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Abstract: A Taylor series analysis of the Laplacian as the underlying manifold is
deformed leads to a Hodge theoretic derivation of the Leray spectral sequence.

0. Introduction

Suppose (M, g) is a compact Riemannian manifold with a smooth distribution of
n-planes 4. Let B be the orthogonal distribution to 4. Writing

g=9gaDgs,

we define a 1-parameter family of metrics on M by setting, for 0 < 6 < 1,
9o =ga® 6 g5 .

In addition, let
V - M

be a flat bundle,

In this paper we investigate a spectral sequence associated with 4 and B for the
cohomology of M with values in V. We show in Sects. 2 and 3 how the spectral
sequence arises naturally from a Taylor series analysis of the eigenvalues of Elf; near
6 = 0 (where [If denotes the Laplacian induced by the metric gs acting on p-forms
of M with values in V). We demonstrate how the algebraic properties of the spectral
sequence can be proved using standard Hodge theory. In Sect. 4 we show that our
spectral sequence is intimately related to the Leray spectral sequence associated to a
filtered differential complex. In addition, of 4 is integrable, the spectral sequence is
isomorphic to the standard Leray spectral sequence associated to the foliation 4. If 4
is integrable, and in addition satisfies certain geometric restrictions (see hypotheses
(H1) and (H2)), we show in Sect. 5 that the leading order asymptotics of the
small eigenvalues of [Jf, and the corresponding eigenspaces, are determined by
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information contained in the spectral sequence. In the special case that the splitting
of TM arises from a fibration, our results overlap with those of [Ma-Me] and [Dai].

The limit of (M, gs) as 6 — 0 is known as the “adiabatic limit.” The adiabatic
limit was introduced in this form by Witten in [Wi]. He considered the foliation F
consisting of the fibers of a fibration

FM-N, (0.1)

where % is compact, N = S', and the metric g makes (0.1) a Riemannian submer-
sion. Witten investigated the limit of the eta-invariant of M and J approached 0.
This question was also considered in [Bi-Fr] and [Ch]. In [Bi-Ch] and [Dai], this
investigation was extended to general base spaces N.

Our topic begins with (and this paper owes much to the ideas in) [Ma-Me] in
which the authors, starting with a fibration as in (0.1), analyse the behavior of the
space of harmonic forms on M as 6 — 0. They show that, modulo a change of
coordinates, the space of harmonic p-forms approaches a finite dimensional space
Eﬁo. This space Eﬁo can be identified from a Taylor series analysis as follows:
Define a nested family of spaces

by
E; ={ p-forms w|3 p-forms oy,...,w; with

O8(w + Sy + -+ -+ Jal) € 0(55)} .
They proved that there is an N such that

7P _FP  _ . _TP
Ey=Eyy = =Ey,

and this is the space referred to above. These results follow from their construction,
using Melrose’s calculus of pseudodifferential operators on manifolds with corners,
of a parametrix for Dg which has a uniform extension to the closed interval [0,1].
This implies that in the case of a fibration, the eigenvalues and eigenvectors have
well-defined asymptotics as 6 — 0.

In this paper, we take a simpler, and more general approach. We begin with any
distribution. 4 C TM. In particular, we do not require that 4 arise from a fibration,
or even that 4 be integrable. We show that a Taylor series analysis, motivated
by the adiabatic limit, leads directly to a Hodge theoretic spectral sequence which
converges to the cohomology of M. We observe that the spectral sequence structure,
i.e. the associated differentials and bigradings (which do not appear in [Ma-Me]),
arise naturally in our context.

We start with a rescaling map ps (see Lemma 1.2), which also appears implicitly
in [Ma-Me], which is an isometry

ps 1 (QF(V),g5) — (QF(V),9)
(where QF(V') denotes p-forms on M with values in V). Let
ds = psdpy', dj = padfgé)pgl ,
and define a nested sequences of spaces

E_\2Ef 2EfDE] 2 ... (0.2)
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by
El ={w € Q"(M,V)|3w,,...,w; with

ds(w + 0w + -+ w’) € 0(5")
di(w+ dwy + - + 6/ w;) € 0(5)} . (0.3)

Our first result (Theorem 1.3) is that the sequence (0.2) converges. That is, there
is an N such that
Ey =E}6+1 = =Ef

and, in fact, dim Efj < oo. More precisely, we show (Theorem 1.3) that dim Ef, <

0o, where
N’ = min{dim4 + 3,dim B + 3} .

We define a differential dx on E by setting, for o € EY,
diow = ;in}) 5‘kd5(w + 0wy + -+ 5ja)j) R

where the w;’s are as in (0.3). Unfortunately, the map d; depends on the w;’s, but
the map m;dy does not, where 7; denotes the orthogonal projection onto E,f . In fact
we show (Theorem 2.3)

(i) (mdim)* = 0.
(i1) The kernel of

A = (mdiemye )(med i) + (mid e )(medyem) < EF — EF

is precisely Ef,,.

Statement (i) says that for each k
e d Ty E,?—>E,: —>E,% — e

forms a differential complex, and (ii) implies that the cohomology of the complex at
the p' stage is isomorphic to E} +1- (There are some analytical subtleties here, but
this is certainly true if dim E/ < oo, for example if & = N'.) Thus the complexes
{E,f7 ,mpdymy} form a spectral sequence.

Before leaving Sect. 2, we prove that the E,f spaces inherit a natural bigrad-
ing from the decomposition TM = 4 + B which is compatible with the differential
i dymy. That is,

ab b _ b
Ef = ? E;°, where E;° = Ef N Q*",
at+b=p

and
nkdknk(EZ,b) g EZ—k+l,b+k .

In Sect. 3 we make precise the sense in which (0.2) converges to H?(M, V'), the
cohomology of M with values in V. The main idea is to introduce the cohomology
of the space of formal Laurent series of forms on M. This section essentially follows
the ideas of Sects. 2, 5 and 6 of [Ma-Me], albeit in a more general setting. The
conclusions follow from these observations:
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(i) For every w € E&, there is a formal power series
ws = 0+ 6wy + Sy + -

such that, formally,
d5w5 = d;‘w(; =0.

(ii) The ws’s arising in (i) form a basis, modulo the action of ¥ (the ring of
formal real Laurent series), for the cohomology of the complex (Z[Q27],ds).
Here, £[QPF] denotes the space of formal Laurent series with coefficients in
QP(M, V).

(iii) The operator ps; provides an isomorphism between (Z[Q27],ds) and
(ZL[Qrl,d).

(iv) The cohomology of (Z[Q7],d) is canonically isomorphic to L[H?(M,V)]
and hence, modulo ¥, H?(M, V') provides a basis

Observations (i)—(iv) allow us to conclude, in particular, that for all p,
dimEZ = dimH?(M, V).

The topological nature of the spaces E/ is clarified in Sect. 4. We demonstrate
that the spectral sequence {Z[Ef],midimi} is isomorphic to the Leray spectral
sequence arising from the natural infinite filtration of £[Q7]:

L1QP] =--- 2 571QP[[8]] 2 Q[[8]] 2 6Q7[[S]] 2 - -

and the differential 0 = dds. As a corollary, we learn that the dimensions of the
E} are independent of the metrics g4 and gp (since the metrics are not used in
the construction of the Leray spectral sequence). In addition, if 4 is integrable we
show that the spectral sequence {E}, mydjm;} is isomorphic to the standard Leray
spectral sequence associated to the foliation A. In this case we learn that dim E}
depends only on 4, that is, it is independent of the chosen complement B as well as
the metrics g4 and gp. In the special case of a fibration, this was proved in [Dai].

We make the relationship between E&, and HP(M, V') more direct in Sect. 5. In
this section we require, essentially, that 4 be a Riemannian foliation with compact
leaves, and that g be a bundle-like metric. In particular, we require that (M, 4, g) be
given locally, by a fibration of the type (0.1). However, there are many interesting
examples of foliations satisfying our hypotheses which are not globally of the form
(0.1). We note that these restrictions are required only for the analysis of this
section.

We study the behavior of the small eigenvalues of (Jf and the corresponding
eigenspaces. Let

VHOBEYAC) =

denote the eigenvalues of [Jf. Let
eig! = span{w € Q7|ps I p5'w = 27(8)w and A7(5) € 0(5%)} .
Then we show (Theorem 5.17) that as 6 — 0,
eigy = Ef +0(5).

As a corollary, if #4(M, V') denotes the kernel of (0%, then as 6 — 0,
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psH 5(M, V) = EE, +0(9) . (0.4)

Now write 47(8) ~ 6F if there is a ¢ such that for all § € (0,1),
et < AP(9) < Lot
c

Then every A7(3) is ~ 6% for some k. The leading order term of such A7 is deter-

mined by the Taylor series data. Namely, let E,f’ denote the orthogonal complement
of Ef,, in E/. We have seen that the kernel of

A EP — EY

is Ef,. Since A7 is self-adjoint, 47 must map E} to itself. We have for k = 1
(Theorem 5.20)

{4(9)

The statement (0.4) implies, in particular, that the one-parameter family of
spaces psA’5,0 € (0,1] has a continuous extension to the closed interval & € [0, 1].
We complete Sect. 5 by sharpening this statement. Namely, we show that a slight
modification of our proof of (0.4) yields (Theorem 5.21) that this extension is, in
fact, C* on [0,1]. Equivalently, if

AP(8) ~ 6%} = 6% {eigenvalues of AP : Ef — EF} + 0(6%*!).

ws = ® + dw; + Fwy + - -
is any formal power series in ¢ with values in QP(M, V'), which formally satisfies
Liws =0,

then w; is the Taylor series at 6 = 0 of a C*° family of forms &s,d € [0, 1], which
satisfy, for each ¢ € (0, 1],
L§ ws =0.

This extends Theorem 17 of [Ma-Me] to our setting.

In the special case of a fibration, the results in Sect. 5 overlap with those of [Dai]
and [Ma-Me]. In [Dai], the results of [Ma-Me] were used to study the adiabatic
limit of the eta-invariant of the fiber bundle M. In an analogous fashion, in another
paper we will use these results to derive a formula for the analytic torsion of M.

In Sects. 1-4, we show that the adiabatic limit leads to a natural spectral se-
quence for any splitting of the tangent space TM = 4 + B. It remains an intriguing
problem to find a more general context for the analysis of Sect. 5. That is, less
restrictive geometric assumptions which still imply that the spectral data determines
the precise asymptotics of the eigenvalues and eigenspaces.

1. Preliminaries

Let (M™,g) be a compact Riemannian manifold, and ¥V — M a flat vector bundle.
That is, ¥ comes equipped with a Euclidean inner product and a compatible flat
connection. By Q7(V') we denote the space of p-forms on M with values in V.
There is a natural extension of the usual deRham differential to a differential



62 R. Forman
d:QP(V)— QP\(1).

Suppose 4 C TM is a smooth distribution of n-planes, and B = 4+ is the or-
thogonal distribution. Then we have a decomposition

™ =A®B (1.1)
and a corresponding decomposition
T"M =4*®B*.
This decomposition induces a bigrading on Q7(V') by
P
QPV) =PRr(V),
i=0

where o ' ‘
QP VY=T(ANA* D AB* DV).

Similarly, all operators on forms inherit a corresponding decomposition. In particu-
lar, the d operator inherits a bigrading

d= Zdi,l—i ,

where y o
da,b . QIJ(V) N Qx+a,j+b(V) .

For any such decomposition of TM we have
d = d2,—1 + dl,O + dO,l + d—1,2 )

Note that d*° and d%! are first order differential operators, while d>~! and d—'2
are zeroth order. Geometric properties of the distributions 4 and B are reflected in
the analytic properties of these operators. For example

Lemma 1.1. The operator d>~' = 0 if and only if A is integrable

For a proof, see [Mo], page 58.
The identity d?> = 0 yields the identities

0= (d2)4,—2 — (dZ,—l)Z
0= (d2)3,—1 — d2,-—1d1,0 + dl,OdZ,——I
0= (d2)2,0 — d2,—1d0,1 + (dl,O)Z 4 d(),le,—l
0= (d2)1,1 — d2,——1d—1,2 +d1,0d0,1 +d0,ld1,0 +d—1,2d2,—1
0= (d2)0,2 — dl,Od—l,Z + (dO,l )2 + d——l,2dl,0
0= (d2)—1,3 — dO,ld—l,Z +d—1,2)d0,1
0= (dZ)—2,4 — (d—l,2)2 .
The decomposition of the tangent space (1.1) induces a corresponding decomposi-

tion of the metric
g=9g1Dgs .

We define a 1-parameter family of metrics gs5,0 < 6 < 1, by
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gs =ga® 5 gp.
For each p and 6 we have an induced Lapalcian
P gx * o
Us = d{y,)d +dd,, : QX)) — QLWV),

where d?g,;) is the adjoint of d with respect to the metric on A*T*M induced by

the metric gs.

Our goal is to study the behavior of the eigenvalues of (1§ as 6 — 0. In our
investigation, we will make use of the classical variational approach (see [Du-Sc],
p. 908)

(12)

WPy =  sup o <dvi,dvi)(s+<d(g0_)vl,d&5)vi>é.

Ulw"vi—IEHlp U EHlp <vl,vi>6
viL{vpmti 1}

Here we have numbered the eigenvalues of (I} in increasing order, with each eigen-
value listed according to its multiplicity:

FHOERHOEIN.

Moreover, H denotes the completion, in the space of L? p-forms, of the C* p-
forms with respect to the norm

oz, = IVolZ: + llolZ -

Note that the space H{ is independent of the metric used to define the norms, and
thus is independent of §.

One difficulty in applying (1.2) is that both the operator and the inner product
vary with d. To simplify, we introduce the isometry

ps 1 (2°(V),95) — (Q7(V),9) ,

where, for w € Q%,
psw = w .

Then for all w € 27,

(Cfo,0)s _ {(peTfp5 Npdw), (pdw))
(0, @) (pdw, pdw)

>

where we use (, ) to denote the inner product induced by the original metric g.
Lemma 1.2. Let LY = ps0fp5'. Then
Lg’ = dadg + d;d(; ,

where
ds=6"'d>" +d"0 4 6d% +6%a"? (1.3)

and
d; _ 5—1(d2,—1)* +(dl,0)* +5(d0’1)* +52(d—-1,2)* (14)

is the adjoint. Note that all adjoints are taken with respect to the metric g.

Proof. First note that
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LY = (psdpy N psd{y,ps ') + (psd(y, 05 Npsdps ') -

The operator pgd{%)pgl is the adjoint of p(;a’p('{1 with respect to the metric g, so

(1.4) follows from (1.3). To prove (1.3) note that for all w € Q*/,
p
p(sda’bp(;_lw — péda,b(s—jw — 6—jp5(dw)i+a,j+b — 5—j6j+b(dw)i+a,]+b — 5bda’b(1) .

Thus, if we write
d=Yyd,
then
p(;dpgl = Zébd”’b . O

Using Lemma 1.2 we can reformulate (1.2) as

i2 d*iz
MP()= sup ing 1doul +ldsul” (1.5)

, 2
) P v €H) v;
Viabi— 1 €H} v L{v),mpi 1} | I

This quotient motivates the following definition. Define the nested sequence of
spaces
EP\ DE{DEfDE[D---. (1.6)

where
E! ={w € HF|3j and wq,...,w; € HF with

ds(w + dwy + -+ + 8 w;) € QP[]
di(o + dw; + - + 8 w)) € 5FQP[8]},
where Q'[5] denotes the space of polynomials with § with coefficients in Q/(E).
Example. For ws = w + dw; + -+ + 6/ w,,
dsws = 07'd> o+ (@0 +d> o)+,
diws =61 (d> Y o+ (@) o+ @ Yo)+--.
Therefore
E} ={w e Hf|d*'o = (@) 'w =0},
El = {w € Ef|d"°0» € Image(d®™'),(d"°)* w € Image(d>~')*}.  (1.7)
This characterization of Ef follows from the orthogonal decomposition
QF = (Imaged®>™") @ (Kerneld>~"' N Kernel(d>~')*) @ (Image(d>~')*)

so that if
dY¥w € Imaged>™!, (d"°)*w € Image(d>~')*

there is a form ! with
do+d> o) = (@) o+ @) o =0.

Thus, if we set ws = w + dw; we have
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dsws,dyms € 0R2[0] = w € ET .
In fact, from (1.7) we see that for w € Ef C Kerneld>~!,
d"w € Kerneld>~' = (Kerneld>~! N Kermel (d>~')*) & (Imaged>~")
= E{ @ (Imaged™>™").

Therefore
d"o € Imaged® ™! «—— d"w e (E):.

Similarly
(d")* o € Image(d>')* «—— (d'0) w € (Ey)* .

Thus we can rewrite (1.7) as
Ef = {w € Ef(d"w,(d" ) w € (Ep)*} .

We note here that (1.5) combined with the definition of the E? yields

#{AF(8) € spectrum (LF)|A7(8) € 0(6*)} = dimE} . (1.8)

Remark. In [Ma-Me], Mazzeo and Melrose define spaces
E} = {w]F0,...,0; with L (0 + dw; + - - + 6/ w;) € 8*QP[5]} .
It is clear that )
Ef CEj , C E’[’k_l] .
=
So, in particular
[eS) oo _ _
£z, = (7 = (YEP = £
i=0 i=0
We conclude this section with a proof that the sequence (1.6) stabilizes. That
is, there is an N such that

Bf = B = =B
It is sufficient to prove that there is an N’ with
dimEY, < co.
In fact, one can take
N’ =Min{dim4 + 3, dim B +3}. (1.9)
Theorem 1.3. With N’ as in (1.9),
dimE}, < oo
for every p.

Proof. Let
T QF — QY

denote the canonical projection. We will show that for every i,

dimmb?~ED, < o0
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Suppose w € Eﬁ,, Then there are w;,...,w; such that

ds(w + dwy + -+ + S w;) € 3V Q8] . (1.10)
di(w+ Sy + - + 8 w;) € 8V Q[5] . (1.11)

Write #*/ for n*/n. From (1.9) we see that for every 0 < i < pand k 2 N’ -2,

6ot’—k,p—i+k =0

b

Thus from (1.10)
d2,—lwi,p—i =0
dl,Owi,p—i +d2,—lwi1—1,p—i+l =0

' . 7] . !
d—l,zw;;(_l\g =3.p=itN'=3) _ (1.12)

Let f ok
=Y.
k<i
Then (1.12) implies o
d(w"P'+d)=0
(where d is the usual d operator), so that
P+ b =duy + Iy

for some u; € Q77! and hy € #P(M, V), the (finite-dimensional) space of g har-
monic p-forms.
Similarly, let

Then (1.11) implies L
d* (0" +w)=0,

so that o
PN+ o =duy + hy

for some u; € QP+ hy, € #P(M,E). Thus

n"P~'Ef, C {(@Q"’P”k o' e Jﬂ’) n <®Q"’P_" od* Q' o %P)] .

k<i k>i

(1.13)

Let R>P~/ denote the intersection on the right-hand side of (1.13). Define a linear
map

TR P
as follows. For w € R*?~' we have
wo=0+dv+h (1.14)

for some & € @k<i9k’p—k,v e QP he P
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Set
(w)=~h.

The representation (1.14) may not be unique, in which case any such representation
can be chosen on a basis and 7 can be extended linearly to all of R*7~".
The map 7 is injective. To see this, suppose

(w)=10
so that w € QP satisfies
w=00+dv,
o=o+dv,+h
for @ € @, .; AP, € @,., 2°P~* and h € #P. Then

o = (@ - @0 — &) = (do,d" v, + h) =0

so that
w=0.
Thus o o
dim "7 7'El, < dimR*P7" < dim #7 < oo .
as desired. O

2. The Sequence {EF} as a Spectral Sequence

The goal of this section is to show that the sequence (1.6) comes equipped with
the algebraic structure of a spectral sequence, and that this structure arises naturally
from the Taylor series analysis of Sect. 1. Moreover, we show that the Ef inherit
a bigrading that is compatible with the differential.

We begin with some notation. In Theorem 1.3 we proved that the sequence
(1.6) stabilizes. Denote by N(p) the integer with the property that

14 14 —
Enpy—1 FEnp = E& -

Let 7, denote the orthogonal projection onto Ej, with n¢- = 1 — m;. Let Ef C E}
denote the orthogonal complement in E} of Ef, |, and ; the orthogonal projection
N-1 ~

onto Ef (so that 1 = S ! & + my).
Lastly, we define &7 C Q[4] by
&7 = {v(8) € QP[8]|dsv(8),d3u(5) € 5*Q[0]}

so that v € E} if and only if v has an extension v(d) € &7, where we say v(d) is
an extension of v if v(0) = v.
Every v € E; has an extension v; € &;. The set of such extensions is an affine
space. It will be convenient, in what follows, to have a fixed origin for this space.
For k=0, 1,2,...,N — 1, let @ be any linear extension map
P Ek — & ks
i.e. @ is an assignment

UGEk—»@(v)=v+5vl+52v2+-'-+5jvj
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such that ®(v) € & and the map v — v; is linear for every i.
For k = —1 and 0 we have ~
E, C & .

So we can let @ be identity map on E_l and Eo.
Now extend @ linearly to all of Ej-. That is, for all v € Ex,

N—-1
d)= 3 P(7v).
i=0

We can express any extension vs € & of v € E; in terms of our fixed extension @
as follows

Lemma 2.1. For k S N, if v € Ek and vs € &) is any extension, then vs can be

expressed uniquely as
vs = P(v) + Ors 2.1

for some rs € &_;.

Conversely, if vs is defined by (2.1) for some r5 € &1, then vs € & is an
extension of v.

Proof. If vs € & is an extension of v then
vs — D(v) = oy
for some r5 € Q[0]. Moreover, since vs and @(v) € & we must have
ors € &

which implies
rs € Ex—1

as desired
The converse is clear. [J

We now define the operators that will form the basis of this section. If
U5 = g + 001 + vy + -+ - + 870,
is a form-valued polynomial, define the operators d_y,do.di,. .. by
dsvs = 6~ 'd_yvs + dovs + ddyvs + *davs + - .

Similarly, define d* ,d3,d},. ..
Note that vs € & if and only if

divs = 57,*1]5 =0

for all i < k.
Using the fixed extension map ¢ we define linear maps

dk . (Ell\;)J_ N QP+1

by 3
div = di(P(v))
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and we similarly define their adjoints d;. We extend these operators to all of Q7
by setting for v € Ef
div+div+0 forall k.

It is important to note that the maps d; and dj depend on our choice of the
extension map .
The basic properties of these operators are contained in the following lemma

Lemma 2.2.
(1) For every i > j,

TCidj = nid; = djTC,' = d}"ni =0.
(i) For every i and j,

n,-d,-djnj = TC,'d?d;TL'j =0.

Proof. (i) For every v,

N—1
U = ANV + Y TV .
k=1
By definition
djnyv =d;nyv =0 2.2)

for all j. For i £k < N —1, @v € E; so that &(7,v) € &, which implies that
(since k =i > j)

difipv = d; (7)) = 0,
di e = d, B(Fv) = 0. (2.3)
Adding (2.2) and (2.3) yields
dim, =djm =0 fori>j.

Taking adjoints yields
n,»dj=n,d;f =0 fori > j

which proves (i).
(i) From (i) we have
nid,-djnj = ﬁidjdjﬁj .

For any v € QP,w € QP2 we have, since d3 =0
0 = (ds B(7v), ds B(7;w)) = 6 (d; B(7iv),d s B(7;w)) + 08T .

Thus . .
0= <d,¢(ﬁ,v),d;¢(ﬁjw» = <d,’ﬁi1), d;‘njw> = <ﬁjdjdiﬁil7, W> N

which implies
Tdejd,'TE,' = ﬁjdjdiﬁi =0.

Taking adjoints yields
ndidim, = t;d;d®, =0. O
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Lemma 2.2, part (i) has the following important corollary:
Lemma 2.3. The maps mdymy and midimy are independent of our choice of the
extension map P.

Proof. From Lemma 2.2 (i), mdym, = fidy 7. For v € QP ydy v = ﬁktikdi(ﬁkv).
Suppose @’ is any other extension map, then

(7o) — &' (7kv) = dw)d
for some ws € &,—; (Lemma 2.1). Thus
#rdp(D(Fgv) — ' (frv)) = Fydp—1005 = 0
by Lemma 2.2 (i). Therefore
med ®(7v) = med &' (Fev)

and this implies mdym; is independent of @. The same proof holds for midime. O

Our next goal is to show that for every v € E; there is an extension vj such
that 5 . »
dkvg € Ey, dkv:; cEp,
so that .
divy = (mdgmeJv
j;vg = (mpdime ) .
It is from this fact that we derive all of our desired results.
Our proof of this fact begins with the definition of two more operators:
Ll 1
Dy : Epiy — By s

=, .l I
Dy 1 Eiyy — Ejgy s

where we set
k

Dy = Y #d;,

i=—1

These operators depend on the extension @. Note that Lemma 2.2 (ii) implies
DDy =D;D; =0
for all k. Now we define the “Laplacian” [J; by
Oy = DyD} + Dy Dy = (Dy + Dy )(D; +D¢) : By — Eiy -
Theorem 2.4.

(a) Fix v € E}, then
(i) There is an extension vy € & of v with

~ 1 ~% —1
dyoy € EPY', doy € EPT.
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(ii) The polynomial v} from part (i) is unique modulo 6&7.
(iii) In terms of the extension ®,v; = P(v)+ Zf_l &~id(v;), where

=—1

v; = A0 (Dy_dx + Dy_ydj)v .
(b) For every p and k, the operator

OF - B )™ — (BE)*

is invertible.
Proof. We will prove (a) and (b) simultaneously inductively on %.
k = —1: Part (a) is trivial since for every v € E?; = QF and every extension

vs of v we have
d_ys=d>wekE_,,

d s =@ Yvek_.

Thus any extension will satisfy part (i). Parts (ii) and (iii) follow trivially since
every two extensions of v differ by an element of 66y = 6Q[d].
Part (b) follows from the observation

Kernel(_; = Kemel ((¢*~')"d*™" +d>~(d*~1)")
= Kernel (dz’”l)* N Kemel(dz"l) =FE.

Now assume (a) and (b) are true for £ — 1.

Proof of (a). Given v € E! define an extension v} by the formula in part (iii), i.e.
k=l
;= 20)+ 3 80w,
=

where .
v; = 707 (Dy_dx + Dy—1di)v . (24)

Note that for v € Ej,
dyv = dyfpv,  djv = difv

(we have used Lemma 2.2 (i)). It follows from Lemma 2.2 (ii) that
D,_,div=D;,_difv =0,
Dy_1dyv = Dy_1dy v =0.
Thus (2.4) can be written
v = T (D -y + De—i i + di o
It is easy to check that ws is an extension of v. Moreover

~ . k=1 _ k—1
dvy =di®(v) + > diP(v) =dpv+ Y div,

i=~1 i=—1
k=1 -
= dkl) + ( Z d,‘ﬁi> D;_ll(Dk_l +Dk_1)(dk + d,‘:)v
i=—1

= dyv+ Dy O (D + D1 )di +di)*v . (2.5)
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Similarly
dyvy = dio+ Di_ O Dy + Di— )k + df)v . (2.6)

Adding (2.5) and *2.6) yields
(dx +dy )0y = (di +dp)w + Dy + Di_ )T (Dy_y + D1 )dy +di)v. (2.7)
Writing O, = (5:_1 + Dy )Dy_y + Dy_,) we see that
(D1 + Dy )Ch1)™' Dj—y + Di—1)
= orthogonal projection into (Kernel (;_;)*

= orthogonal projection onto Ej-

(the inductive hypotheses implies Kernel(_; = E}). It follows from Lemma
2.2 (i) that
(dy +d}w € Et,, .

Thus (2.7) says
(i + dy)v; = Faldi + df Yo = Fedyo + Fadiv . (2.8)

Now .
dpv}, fedyv € QPF

c?,tv:;, fydio € QP71
Therefore, (2.8) implies
ka;‘ = div € Ek CE,
szg = ﬁkd,fv (S Ek CE;.

Thus v} as defined in part (iii) satisfies the conclusion of part (i).
If vs and v} are any two extensions of v in &, then

vs — v = Ors

for some rs € &r_;.

If
ka(; = cikl):;, J;v(; = Jva; ,
then . .
0 =di(0rs) = dk—175 .
Similarly,

0 = JZ_]V& .
Thus r; € &. This shows that v} of part (i) is unique modulo J&, which is part
(ii).
Proof of (b). Note that
Dy = Dy—1 + xdy ,

Dy =Dy_| + Jkﬁk .
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Using the decomposition 3
Ef =E& @k,

we express the operator [J; as a 2 x 2 matrix of operators
Dy _ydi+
Tkt Dy yd;
diDy_1+ dde‘l'
d; D1 dydy

Ay By
By Cv)
By induction, 4; is invertible.
Cy is also invertible, since if v € E; and Cyv = 0 then

(Cyv,0) =0

For simplicity, relabel this matrix

from which it follows that
dv =d®(v) =0, div=d,Pu)=0.
Thus @(v) € &+ which implies

v € Epy1 CEF

¥ l;o—n?l.ally, the inverse of [y is given by the 2 x 2 matirx of operators
(Ax — By C;'By)™! —A;'Bi(Cr — BjA; 'Bi)™!
<—Ck_1B,*;(Ak — By C_y +kB})™! (Ck — BiA;'By)™! )
The invertibility of [J; follows once we know
Ar — B C;'B;
and
Cr — BiA; "By

are invertible.
For v € E;

(Cx — BiA; "B
= ("xdy + Adi)[1 — Dr—1 + Di_ ) (D1 + Di—)N(datx + di i) .
(2.9)

But . 1
1 = (Dy—1 +D;_ )T, + Dry
= orthogonal projection onto (Kernel (;_;)* = E;)

(by induction). Since
Image dy, Imaged; C Ei,
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(from Lemma 2.2 (i)) (2.9) equals
(Fixdr + Red )Rp(diTip + diig)v -
If (Ck — BiA;Bx)v = 0 then
0 = ((Ck — Bi A7 \Bi)v,v) = |#(dx + df)eo)* = (Fadifix + fdj v = 0.
(2.10)

Since #ydyixv € QP fydi v € QP (2.10) implies

0 = Ady v = dyvl

0= fpdi v = dyvf
Thus v} € &1 = v € Exy1 C Ejt so v = 0. Therefore Cy — By AxBy in invertible.

Now we will see that 4; — ByC, 'B} is invertible. Suppose v € E{ and let
z= —Ck'lB};v € E'k. Define an extension z5 of z by

k—1
z5=®@z)+ 3 Fld(#w) .

i=—1
Then

~ - k=1 k=1 .
dizs = dp®(z) + Z d;Po(R,v) =dpz + E dim,v =dyz + Dr_1v.

i=—1 i=—1
Similarly »
dyzs =dpz+di_qv.
So we have
\dizsl? + dyzs
= |dyz + Dx—1of® + |djz + dj_of?
= (D;_,diz + Dy_Dy—1v + Dy_1d}z + Dx_1Dj_,v,0)
+ (didyz + dfDy—1v + didjz + diDi_v,z)

= (Byz + Ayv,v) + (Ciz + Byv,z) . (2.11)
Now use z = —C; 'B}v to find

(2.11) = ((4k — BeC; ' By Jo,0) + (—Cu(Cy ' BY) + B v, z)

= (4 — BxC; "B}y, v) .

Therefore, if
(4r — BeC b} =0,
then . " . »
|drzs|> + |dyzs|* = 0 = dyzs = dyzs =0 .

But this implies
25 € Epr1 =z € Epaq CE,j‘ .
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Thus, we must have
0=z=—-C;'Bjv.

But this implies
(A — ByCy "By o = Ayv = 0.

This contradicts the invertibility of 4;. Therefore 4; — ByC, lB,’j is invertible. O
In what follows, a fundamental role will be played by the operator
Tedy Ty - E,f — E,‘fi"1

(which, by Lemma 2.3, is well-defined independent of our choice of the extension
@) and the associated Laplacian

A = nkdknkd,’;nk + TdeZT[deTCk : E,f — E,fJ .
The significance of these operators follows from:

Theorem 2.5.
a) (mdy m)? = (mdjmi)? = 0.
b) The kernel of the operator

A E — EP
is precisely Ef.,.

Before we prove this theorem, we introduce a very useful definition. Up to this
point, we have defined all operators with respect to an arbitrary extension map ®.
Theorem 2.4 provides us with a canonical choice for @.

Definition. Define, for v € E;. The extension map @' by

@'(v) = v},
where v} is defined by the formula given in Theorem 2.4 (a) (iii). We let d}, denote
the operator dy associated to the extension @'. That is, for v € Ey,

div = dyv} .

From Theorem 2.4 (a) (i) we know that for v € E,
dyv, (d})*v € Ey. .

This choice of extension greatly simplifies the proofs in this and the next section.

Proof of Theorem 2.5. a) Since, by Lemma 2.3, mydyn; is independent of our
extension so we can choose the extension @’ defined above. This gives

nkdkTdekﬂ:kU = nkd,'cnkd,’(nkv .
But the image of d;m; is contained in Ej so that
md e = dj e .

Thus
nkdkndknk = nkd;(dfcrckv =0.
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The last equality follows from Lemma 2.2 (ii) which states that m,did;m; = 0,
where d; is defined relative to any extension ®. Applying this lemma to the exten-
sion @’ yields the desired equality.

b) Clearly Ey;; C Kernel 4;.

To prove the converse note that for v € Ey,v € Kernel 4; implies

(4gv,v) =0,
from which it follows that
Tedemev = medpv =0,
mdy v = mdiv = 0.

Thus .
dk<D'(v) = nkdkv =0 s

4,9 (v)=mdiv=0.
Therefore @'(v) € &+, which implies v € E;; as desired. O

In addition to providing the fundamental properties of the operators 7;d} #x and
Ay, Theorem 2.5 implies the following important observation concerning the higher
order terms ~

dij0 = diy; 9'(0)

for v € E; and j > 0.
Recall that @' was defined so that

w=dp®(v) € Ey,
(d))v=d,®(v) € E .
In fact we have:

Corollary 2.6. If v € Ef then there is a polynomial

Vs =0+ 0v +...+ 0'v;

such that
divs=d,os=0 forj<k, (2.12)
dyvs, dyvs € Ey (2.13)
dissvs, dyy ;05 € Exajmr for j > 0. (2.14)

Proof. The extension @’ defined earlier satisfies (2.12) and (2.13). We will modify
@' to satisfy (2.14). _
For any / and any w € E|,

0 =(d;®'(v), d5P'(w))
=& dpo, (d))*w)
+ 8 N dh, (d] ) W) + (diy v, (d])*w)
+ 0(5F+1*2) . (2.15)
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In particular
0 = (do, (d}y )W) + (dh, v, (d))"w)
= ((ﬁld’lﬂd;( + ﬁ;d;ﬁld;(_l_,)v, w) . (2.16)

Suppose ! + 1 < k. Then #,d},,d} = 0. This can be seen as follows: If / + 1 < &,
then since djv € E; we have dj,,d;v =0 (Lemma 2.2 (i)).
If I+ 1=k, then
fyd) dio = f—rdydiv

We have
vEE, = d;cl) cE, > d;d;cv cE = ﬁk_ld;(div =0.

Thus, from (2.16), for all ] £ k—1 and w € E‘;,
(Ridifdy 0, w) =0,
which implies for all / < k£ — 1,
di, v € Kemel 7d7; . (2.17)
From Theorem 2.5(b), the sequence
#(d)) ’ B} — E}T S EPTE

is exact. That is,
Kernelﬁ,d;ﬁ,lgl = Image 7,d,7; .
So that, for / < k-1,
iy v € Image 7,d)7; .
Similarly, for / < k — 1,
7i(diyq ) v € Image 7,(d))* 7 .
Thus, for every / < k — 1 we can find a u; € E; such that
dju; = fdgsv,
@) 'w = Fdy 0.
Let
k=1
()= @) - 3 F o).
i=—1

Then @] satisfies (2.12), (2.13) and (2.14) for j = 1. Continuing inductively, setting
the coefficient of 6**1*/ in (2.15) equal to 0 yields the desired extension. [J

Remark. Theorem 2.5(a) implies that for each £ = —1 we have a complex
0 _9E2""‘1_"§"E]1""_d"_,”"5£ — .

Theorem 2.5(b) implies that the cohomology of this sequence at the i step is
isomorphic to Ej ;.
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Thus the sequence of complexes has the structure of a spectral sequence. In
Sect. 3 of this paper we prove that this spectral sequence converges to the coho-
mology of M. In the case that M is a fiber bundle, and the vector bundle is trivial,
this is Theorem 7 of [Ma—Me]. Dai has observed ([Dai]) that in this case the above
analytic sequence is isomorphic to the Leray spectral sequence. We also prove this
in Sect. 4 as a special case of a more general theorem.

Before leaving this section, we prove that the spectral sequence comes equipped
with more structure, namely a bigrading inherited from the bigrading on Q*(M, V).
Let

E;:’b — 7_ca,b Ek ,

where
7 QF (M, V) — Q*P(M, V)

denotes the canonical projection. We will prove that

Ef = @ EY (2.18)
a+b=p

and that
Redy Ty (E]c:,b) C Ez—k+l,b+k ’
mdimy () € Bt (2.19)

We begin with a lemma which will also play a crucial role in Sect. 4 when
we prove the equivalence between our spectral sequence and the Leray spectral

sequence.
Let
Dy = {ws € Q[d]|dsws € 5*Q[5]} . (2.20)
We define a map :
dk . @k — Q
by 3
dyw; = lim 0 *dsws . (221)
Furthermore, let
Dy = {w € Q|F3ws € D; with ws(0) = w} . (222)

Then we have
Lemma 2.7. For all k
k=1
(1) Dy = (D Image nid;m; + Ej ,

1=—1

. k
(ii) dr 9Dy = @ Image nid;m; .

i=—1
Proof. Proof of (i): We have
E_ =Q" =Imagen_ d_jn_; + Imagen_d* n_; + Ey .
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Similarly,
Ey = Imagenydomy + Imagenodymo + E; .

Continuing in this fashion, for every k

k=1 k-1
Q" = @ Imagemd,n; + P Imagemd;n, + Ey .

i=—1 i=—1
To prove (i) we first show
k—1
lg?llmage mid;m; + Ey C Dy .
Clearly E; C Dy since every w € E; has an extension ws with
dsws € §*Q[0].
Moreover, if w € Image m;d;n,, then
o= ;if}, 87'd; @' (v)
for some v € Ei. Thus
ws = 6 'ds®'(v)
is an extension of w and dsws = 0 so that for all i,
Image n,d;n; C Do C Dy .
To prove the converse of (2.23) we will show
k=1
L@llmage n,dfni] ND,=0.

Suppose, for simplicity
w € Image m;d; n; N Dy

for some i < k — 1. Since
o € Imagen,d} 7, ,

we have '
w= gin}) 6759 (v)

for some v € Ei, so that A
ws = 67'd5P' (v)

79

(2.23)

is an extension of w. Since w € Dj, w has another extension ®s € 9y, so that

ws — Cf)(s = 52,5

for some z5 € 2[5]. Thus

0(0%) 3 (dss, ¥ (v)) = 5 (dsd} ' (v), &' (v)) — 8{dsz5, P (v))
= 671d; @ (V) ~ 8(z5,d5 ¥ (v)) = &'l +0(5"")

which implies, since i < k£ — 1, w = 0. The proof for general
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wE [@Imagen,-d;‘m] N Dy
i

is the same.

Proof of (ii). The proof is by induction. k = —1:9_, = Q[6] and d_(w+
dwy +--)=d> ‘o =n_jd_1n_ 0. Thus

d_19_| =Imagen_jd_jn_; .
General k: For any ws € D, ws(0) € Dy, so from part (i)
k=1
ws(0) € izegllmagenidin,- + E; .
As seen in the proof of part (i), every v € Imagen;d;mn; has an extension vs with
dsvs =0

$0, in particular
d kU = 0.

Every v € E; has an extension v; = @'(v) € & C 9, such that
ka(s = nka’knkv .

Thus .
dr 9y O Imagempdymy, .

On the other hand, for any v € D; the set of all extensions is precisely
vs +0Dk_1 ,
where vs is the extension given above, and
dp(v5 + 0Dy—1) = dyvs + dg—1Di—1 -

Thus . .
di Dy = Imagemdymy + dp—1Di—1 -

By induction, this is equal to
k
iza?llmagenidini ,
as desired [
We are now prepared to prove (2.18) and (2.19)
Theorem 2.8. For every p and k

) Bl = @ E’,
a+b=p
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(ii) mydymp(ESY) C EgTRHLHE

mdfm(E") C BTN
Proof. We first note that
b
EfC @ E7,
a+b=p
so to prove (i) it is sufficient to show that if a + b = p,
EY CE}.
We will prove (i) and (ii) simultaneously inductively in &

k = —1: Part (i). Suppose

Ell 0= Y o,

at+b=p
where
w* e Q% .
We need to see that for all a and b,
b P
™ €E”, .

Since w € E”, we have
d2,—lw — (dZ,—l)*w =0 ,
but
0=d*>'w=3d>"w". (2.20)
ab
Since
d2,—-lwa,b c Qa+2,b—l ,

(2.20) implies that for all a and b

>l =0.
Similarly,
(@ " Yo=0
implies that for all a and b
(dZ,——I )* wa,b =0
and thus
C()a’b € Eil .

Part (ii). We note simply that for
b b
o® € E*,

We have
ﬂ_ld_ln_la)a’b — d2,-—lwa,b c Efl_-iilb—l )
Similarly
ﬂ—ldiln—lwa’b — (d2,——1 )*wa,b c Eti—12,b—+l
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as desired
General k: Part (i). Suppose

wf = Y o eE].
a+b=p

Then certainly w € Ef_,, so by induction on part (i)
o € E} .
For any v € E}_|,
vEE «— m_ydi_ 1m0 = m_1dj_mg—10=0.
But € Ef implies

0= mp_1dp_17p— 1w = 3 T 1dj—1 1 0™ . (221)
ab

By induction on part (ii),

nk—ldk—lﬁk—lwa’b c Qa—k+2,b+k—2 .

So that (2.21) implies
Tp_1dp_1Tp_10*® =0 . (2.22)

Similarly
Tp—1df_Tp—10 =0

implies that
m1di_ 0™ = 0. (2.23)

Together, (2.22) and (2.23) imply that for all @ and b,
o € Ef

as desired.
Part (ii). Suppose w®® € E,‘:’b so that there exists a polynomial

w5 = 0™ + dwy + Swy + - - -

with
dsws,diw;s € 5*Q[0).
Then
dsws = ds ((Da’b + Zé‘w,)
>0
d5 (wa,b + Zaiwlq—i,b+l) + Zd5 (Zézw?+c—z,b—c+1) ) (2.24)
i>0 c*0 i>0
Let

~ __ _ab i a—ib+i
@5 = 0™ + 205 of .
1>

The first term on the right-hand side of (2.24) is equal to
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dsids = 5—1(d2,—1ma,b)+ (dl’oco”’b +d2,—1wclz—1,b+1)+ e
Writing, for any vs € Q[4],
dsvs = S~ 'd_1vs + dovs + 5a~71v5 4+

we see that :
d;®s € QIO (2.25)

Similarly, for all ¢=+0,

‘;j (zéiwf+c—x,b—c+i) e Qate—jtlb—ctj=1 (2.26)

i>0
Since dsws € 0(6F) we have that for j < k,

0= cija)‘; = d~jd)5 + ZJ] (Zéiw;Hc—r,b—c,H) ‘

c i>0

From (2.25) and (2.26) we learn that for j < k and every c=+0,

0= Jj(f)(; = Jj (Zélw;l+c—z,b—c+i) .

i>0

In particular, for ¢ =0,
S Famteet ¢ g
i>0
which implies
! w;z+c—i,b-—c+i €Dy .

1>0

Therefore, by Lemma 2.7, for ¢=+0,

d"k (Eaiwq+c—i,b—c+t) — ‘?k—l (Zéi—lwq+c—i,b—c+i)

i>0 i>0
k—1
€ @ Imagemdn; C Ef- . (2.27)
i=—i
By induction on part (i), for i < k,
El= @ E”.
a+b=p

So that for i < k, and every a and b,
ve Q% — fwe Q. (2.28)
Together, (2.25), (2.27) and (2.28) imply

ﬂkdknk(/)a’b = mdrws = mpdiDs = drdg — Zﬁidk(bé € Qe kFLbtk
i<k
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The same argument shows

Tde;TEk(Da’b c Qa+k—1,b—k ,

as desired. [

3. The Convergence of the Sequence {E}}

We now describe the sense in which this spectral sequence converges to the co-
homology of M with values in V. (This section essentially follows the ideas of
Sects. 2, 5 and 6 of [Ma-Me]).

In Theorem 3.3 we prove that the space of formal Laurent series in 6 with
values in QP(V') has a Hodge decomposition

(ds exact) @ (ds coexact) @ (ds harmonic) .

This implies that the space of harmonic Laurent series is isomorphic to the Laurent
cohomology

(ds closed Laurent series)/(ds exact Laurent series) .

This isomorphism is as modules over &, the space of real formal Laurent series.
On the one hand, we observe (3.4) that the Laurent cohomology is isomorphic to
the space of Laurent series with values in the usual deRham cohomology H?(M, V).
On the other hand we show (Theorem 3.1) that every v € E%, has an extension
to a formal power series which is formally harmonic, and that these form a basis,
modulo %, of the harmonic Laurent series.
Thus, combining the above observations, we have, in particular, that

dimE2, = dim H?(M, V') .

In Sect. 5 of this paper we show, with some additional geometric hypotheses,
that as § — 0 the space of g; harmonic forms approaches the space EX.

We begin by proving that every v € E%, is the value at 6 = 0 of a formally
harmonic power series.

Theorem 3.1. Suppose v € E%,. Then there is a unique formal power series

vs = v+ 00y + %0 + Ov3 + ... ) 3.1
such that
v, LEE  foralliz1 3.2)
and, formally,
dsvs =d3svs =0. 3.3)

Proof. Uniqueness: If v5 and v§ are two power series of the form (3.1), then vs — v}
is a formal power series satisfying (3.3). Thus, the first non-zero coefficient must
be in E%,. On the other hand all coefficients of v; — v} are in (E%)*. Thus vs — v}
must be 0.

Existence: For every v € E& and every K > N, there is a polynomial

vk =0+ 00 + -+ v,
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such that
dsvs, d;vg € 0(5K) .

The form v; is not uniquely determined since we can add any form-valued polyno-
mial dw;s with ws € £x—1. Any such polynomial must satisfy w, € EI"(’_] = Eﬁ =
EL,. Thus, the non-uniqueness of vy is given precisely by Ef. Hence we can
choose a vsx with v; € EX. This value of v; is unique and independent of K.
If K > N + 1, then our choice of v, is again determined up to E.,, so we can
choose vsx with vy,v; € EOLo Continuing in this fashion, we can find a vsx with
Vly..., UK—N GEé‘o.

These forms are uniquely determined. For fixed j, the values of v;,1 < i < j are
fixed for K = N + j. Hence, as K — oo, the vsx chosen in this fashion converge
to a power series satisfying (3.2) and (3.3). O

For simplicity, it is useful to introduce the notion of a Laurent series of forms.
Define #[Q”] to be the space of Laurent series with coefficients in Q7, i.e. and
element of £[QF] is of the form

Vs = Zéjvj

j2a

with a € Z and v; € Q7 for all j. The operator ds maps Z[Q7] to ZL[QP+1] and
satisfies d3 = 0. Thus we can define, for 0 < p < dim M,

HY =ZL/BY, ,
where Z7, is the kernel of the map
d? . 2[QF] — [t
and BY, is the image of d¥ ~!. At first it is simpler to consider instead the space
Hy =Z;/B;
where _
Z%, = kemel of d C Z[Q"],
where d is the usual d operator acting term by term on Laurent series, and
B%, = image of d C #[Q"].

Clearly

Zy = 2127,
where ZP C QPF is the kernel of d, i.e. the usual space of closed forms, and #[Z7]
is the space of Laurent series with coefficients in Z.

Similarly,

By = Z[B"],

where BP C Q7 is the image of d, i.e. the usual space of exact forms. Thus
HY =Z5/BY =~ P[H (M, V)] .

Note that H%, is an % denotes the ring of formal Laurent series with real coeffi-
cients, isomorphic (as #-modules) to

HP (M, V) @ &
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So that, in particular,
dimg HY = dimg HP(M, V) .

Now observe that the map p; defined in Sect. 1 induces an isomorphism
ps : L[QF] — Z[QF].

Moreover, p; maps Z; to Z,Bj to BZ, and commutes with the action of #. Thus
ps induces an isomorphism as ¥ modules

ps:Hy — HE . (34)
Our goal now is to relate the space E4, to HY. From Lemma 3.1 there is a map
UEEé’o — U5 = v+ 0 +5202+...

with vs satisfying (3.2) and (3.3). The linearity of the map v+ vs follows from
the uniqueness of vs. That is, if v; + v; = v, then (v;)s + (v2)s satisfies (3.2) and
(3.3) so we must have

(v1)s + (v2)s = vs .

For v € EL, we have dsvs =0, so [vs] represents a class in H g,. This map

extends to a map

El @ ¥ - HY, (3.5)
where the element A

Zéfvj € Ego R &

jza

(so that v; € EX, for all j), is mapped to the element

> 0/[(v))s] € HY

Jj2Za
In fact, the map (3.5) is an isomorphism. This will be proved in 2 steps

(i) The map (3.5) is an injection:
This follows from the following lemma

Lemma 3.2. If w € Z[Q] satisfies
dsdsw =0,

then
dsw=20.

Proof. Suppose w =3, ,6/w;, and let
wh= Y &w;.
asjsk

Then
didswk = dyds(wk —w) € 81QP[[8]],

so that
(dswh,dswk) = (d3dswF,wh) € 8F=1QP[[5]].
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This implies
k+a—1
2

dswk e 5[_]91’[[5]] ) (3.6)

We also know
dsw — dsw* € 5*QP[[8]] . (3.7)

It follows from (3.6) and (3.7) that
dsw € 6'0QP[[8]],

where

— -1
/(k) = min { [%] ,k} = Iik++] for k large enough .

Letting £ — oo proves the lemma. [

If vy is harmonic and vs = dsws, then

0 =djsvs = dzdsws
which implies, by Lemma 3.2, that
vs =dsws =0.

Thus, for 0%v € EX, [v5] € HS is non-zero, so the map (3.5) is an injection.

(ii) The map (3.5) is a surjection:

This follows from the existence of a Hodge decomposition for Laurent series of
forms:
Theorem 3.3. If v € L[QP] then there exist vy, v2,v3 € L[QP] such that

a) vy is harmonic,

b) v, € dsL[QP7!],

c) vy € 3 L[QP],

d) v=uv; 4+ vy + vs.

Moreover, v, v, and v3 are uniquely determined by v. (Note that if dsv = 0 then
we have v3 = 0 by Lemma 3.2, and this proves (3.5) is a surjection).

Proof. The uniqueness of the v; is clear. To prove existence we work modulo
harmonic Laurent series.
Write ‘
v= > dv;.
jza
By adding the harmonic series —%(7ov,)s to v wWe can assume v, € E. Then by
adding — 8t (oo Va4 1)s5 to v We can assume cyqq € Eolo Continuing in this fashion,
modulo harmonic series we can write
N—1

v=>80' 3 v

jZa k=—1

with vj; € £y for all j, k.
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We define a linear ordering on the pairs (j, k),j € Z,—1 < k < N — 1, as fol-
lows:
Say (j, k) < (j',k') if and only if

jtk<j+k orj+k=j+k and j </ .
Let (jo,ko) = min{(j,k)|v;x +0}. From Theorem 2.5(b), we know that
Ay, E~',§) — E',i;
is an isomorphism. Therefore there exist w; € E,z)_l,wz ek ,ﬁ;“ such that
Vjoko = digwt +dg w2 - (3.8)

Let
vV =v—ds(60d (wy)) — d;(é’bdﬁ’(wz)) .

As before, modulo harmonic series we can write

/ 'N_l /
D EDY Uik

jza k=—1

with v, € Ey for all j, k. Formula (3.8) implies v

ok = 0. Corollary 2.6 implies
that if

(j1, ki) = min{(j,k)|v}; +0} ,

then (j1,k1) > (Jo,ko). Thus we can repeat the operation and in this fashion con-
struct the desired v, and v; term by term. [

4. The Leray Spectral Sequence

In this section we show that the spectral sequence {E,f7 ,mgd i }, or more precisely
{L(E}), midim}, is isomorphic to the Leray spectral sequence associated to a
filtered differential complex constructed from M and the splitting TM = A + B. As
a corollary, we learn that for all p and k the dimension of Ef is independent of
the metric g = g4 + gs.

In addition, in the case that 4 is integreable, we show that {E,ﬁ7 ,Tdpmy} s
isomorphic to the standard Leray spectral sequence associated to the corresponding
foliation.

Let us briefly recall Leray’s construction of a spectral sequence from a filtered
differential complex. (See [McC] Sect. 2.2 for general discussion.)

Let {K, 0} be a differential complex. That is,

K=K, oK) CK™' and @ =0.

Suppose further that
K=--2D2K 12Ky2K;2...
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is a filteration by subcomplexes, i.e.

K=|JK and 0K)CK:.

Then we get a spectral sequence as follows: Define

zZpa =KMo KT, (4.1)

B =KZHM UK, (42)
and

et =zpa/zM ! 4 BP (4.3)

Then ([McC] Theorem 2.1) the operator ¢ induces a differential 0, on the spaces
e such that
€yl = H*(er, ar) )

and thus the complexes {e,,d,} form a spectral sequence. Lastly, we define

I _ ] —
& =Uer,

% p=a

so that

ol I+1
Or:e. — e’ .

To place the spectral sequence {E,f ,mrdym} in this general framework, we
borrow an idea from Sect. 3 and let
K? = Z[QF]
where #[QP] denotes the space of Laurent series in ¢ with coefficients in Q7. Let
K = 3'Q7[[o]]
so that
K":--~2K_pl QK(‘)” DKID....
For the differential, we take
a — 5d0 =d2,—1 +5d1’0 +52d0’1 -|—53d_1’2 ,
so that
aK) CK,.

Note also that
HP(K,0) = Hy(K,ds) = Z[EL)] .

In fact, we have

Theorem 4.1. With K, and 0 defined as in (4.1), (42) and (4.3), the induced
spectral sequence satisfies:

For every r
{era ar} = {g[Er—l]s TEr_]dr_lTCr_I} >

where n,_1d,_ 11, acts term by term on L[E,_1].

Proof. We begin by defining the space
Zi = {os € Q7[[8]lds05 € 5 QP [[8]]} -

Note that g,f is just a completion of the space 27 defined in (2.20).
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Then
zZP4 = 6P QPHI[6]] N 071 (3P QPHHI[8T]) = 07 D)
BP = 5PQP+¢I[[5]] naoP~ rQpta— 1[[5]]) — 5P ragpﬂ] 1
and
P Yas]
ep’q P+l qfl = ——— 5p@r_] a1 (44)
ZAN O T T AT
DP‘HI
=0 [WJ 4.5)

(where D”* and d,_, are defined in (2.21) so that

plre g .
U®e [dr 2§£—2:|

a p2a

The theorem follows from the following two facts:

(i) For all / and r

r—1
Dl = @ Image(ﬂ:idinilElI—l )+ E} .

i=—1

(ii) For all / and r

(@,") = P Image(mdim|yi-1)

i=—1

which 1s precisely the content of Lemma 2.7. (The slight difference between (74

and @ does not affect the lemma or the proof)
Now we note that (i) and (ii), combined with (4.5) clearly yield

el = #[E' |].
Moreover, the correspondence between 0, and n,_d,_ 7, follows as well:

For a class o € e, let 51’& e oP9P=] be any representative of o (using the

formulation (4.5)), and os € .@ any extension of o.
Then 67d;s represents « in (4 4) and by definition

0,0 = [00PFs]

where [057%s] denotes the class in e?*9! represented by 85”%s. From (i) and (ii)
there is a unique & € 51’Ep which represents . We can then choose a5 = @'(«)
(where @' is the extension deﬁned in Theorem 2.4), so that

0,0t = [5}70&5] = [6P+1d5<15’(&)] = [5p+rnr—ldr—l7tr—1&] (46)

as claimed. O
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The spectral sequence {e/,d;} is defined independently of the metric g =
g4 + gp. Moreover, it is clear from the proof of Theorem 4.1 that the isomorphism

(ef,0r) = (LIE_ ) me—1dr—1m—1)

is as #-modules. In particular, we learn

Corollary 4.2. For all p and k, dimE? is independent of the metrics gsandgg in
the decomposition
g=9g4a+9s.

For the remainder of this section we assume that 4 is integrable. In this case we
know that
=0

so that, in particular
d= d1,0-+ dO,l +d—l,2 . (47)

This implies that our spectral sequence satisfies
Q*=E_=E.

There is a canonical filtration of the deRham complex associated to an integrable
distribution. Namely, let
K=" (V)

and
K= @Q“(v).
i€
Then
K=Ky 2K 2 2 Kgimp 2 Kgimp+1 =0
and (4.7) shows
dK;) CK;.

This data gives rise to a Leray spectral sequence defined by (4.1), (4.2) and (4.3).

In analogy with our earlier analysis, to help identify the spaces e/ we define

PP = {w € QM NK,ldo € Q" N Ky}

and
9P = {w € QP € 971 with nP1d = w} .

We also define the operator

J . op4 p—r+lg+r
d, : 991 — Df

by
d,w: nP "t g |
(Note that
d{dw)=0 and (dw)€ Ky N Qrtatl
imply

7.cp—r-+-1,q+r(dw) € Dp—r+l,q+r C Df_r+l’q+r ) .
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Then .
ePd 22 DPA/d,_ gPH T (4.8)

The expression on the right-hand side of (4.8) can be simplified with the following
lemma

Lemma 4.3. For all p, g and r

r—1

(i) DP4 = {@(Imagenidmi N QP
=0

®EM,

(ii) d, DP9 = I:@(Imageﬂidiﬂi n Qp—r+1,q+r):| '

i=0
Before proving this lemma we state two corollaries. Lemma 4.3 and (4.8) imply
et 2 EPI
Moreover, the proof of (4.6) can easily be adapted to our context to prove that the
differentials coincide. Thus we have
Corollary 4.4. If A is integrable

{ef-”qa ar} = {E;{”q, nrdrnr} >
where {ef*,0,} is the Leray spectral sequence associated with A

We note that the Leray spectral sequence {e/?,d,} is defined without reference
to the metric g = g4 + gp. Moreover, it can be defined without reference to the
distribution B. This can be done by observing

K; =@{w € QPlig, i, cela, O = 0 (where i = interior product
»

for all ay,...,ap_iy1 € A} .
This implies
Corollary 4.5. If A is integrable then for all p,q and r
dim EPH4

depends only on the distribution A. In particular, dim EP? is independent of the
complementary distribution B as well as the metrices g4 and gp.

Thus it only remains to prove Lemma 4.3

Proof of Lemma 4.3:
(i) We first show

r—1
@(Image mdim; N QP | @ EZDPA . (4.9)
1=0

To prove EP? C DP? we let
O)P:q c Erp’q i
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Then there exist wy,wy,... with
ds(wP? + dw; + &wy +...) € §7Q[4],
so that
dWeri =0,

0,1, p, 10, p—lg+l _
d* Pl +dPel ™1 =0,

d—l,zwp—;+3,q—r—3 +d0,1wp-—2r+2,q+r—2+d1,0wp——r+1,q+r—1
r— r— r—1

From this it follows that
d (w”’q + Ew{"i"’*i) € Ky
i>0

which implies
wP? e DP1 .

From Theorem 2.8 we know

Imagen;d;m; = @ Image 7;d;m;| gpa
1
Pa

and .
—itlg—i
TE,'djTCilEP,‘I CEip A
1

For w?4 € Imagemn,d,m; N 274 there is a
v € EPHi-la—i
; .

with ‘
w4 = lim 6 'd;®'(v),
5—0
where
&'(v)y=v+ v + v+ ...

for some vy,vy,... .

Then point
dé[vpﬁ—l,q—t + 5U{J+z— gl 52021,p+t—3,q—t+2 +..]
_ si. g 1+1_ p—1mg+1 i+2  p—2,4+2
=0+ 6" w; + 0 w;
for some o
w,_D—I,q-H c QP+
; .
Thus

1>0

ds [co”’q + Zéiw{’_i’q“] =0

or, setting 6 = 1
d {w""’ + Zw,-”_i’q+i] =0.

=0,

93

(4.10)
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From (4.10) it follows that
wP? e D1 C DM,

which implies
Imagem;d;m; N QP4 C DPA .

The converse of (4.9), as well as part (ii) of this lemma are proved similarly.
That is, one simply follows the proof of Lemma 2.7 using the minor modifications
demonstrated in our proof of (4.9). O

5. Small Eigenvalues and Eigenspaces

In this section we assume that 4 is integrable, and hence defines a foliation of
M (so that d>~! =4%>~1* =0 and E_, = E,). In addition we make assumptions
restricting the local geometry (see hypothesis (H1) and the global geometry (see
hypothesis (H2)) of the foliation. We essentially assume that 4 is a Reimannian
foliation with compact leaves, and g is a bundle-like metric (these terms will be
defined shortly). There are many examples of such foliations. For example, if

F—M—>N (5.1)

is any fibration of M with compact fiber F then M can be given a metric g such

that (5.1) is a Reimannian submersion. Then the foliation of M given by the fibers

of (5.1) satisfies the hypotheses. Moreover, if G is a compact Lie group acting on

M such that all orbits have the same dimension, and if the metric G is invariant

under the action of G (such metrices always exist), then the foliation of M by the

orbits of the action satisfy the hypotheses. See [Re] and [Mo] for other examples.
Under these restrictions we prove that for all p,

dimE} < 0.

This was proven under more general hypotheses in [Sa].

We can then make precise statements about the behavior of the small eigenvalues
of Ls, as well as the corresponding eigenspaces, as 6 — 0. A key role is played by
the spaces £; and the operators ¢ defined in Sect. 2.

In particular, we show that the number of eigenvalues which are ~ 6% as 6 — 0
is precisely dimE,f (Theorem 5.15), that the corresponding eigenspaces converge
to E,f (Theorem 5.17), and that the eigenvalues are asymptotic to the eigenvalues
of

AP E} — EY (5.2)

(Theorem 5.20). Recall that the operator A; and the spaces E ,f in (5.2) are indepen-
dent of 9, and defined purely in terms of the Taylor series analysis of Sect. 2. That
is, loosely speaking, we demonstrate that under the hypotheses (H1) and (H2), the
formal Taylor series analysis of Sect. 2 enables one to conclude precise quantitative
statements concerning the asymptotics of the eigenvalues and eigenspaces of LY as
60— 0.

We begin this section with a statement of our hypotheses. We first assume

(H1) (M, 4, g) is a Riemannian foliation with a bundle-like metric.



Spectral Sequences and Adiabatic Limits 95

That is, we assume (M, 4, g) satisfies one of the following equivalent conditions
(see [Re] Proposition 4.2):

1) (M, 4, g) locally has the structure of a Riemannian submersion.

2) For every vector field X tangent to 4, £x(gs) =0 (where we have written
TM = A+ B, and g = g4 + ga, and Ly denotes the Lie derivative in the direc-
tion X).

3) The distribution B is totally geodesic, i.e. for every p € M, b € B, and every
extension of b to a neighborhood of p

(VsbY'(p) =0,
(Note that (V,b)4(p) is independent of the extension.) Let V4 denote the map
Vi:QY S5 T*4A@ QY
given by
V0 = Zn:ai ® Vg;oco ,

i=1

,,,,,

hypothesis on the local structure of 4 implies the following:

Lemma 5.1. Assuming the hypothesis (H1),

a) The operator ("0 = d"*(d'\0) + (d'°)*d'® has the form
0% = (Va)*'V4+ C

where C, is a zero™ order operator.
b) The operator d'0(d%')* + (d%')*d'® has the form

d (@) + (@) d"0 =G0V, + Gy

for zero™ order operators C, and Cs. That is, for a basis {a;} of A there are
zero™ order operators {Cy;} and Cy such that

dl,O(dO,l )* + (dl,O)*dl,O — ZCZ,ivg;O + C3 .
i

The same is true for the operator (d'0)*d% + d%!(d"0)*.
c) The operators d°(d='2)* + (d='?)*d'® and (d'°)*d='? +d~1*(d)* are
zero™ order. (This is true independent of (H1).)

Proof. At p e M, let {a;} be an orthonormal basis for 4, {b;} an orthonormal
basis for B, and {a/} and {b’/} the dual bases. We now extend these bases to
orthonormal bases in a neighborhood of p. Since B is totally geodesic, we can
choose these extensions to be parallel in the B direction so that at p,

Vbjai = Vbjbk =0 forallij k.
We can choose the extension so that, in addition, at p

V% = Vb =0 for all ik
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Then ‘ ‘
d" =3d'Vel + 36y
i Jj

We observe that at p V,i}_l = 0. Since

1,0 0,0
(d )* = _Zvak lak + CI ’
where C; is a zero™ order operator which vanishes at p, we have at p,

1,0, 71,0 1,0 1,0 __ iv70,0v>0,0 - 0,0 . iv70,0
d(d) +(d)d”’ = - Zk:alva, vak lg, + vak lakalva:
i,

+ (zero™ order term)
=(using v2;°a,- = 0 for all 4, /)

— %a"akvgf’vgﬁ + iaka"vgfvg;" + (z.0.t.)
1
= %:(aiiak + g d )VIVOY
1
— Vg d(VeIVY = VoPVad) +zot).  (53)
ik

Since d'ig, + g, @' = j, the first term in (5.3) is, at p
00500 _
—EVIVY = Vi,
1

Since
vak va; - va, vak = v[ak,a,] + R(akaai) 5

where R(a,a;) is a zero™ order curvature operator, we have

VOV — VOOV = R(ai,ar)™ + V?j/’aal]
_ (thz;_lvzz_,l’l T va—kl,lvtll;—l _ V‘ll:-—lva—kl,l _ v;l,lva—kl,—l) .
For every v, V% is 0" order if (a,b)#(0,0). Furthermore, [a;,a;] C 4 so
la,a] = Vola; — Ve =0 atp.
Thus, at p
0" = VvV, + zero™ order terms.
Since p is arbitrary, this proves (a).
Parts (b) and (c) are proved similarly. O
Corollary 5.2. There are constants ¢, and c; so that for all o € Q*,
[@"°@*")* + (@*)*d" )| £ ei(|Vao| + |o])
(0M0,0)F +a]).

The assumption (H1) is a restriction on the local geometry of (M, 4,g). Our
second, and last, assumption restricts the global geometry.

IIA
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(H2) We assume that the positive spectrum of the operator ("0 = d'0(d'0)* +
(d"%)*d"? is bounded away from 0 by a positive constant.
That is, we assume there is a ¢ > 0 such that @ € (ker "°)* implies

0, w) = clof*.
Lemma 5.3. If (M, 4, g) satisfies (H1) and, in addition, all leaves of A are compact,
then (M, A, g) satisfies (H2).

Proof. First suppose 4 consists of the fibers of a Riemannian submersion = : M — N
with compact fibers. Then w € (M, V') can be considered as a j-form on N with
values in the infinite-dimensional bundle

QF, V)
!
N

(where Q/(4,V) denotes the bundle whose fiber at x is Q'(z~'(x), Viei(y)-) For
w=0®p,ac Q(4,V)and f € Q(N), (or, more precisely, w = a A w* ) we have

d¥w = (d)® B,
@Yo =dmep,
0% = () ® F,
where d,d} and [J; are the differential, codifferential and Laplacian, resp., as an
element of Q'(n~'(x), V,-1(,)- Thus
ker (0 = I'(N, A*T*N ® #*(4,V)),

where #*(A4, V') denotes the vector bundle over N whose fiber at x are the harmonic
forms on 7~ !(x) with values in V. Moreover

inf{1 € spec10 | A > 0}
= igg[inf{z € spec Oy : Q*(n ' (x), Vpm1(5y) DI 4 > 0}]. (54)

The spectrum of [y varies continuously over N, and the multiplicity of 0 is constant.
Thus the smallest positive eigenvalue is a continuous function on N and therefore
achieves a positive minimum. This implies the infimum in (5.4) is positive, which
is precisely (H2).

More generally, suppose 4 is any foliation with compact leaves satisfying (H1).
Then, by Proposition 3.7 of [Mo], the leaf space N = M/A has the structure of a
compact Satake V-manifold (see [Mo] for a precise definition). We will show that
the infimum in (5.4) is positive by showing that the function

Mx) = inf {4 € specy : Q*(n~'(x), V) D| 1 > 0} (5.5)

is locally bounded away from 0 (from which (H2) follows by the compactness of
N). M is a locally trivial fibration over the dense set U of non-singular points in
N, and at any x € U the local boundedness of A(x) follows as before.
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If x is a singular point of N, then all nearby leaves cover n~!(x), with the
degree of the covers bounded above by some k. Suppose {%,..., %} are all the
Riemannian covers of 7~ !(x) with degree < k, and

M%) = inf{A € specC]: Q*(%,V) D| 4 > 0}, (5.6)

where ¥ in (5.6) denotes the pull-back to ; of the bundle ¥ over n~!(x).
There is a neighborhood of x which can be stratified by sets . such that

1
{n=1(x") |x" € 3_,} are all diffeomorphic and as x’ € ), approaches x,n~!)(x")
approaches some %;. Thus, as x’ € >, approaches x, A(x’) approaches A(%;) > 0,
which proves 4 is locally bounded away from 0. [

From now on, we assume hypotheses (H1) and (H2). The significance of these
assumptions is hinted at in the following lemma.

Lemma 5.4. There is a ¢ > 0 such that for all 6 small enough,

Ly 2 300 4 2O - 0) 2 2@ +TM -0,

where (10 = d*b(d*b)y* + (d*b)*de®.
Proof.
Ls =0 4 0% 4 60712 4 6(a"0(d™y*

(@)Y 1 (@90 @ 4 a%(d0))

+ O(d 012y + (d—l,Z)*dl,O (@) a2 4 g1 0y

F 3N (@12 4 (@) 2 4 @)
To simplify notation we will write

Ls =0 4 200 + 6*0712 + 6K, + 6*°K, + 6°K3 .

We observe that ("2 is positive, and from Lemma 5.1 (c), K, is a zero™ order
operator, so for some ¢,

Ls = O 4+ 520 + oK, + 53K3 - 6‘152 .
We now observe that for any w
(Ko, 0) = 2(82d™ w,6%7d ™ w) + 2(6**(d™ ) 0, 8*(d ™) w)

so that
[(BK30,0)] £ ([ w,0) + 680 Po,0) .

Thus, for 6 < 1 there is a ¢, so that
1
Ls = a4 Eézljo’l + 0K, — 0252 . (5.7)

Lastly, we write

(K, w) = 6({K1Tow, Tow) + 2{K 710, Row) + (KT, T ) . (5.8)
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We note that
<K17[160,7I16l)> =0 (59)

and, from Corollary 5.2, there is a c3 such that
Kimo| < c3|mol.

Thus, for any ¢ > 0,

A

5
5K my o, Row)| < 26¢3|m 0| |fow| = 2|eow) l%nla)i

lIA

& |igo]? + 82 (§—§|n1w|2) .
From (H2) we can choose ¢ small enough so that for all w,

0w, w) = &|mowl|* .

=

For such ¢
~ [y 2 (€3 2
2{0K m W, Fpw) = — (Z(D , ) + 6 (—82) lo|” ] . (5.10)

From Corollary 5.2 there is a ¢4 such that
(6K 7w, rgw)| < Sea (O Fow, o) |Fow| + |Fow]?) (5.11)

We have from (H2),
dca|mow|? £ des(1w, ) ,

so for ¢ small enough
1

dea|mow|* < g(Dl’Ow,co). (5.12)
Moreover
Seq (D7, ﬁow)1/2|ﬁw| =2 (—1—<E|1’0ﬁ060, ﬁoa))l/z) M|now|2
V8 2
1
< g(Dl’Oﬁow, fw) + 6%)2e3)|mowf* £ —;—(Dl’ow,a» + 822cd)|w) . (5.13)

Combining (5.7)—(5.13) yields the theorem. [

We observe that (1% +[1%! is an elliptic 2" order operator with positive symbol.
Thus, for any k € R, only finitely many eigenvalues of (1'° +[*! — C are less
than k.

Combining this observation with Lemma 5.4 we see that at most finitely many
eigenvalues of LY can be in 0(6*). Therefore, from (1.8) we learn

Corollary 5.5. For all p
dimE) < oo.

Before leaving this topic, we present an implication of (H1) and (H2) which
will play an important role in the analysis in this section.
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Lemma 5.6. There is a ¢ > 0 such that
|7od® 71, |7o(d* ) 71, |1 d®! Ao, |1 (d*1)* 7o

are all bounded above by c.

Proof. We prove the lemma for 7od®'m;. The bound for the other operators
follows similarly. Suppose w € Q7 satisfies w € E; = Kernel(1*? = Kerneld'® N
Kernel(d%)*. Write d%'w = a + B with

a €k,
cEy= = (Kernel 1" = Imaged *~ @ Image(d"")* .
Ey = Eft = (Kemnel ")+ =1 AV el @)
Since
dl,O(dO,lw) — _dO,l(dl,Ow) =0

and
dYWo =0

we must have
B € Kerneld' .

Then, from Corollary 5.2,

ailo] Z [(@*'(@)" +(d"")*d* ol
= |@"y d* w| = (@) |
=[(@"* +(@"))Bl| z el
(from (H2))
= Czlﬁodo’la)l .
Thus, we have proven Lemma 4.6 with ¢ = z—; O
We now commence our study of the small eigenvalues of Ls. We begin by
showing that the number of eigenvalues which are in 0(6%) as § — 0 is precisely
dimE?Y.
The first step is to show that the corresponding eigenspaces converge to EZ and
0 —0.

Lemma 5.7. Given any ¢, > 0 there is a ¢c; > 0 such that:
If 6;,i = 1,2,3,..., is any sequence with 6; — 0, and w; any sequence of p-
forms with |w;| =1 and
(Ls,oi, ;) < 16,
then
[Fow,| < €26, .

Proof. This follows directly from Lemma 5.4 and (H2) which imply

ad® 2 (Lswp, ;) 2 (P0,0) — 36 2 ailfow|* — 36 . O

Theorem 5.8. If 6;,i = 1,2,3,..., is any sequence with 6; — 0, and w; any sequence
of p-forms satisfying |w;| = 1 and
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(Ls, i, ;) € 0(8%),
then a subsequence of the w;’s converges (strongly in L*) to an element o € EY.

Proof. Write w, = o, + f, with
o € Eé’ = (ker M0yt

and
Bi € Ef =ker(".

From Lemma 5.7 it follows that there is a ¢ > 0 with
[OC,' < 05,‘ .

so that
|Bz| =1 "|‘O(5i) .

The lemma follows once we show that a subsequence of the f;’s converges to an
element in EJ.
(i) First we show that the f;’s are bounded in H;. By definition we have

|d" 08| = (@) Bl =0,
so it is enough to show that for some k& > 0,
™ B <k | @) B < k.
Now |dsw|? € o(5?) implies
ldYw 4+ 6d" o + 6°d | € 0(6*) = m(d*'w + éd HPw) — 0= 1;d*w — 0.

But
md* o = md® (o + B) = (md* Fo)o + md™ f .

From Lemma 5.6
|md® Zpa| < cla| € O(5).

Thus

|md® gl — 0. (5.14)
On the other hand

|fiod™ Bl = |Rod® 1 B| < ¢|p| < clw| =c. (5.15)
Together, (5.14) and (5.15) imply
|d®' B < k.

Similarly, one can prove

(@) Bl < k.

Thus the f;’s are bounded in H; and hence a subsequence of the f8,’s converges
weakly in H; (= strongly in L?) to some B € H,.
(ii) B € EF: Since B; — B strongly in L2, (2) implies |B| = 1. Now

0 = B — 7o

implies T =0 so € EY.
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(iii) B € Ef: Since B; — B weakly in H; we have d%!8; — d%! B weakly in L?.
Thus
nldo’lﬂi e nldo’lﬁ

weakly in L2. By (5.14) |n;d%! ;| — 0. This implies 7;d®!8; — 0 strongly in L2.
Therefore (by the uniqueness of weak limits)

md®f=0. (5.16)

Similarly
md* ) p=0. (5.17)

Together, (5.16) and (5.17) imply g € Ef. O
Corollary 5.9.
#{A? € spec(LY) | lim i(t)lf 0724P =0} = EF .

Proof. The inequality = follows from (1.8). If there were a strict inequality, then
we could find ; — 0 and w; € Q7 with

loi] = 1, (Ls, s, ;) € 0(6%)
and (w;,w) =0 for every w € EY, but this contradicts Theorem 5.8. O
We saw in (1.8) that
#{Af € 0(6")} = dimEY .
Combining this with Corollary 5.9 we have
Corollary 5.10. There are constants ci,c; > 0 such that for every i either
=8 forals

or
A<t forals.

Our next goal is to prove analogous statements about eigenvalues which are
O(5%).
To analyze the small eigenvalues, it is convenient to modify the Ej spaces by

using the extension map @’ defined in Sect. 2.
Recall that for each k, @’ is a linear map

@ E} — QP[]
such that for v € E,f
ds®'(v) € FET! 4 s+ QP[5
430 (v) € SEY " + 5+1Qr-1[5] .
For each v € Ef, there is a formal power series

vs=v+0v + v +.... (5.18)
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such that the map v — v; is linear, and, formally,
dsvs =dsvs =0.
Define, for v € E}
&'(v)=v+ v, + v, + -+ NPy
(where the v;’s are as in (5.18)), so that
ds®'(v) € VNPT 4],
3@’ (v) € " PQP4].
Now extend @’ linearly to a map
@ QP — QP[6].
For every 6 € [0,1] we can evaluate @'(v) at d to get a map
@ |5: QP — QF .

Let EJ; be the image of E; under this map, and let m;; denote the orthogonal
projection onto the complement of E ,f s- Define E ,i 5 to be the orthogonal complement
of E/f+1,5 in E,fé, ie.

Eps = ny 1 5ELs
and 7;s the orthogonal projection onto E,f 5-

Suppose vy,..., v is the basis of Ef, |, so that &'(vy)|5,..., ®'(v,)|s span E,fﬂ,é.

If ve E,’:, the

r

Fo®' (0) = D' (v) — D (D' (0), P'(v))) D' (v)) -

Jj=1

Each (9'(v), ®'(v;)) is in O(d), since &'(v) =v+ O(9),P'(v;) = v, + O(5) and
(v,v;) = 0. Therefore,

s @' (v) = v+ O(9) ,
dsitps®'(v) = d*djv + O(d*+)

(since ds9'(v;) € O(8**1) for all j), and d3 759 (v) = 6*(d},)*v + O(5**!. Further-
more, we have that for every 6 € [0, 1],

Epy = {50/ (v) |0 € Er}
Suppose k£ > 0, and v; € E,ﬁa for 6 € [0, 1]. Thus
vs = s ®'(U)
for some 1-parameter family of elements

5565'5.
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Then
(Lsvs,vs) = 0% (A5, bs) + O 1) (5.19)
(where Ay = dy(d})* + (d})*d}).
From Theorem 2.5 (b)
Ak Ek — Ek

in invertible. Since Ek is finite gimensional for £ > 1, there are positive constants
¢y and ¢, such that for all v € E},

18| < (dkv,v) < 0% |of? . (5.20)
Combining (5.19) and (5.20) we find

Lemma 5.11. For every k > 1 there are constants ci,c; > 0 such that for all
vs € Eyg,

c152k|1)5|2 < (Lsvs,vs) < cz52k|05|2.
In addition, we know from the definition of @’ that if v € Ej, then
djv,(d}) v € Ey .

Thus, if follows for v; € Ey,v, € E;, k=1, we have that

(doiigs® (1), dst @' (12)) € O,

(d5 7@ (01), d521,®'(02)) € O
This implies that for any v and w,

(71 5LsTy 50, w) € O(S* Y. (5.21)

If k > 1 orl > 1, then #;5Ls7s has finite rank, so the bound in (5.21) is uniform
in v and w. That is

Lemma 5.12. There is a ¢ > 0 such that for all k and | with
max {k [} = 2.
we have
L et if k=1
lnl,éLénk,6| = ek if k1.

This brings us to the theorem from which our main results will be derived.

Theorem 5.13.
a) There is a ¢ > 0 such that for k = 1 restricted to E,ié,

ﬂt&Lani{l’-{; > Céz(k—l) .

b) For every ¢y > 0 there is a ¢; > 0 such that for all k = 1,0 €
vs € Efs if vs] = 1 and (Lsvs,vs) < ¢16**~") then for all 0 < i < k-1,

|77:,,5l)5| < Cz5k_i_1 .
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c) There is a ¢ > 0 such that for every k = 1, and every i,j with 0 < i,j <
k—1,
|%is(misLomis) ™ Rjsl < 6777 (5.22)

Proof. Parts (a), (b) and (c) are intimately related, and we prove them simultane-
ously, inductively in &

k =1 :Part (a) follows from Lemma 5.4 and Hypothesis (H2)
Part (b) is vacuous
Part (c) follows directly from (a)

k =2 :Part (a) is Theorem 5.8)
Part (b) is Lemma 5.7.

We now proceed inductively.

Proof of (¢). Assume (a) (b) and (c) have been proved for £k — 1, and (a) and (b)
have been proved for k = 2. The proof of part (c) will be by downward induction
on max {i,j}.

max{i, j} =k — 1. Assume j = k — 1. We will show that for all i < k — 1 (leaving
off the J subscripts)

|Ri(nt Lot ) Ay | < e~ kD=1

Since .
(Ri(mp Lmi)™'#;) " = ®j(m- Lm- ) ™'
and taking adjoints preserves norms, this implies the same inequality for j < i =
k—1.
Suppose v € E£;_; and |v| = 1, and let

(L) " v=ow.
Then, by part (a), || < cd72¢=D, Let
@ = c 152 k=Dg,
so that |@| < 1. Then @& € Ej; and
(L, @) = ((ni- L), @) = ¢~ 16** =D (v, @) < 7167 *D |
Therefore, by part (b) of this theorem, there is a ¢ > 0 with
7@ < edf1

which implies )
|l Ly Yi—10] = || < ()04 7D,
as desired.
1 < max {i, j} = k—r,r > 1. We assume (5.16) has been proven for max{i,j} >

k —r. As above, it is sufficient to assume i < j =k —r. Suppose v € Ej;5|v| = 1
and write
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(n,ﬂ'Ln,;L)—l v=w,

so that
gl =0.

Since v € Ex_, C E{ ., we have

T lnpo=v.

Therefore
k=1
1 1 _ 1 ~
T p 1 LGy @ = 0 — , kZ 1”k—r+1Lnlw )
=k—r+
sofori <k—r
k—r N N . k—1 n
B0 = 3 AT, LTy ) Ao (0= 30 W L0
m=0 I=k—r+1

k—r k—1

R. Forman

~ 1 1 1~ ~ e~ T~ T~
= B L) im0 = 30 Y A L, ) LR LR

m=0/=k—r+1

By induction on part (c),
| 1 ~ —ij
Iﬁz(nk—r+1L”k—r+1)nj| S e

Thus
|7yt L) F—rt] < o=

and

I (T 1Ty )™ Fonl Ay < Y3000~ "Rl | [0
m | m 1

Since I > k — r, it follows by the induction on max{i,j} that

fio| = |F(rtLat ) o] < eIk
& LT

From Lemma 5.12, since [ 2 k—r+1=2and l Zk-r+1 > m,

|l € O™ .

Substituting (5.26) and (5.27) into (5.25) yields

IZZﬁz(ﬂkl_an/f_m)_‘ﬁzwl < comkmn=it
m [

Combining (5.23), (5.24) and (5.28) yields the desired inequality.

(5.23)

(5.24)

(5.25)

(5.26)

(527)

(5.28)

i =j =0: The only case not previously covered is i = j = 0. Suppose v € Eq, |v] = 1

and
(Lot o =w,

so that w € Ef* and
n,;LLnklw =v.
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Then
(Lw,w) = (FLufw,w) < |7ow] .

On the other hand, we have
(Lw,w) = (Lugw,myw) + S (LEw, &w) .
1)
max{i, j} 22

If max{i,j} = 2

[(Liw, Tw)| = [((R,L, T )Rw, Tw)| < |RLA]| 7w .

From Lemma 5.12, o
|ﬁjLﬁ,| < e

By the downward induction on max{i,;}
[Fw| = (Fi(m(ms—1Lmg—1) "' mo)v| < 67

Similarly i 5
awl < co™ .

Thus, there is a ¢; such that if max{i,j} = 2,
[(LAw, Tw)| < c; .
From Lemma 5.4 there is a ¢ such that
(my w,my w) = %(Dl’on%w, Ew) — c8*|mdwl? .
From (H2)
(@r3w, ny wyc|fow|® .

Moreover
ey wl* = co?|Rgw|* 4+ coH 7w .

From the downward induction on max{i,j} there is a ¢ such that
|Riw| = 1 (me—1Lmg_1) " 'mov| £ co L.
Thus for 6 small enough

(Lrydw, 5 w) = co|fow|* —c3 .

From (5.29), (5.30), (5.31) and (5.32) there is a constant ¢4 such that

CzlﬁoWlZ — C4 é |ﬁ0W| .
which implies there is a ¢s with
|fow| = |Ro(mx—1)Rov| < 5

as desired.
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(5.29)

(5.30)

(531)

(5.32)

Proof of Part (b). Assume that (a) (b) and (c) have been proved for £ — 1 (where

k = 3). Suppose v € E5,|v] =1 and
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(Lv,v) = ¢ 82—

Write v = o + f with o € E/f"_m’ﬁ S E"k_l,,;. Then

Lo, U) = <LO€, ﬁ) + <ﬂ’ ﬁ)
2 (La,a) + 2{La, )

0% > (
2 |Liaf —2|L7a] |L2].
By the definition of Ek_l’(s,
L2 = (1dspP* + d3BP)? € O+ .
Since E'k_l,ﬁ is dinite dimensional for £ = 3 there is a ¢, > 0 such that
IL1f] < cp0¢ .

Therefore 1 1
¢y 62D > |L70c|2 — 2cz5"_'|L70c|2 s

which implies there is a ¢3 such that

ILig] < 30",
That is
(Lo,a) < c36%*=D (5.33)
By induction on part (a)
(Lo, o) < cg0**D|af? . (5.34)
Together, (5.33) and (5.34) imply
2
o < 28,
Cq

Therefore, § € Ei- | 5 satisfies

180 eE) s,

By induction on part (b), for 0 < j < k —2 there is a ¢ > 0 s.t.
~ (& 1)—i—
)]z

Therefore .

|7 50] = | R 50| < cdFi!
for 0 < i < k — 2. Fori =k — 1, the estimate follows from |#;_,v| < |v| = 1. This
proves part (b).

Proof of Part (a). We assume (a), (b), (c) have been proved k — 1, and part (b)
has been proved for k(= 3). We will show that, restricted to E,jé,
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()| < 52D,
Let A5 be the smallest eigenvalue of 7 Lz restricted to Ej. Since
(Lv,v) € O(6**=1)
for v € Ex_1, A5 € O(8**=1)). Thus if w is the corresponding eigenfunction, |w| = 1,

then by part (b)
I(1 = f—1)w| € O(9) .

Now we have
5" = ((m L)~ w, w)
= {(mi- Lt )" 'w, /iy w) + O(8) 45!
= (w, (n Lt )" fyw) + O(9) 45!
= (1w, (m- L") " 1w + O(S)|(m- L)™' Fe_yw| + O(8)A; 1. (5.35)

Note that
(g L) e aw| < A5 A—w| + A5 (14 0(9)) .

Therefore, (5.35) implies
(Foe—w, (it Lt ) ' w) = 25 (1 + O(8)) .
The desired estimate on Agl follows once we see that
|1 (MLt ) Ry | < 672D

Writing Ej; = E | ;® Ex_15 we deompose miLm{ into a 2x2 matrix of
operators

1 1 1 gal
nilnt = (”k—ank-l ”k—lL”k—1>
Fe1Lm R 1Lik—
Then we can write
. . . . . _ . -1
Feo(m L) ey = (Rk—1 Loy — R L (mp L) 'me L) .
(5.36)
From Lemma 5.11, there is a ¢ > 0 with
Fgp_1 LAy, = oD (5.37)
On the other hand
~ 1 It N I &2 ~ o0 1LV leg=
Fe—lmy (miy)  m Lk = Y f—iLf, (m Lmg )~ RpLfx_y .
ij=—1

Thus, applying Lemma 5.12 and part (b) for & — 1,
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~ 1 1 1 1 =
|1 Ly (g (i Ly 11 |

k=2

~ ~ -1 .,

< Y kLA (m Lag) #iLAk—1]

ij=—1

~ ~ ~ -1 ~ 7~

< Yl L |7 (m Lmgy) & |7 L]

o
< clzéi+k——l+1 P S A Ve Yo S|
Sal
< 82D+ (5.38)

Combining (5.36), (5.37) and (5.38) we see that for § small enough,
A1 (mi L) ™ oy = (B L1 (1 + O(8) 7"
Now 7 1Lx—; = c6**~1D implies
|1 (i () | < 717D
is desired. [

This theorem provides enough information for us to deduce the desired results.

Corollary 5.14.
#{2:(8) € spec1Z| lim iélf =% 2,(8) = 0}

= #{2:(3) € spec|4() € O(6**?)} = dimEY, | .

Proof. The first quantity is clearly > the second, is = the third, by (1.8). If either
of these inequalities were strict, we could find a sequence J; — 0 and a sequence
w; € QP such that |w;| = 1,wLEf, | ;, and for every ¢ > 0,

(Ls, w4, 00,) < co*
for 60 small enough. This contradicts Theorem 5.13 (a). O
Now write 4;(8) ~ & if

2(8) € O(6*) and (X(8))) ' e 0(57F).
Theorem 5.15. _

#{2,(6) € specZ|2,(8) ~ 6*} = dimE} .
Proof. From Corollary 5.14

#{:(8) € O(6*)} = dimE} .

Moreover,

i(8) ' ¢ 0(67%*) o *(1(8)"' ¢ 0(1) & lim inf 5 %)8)=0.
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From Corollary 5.14, all eigenvalues 4; with
(Z(8)~" ¢ O(5)

are O(6%**?) and the number of such eigenvalues is dim £/, ,.
Thus

#{2(8) ~ O(5*)} = #{A(8) € O(6*)} — #{4(5) € O(5**?)}

=dimE} — dimEf,, = dimE/ . O

Corollary 5.16. If 17(5) € O(6%) for all k, then AF(8) =0 for all é.

Proof. Clearly {4;(8) € O(6*) for all 6} 2 {4,(5) =0 for all 6}. From Corollary
5.14 #{27(8) € O(S*) for all k} = dim Ef, = dim EX,. In addition, by the results of
Sect. 3,

dimEf = dimH?(M,E)

=#{AF(6) =0 for all 6} .
This proves the corollary. [

We now investigate the behavior of the eigenspaces as 6 — 0. Let

eigys = span{w;(8) = 4(8)w,(8) with 4,(6) € (6*)} .

Theorem 5.17. For k > 1,
eig,fa =E}l +0(5).

By which we mean, if vs € eigf,, |vs| = 1, then we can write
v =5 + Bs

with a5 € EF, and |B| € O(5). Equivalently, if pis is the orthogonal projection
onto eig]; then

lprs — mx| € O(S) -
Proof. 1f vs € eiggs,|v — 6] = 1 then

(Lsvs,v5) < 6% .
Write v5 = a5 + fB5 with

a5 € Efs,  Bs € (ELS)™ .
Then
(Lo,o) = (L) + 2(La, B) + (LB, B) = [L¥af +2 (Lho, LIB) + LEBP.
Since £ > 1, there is a ¢ > 0 with
ILia| < c|0F < cy0*,

so that 1 .
IL2 B> — 2¢,8*|L2 B < (1 — c2)0%,
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which implies
(LB.B) = ILEBP < es0™ .
It follows from theorem 5.13 (a), that |B]| € O(J). Thus vs = a5 + O(d), with J €
R,ﬁ 5> but
E,fé =El +0(9),
which proves the theorem. [J
The following two corollaries are immediate

Corollary 5.18. Let #Y(M,V) denote the kernel of [ (=the space of gs-
harmonic p-forms), then

psHE(M, V) =ker LY = EZ + O(5) .

Corollary 5.19. Let
eigy 5 = span{@;(8)[ L w,(8) = 4(8)w,(8) with 4(5) ~ &},
then —p -
eig;; = E{ + 0(9) .

We are now ready to make precise statements about the asymptotics of the

eigenvalues. We have already seen that
{APO|dmE]  +1 < i < dimE]}
are the eigenvalues of Lf which are ~ 5%, and the corresponding eigenspaces con-
verge to Ef. We now prove
Theorem 5.20. Fix p. Then for every i,
dmE}  +1 <i < dmE] ifk>1,
dmES +1 <i<oo ifk=1,

we have B
24(8) = &2 + 0(8*H)

for some %;. These dimE ¥ values of i are given by the eigenvalues of the operator
A7 :E‘,f — E,f .
[In particular, for k > 1,

{4(8)|4:(8) ~ 6%} = 6% {eigenvalues of Af : E,f - E,f} + 0(6%+1h.

Proof. Assume k > 1. First we prove that the eigenvalues of Lf which are ~ 5%

are closely approximated by the eigenvalues of ﬂklﬂ,,;Laﬂ;fH,,;- If ve QP =1
then write
v=o+p

with
4
o€ (Elf+1,5) , Be Elf+1,6 .
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Then
(Lo,0) = (La,2) +2 (Li0, LIF) + (LB, )

Note that
'2 <L%a,L%ﬁ>‘ < 5(La o) + 5L, B)

and there is a ¢ such that for all § and f € E,fﬂﬁ,
(LB, B) < PP < o8+ .
Thus, since w5, ;v = o, we have
(Lv,v) = (mp Ly 0,0) + 1 {mis L v,0) + ¢z, (5.39)

where
le1] £ 6,]ea| £ e+

Let 11(6) < p2(d) < -+ be the eigenvalues of mf, | L?mi, |, so that, in particular,
M) =wp@d)=---= ,udlmE:“(é) =0.
Then (5.39) implies that for all i
14— ] < (B + 8.

This shows that for
dimE} | +1 =i < dimE]

the eigenvalues 1,(8) are ~ 6%, and for such i
[A =] < 8%
The theorem follows from proving that these y,’s have the form
= G, + 0(d*+)

with the 7i,’s the eigenvalues of AF. The inverses of the non-zero p,’s are given
by the eigenvalues of (mf Lmj- ;)" restricted to (Ef)*. From Theorem 5.13 (c)
it follows that, restricted to (Ef, )"

1 1 -1 ~ 1 1 -1~ —2k+1
(i1 L) — (M L) ™ 7| < €10 AR

Thus, if vi(d),...,v. ~»(6) are the inverses of the non-zero eigenvalues of
dlmEk &
Fe(mik Lmh, )™ i, we have, for 1 < i < dimEf,
|tdim B, +1(8) — vi(S)] < 2857
From (5.36) we see that
Lo 1 y—lx \— O S 1 -1 ~
(Fa (M L7y )™ k) U= # L + Lty (Mg L) ”kLHL”k .

From (5.19) we have
ALty = 6% A + O(5* 1y,



114 R. Forman
and from Lemma 5.12 combined with Theorem 5.13 (c¢) we find
lﬁkL“klﬂ(”kLﬂLnicLﬂ)_I”Icl+1Lﬁk| < 0%,

which proves the theorem in the case £ > 1.
If £ =1 then dim E,f = 00, and we do not have uniform bounds for the errors
which appear. However, this is not a problem. Fix ¢ > 0 and consider

I'e = {2:(8)|lim sup 62 4i(c) < ¢} .
d—0

From Lemma 5.4 we know Ls > 6’k for a 2" order operator k with positive
symbol, so there is an upper bound N,, independent of J, for the number of eigen-
values of Ls; which are < cd%. Then the same argument as for k > 1 shows that
for dimEY +1 < i < #I,

2(8) = 6% + 0(9) ,
where the A; are the eigenvalues of
A8 :Z"é” — Eé’
which are < c. Letting ¢ — oo completes the proof. [

So far, we have shown that the eigenspaces of L approach the spaces E/ con-
tinuously. We complete this section by showing that our previous analysis actually
implies the C*> convergence of the kernel of L%.

Theorem 5.21. The spaces
KerL? = ps AL (M, V)

form a C* map from [0, 1] to the space of (dim HP(M, V'))-dimensional subspaces
of the L* p-forms on M.

(Note : This generalizes Theorem 17 of [Ma-Me].)

Proof. Fix M > 0. We will show that ps#7% is CM. We follow the proof of
Theorem 5.17, with one modification. In defining E? NG —EOo 5» we truncated the

formal power series (5.18) at the 6"+ term. To prove CM convergence, we truncate
the power series at 6" That is, let

P(W)y=v+00 4+ NM oy,
so that
ds®' (v) € SNMQPTI5]
;@' (v) € VMQP[6] . (5.40)

Let E” ;5 denote the image of @' applied to the space E&. Then Ef_ ; is C* o
[0, 1] (1n fact is polynomial). Now we continue as before. Suppose

vs € Py,
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so that
<L(505)05> =0 >
and
vs| =
Write
vs = o5 + fs
with
a5 € EL 5 Bs € (EL )"
Then
0= (Lo,0) = [L3af + 2 (Lda L3B) + |LEAR,
so that
02 [L3pP +2(LbaLip)
> |L3 B —2|L3al|LE B
= |L2) (1Bl - 2IL3f ) -
Therefore

IL3p| < 2|L3s].

Now, & € EZ_; so from (5.40),
ILia| < VMg < VM

Moreover, f§ € (Efo 5)l implies there is a ¢ > 0 such that

ILEp) 2 c6*1p).
This yields
|ﬁ| < comt!
Thus
psH§ = EL 5+ 0™,
which implies ps#F is CM as desired. O

As noted in [Ma-Me], this implies that any formally harmonic power series
(5.12) is, in fact, the Taylor series at § = 0 of a C* family of forms ws satisfying,

for every 8 € [0,1] ws € ps A LM, V).

Applying the map pgl, we learn

Corollary 5.22 (Corollary 18 of [Ma-Me]): The space H{(M,V) defines a C>
map from [0, 1] to the space of (dim HP(M,V))-dimensional subspaces of the L?
p-forms on M.
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