling is Xκ+t On identifying
E\\ with IR^ - as will be done below without warning - it becomes a tiling of IR^.
This tiling is denoted by 3~t. The tiling is completely aperiodic (in the sense that it
does not coincide with any of its translates) if E\\ Π V = {0}. Singular values of
/ give rise to at least two different tilings, but only after a suitable limit procedure
([8, 9, 33, 34]). Those tilings are called singular tilings.

The local isomorphism class of a tiling 2Γ is the set of all tilings ^Γ' such that
every finite configuration of tiles that occurs in 3~ occurs in 2Γ1 and vice versa.
Different regular values of t can give tilings in different local isomorphism classes.
But for every tiling 3~ in the local isomorphism class defined by a regular value
of t, there exists a sequence of regular tj such that the tilings 2Γtj converge to a
translate 3~' of 2Γ in the sense that for every R > 0 there is an N such that for all
j > N the tilings ytj coincide with ZΓ1 within a sphere of radius R ([32, 34, 33]).

Formally, μκ can be computed as follows. Observe that μ# can be written as

μκ= f lsΣsn-
£j_ x<ΞZn

The function 1^ can be viewed as the tensor product 1 0 IK of the constant function
1 on E\\ and the function lκ on E^. So its Fourier transform is <5o (8) \κ Since
(Sjcezn^*)A ~ Σλezn^λ by the Poisson summation formula, one has
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If / is a function on 1RW that is absolutely integrable, and g is the function on E\\

defined by g := f ±fdλ, then g ( ξ l \ ) = /(£!l,0). Therefore, μκ is the restriction to

£ll of (5.2), i.e.

βκ = Σ,tez«ϊκ(-*±)δλ\\ (53)

Thus μκ is indeed of the form (1.2), with X* = π"(ZΛ) .
Although μ -̂ is a sum of Dirac delta functions, it is not a measure (unless

μx is periodic to start with), because the coefficients are not locally absolutely
summable ([17], p. 166). This is easily seen if d = 1 and n = 2 and K — [—^, |],

so that lκ(ζ) — (sinπξ)/πξ. If a series is not absolutely convergent, its terms can
be rearranged to give any desired limit. Without further information, therefore, the
expression (5.3) is meaningless. De Bruijn [10, 11] has first pointed out that μκ

should be understood as a limit in the sense of distributions of purely discrete
measures

mk = Σ 4 ̂  '
ξex*

such that lim^-xxjC* = Cξ for all ξ. De Bruijn worked with a theory of distributions
that is equivalent to one of the Gelfand-Shilov classes. But in the theory of tempered
distributions one can also show that μκ is a limit of purely discrete measures ([17],
p. 166). One has to regularize IK in E^ by convoluting it with the function ωε on
E^. Then IK becomes a rapidly decreasing function, the summation in μκ becomes
locally absolutely summable, and μκ becomes a measure. This idea is used in the
proof of the following theorem.

5.1. Theorem. Let K be a bounded subset of E^ whose boundary in E1- is con-
tained in a finite number of (n — d — 1 ^-dimensional hyperplanes. Assume that
£» Π Zn = {0}. Let μκ be as in (5.1). Then

mξ := lim LΓd ί e"2πi(Mdμκ (5.4)
L-*°° CL+a

exists uniformly with respect to a for all ξ.

Proof Since μκ is not a measure, Theorem 3.2 does not apply. However, Theorem
3.2 does apply to the regularizations of μ#. The hypothesis on the boundary of K
and the assumption that E\\ Π Ίίn = {0} make it possible to prove the theorem from
the existence, uniformly with respect to position, of the Fourier coefficients of the
regularizations of μκ.

For ε < 1, consider on E^ the functions ωε introduced in the proof of Theorem
3.2 and define φε := IK * &>ε; this is a function on E^. Define the regularized
measure μκ>ε by

μκ,ε := f Φε Σ δ*
EJL xe%"

This is a measure on E\\. Its Fourier transform is a measure given by

/kε= Σ4(-^)<V (5-5)
/ez"

To show that μκ>ε is translation bounded, consider a compact set A CE\\. The

number of points of V Π(π")"1(y4) within a distance r of A is bounded. In fact,

one can choose a bound that is the same for all translates in E\\ of A. Since φε



38 A. Hof

decreases rapidly, μκ^ε is translation bounded. Hence, Theorem 3.2 can be applied.
It gives that

exists uniformly with respect to a. Now

dL,ε:= L~d fe-M^dμκ- /
Cι+a CL+a

g L-* /

where B(ε) := {* G ̂ j distfodAΓ) ^ 2ε}. Since the boundary dK of £ in E^
is contained in finitely many (n — d — 1 )-dimensional hyperplanes, Proposition 5.2
below shows that lim£_+o \imL-^oo^L,ε — 0, uniformly in α. D

5.2. Proposition. Suppose that E\\ Γ\Zn = {0}. Let H be a (n - l)-dimensional
hyper plane in RM parallel toE\\. Let ε > 0 and define H£ := {x e RΛ | dist(x,//) ^
ε}. Let R > 0 αra/ ίfe/me ^ := {% e Hε\ dis^jc,^11) < R}. Then the measure

Vε = Σ 1̂1
χesεnzn

on E\\ satisfies
Urn Urn L~d / dμ£ = 0 (5.6)
ε-*0 L-oo Q+β

uniformly in a.

Proof. Let Xε := π^(Sε Π Zn) and split X£ into A^ := π'1^ Π Zn Π//) and Jζ? :=
X£\XH. Note that

First it will be shown that

lim lim L~d\X'ε Π (C£ + Λ)| = 0 (5.7)
ε— ) OL-^oo

uniformly in <s, and then that XH is at most a finite set. These two statements
imply (5.6).

Let
Dε := min \x — y\

x, y£ZnΠ(Sε\H)

be the minimum distance in R" between those points of Ίίn that lie in Sε but
not in H. Then Dε — * oo as ε — > 0. This can be seen as follows. Suppose Dε

remains bounded as ε — > 0. Then there are a D > 0, a sequence ε^ — > 0 and points
jc,,^ € Z" Π (Sε\H) such that |jcz - ^-j < D as ε —> 0. Now jc, - ;;,• € 2£n, and the
number of points in TLn within distance D of the origin is finite, so one can suppose
that Xj — yι = a for some a G Zn. This implies that E\\ is parallel to α, which
contradicts the hypothesis that £" Π ZΛ = {0}. The fact that £>ε -» oo as ε -* 0
implies (5.7).

To show that XH is at most a finite set, suppose first that 0 G H. Then points
of H are of the form

Λ-d-l

*»+ Σ toi Λ e R ,



Diffraction by Aperiodic Structures 39

where the vt are vectors in Rw such that the vectors π-^f/) are independent in E^.
To maximize the number of lattice points in H, one should choose all vt € TLn. Then
HΓ\Έn is of the form Σ^"1/^/ with ml 6 TL. The set τιL(H Γ}%n) is discrete
in E^- since the vectors πj~(ι;z) are independent in E^~. Because only finitely many
points of H Π TLn can project on E^ within a distance R of the origin, XH is finite.

If Q£H then there are two possibilities. Either H Π TLn = 0 and Λf# = 0, or
H Γ(ΊLn is not empty and the argument above shows that XH is finite. D

5.3. Remarks 1. The assumption that E\\ Π Γ = {0}, which was used only in the
Proof of Proposition 5.2, is not essential. Theorem 5.1 and Proposition 5.2 remain
true as long as £!l ΠZM does not span £ ! l. If £l! ΠZ W spans £!l then the tiling is
fully periodic, i.e. periodic in d independent directions, and Theorem 5.1 is trivial.
2. The functions φε converge pointwise as ε —> 0. Denote their limit by φ. Now
φή= \κl only at the points of continuity of IK does φε converge to IK- For instance,
if K — K, then φε —> | in the interiors of the (n — d — l)-facets of K.

It follows that limε_>0^, ε — ^κ vaguely if and only if there are no points of TLn

on the boundary of SK- If K = K -f /, that is equivalent to t being regular. But μκ,£

converges vaguely as ε —> 0 regardless of whether or not there are points of TLn on
the boundary of SK- Denote that limit by μ (so μ = μκ if there are no points of TLn

on the boundary of SK). It is μ that has the property that it is a limit in the sense
of distributions of purely discrete measures of the purely discrete measures (5.5).
Consequently, the distribution μκ (which is not a measure) can have a "continuous
part" in the sense that μ# — μ is a bounded measure [10,32].

As an example, consider the case n = 2, d = 1, and K — K. Let t be singular.
Then there are two points of TL2 on the boundary of Sκ+t, one on the "upper"
boundary and one on the "lower" boundary. The strip Sκ+t defines two singular
tilings, and all points of Sκ+t Π TLn that do not lie on the boundary of Sκ+t project
on points that are vertices of both singular tilings. If the sets of vertices of the
singular tilings are X and X1', then the measures μx and μxι defined in (1.1) differ
by two delta functions. This example is discussed in detail in Sect. 9 of [10] (see
also [32]).

Theorem 5.1 implies that finite configurations of tiles occur with well-defined
frequencies. Let t be regular. For a fixed finite set of tiles P in ,̂ let KcL(P)
denote the number of copies (i.e. translates) of P in the cube CL Let p be a
vertex of one of the tiles in P. As is explained in [30], there is a set M G E1- (the
"acceptance domain"), which is the intersection of finitely many translates in E1-
of K -f- f, such that the points r of Sκ+t Π TLn that project on a point r11 at which
there is a copy P' of P (in the sense that P' — P + a and r11 = p -f a for some
a € £") are exactly the points of Sκ+t Π Tίn such that r^ lies in M. Since M is the
intersection of finitely many translates of K H- f, it satisfies the hypothesis Theorem
5.1. Therefore, by taking ξ = 0 in (5.4),

lim L'dNcL+a(P) = nPL—>oo

uniformly in a. This means that P occurs in the tilings 3~t with a frequency np.
Since the convergence is uniform in a, the frequency even exists "in the sense of
Van Hove" ([20], Theorem 1). The frequency is the same for all tilings in the local
isomoφhism class of « ,̂ because the configuration of tiles of $} in CL also occurs
in every other tiling in the local isomoφhism class. It follows that, if X denotes
the set of vertices of &~t and μ is defined by (1.1), the measure μ has a unique
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autocorrelation y. Moreover, y is the same for all tilings in the local isomorphism
class. Theorems 3.4 and 5.1 now give that f({ξ}) = \mξ\2 for all ξ. The theorem
below summarizes these observations.

5.4. Theorem. Let £Γt be a tiling defined by a regular value of t. Then all tilings
in the local isomorphism class of &~t have the same unique autocorrelation y and

for all ξ G IRΛ

where πiξ is given by (5.4), with K = κ + t.

5.5. Remarks 1. Theorem 5.4 shows that the standard method of computing the
strengths and positions of the Bragg peaks (taking the moduli squared of the coeffi-
cients of the delta functions in (1.2)) gives the correct answer. We have no results
on a possible continuous background, i.e. on the continuous part of γ. But we do
know that the measure γ is the same for all tilings in the local isomorphism class,
whereas the distribution μ can have a "continuous part" for singular tilings and be
"purely discrete" for regular tilings (cf. Remark 5.3.2).
2. Let # denote the local isomorphism class of a regular tiling. For every tiling
&~ G ,̂ consider the measure μ(&~) defined by (1.2). Since Theorem 5.1 holds
regardless of whether or not there are points of Zd on the boundary of the strip,
the Fourier coefficients (5.4) exist uniformly with respect to a for all ZΓ e <&. Thus
πiξ can be seen as a function on #.

For y G #, let ZΓX denote the tiling obtained by translating y over x. Then
Wξ(&x) — e~2πι^x^mξ(^~). The set ̂  can be made into a compact metric space [43]
in which a sequence {^*Xk} of translates of y converges to y if for all ε > 0 and

all R > 0 there are an integer K > 0 and a vector y G JRrf with | y\ ^ ε such that
for all k > K the tilings ^χk-y and 2Γ' coincide within a ball of radius R. Thus we

have an action of IR^ on the compact metric space ,̂ and πiξ is an eigenfunction
of this "tiling dynamical system." The fact that the Fourier coefficients (5.4) exist
uniformly with respect to a implies that the mξ are continuous eigenfunctions.

6. Diffraction and Order

This section explains how our work proves a variation on a conjecture of Bombieri
and Taylor [6,7]. It also gives references to other work on diffraction by aperiodic
structures.

As mentioned in the Introduction, one of the problems raised by the discovery of
quasicrystals is which assemblies of atoms look ordered in diffraction experiments
[26,49]. In view of the discussion in Sect. 4, this question should be modelled
mathematically as follows: a countable set X c Rrf looks ordered in a diffraction
experiment if the measure μ defined in (1.1) has an autocorrelation y whose Fourier
transform γ is a discrete measure. For physical reasons, one would assume that
there is a minimum distance between the points in X. Recall that changing X on
an essentially (d — 1 )-dimensional set does not effect y; one may wish to exclude
such changes by imposing a minimality condition (see below).

The question which sets look ordered in a diffraction experiment has been ad-
dressed in one dimension by Bombieri and Taylor [6,7]. They, however, say that
the set X looks ordered in a diffraction experiment if μ is of the form
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μ= Ecξδξ + 9> C6-1)
££**

where JΓ* is a countable set and g is some function that supposedly models a diffuse
background. The starting point of their analysis is the following conjecture: μ has
a Dirac delta function at ξ if and only if

lim N~l £ e2 π /^Φθ, (6.2)

where ΛN = [0, N].
Theorem 3.2 proves this conjecture under the hypothesis that μ is a translation

bounded measure. This is only of limited value, since as a rule μ is not a measure
i f X is not a lattice to start with. (Theorem 3.2 was, however, crucial for the proofs
of Theorems 5.1 and 5.4.) More useful is Theorem 3.4: it shows that if the limit in
(6.2) exists uniformly with respect to the position of AN and is equal to mξ, then
y({ζ}) = \Mξ\2' This means that if the limit in (6.2) exists uniformly with respect
to position, then the Fourier transform γ of the autocorrelation y has a point mass
at ξ of strength \mξ\2 if m^ΦO, and no point mass at ξ if mξ = 0. Thus Theorem
3.4 proves a variation on a conjecture of Bombieri and Taylor. It is a variation in
that it refers to f , the quantity that describes diffraction experiments, instead of to
μ. In addition, it applies in arbitrary dimension.

Bombieri and Taylor have used their conjecture to obtain constraints on X*
for sets X defined by means of so-called primitive substitutions. Their method has
been used for two-dimensional self-similar tilings in [22,23]. At least in some cases,
Theorem 1 of [20] can be used to prove that the convergence in (6.2) is uniform
with respect to the position of ΛN for those ξ that satisfy the constraints [28,27].
Thus, by Theorem 3.4, the constraints are indeed constraints on the discrete part of
y, i.e. on the discrete part of the diffraction spectrum.

The question whether the limit in (6.1) exists uniformly with respect to position
for all ξ is hard to answer in general because it amounts to the question whether all
eigenfunctions of an associated dynamical system are continuous [45]. The associ-
ated dynamical system is obtained by letting ΊR.d act on X by translations. The set of
all translates of X can be closed in a topology of hard-sphere particle systems (see
e.g. [29], Appendix B). This gives a compact metrizable space Ω with IR^-action.
(The minimality condition on X mentioned above would be that the IR^ -orbit of
every point of Ω is dense in Ω.)

Another way of formulating Bombieri and Taylor's conjecture is that μ should
have a Dirac delta function at ξ if μι(ζ) scales like L. This has been generalized:
a scaling like Lα, with ^ < α < 1, has been associated with a singular continuous
part in γ [2,3, 12,31]; multifractal properties of y have also been studied [24, 13].
We are not aware of any rigorous result in this direction. (Note, however, that the
existence of a unique autocorrelation y assures that the functions L~l\μL

 2 converge
vaguely to y as L — > oo; the quantity L~l\βι\2 is often called the "structure factor."

Aperiodic structures have been classified by the symmetries of their diffraction
spectra by Mermin et al. [40,38,37].
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