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Abstract: We show that if a solution of the spherically symmetric Vlasov-Einstein
system develops a singularity at all then the first singularity has to appear at the
center of symmetry. The main tool is an estimate which shows that a solution is
global if all the matter remains away from the center of symmetry.

1. Introduction

This paper is concerned with the long-time behaviour of solutions of the spherically
symmetric Vlasov-Einstein system. In [4] a continuation criterion was obtained for
solutions of this system, and it was shown that for small initial data the correspond-
ing solution exists globally in time. In the following we investigate what happens
for large initial data. In the coordinates used in [4] the equations to be solved are
as follows:

• 3 , / - ( ^ U ^ - V Γ T ΐ y ) ^ d,/ = o, (l.i)

e-2λ(2rλ' - 1) + 1 = 8πr2p , (1.2)

e-2λ(2rμ'+ \) - 1 = 8πr2p , (1.3)

p(t,x) = fVi+v2f(t,x,υ)dv, (1.4)

(1.5)

Here x and v belong to R 3 , r := \x\, x v denotes the usual inner product of vectors
in R 3 , and v2 := v v. The distribution function / is assumed to be invariant under
simultaneous rotations of x and v9 hence p and p can be regarded as functions of
t and r. Spherically symmetric functions of t and x will be identified with func-
tions of t and r whenever it is convenient. In particular λ and μ are regarded as
functions of t and r, and the dot and prime denote derivatives with respect to t and
r respectively. It is assumed that f(t) has compact support for each fixed /. We

+



468 G. Rein, A.D. Rendall, J. Schaeffer

are interested in regular asymptotically flat solutions which leads to the boundary
conditions that

λ(t9 0) = 0, lim μ(t, r) = 0 . (1.6)
r—>oo

for each fixed t.
The main aim of this paper is to show that if singularities ever develop in

solutions of the system (1.1)—(1.5) with the above boundary conditions then the
first singularity must be at the center of symmetry. In order to do this we consider
solutions of (1.1)-(1.5) on a certain kind of exterior region with different boundary
conditions and prove that for the modified problem there exists a global in time
solution for any initial data. One of the most interesting implications of the results of
[4] is that the naked singularities in spherically symmetric solutions of the Einstein
equations coupled to dust can be cured by passing to a slightly different matter
model, namely that described by the Vlasov equation, in the case of small initial
data. The results of this paper strengthen this conclusion to say that shell-crossing
singularities are completely eliminated.

The following remarks put our results in context. For the Vlasov-Poisson system,
which is the non-relativistic analogue of the Vlasov-Einstein system, it is known
that global existence holds for boundary conditions which are the analogue of the
requirement of asymptotic flatness in the relativistic case [2,3,6] and also in a
cosmological setting [5]. No symmetry assumptions are necessary. For the relativistic
Vlasov-Poisson system with an attractive force spherically symmetric solutions with
negative energy develop singularities in finite time [1]. It is easy to show that
in these solutions the first singularity occurs at the center of symmetry. On the
other hand it was also shown in [1] that spherically symmetric solutions of the
relativistic Vlasov-Poisson system with a repulsive force never develop singularities.
The latter are in one-to-one correspondence with spherically symmetric solutions of
the Vlasov-Maxwell system.

The paper is organized as follows. Section 2 contains the main estimates together
with a proof that they imply global existence in the case that all the matter remains
away from the center. In Sect. 3 a local existence theorem and continuation criterion
for the exterior problem are proved. It is then shown that the estimates of Sect. 2
imply a global existence theorem for the exterior problem. Finally, in Sect. 4, these
results are combined to give the main theorem.

2. The Restricted Regularity Theorem

The goal of this section is to show that a solution may be extended as long as
/ vanishes in a neighborhood of the center of symmetry. Consider an initial datum
/ ^ 0 which is spherically symmetric, C1, compactly supported, and
satisfies

J / v 1 + v2f(x,v)dυdx < r/2 (2-1)
\x\<r

for all r > 0. By Theorem 3.1 of [4] a regular solution (f,λ,μ) of the system
(1.1)-(1.5) with boundary conditions (1.6) and initial datum / exists on [0, Γ[xIR6

for some T > 0.



Regularity Theorem for the Vlasov-Einstein System 469

Theorem 2.1. Let f and T be as above (T finite). Assume there exists ε > 0
such that

f(t9x, v) = OifO^t<Tand\x\^ε. (2.2)

Then (/5Λ,μ) extends to a regular solution on [0,T'[for some T' > T.

Define

P ( 0 : = s u p { | φ ( * , i θ € s u p p / ( 0 } , (23)

then Theorem 3.2 of [4] states that Theorem 2.1 above follows once P(t) is shown
to be bounded on [0,Γ[. We need a few other facts from [4]:

e-2λ = ι _ 2m/r ; (2.4)

where

m(t,r) := 4πfs1p(t9s)ds (2.5)
o

(Eqs.(2.11) and (2.12) of [4]). Also

λ = -4πreμ+λj , (2.6)

where

(2.7)

(Eqs.(3.37) and (3.38) of [4]).
The following notation will be used:

u :=
— 1 τ-i i Λ ι 2 2 2 /

:= r x ϋ, F := |x Λ t;| = r u — (x

Differentiation along a characteristic of the Vlasov equation is denoted by Dt, so

Dtx = e

and

V r

It follows that
DtF = 0 , (2.8)

Vl 4- w2

and
Dtw = -r~2(Dtr)x t; + r~ι(Dtx) t; -f r - 1 x

Substitution for Dtr,Dtx, and JĈ t; and simplification yields

(2.9)

(2.10)

The letter C will denote a generic constant which changes from line to line, and

may depend only on / , ε, and T.
Now we make a few preliminary estimates. The values of / are conserved along

characteristics so
0 S f ^ sup / = C .
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Also we claim that
Jp(t,x)dx = Jp(0,x)dx = C . (2.11)

To show this multiply (1.1) by y/\ + v2 and integrate in v, which yields, (after
simplification)

0 = 3,p + eμ-λά\N (Jfvdυ) + (p + p)λ + 2jeμ~λμ'

= dtp + div (eμ~λJfvdv) + (p + p)λ+jeμ-\μf + λ') .

Now substituting (2.6) and (1.2), (1.3) this becomes

0 - dtp + div (eμ~λJfvdv) (2.12)

and (2.11) follows. Also by (2.5),

0 ^ m(t,r) g Jp(t,x)dx ^ C, r ^ 0 . (2.13)

It follows from (1.2), (1.3) that

// + ̂  ^ 0 ,

and from (1.6) and (2.4) that

lim (μ + λ) = 0 ,

SO

μ-λ ^ μ + λ ^ 0

and
^ ~ λ ^ ^ + λ ^ 1 . (2.14)

Note that
0 S F g C

on the support of / , so

u2 = w2 + — ^ w2 + -r - w2 + C . (2.15)
r 2 β2

Hence we will focus on w. Define

Pi(t) := inf {w : 3x,v with /(ί,jc,t;)ΦO and w = r~ιx z;} (2.16)

and

Ps(t):= sup {w : 3x,v with /( ί ,x,^)φθ and w = r - 1 x v} , (2.17)

then if P^t) and P 5 (0 are bounded, it follows that P(t) is bounded. Also note that

measure {υ : (x,v) e supp f(t)} ^ πCε~2 (Ps(t) - Pι(t)), \x\ ̂  ε . (2.18)

Next we focus on the characteristic equation for w. Note first that by (1.3)
and (2.4),

μ' = ± (e2λ(8πr2p + 1) - l) = ±

= e2λ(r~2m
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Using this and (2.6) in (2.10) yields

F „_; _9 rr
Dtw= —

471

- 4πreμ+λ(wj - yj\+u2p) . (2.19)

By (2.2) and (2.14) we may bound the first term of (2.19) by

0 ^ , F eμ~λ ^c~3C = C

on the support of / . By (2.2), (2.15), (2.14), and (2.13) we may bound the second
term of (2.19) by

0 ^

on the support of / . Hence, (2.19) becomes

-Cλ/C + w2 + 4πreμ+λ(wj - λ/l +u2p) ^ Dtw

<. C + 4πre/i+A(w7 - \/l + u2p) .

(2.20)

On the support of /,

0 ^ 4πreμ+λ ^ C ,

so we must consider the quantity wj — \Λ + u2 p. Let us denote

w := r~ιx ' v ' ύ := |#|, F := |x Λ v\2 = r2ί/2 — (x v)2 .

Then

wj — v 1 + u2p = ff(t,x, v) ( ww — v 1 + u2 (2.21)

The next step is to use (2.20) and (2.21) to derive an upper bound for w (on
the support of / ) , and hence for Ps(t). This may be done without a bound on Pi(t).
Then (2.20), (2.21), and the bound for Ps(t) will be used to derive a lower bound
for w, and hence for Pt(t). Then by (2.15) and (2.3) a bound for P(t) follows, and
the solution may be extended.

To bound Ps(t) suppose

Ps(t) > 0

and consider w (in supp / ) with

w > 0 .

For w < 0 we have

ww — v 1 + u2

~2
W

< o.
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wwv- Vl Λ-u2-
w2

w w2{\ + £ 2 )-w 2 ( l +u2)

\/\+ύ2 y/l -j- ύ2 WA/I + ύ2 + WλΛ + w2

w w 2 ( l + F r - 2 ) - w 2 ( l + F r - 2 )

yl-fw2 w y l + w + WΛ/1 -h u2

Note that in the last step a term of V w 2 " canceled, which is crucial. Hence

ww — v 1 + u2 w w

\+ύ2
< C ww

ύ2 wy/l +ύ2

Now using the above and (2.18) we have

/ ~2 \

$ f [ww - \J\+u2 \ dv S J fCλ
0<w<Ps(t)

S πCε~2 j Cw-
o -

+w

w

w2

and by (2.21) and (2.20)

Dtw ^

= Cwln(l +P2ΛO) S CPs(t)\n(l +P2(t)) ,

(2.22)

for w > 0 in the support of / . Denote the values of w along a characteristic by
w(τ) and let

to := inf {τ ^ 0 : w(s) ^ 0 for 5 e]τ,t[} .

Then either ί0 = 0 or w(to) = 0 and in either case

w(t0) £ C .

Hence by (2.22),

w(t) ^ w(<o) + / (C + CP,(τ)ln(l
Ό

Defining

we may write

and hence

P,(τ) := max{0,Λ(τ)} ,

v(t) ^ C + C/P5(τ)ln(l
o

g C
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We assumed that Ps(t) > 0, but note that the last inequality is valid in all cases.
It now follows that _

^ ( 0 ^ Ps(t) ^ cxp(ect) g C (2.23)

on t e [0, T[.
To bound P^ΐ) from below suppose

Pi{t) < 0

and consider w (in support / ) with

Pi(t) < w < 0 .

For w ^ 0 we have

w w2{\
www — v 1 + u2 -

w2

+Fr~z)
Ί +ύ2 wy/\ + ύ1

\w\ w 2 ( l - h F r ~ 2 )

+ u2

Γ\+u2

w

w

(-w2)(l+Fr-2)

\w '\ +u2

-w2(\
f\

> -c- l\ -f-w2

For w < 0 < w ^ Ps(t) we have (using (2.23))

ww — v 1 + t/2 - - λ/l + w 2 + F r ~ 2 -

+u2

^ Cw-

Hence (using (2.18) as before)

/
jf I ww — v 1 + w2- eft;

- io7 r
c

w rft;

'\+w2

0 P,(0
πCβ~2 J \w\dw - C\JC + w2πCε~2 / <iw

o

- -CP2(t)—== - CPs(t)VC + w2 .
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Now by (2.21), (2.20), and (2.23),

Dtw ^ - - CP2{t)-

- CPf(t)-
1

Since we have assumed 0 > w > Λ(O> it is convenient to write this as

Dt(w2) = 2wDtw

S C(-w)y/C + w2

I

As before define

then

so

S C + CPfit).

:= inf {τ ^ 0 : w(s) ^ 0 for s €]τ,t[} ,

0 ^ w{t\) ^ -C ,

- CP*(τ))dτ

^ C + CfP2(τ)dτ .
o

It follows that

P?(0 ^ C + CfP2(τ)dτ (2.24)
o

if Pι{t) < 0. But if P,(0 ^ 0 then

0 ^ Pt(t) S Ps(t) ύ C ,

so (2.24) holds in this case, too. Now by Gronwall's inequality it follows that

P2(t) S ect S C

on [0, T[. Finally a bound for P(t) follows from (2.15) and (2.3), and the proof is
complete.

3. The Exterior Problem

If r\ and T are positive real numbers, define the exterior region

W(T9n) := {(Ur) : 0 ^ t < T9r ^ rx +1} .
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In this section the initial value problem for (1.1)—(1.5) will be studied on a region of
this kind. Consider an initial datum f(x9 v) defined on the region JJC| ^ r\ which is
non-negative, compactly supported, C1, and spherically symmetric. The first of the
boundary conditions (1.6) cannot be used in the case of an exterior region, and so it
will be replaced as follows. Let m ^ be any number greater than 4π Jr°° r2p(0,r)dr.
For any solution of (1.1)—(1.5) on W (T9r\) define

oo

m(t,r) := m^ - 4πjs2p(t,s)ds . (3.1)
r

Provided Woo satisfies the above inequality, the quantity m(0,r) is everywhere pos-
itive. The replacement for (1.6) is:

e-2λ(t,r) = j _ 2m(t,r)/r9 lim μ(t9r) = 0 . (3.2)
r—s-oo

The first of these conditions is a combination of (1.2) with a choice of boundary
condition. Note that if a solution of the original problem with boundary conditions
(1.6) is restricted to W{J9r\\ then it will satisfy (3.2) provided m^ is chosen to
be equal to the ADM mass of the solution on the full space. Just as in the local
existence theorem in [4], a further restriction must be imposed on the initial datum.
In this case it reads

moo- J fVl+v2f(x,υ)dvdx < r/2, r ^ rx . (3.3)

This is of course necessary if (3.2) is to hold on the initial hypersurface. The nature
of the solutions to be constructed is encoded in the following definition.

Definition. A solution (fλ,μ) o/(l.l)-(1.5) on a region of the form W(T,r\) is
called regular if

(i) / is non-negative, spherically symmetric, and C\ and f(t) has compact
support for each t € [0, T[,

(ii) λ^O, and λ,μ,λ', and μ' are C\

A local existence theorem can now be stated.

Theorem 3.1. Let m^ > 0 be a fixed real number. Let f ^ 0 be a spherically
symmetric function on the region \x\ ̂  r\ which is C1 and has compact support.
Suppose that (3.3) holds for all r ^ r\ and that

v2f(x,v)dvdx < moo . (3.4)

Then there exists a unique regular spherically symmetric solution o/* (1.1)—(1.5)

on a region W{T,r\) with /(0) = / and satisfying (3.2).

Proof. This is similar in outline to the proof of Theorem 3.1 of [4] and thus will
only be sketched, with the differences compared to that proof being treated in more
detail. Define λo(t,r) and μo(t,r) to be zero. If λn and μn are defined on the region
W(Tn9r\\ then /„ is defined to be the solution of the Vlasov equation with λ and
μ replaced by λn and μn respectively and initial datum / . In order that this solution
be uniquely defined it is necessary to know that no characteristic can enter a region
of the form W(T,r\) except through the initial hypersurface which is guaranteed
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if λn ^ 0 and μn ^ 0 on the region of interest. This will be proved by induction.
If fn is given, then λn+\ and μn+\ are defined to be the solutions of the field equa-
tions with pn and pn constructed from /„ rather than / . The quantities λn+\ and μn+\
are defined on the maximal region W(Tn+ι,r\) where 0 < mn(t,r) < r/2 so that
λn+\ can be defined by the first equation in (3.2) and is positive on W(Tn+\,r\); note
that 0 < mn(t,r) < r/2 for r large and 0 < mn(0,r) < r/2, r ^ r\ by assumption
of/ so that Tn+ι > 0 by continuity. It can be shown straightforwardly that the iter-
ates (λn,μn,fn) are well-defined and regular for all n. The most significant difficulty
in proving the corresponding statement in [4] was checking the differentiability of
various quantities at the center of symmetry, and in the exterior problem the center
of symmetry is excluded. The next step is to show that there exists some T > 0 so
that Tn ^ T for all n and that the quantities λn, λn, and μ'n are uniformly bounded
in n on the region W{T,rx). Let Ln(t,r) := r~\\ - e -2^(^))-i # For te[0,Tn[
define

Pn(t) := sup{|ι?| : (x,υ) G supp/Λ(ί)} ,

Now it is possible to carry out the same sequence of estimates as in [4] to get
a differential inequality for Pn(t) := m a x 0 ^ ^ ^ Λ ( 0 and Qn(t) := max o ^^n Qk(t)
which is independent of n, and this gives the desired result. The one point which
is significantly different from what was done in [4] is the estimate for λn. There a
partial integration in r must be carried out, and in the exterior problem the limits
of integration are changed; nevertheless the basic idea goes through. The remainder
of the proof is almost identical to the proof of Theorem 3.1 of [4]. It is possible to

bound μ'n and λn on the region W(T,r\) and then show that the sequence (λn,μn,fn)
converges uniformly to a regular solution of (1.1)—(1.5) on that region. Moreover
this solution is unique. G

Next a continuation criterion will be derived. By the maximal interval of ex-
istence for the exterior problem is meant the largest region W(T,r\) on which a
solution exists with given initial data and the parameters r\ and moo fixed.

Theorem 3.2. Let (f9λ9μ) be a regular solution of the reduced system (1.1)—(1.5)

on W(T,r\) with compactly supported initial datum / . If T < oo and W{T,r\) is
the maximal interval of existence then P is unbounded.

Proof. Note first that, just as in the case of the problem in the whole space, the
reduced equations (1.1)—(1.5) imply that the additional field equation (2.6) is sat-
isfied. The conservation law (2.12) can be rewritten in the form

dt(r2p) + δr(eμ~λr2j) = 0 . (3.5)

Integrating (3.5) in space shows that the minimum value of m at time t (which
occurs at the inner boundary of W(T9r\)) is not less than at t = 0. Hence L
is bounded on the whole region. Suppose now that P is bounded. From (2.6)
it follows that λ is bounded, and if T is finite this gives an upper bound for
λ. Combining this with the lower bound for λ already obtained shows that Q
is bounded. This means that the quantities which influence the size of the inter-
val of existence are all bounded on W(T,r\), and it follows that the solution is
extendible. G
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Combining Theorem 3.2 with the estimates of Sect. 2 gives a proof that the
solution of the exterior problem corresponding to an initial datum of the kind
assumed in Theorem 3.1 exists globally in time, i.e. that T can be chosen to be
infinity in the conclusion of Theorem 3.1. For we know that it suffices to bound
P, and the estimates bound the momentum v along any characteristic on which r
is bounded below. Moreover the inequality r ^ r\ holds on W(oo,r\).

4. The Regularity Theorem

This section is concerned with the initial value problem for (1.1)—(1.5) on the
whole space with boundary conditions (1.6).

Theorem 4.1. Let (fλ,μ) be a regular solution of the reduced system (1.1)—(1.5)
on a time interval [0, T[. Suppose that there exists an open neighborhood U of
the point (Γ, 0) such that

sup{\v\ : (t,x,v) e supp/Π(C7 x IR3)} < oo . (4.1)

Then (f9λ,μ) extends to a regular solution on [0,T'[for some Tf > T.

Proof Suppose that the condition (4.1) is satisfied. Since the equations are invariant
under time translations, it can be assumed without loss of generality that T is as
small as desired. Choosing T sufficiently small ensures that U contains all points
with (T - tf +r2 < AT2 and 0 ^ t < T. Now let rx < T. Then [0,Γ[xIR3 C
U U W(T9r\). Let / be the restriction of / to the hypersurface t = 0. Restricting /
to the region |JC| ^ r\ gives an initial datum for the exterior problem on W(T,r\).

Let nioo be the ADM mass of / . There are now two cases to be considered,
according to whether / vanishes in a neighborhood of the point (Γ,0) or not. If
it does then by doing a time translation if necessary it can be arranged that the
matter stays away from the center on the whole interval [0, T[ so that the results
of Sect. 2 are applicable. It can be concluded that the solution extends to a larger
time interval in this case. If / does not vanish in a neighborhood of (Γ,0), then
by doing a time translation it can be arranged that (3.4) holds. In this case the
results of the previous section show that there exists a global solution on W(oo9r\)
satisfying (3.2). The extended solution must agree on W(T,r{) with the solution
we started with. Thus a finite upper bound is obtained for \v\ on the part of the
support of / over W(T,r\). But by assumption (4.1) we already have a bound of
this type on the remainder of the support of / . Hence

sup{|i;| : (t,x,v) e supp/} < oo .

Applying Theorem 3.2 of [4] now shows that the solution is extendible to a larger
time interval in this case too. D

There is another way of looking at this result. Suppose that (fλ,μ) is a regular
solution of (1.1)—(1.5) on the whole space and that [0, T[ is its maximal interval
of existence. Then by a similar argument to the above the solution extends in a C1

manner to the set ([0,Γ] x 1R3)\{(Γ,O)}. Thus if a solution of (1.1)—(1.5) develops
a singularity at all the first singularity must be at the center.
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