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0. Introduction

Suppose (M,g) is a compact Riemannian manifold with a smooth distribution of
^-planes A. Let B be the orthogonal distribution to A. Writing

Q = 9 A θ QB ,

we define a 1-parameter family of metrics on M by setting, for 0 < δ ^ 1,

9b = 9A θ £>~2QB

In addition, let
V ->M

be a flat bundle,
In this paper we investigate a spectral sequence associated with A and B for the

cohomology of M with values in V. We show in Sects. 2 and 3 how the spectral
sequence arises naturally from a Taylor series analysis of the eigenvalues of Ώp

δ near
δ = 0 (where \Jζ denotes the Laplacian induced by the metric g$ acting on /?-forms
of M with values in V). We demonstrate how the algebraic properties of the spectral
sequence can be proved using standard Hodge theory. In Sect. 4 we show that our
spectral sequence is intimately related to the Leray spectral sequence associated to a
filtered differential complex. In addition, of A is integrable, the spectral sequence is
isomoφhic to the standard Leray spectral sequence associated to the foliation A. If A
is integrable, and in addition satisfies certain geometric restrictions (see hypotheses
(HI) and (H2)), we show in Sect. 5 that the leading order asymptotics of the
small eigenvalues of Dj7, and the corresponding eigenspaces, are determined by
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information contained in the spectral sequence. In the special case that the splitting
of TM arises from a fibration, our results overlap with those of [Ma-Me] and [Dai].

The limit of (M,gδ) as δ —> 0 is known as the "adiabatic limit." The adiabatic
limit was introduced in this form by Witten in [Wi]. He considered the foliation F
consisting of the fibers of a fibration

^ *-> M —> N, (0.1)

where #" is compact, N = Sι, and the metric g makes (0.1) a Riemannian submer-
sion. Witten investigated the limit of the eta-invariant of M and δ approached 0.
This question was also considered in [Bi-Fr] and [Ch]. In [Bi-Ch] and [Dai], this
investigation was extended to general base spaces N.

Our topic begins with (and this paper owes much to the ideas in) [Ma-Me] in
which the authors, starting with a fibration as in (0.1), analyse the behavior of the
space of harmonic forms on M as δ —> 0. They show that, modulo a change of
coordinates, the space of harmonic />-forms approaches a finite dimensional space
Eζ^. This space Eζ^ can be identified from a Taylor series analysis as follows:
Define a nested family of spaces

ΈζDΈΐDΈζD...

by

Ep ={/?-forms ω|3/?-forms co\,...,(Oj with

BP(ω + δωi + + £ V ) <E 0(<5*)} .

They proved that there is an N such that

and this is the space referred to above. These results follow from their construction,
using Melrose's calculus of pseudodifferential operators on manifolds with corners,
of a parametrix for \3P which has a uniform extension to the closed interval [0,1].
This implies that in the case of a fibration, the eigenvalues and eigenvectors have
well-defined asymptotics as δ —*• 0.

In this paper, we take a simpler, and more general approach. We begin with any
distribution. A c TM. In particular, we do not require that A arise from a fibration,
or even that A be integrable. We show that a Taylor series analysis, motivated
by the adiabatic limit, leads directly to a Hodge theoretic spectral sequence which
converges to the cohomology of M. We observe that the spectral sequence structure,
i.e. the associated differentials and bigradings (which do not appear in [Ma-Me]),
arise naturally in our context.

We start with a rescaling map pδ (see Lemma 1.2), which also appears implicitly
in [Ma-Me], which is an isometry

pδ:(Ωp(V),gδ)^(Ωp(V),g)

(where ΩP(V) denotes /?-forms on M with values in V). Let

dδ = ρδdp~\ d*δ = pδd\gb)p~λ ,

and define a nested sequences of spaces

E-\ D Ep D Ep D Ep D ... (0.2)
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by

Eζ={ωe ΩP(M, V)\3ω{,..., ωj with

dδ(ω + δωx + + δjωj) G 0(<5*)

d*δ{ω + δωι + -- + δJωj) G 0(5*)} . (0.3)

Our first result (Theorem 1.3) is that the sequence (0.2) converges. That is, there
is an N such that

and, in fact, dim Eft < oo. More precisely, we show (Theorem 1.3) that dim Ep, <
oo, where

N' = min{dim^ + 3,dim£ + 3} .

We define a differential dk on Eζ by setting, for ω G Eζ,

dkco = lim δ~kds(w + δw\ -\ h δJωj),
δ-+o

where the ω/'s are as in (0.3). Unfortunately, the map dk depends on the ω/'s, but
the map %kdk does not, where π^ denotes the orthogonal projection onto Eζ. In fact
we show (Theorem 2.3)

(i) (πkdkπk)
2 = 0.

(ii) The kernel of

Δk = (πkdkπk)(πkd*kπk) + (nkd*knk)(Kkdknk) : Eζ -> Eζ

is precisely Eζ+ι.

Statement (i) says that for each k

πkdkTik : Ek —> Ek - * ^ —>

forms a differential complex, and (ii) implies that the cohomology of the complex at
the pth stage is isomorphic to Eζ+ι (There are some analytical subtleties here, but
this is certainly true if dim Eζ < oo, for example if A; ̂  TV7.) Thus the complexes
{Eζ,πkdkπk} form a spectral sequence.

Before leaving Sect. 2, we prove that the Eζ spaces inherit a natural bigrad-
ing from the decomposition TM = A + B which is compatible with the differential
πkdkπk. That is,

Eζ = 0 Ef, where E? = Eζ Π Ωa* ,
a+b—p

and
πkdkπk{Ek' ) C ^

In Sect. 3 we make precise the sense in which (0.2) converges to HP(M, V), the
cohomology of M with values in V. The main idea is to introduce the cohomology
of the space of formal Laurent series of forms on M. This section essentially follows
the ideas of Sects. 2, 5 and 6 of [Ma-Me], albeit in a more general setting. The
conclusions follow from these observations:
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(i) For every ω E Eξo there is a formal power series

ωδ = ω + δω\ + δ2ω2 + •

such that, formally,
dδωδ = d*δωδ = 0 .

(ii) The ω^'s arising in (i) form a basis, modulo the action of <£ (the ring of
formal real Laurent series), for the cohomology of the complex (J£[Ωp],dδ).
Here, J£[ΩP] denotes the space of formal Laurent series with coefficients in
ΩP(M, V).

(iii) The operator pδ provides an isomorphism between (^[Ωp],dδ) and

(iv) The cohomology of (J£[Ωp],d) is canonically isomorphic to J£[HP(M,V)]
and hence, modulo if, HP(M, V) provides a basis

Observations (i)-(iv) allow us to conclude, in particular, that for all p,

dimE^ = dimHp(M,V).

The topological nature of the spaces Eζ is clarified in Sect. 4. We demonstrate
that the spectral sequence {^[E^^πkdkπk} is isomorphic to the Leray spectral
sequence arising from the natural infinite filtration of

= " D δ~ιΩp[[δ]] D Ωp[[δ]] D δΩp[[δ]] D -

and the differential d = δdδ. As a corollary, we learn that the dimensions of the
Eζ are independent of the metrics gA and gB (since the metrics are not used in
the construction of the Leray spectral sequence). In addition, if A is integrable we
show that the spectral sequence {Eζ,πkdkTik} is isomorphic to the standard Leray
spectral sequence associated to the foliation A. In this case we learn that d i m ^
depends only on A, that is, it is independent of the chosen complement B as well as
the metrics QA and QR. In the special case of a fibration, this was proved in [Dai].

We make the relationship between Eξo and HP(M, V) more direct in Sect. 5. In
this section we require, essentially, that A be a Riemannian foliation with compact
leaves, and that g be a bundle-like metric. In particular, we require that (M,A,g) be
given locally, by a fibration of the type (0.1). However, there are many interesting
examples of foliations satisfying our hypotheses which are not globally of the form
(0.1). We note that these restrictions are required only for the analysis of this
section.

We study the behavior of the small eigenvalues of D | and the corresponding
eigenspaces. Let

denote the eigenvalues of Dj\ Let

eigf = span{ω e Ωp\pδU
Pp^xω = λf(δ)ω and λf(δ) e 0(δ2k)} .

Then we show (Theorem 5.17) that as δ —> 0,

eigf =

As a corollary, if Jί?$(M9 V) denotes the kernel of Dj\ then as δ -» 0,
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pδMr*(M,V) = Eξo+0(δ). (0.4)

Now write λf(δ) ~ δk if there is a c such that for all δ G (0,1),

cδk < λf(δ) < -δk .

Then every λf(δ) is ~ δ2k for some £. The leading order term of such λf is deter-
mined by the Taylor series data. Namely, let Eζ denote the orthogonal complement
of Eζ+λ in Eζ. We have seen that the kernel of

is Eζ+V Since Δζ is self-adjoint, Δζ must map Eζ to itself. We have for k ^
(Theorem 5.20)

2k} = ^{eigenvalues of 4 : Eζ -> ^ } + 0(δ2k+ι{λf(<5>μf(<5) - δ2k} = ^{eigenvalues of 4 : Eζ -> ^ } + 0(δ2k+ι).

The statement (0.4) implies, in particular, that the one-parameter family of
spaces psJ^fP,δ G (0,1] has a continuous extension to the closed interval δ G [0,1].
We complete Sect. 5 by sharpening this statement. Namely, we show that a slight
modification of our proof of (0.4) yields (Theorem 5.21) that this extension is, in
fact, C°° on [0,1]. Equivalent^, if

cos = ω + δω\ + δ2cύ2 + •

is any formal power series in δ with values in ΩP(M, V), which formally satisfies

Lξωδ = 0 ,

then ω«5 is the Taylor series at δ = 0 of a C°° family of forms ώδ,δ G [0,1], which
satisfy, for each δ G (0,1],

Lp

δωδ = 0 .

This extends Theorem 17 of [Ma-Me] to our setting.
In the special case of a fibration, the results in Sect. 5 overlap with those of [Dai]

and [Ma-Me]. In [Dai], the results of [Ma-Me] were used to study the adiabatic
limit of the eta-invariant of the fiber bundle M. In an analogous fashion, in another
paper we will use these results to derive a formula for the analytic torsion of M.

In Sects. 1-4, we show that the adiabatic limit leads to a natural spectral se-
quence for any splitting of the tangent space TM — A+B. It remains an intriguing
problem to find a more general context for the analysis of Sect. 5. That is, less
restrictive geometric assumptions which still imply that the spectral data determines
the precise asymptotics of the eigenvalues and eigenspaces.

1. Preliminaries

Let (Mm,g) be a compact Riemannian manifold, and V —• M a flat vector bundle.
That is, V comes equipped with a Euclidean inner product and a compatible flat
connection. By ΩP(V) we denote the space of /?-forms on M with values in V.
There is a natural extension of the usual deRham differential to a differential
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d :

Suppose A c TM is a smooth distribution of ?z-planes, and B = A1- is the or-
thogonal distribution. Then we have a decomposition

TM=A@B (1.1)

and a corresponding decomposition

This decomposition induces a bigrading on ΩP(V) by

Q^(F) = 0 i ? ^ " I " ( F ) ,
ί=0

where
ΩUp-\V) = r(AlA* θ ΛjB* e F).

Similarly, all operators on forms inherit a corresponding decomposition. In particu-
lar, the d operator inherits a bigrading

d = 11'

where

da,b :ffJ(y)->ff

For any such decomposition of TM we have

Note that dli° and J 0 ' 1 are first order differential operators, while d2~λ and d~1'2

are zeroth order. Geometric properties of the distributions A and B are reflected in
the analytic properties of these operators. For example

Lemma 1.1. The operator d2'~ι = 0 if and only if A is integrable

For a proof, see [Mo], page 58.
The identity d2 = 0 yields the identities

0 = (d2f° = rf2'"1*/0'1 + (tf 1 ' 0) 2 + d°>ιd2>-1

0 = (d2)1-1 = d2>-ιd~ι>2 + dι>°d°-1 + Λ 1 ' 0 +

0 = (d2f>2 = dι*d-λ* + (rf0'1)2 + J - 1 ^ 1 ' 0

The decomposition of the tangent space (1.1) induces a corresponding decomposi-
tion of the metric

We define a 1-parameter family of metrics g$,0 < δ ^ 1, by
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Qb = 9A® δ~2gB .

For each p and δ we have an induced Lapalcian

where dΐ '' ^ is the adjoint of d with respect to the metric on Λ*T*M induced by

the metric g$.
Our goal is to study the behavior of the eigenvalues of Π\δ as δ —•> 0. In our

investigation, we will make use of the classical variational approach (see [Du-Sc],
p. 908)

= sup inf

Here we have numbered the eigenvalues of D^ in increasing order, with each eigen-
value listed according to its multiplicity:

Moreover, Hf denotes the completion, in the space of L2 /?-forms, of the C°° p-
forms with respect to the norm

Note that the space Hf is independent of the metric used to define the norms, and
thus is independent of δ.

One difficulty in applying (1.2) is that both the operator and the inner product
vary with δ. To simplify, we introduce the isometry

where, for ω G ΩιJ,
p$ω = δJω .

Then for all ω G Qp,

(\Jξω,ω)δ = ((

=

(ω,ω)s (ρδω,pδω)

where we use (, ) to denote the inner product induced by the original metric g.

Lemma 1.2. Let Lp

δ = pδΠ$ρJι. Then

where
dδ = δ~ιd2'-1 + dι'° + δd0'1 + δ2d~1'2 (1.3)

and

is the adjoint. Note that all adjoints are taken with respect to the metric g.

Proof. First note that
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Lp

s = (psdpjι)(pδd*igδ)pjι) + (Pidlgδ)pjι)(pδdpjι).

The operator Pδd^g ̂ pjι is the adjoint of pδdpjι with respect to the metric g, so

(1.4) follows from (1.3). To prove (1.3) note that for all ω G ΩiJ,

pδd
a>bpjιω = pδd

a>bδ-Jω = δ~J pδ(dω)i+aJ+b = δ-Jδ>'+b(dω)i+a'J+b = δbda>bω .

Thus, if we write

d =

then

Using Lemma 1.2 we can reformulate (1.2) as

= sup inf ι—— δ . (1-5)
v v EHP v'eHl \Vi\

This quotient motivates the following definition. Define the nested sequence of
spaces

rpP —N τ?p —> rpP —\ 77P —^ (Λ (L\

&-\ zλ ̂ o — Ά\ — ̂ 2 — ' ' ' \ ι °)
where

Eζ={ωe Hf\3j and ωi, . . . ,ω, G Hf with

dδ(ω + δωi + + (Syωy ) G ^ί2^ + 1 [δ]

J | ( ω + (5ωi H h ̂ y ω y ) G δkΩp~ι[δ]} ,

where Ωz[(3] denotes the space of polynomials with δ with coefficients in Ωι(E).

Example. For ωδ = ω + <5ωi H h

d*δωδ = δ " 1 ^ - 1 ) * © + ((ί/
1'°)*ω + ( ί/

2'-1)*co1) +

Therefore

^ = {ω e Hf\d2>-ιω = ( ί/
2'~1)*ω = 0} ,

E[ = {ωe Eξ\dhΌω G Image(J2'-1),(ί/1'°)*ω G Image(d2 '"1)*} . (1.7)

This characterization of Ef follows from the orthogonal decomposition

Ωp = (Imaged2 '"1) Θ (Kerneld2'"1 Π Kernel^ 2 '- 1 )*) Θ (Image(ί/2'"1)*)

so that if
dι>°ω G Imaged2 '"1, (dι'Ό)*ω G Image(ί/2'"1)*

there is a form ωf with

dι>°ω + d2--ιωι = ( d l f i ) * ω + ( d 2 - - ι ) * ω ι = 0 .

Thus, if we set ωδ — ω -\- δω\ we have
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dδωδ,d*δωδ G δΩ[δ] => ω G E[ .

In fact, from (1.7) we see that for ω G Eζ c Kernel^2 '"1,

d ^ ω G Kernels2 '"1 = (Kernel^2'"1 Π Kernel^ 2 ' " 1 )*)

Therefore
dι>°ω G I m a g e d " 1 <—> rf1'0©

Similarly
(έ/ l l0)*ω G Imaged 2 ' " 1 )* <—> (d^fω G (^o)"1 .

Thus we can rewrite (1.7) as

E( = {ωe Eg\dι>oω,(dι>oyω G

We note here that (1.5) combined with the definition of the Eζ yields

#{λf(δ) G spectrum (Lp

δ)\λf(δ) G O(<52*)} ^ dim£f . (1.8)

Remark. In [Ma-Me], Mazzeo and Melrose define spaces

Ek — {ω|3ωi,...,ω y with Lδ(ω -\- δω\ + + δJωj) G

It is clear that

So, in particular
oo oo

/=0 ί=0

We conclude this section with a proof that the sequence (1.6) stabilizes. That
is, there is an N such that

It is sufficient to prove that there is an N' with

άimE^, < oo .

In fact, one can take

N ; = Min{dimΛ + 3, dim B + 3} . (1.9)

Theorem 1.3. With N' as in (1.9),

dimis^, < oo

for every p.

Proof Let
πUj : Ω* -> ΩiJ

denote the canonical projection. We will show that for every /,

- ^ , < oo .
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Suppose ω G Ep,. Then there are ωi, . . . ,ω 7 such that

dδ(ω + δωx + + δJωj) G ̂ Ώ [ δ ] . (1.10)

d*δ(ω + δωi 4- + <$>,•) G <5"Ώ[<5] . (1.11)

Write f/'Λ for π'̂ 'ίy. From (1.9) we see that for every 0 ^ i ^ /? and k ^ ΛΓ; - 2,

ωi-k,P-i+k = Q ^

Thus from (1.10)

d2,-ι tfp-i = 0

H ΐ 3 ^ ^ . (1.12)

Let

Then (1.12) implies
1'̂ "1' + ώ) = 0

(where J is the usual d operator), so that

ωhp ι + ω = du\ + h\

for some u\ G Ωp~ι and h\ G 3^P(M, V\ the (finite-dimensional) space of g har-
monic /7-forms.

Similarly, let

Then (1.11) implies _
d*(ωiJ + ω) = 0,

so that

for some u2 G Ωp+\h2 G Jfp(M,E). Thus

-* Θ β^-1

 θ j f ^ ) π I φ Ω ^ - A : θ ί/*Ωp+1 θ
πι>p-ιE£,C

(1.13)

Let ^ z '^" ' denote the intersection on the right-hand side of (1.13). Define a linear
map

as follows. For ω G RhP~ι we have

ω = ώ + dv -f h (1-14)

for some ώ G @k<.Ω
Kp~k,υ G Ωp~\h G
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Set
τ(ω) = h .

The representation (1.14) may not be unique, in which case any such representation
can be chosen on a basis and τ can be extended linearly to all of RhP~ι.

The map τ is injective. To see this, suppose

τ(ω) = 0

so that ω G ΩUp~ι satisfies
ω = ώ + dvι ,

co = S + d*v2 +h

for ώ G φk<iΩ
k>P~\ω G ®k>iΩ

Kp~k and h G ̂ p . Then

|co|2 = (co — ώ, ω — ώ) = {dv\,d*V2 4- Λ2) = 0

so that
ω = 0 .

Thus
^ ^ "1" ^ dim^f^ < 00 .

as desired. D

2. The Sequence {Ep

k} as a Spectral Sequence

The goal of this section is to show that the sequence (1.6) comes equipped with
the algebraic structure of a spectral sequence, and that this structure arises naturally
from the Taylor series analysis of Sect. 1. Moreover, we show that the Eζ inherit
a bigrading that is compatible with the differential.

We begin with some notation. In Theorem 1.3 we proved that the sequence
(1.6) stabilizes. Denote by N(p) the integer with the property that

Let Tik denote the orthogonal projection onto Ek, with π^ = 1 — %. Let Eζ C Eζ
denote the orthogonal complement in Eζ of Eζ+λ, and π^ the orthogonal projection

onto Eζ (so that 1 = Σ£L-\ π, -h π^).

Lastly, we define β{ C Ω[δ] by

gζ = {v(δ) G Ωp[δ]\dδv(δ),d*δv(δ) e δhΩ[δ]}

so that v e Eζ if and only if v has an extension v(δ) e Sp, where we say v(δ) is
an extension of v if v(0) = v.

Every v G Ek has an extension vδ G $k- The set of such extensions is an affine
space. It will be convenient, in what follows, to have a fixed origin for this space.

For k = 0, 1,2,...,7V — 1, let Φ be any linear extension map

i.e. Φ is an assignment

v G Έk -> Φ(v) = 1; + δui + (52ι;2 H h
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such that Φ(υ) G $k a n d the m a P v —> fz is linear for every /.
For k = — 1 and 0 we have

So we can let Φ be identity map on E-\ and ^Ό
Now extend Φ linearly to all of E^. That is, for all v e E^,

Φ(υ) = ΣΦiftiV).
i=0

We can express any extension D ^ G 4 of v G E^ in terms of our fixed extension Φ
as follows

Lemma 2.1. For k ^ N, if v G E^ and vδ G $k is any extension, then vδ can be
expressed uniquely as

Vδ = φ(v) + δrδ (2.1)

for some rδ G $k-\

Conversely, if vδ is defined by (2.1) for some rδ G <^_i> then vδ G $k is an
extension of v.

Proof If vδ G $k is an extension of v then

vδ - Φ(v) = δrδ

for some rδ G Ώ[(5]. Moreover, since vδ and Φ(f) G $k we must have

^ G ^

which implies
r^ G <?£-i

as desired
The converse is clear. D

We now define the operators that will form the basis of this section. If

Vδ = VQ + δϋ\ + δ2ί)2 + + δ ̂ Vj

is a form-valued polynomial, define the operators d-\,do,d\,... by

Similarly, define d*_\,dl,d\,...
Note that vδ G ̂  if and only if

diVδ = d*vδ = 0

for all / < k.
Using the fixed extension map Φ we define linear maps

dk \E^j ^ 'ώ

JΛI; = dk(Φ(υ))
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and we similarly define their adjoints d\. We extend these operators to all of Ωp

by setting for v G Eft
d/cV + d\v + 0 for all k .

It is important to note that the maps dk and d\ depend on our choice of the
extension map Φ.

The basic properties of these operators are contained in the following lemma

Lemma 2.2.

(i) For every i > j \

Uidj — Kid* = djiii = d*Ki = 0 .

(ii) For every i and j ,

Proof, (i) For every v9

N-\
%[V = TlftV + ]Γj TZfcV .

By definition

djπNv = d*πNv = 0 (2.2)

for all j . For i ^ k ^ N - 1, %kV G Ek so that Φ(ftkv) G ̂ , which implies that
(since k ^ / > y)

rfyπ^t; = djΦ{τikv) — 0 ,

d]πkv = djΦ(πkυ) = O. (2.3)

Adding (2.2) and (2.3) yields

ί/yTtj = djKi = 0 for i > j .

Taking adjoints yields

π, rfy = πtdj = 0 for / > j

which proves (i).
(ii) From (i) we have

For any v G Ωp, ω G Ωp+2 we have, since d2

δ = 0

0 = (dδΦ(πiV)9dlΦ(πj w)} — δι+J (diΦ(πiV),d*Φ(πjw)) + 0(

Thus
0 = (diΦ(πiV%djΦ{τtjw)) = (diftiV9djnjw) = (njdjdiiiiV.w) ,

which implies

Taking adjoints yields

πjCljClι %ι = τίjdjdι πt = (J . U
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Lemma 2.2, part (i) has the following important corollary:

Lemma 2.3. The maps πkdkπk and nkd\πk are independent of our choice of the
extension map Φ.

Proof From Lemma 2.2 (i), πkdkπk = πdkπk. For v G Ωp,ftkdkπkv = πkdkΦ(πkv).
Suppose Φ' is any other extension map, then

Φ(πkv) — Φ\πkv) = δω)δ

for some ωδ G δk-\ (Lemma 2.1). Thus

πkdk(Φ(πkv) - Φ'(πkυ)) = πkdk-Xωδ = 0

by Lemma 2.2 (i). Therefore

πkdkΦ(πkv) = πkdkΦ\πkv),

and this implies πkdkπk is independent of Φ. The same proof holds for πkd\πk. D

Our next goal is to show that for every v G Ek there is an extension vδ such
that

dkυ*δ G Ek9 d*kυ*δ G Ek ,

so that
dkυδ =(πkdkπk)v,

dkvδ = (πkdlπk)v .

It is from this fact that we derive all of our desired results.
Our proof of this fact begins with the definition of two more operators:

Γ\ 17-L v 17-L

Uk . e,k+χ —• Άk+ι ,

where we set
k

Dk = Σ Kidi,

_ k

Dk = Σ di^i

These operators depend on the extension Φ. Note that Lemma 2.2 (ii) implies

DkDk=D*kD*k=0

for all k. Now we define the "Laplacian" D^ by

D* = DkD\ + D*kDk = (Dk + D*k)(Dl + Dk): Ej£-+l -> E^+λ .

Theorem 2.4.
(a) Fix v G Eζ, then

(i) There is an extension vδe$ofv with
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(ii) The polynomial v$ from part (i) is unique modulo δSζ.

(iii) In terms of the extension Φ,v% = Φ(v) + Y^ll^ δk~ιΦ(Vi\ where

(b) For every p and k, the operator

is inυertible.

Proof We will prove (a) and (b) simultaneously inductively on k.
k = — 1: Part (a) is trivial since for every v e Ep_x = Ωp and every extension

vs of v we have

Thus any extension will satisfy part (i). Parts (ii) and (iii) follow trivially since
every two extensions of v differ by an element of δ^o = δΩ[δ].

Part (b) follows from the observation

KernelD_! = Kernel {{d2^ιyd2^x + d2>~ V 2 " 1 ) * )

= Kernel^ 2 ' - 1 )* Π Kernel^ 2 ' " 1 ) = Eo .

Now assume (a) and (b) are true for k — 1.

Proof of (a). Given v G Eζ define an extension t;| by the formula in part (iii), i.e.

vs = Φ(v) + Σ δk-'Φ(Vi),

where _
Όi = πp-^φl^dk+Dk^dDv . (2.4)

Note that for v € Ek,
dkv = dkfikV, d\v — dlfticV

(we have used Lemma 2.2 (i)). It follows from Lemma 2.2 (ii) that

Dk-idkv = Dk-ιdkπkv = 0 .

Thus (2.4) can be written

It is easy to check that ω$ is an extension of v. Moreover

dkv*s = dkΦ(υ) + Σ dtΦiVi) = dkv + Σ d,v,

/ \ _

= dkv + [Σ dinλ q^CAt-i +Dk_i)(dk + d*k)v

(2-5)
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Similarly

%v*δ =d> + DU ^k-M-ι +Dk-1)(dk+d*k)υ. (2.6)

Adding (2.5) and *2.6) yields

(dk+d*k)υ*δ = (dk+dt)υ + φk_λ +D*k_ι)Π-\φl_1 +Dk-X)(dk + d*k)v . (2.7)

Writing D*_i = φ*k_λ -fA-iXA_i + Dl_λ) we see that

= orthogonal projection into (Kernel D^-i)"1

= orthogonal projection onto Ek

(the inductive hypotheses implies KernelD^-i = Ek). It follows from Lemma
2.2 (i) that

t
Thus (2.7) says

(dk + d*k)υ*δ = πk(dk + d*k)v = πkdkv + πkdkv . (2.8)

Now
dkυ*δ9 πkdkv e Ωp+ι ,

d*kv*δ, πkd*kυ G β ^ " 1 .

Therefore, (2.8) implies

J kυ e Ek C Ejc ,

Ek CEk .

Thus υδ as defined in part (iii) satisfies the conclusion of part (i).
If Vδ and vδ are any two extensions of v in $k, then

Όδ-υ'δ = δrδ

for some rδ G $k-\
If

then
0 = dk(δrδ) = dk^\rb .

Similarly,
~#

Thus rδ G Sk. This shows that υδ of part (i) is unique modulo δSk, which is part
(ii).

Proof of (b). Note that

Dk = Dk—\ + τikdk ,

Z)̂  = Dk—\ + dkτtk .
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Using the decomposition

we express the operator Qt as a 2 x 2 matrix of operators

73

f- dkd*k +

\ d\Dk-\ d\dk

For simplicity, relabel this matrix

Άk Bk

By induction, Ak is invertible.
Ck is also invertible, since if v G Ek and = 0 then

from which it follows that

dkv = dkΦ(v) = 0, d\v = dkΦ(u) = 0 .

Thus Φ(v) G $k+\ which implies

v G Ek+ι C Ek

so v — 0.

Formal ly , the inverse of D# is g iven b y the 2 x 2 mat irx of operators

{Ak - -A-λBk(Ck - Bl

(Ck - Bl Λ-l

T h e invertibility of D# follows once w e k n o w

and

— B\A\A\Ak

are invertible.
For v G Ek

= (πkdk + πkd*k)γ\ - Dk-ι)](dkπk + d*kπk)v .

(2.9)

But

= orthogonal projection onto (KernelC\k-\)'L =

(by induction). Since
Image</jb Imaged C Ej^_{
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(from Lemma 2.2 (i)) (2.9) equals

(πkdk + πkdl)πk(dkπk + d*kπk)v .

If (Ck - BlA-]_xBk)v = 0 then

0 = ((Q -B*kA~}_λBk)v,υ) = \πk(dk + d*k)πkv\2 => (πkdkπk + πkd*kπk)v = 0 .

(2.10)

Since πkdkπkv e Ωp+\πkdlπkv G Ωp~λ (2.10) implies

0 = πkdkπkv = dkv% ,

0 = πkdlπkv = d\υ*δ .

Thus Ό*δeδk+\^v€Ek+\CE£ sou = 0. Therefore Ck -B\AkBk in invertible.
Now we will see that Ak—BkC^xB\ is invertible. Suppose v e E^ and let

z = —C^λB\υ e Ek. Define an extension z$ of z by

k-\

Then

k-\ „ k-1 _

dkzδ = dkΦ(z) + Σ diΦ(πtv) = dkz + Σ d ^ v = <*& + E>k-\v .
/ = - l i = - l

Similarly

So we have

+ (d\dkz + d*kDk-lυ + dkd*kz + dkD*k_λv,z)

= (Bkz+Akv,v) + (Ckz + B*kv,z) . (2.11)

Now use z = -Ck~
λB*kυ to find

kBk

(2.11) = {(Ak-BkCk

λBt)v,υ) + {(-Ck{Ck~
]B*k) + B*k)v,z)

= {{Ak-BkCk

λBl)υ,υ).

Therefore, if

(Ak-BkCj-ιb*k)υ = 0,

then
\dkzδ\

2 + \d*kzδ\
2 = 0^ dkzδ = d*kzδ = 0 .

But this implies
zδ € Sk+\ => z e Ek+ι C Ek .
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Thus, we must have

But this implies

This contradicts the invertibility of Ak. Therefore Ak -BkCk

xBl is invertible. D

In what follows, a fundamental role will be played by the operator

πkdkπk : E{ -> Eg*1

(which, by Lemma 2.3, is well-defined independent of our choice of the extension
Φ) and the associated Laplacian

Δk = πkdkπkd\πk + πkdkπkdkπk : Ek —> Eζ .

The significance of these operators follows from:

Theorem 2.5.
a) (πkdk πk)

2 = (πkd*kπk)
2 = 0.

b) The kernel of the operator

is precisely Ek+χ.

Before we prove this theorem, we introduce a very useful definition. Up to this
point, we have defined all operators with respect to an arbitrary extension map Φ.
Theorem 2.4 provides us with a canonical choice for Φ.

Definition. Define, for v G Ek. The extension map Φ1 by

Φ\v) = v*δ ,

where υδ is defined by the formula given in Theorem 2.4 (a) (iii). We let d'k denote

the operator dk associated to the extension Φ'. That is, for v G Ek,

dkv = dkv*δ .

From Theorem 2.4 (a) (i) we know that for v G Ek,

This choice of extension greatly simplifies the proofs in this and the next section.

Proof of Theorem 2.5. a) Since, by Lemma 2.3, πkdkπk is independent of our
extension so we can choose the extension Φ' defined above. This gives

nkdkτιkdk7ikv = πkdkκkdkτtkv .

But the image of d'kπk is contained in Ek so that

πkd'kπk = d'kπk .

Thus

= πkdkdknkv = 0 .
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The last equality follows from Lemma 2.2 (ii) which states that nkdkdkπk — 0,
where dk is defined relative to any extension Φ. Applying this lemma to the exten-
sion Φ' yields the desired equality.

b) Clearly Ek+\ C KernelAk.
To prove the converse note that for v £ Ek, v E Kernel Δk implies

(Akv,v)=0,

πkdkπkv = πkdkv = 0 ,

πkd\πkυ = πkd\υ — 0 .

dkΦ\v) = πkdkυ = 0 ,

from which it follows that

Thus

Therefore Φ'(v) £ $k+ι which implies v £ i^+i as desired. D

In addition to providing the fundamental properties of the operators nkdf

kτtk and
Δk, Theorem 2.5 implies the following important observation concerning the higher
order terms

df

k+jv = dk+jΦ'(v)

for v £ Ek and j > 0.
Recall that Φr was defined so that

d'kυ = dkΦ
f{υ) £ Ek ,

In fact we have:

Corollary 2.6. If v e

(2.12)

(2.13)

(2.14)

then there is a polynomial

vs = v + δv\ -h ... + <5'ty

δ = 0 forj<k,

d*kvδeEki

£ ^ + y _ i /or y > 0 .

Proof The extension Φx defined earlier satisfies (2.12) and (2.13). We will modify
Φ' to satisfy (2.14).

For any / and any w £ £/,

(d'Mv, {d'

(2.15)
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In particular

0 = (d'kv, (d'M)*w) + (d'k+ιv, (d'tfw)

' 1 4 + M^/4+/K w) . (2.16)

Suppose / + 1 rg &. Then πιd'ι+ιd'k = 0. This can be seen as follows: If / + 1 < k9

then since d'kv G Ek we have d'l+ld'kv = 0 (Lemma 2.2 (i)).
If / + 1 = *, then

πιdf

ι+ιd
f

kv — fik-\d'kd'kv .

We have
v e Ek => d'kv e Ek =ϊ df

kd'kv G Ek ^ πk^xd'kd'kv = 0 .

Thus, from (2.16), for all / ^ * - 1 and w G £/,

(πιdΊπιdk+ιυ,w) =0 ,

which implies for all / ^ A: — 1,

rfi+1t? G Kernelπ/rfjπ/ . (2.17)

From Theorem 2.5(b), the sequence

is exact. That is,

So that, for / ^ it - 1,

Kernel π/rfjπ/|j' = Image π/djπ/.

πιdk+ιv G Imageπ/ί/^π/ .

Similarly, for / ^ A: - 1,

π / ( 4 + 1 ) * ^ G Imageπ/(rfj)*π/.

Thus, for every / ^ k — 1 we can find a w/ G Eι such that

Let
t-i

Then Φί satisfies (2.12), (2.13) and (2.14) for y = 1. Continuing inductively, setting
the coefficient of δk+x+j in (2.15) equal to 0 yields the desired extension. D

Remark. Theorem 2.5(a) implies that for each k ^ — 1 we have a complex

Theorem 2.5(b) implies that the cohomology of this sequence at the /th step is
isomorphic to Eι

k+ι.
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Thus the sequence of complexes has the structure of a spectral sequence. In
Sect. 3 of this paper we prove that this spectral sequence converges to the coho-
mology of M. In the case that M is a fiber bundle, and the vector bundle is trivial,
this is Theorem 7 of [Ma-Me]. Dai has observed ([Dai]) that in this case the above
analytic sequence is isomorphic to the Leray spectral sequence. We also prove this
in Sect. 4 as a special case of a more general theorem.

Before leaving this section, we prove that the spectral sequence comes equipped
with more structure, namely a bigrading inherited from the bigrading on Ω (M, V).
Let

E? = πa>bEk ,

where
if* : β*(M, V) -> Ωa>b(M, V)

denotes the canonical projection. We will prove that

Eζ = 0 E? (2.18)
a+b=p

πkd*kπk (Ef) C Ea

k

+k-ι'b-k . (2.19)

and that

C Ek

We begin with a lemma which will also play a crucial role in Sect. 4 when
we prove the equivalence between our spectral sequence and the Leray spectral
sequence.

Let
9k = {ωδ G Ω[δ]\dδωδ G δkΩ[δ]} . (2.20)

We define a map

dkωδ = lim δ kdδωδ . (2.21)
δ—»o

Furthermore, let

Dk = {ω G Ω\3ωδ G 2k with ωδ(0) = ω} . (2.22)

Then we have

Lemma 2.7. For all k

k-\

(i) Dk = 0 Image π/d/π,- + Ek ,
ι=-\

k
(ii) dk2k = 0 Image π/έ/, π, .

i = - l

Proof. Proof of (i): We have

E-\ — Ω* = Imageπ_it/_iπ_i + Imageπ-\d*_λπ-\ + EQ .
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Similarly,

Continuing in this fashion, for every k

k-\ k-\

0 Image π^π, + 0 Image π, rf*π;
/ = - l ί=-\

To prove (i) we first show

0 Image π ^ π* + Ek C Dk . (2.23)
ι=-\

Clearly Ek C Z>̂  since every w £ E^ has an extension ω<$ with

ί/̂ ω<5 G '

Moreover, if ω G Image π ^ π,, then

ω = lim δ^dsΦ'iv)

for some v e Ei. Thus

is an extension of ω and dδωs = 0 so that for all /,

Image π ^ πz C D ^ C D^

To prove the converse of (2.23) we will show

' k-\

0 Image πz<π,
ί = - l

Suppose, for simplicity
ω G Image πz J*π/

for some i ^ k — \. Since
ω G Image πzί/*πz ,

we have
co = lim δ~ιdδΦ/(v)

for some v E Ei, so that

is an extension of ω. Since ω G D*, ω has another extension ώ^ G ̂ , so that

C0<5 — d>(5 = δz$

for some ẑ  G ί2[5]. Thus

O(^) 3 (dδώδ,Φ'(v)) — δ~ι(dδdlΦ'(v),Φf(v)} - δ{dδZδ,Φ'(v))

- ( Γ y Φ'(ι )l2 - δ(zδ,rfJΦ'(t;)> = δι\ω\2 + 0 ( ^ + 1 )

which implies, since i ^ k — 1, ω = 0. The proof for general
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ωe φlmageπ/j π/ ΠDk

L i J

is the same.

Proof of (ii). The proof is by induction, k = — 1 : 3)_\ = Ω[δ] and J_i(ω-h
δco\ H ) = d2'~ιω = π_iJ_iπ_iω. Thus

J_i^_i = Imageπ_iί/_iπ_i .

General A:: For any ω^ G ̂ ,ω^(0) G Z>£, so from part (i)

J f c - l

ω^(0) G 0 Imageπ/rfj π,- + £* .

As seen in the proof of part (i), every υ G Image πι</, π/ has an extension i;̂  with

dδvδ = 0

so, in particular

0 .

Every v e E^ has an extension υ$ = Φ\v) G Sk Q ^k such that

dkVδ = πkdkπkv .

Thus

2 Image%kdkTik

On the other hand, for any v e Dk the set of all extensions is precisely

where v& is the extension given above, and

dk(vδ -I- δ@k-ι) = dkvδ

Thus

= Imageπ^π* + dk-\9k-\

By induction, this is equal to

φ Image π/rf/π,- ,
ί = - l

as desired D

We are now prepared to prove (2.18) and (2.19)

Theorem 2.8. For every p and k

(i) K= Θ Ef,
a+b=p
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(ii) πkdkπk(Ef) C Ea

πkd*kπk(Ef) C Ea

k

Proof. We first note that

Eζ C Θ f ,
a+b=p

so to prove (i) it is sufficient to show that if a + b = p,

E? C Eζ .

We will prove (i) and (ii) simultaneously inductively in k

k = - 1 : Part (i). Suppose

where
ω

We need to see that for all a and b,

a* eEp_x .

Since ω e Ep_λ we have

but
0 = d^-χω = Σd2>-χωa>b . (2.20)

ajb

Since

d2>~xωa>b G Ω ^ 2 ' ^ 1 ,

(2.20) implies that for all α and b

d2,-ι ωa,b = 0

Similarly,
( ί/

2 '-1)*ω = 0

implies that for all a and b
(d2>-ι)*ωa>b = 0

and thus
ωa>b eE_x

(ii). We note simply that for

ωa>b eEp_x .

ωa* G Eal\ ,

We have
π_i«_iπ_iω = a co ' G is

Similarly

π-id^π-iω"* = (d2>-ιTωa>b G



82 R. Forman

as desired

General k: Part (i). Suppose

aΛ-b—p

Then certainly ω G ££_!, so by induction on part (i)

For any v G ^ _ 1 ?

υ G Eζ <—• πk-χdk-χπk-χv = πk-idl^πk-iv = 0 .

But ω G El implies

0 = πfc_i<4_iπ*_iw = Σπk-\dk-\πk-\coaJ) (2.21)

By induction on part (ii),

π^dt-M-Kif* E Ωa-k+2'b+k-2 .

So that (2.21) implies

π t _ 1 r f t _,π t _,ω β * = 0 . (2.22)

Similarly
πk-ιdl_xπk-xω = 0

implies that
π^xdt^π^xω^^O. (2.23)

Together, (2.22) and (2.23) imply that for all a and b9

ωa>b G El

as desired.

Part (ii). Suppose ωa*b G ^ ' so that there exists a polynomial

ωδ = φh + <5ωi

with

Then

ι>0

dδ (ωa>b + ΣPωΓ**1) + Σdδ (Σ^^C~Φ'C+1) (2.24)
\ />0 / CΦO \/>0

Let

ώδ = ωa* + ΣδiωlΓiMi

ι>0

The first term on the right-hand side of (2.24) is equal to
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dδώδ = δ-\d2>-ιωa>b) + (d^co** + d2>-ιωa-lMl) +

Writing, for any vδ G Ω[δ],

dδVδ = δ~λd-\vδ + dovδ + δdxvδ -\ .

we see that

djώδ G Ωa-j+λ*+j . (2.25)

Similarly, for all cφO,

(
\i>0

Since dδωδ e 0(δk) we have that for j < k,

0 = djωδ = djώδ + Σdj (

c \i>0

From (2.25) and (2.26) we learn that for j < k and every cφO,

v>o

In particular, for cφO,

which implies

z>0

Therefore, by Lemma 2.7, for cφO,

) (
i>0 J \/>0

G 0 Imageπ/rf/π/ C E£ . (2.27)
/=—/

By induction on part (i), for i < k,

Fp — ffi Fa'b

a+b=p

So that for / < k, and every a and b,

v G Ω ^ =^> niV G Ωfl'̂  . (2.28)

Together, (2.25), (2.27) and (2.28) imply

πkdkπkω
a'b = πkdkωδ = πkdkώδ = dkώδ - Yίπidkω^ G Q
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The same argument shows

πkd*kπkω
a>b e Ωa+k-^~k ,

as desired. D

3. The Convergence of the Sequence {Ep

k}

We now describe the sense in which this spectral sequence converges to the co-
homology of M with values in V. (This section essentially follows the ideas of
Sects. 2, 5 and 6 of [Ma-Me]).

In Theorem 3.3 we prove that the space of formal Laurent series in δ with
values in ΩP(V) has a Hodge decomposition

(ds exact) Θ (ds coexact) 0 (ds harmonic).

This implies that the space of harmonic Laurent series is isomorphic to the Laurent
cohomology

(ds closed Laurent series)/^ exact Laurent series).

This isomorphism is as modules over J5?, the space of real formal Laurent series.
On the one hand, we observe (3.4) that the Laurent cohomology is isomorphic to

the space of Laurent series with values in the usual deRham cohomology HP(M, V).
On the other hand we show (Theorem 3.1) that every v e E^ has an extension

to a formal power series which is formally harmonic, and that these form a basis,
modulo JS?, of the harmonic Laurent series.

Thus, combining the above observations, we have, in particular, that

= dim HP(M, V).

In Sect. 5 of this paper we show, with some additional geometric hypotheses,
that as δ —» 0 the space of gs harmonic forms approaches the space Eξo.

We begin by proving that every v e Eξo is the value at δ = 0 of a formally
harmonic power series.

Theorem 3.1. Suppose v G ESo. Then there is a unique formal power series

vδ = v + δvλ+δ2v2 + δivτ) + ... N (3.1)

such that

υt ± £& for all i ^ 1 (3.2)

and, formally,
dδvδ=d*δυδ = 0. (3.3)

Proof Uniqueness: If vδ and v'δ are two power series of the form (3.1), then vδ — v'δ
is a formal power series satisfying (3.3). Thus, the first non-zero coefficient must
be in Eζo. On the other hand all coefficients of vδ - vδ are in (Ego)-1. Thus vδ — vf

δ

must be 0.

Existence: For every v G Ego and every K > N, there is a polynomial

vδ,κ = v + δv\-\ f- δjVj
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such that
s, dδvδ G 0(<5*).

The form v\ is not uniquely determined since we can add any form-valued polyno-
mial δωδ with ωδ G Sκ-\- Any such polynomial must satisfy ωo G E£_ι = E^ =
E£o. Thus, the non-uniqueness of v\ is given precisely by Eζj. Hence we can
choose a vsjc with υ\ G £"^. This value of v\ is unique and independent of K.
If K > N + 1, then our choice of vι is again determined up to EQQ, SO we can
choose vsjc with z j , ^ G ^ . Continuing in this fashion, we can find a υ&jc with
vu...,vK-N eE^.

These forms are uniquely determined. For fixed y, the values of υi91 ^ / S j are
fixed for K ^ TV + y' Hence, as AT —>• oo, the v$jc chosen in this fashion converge
to a power series satisfying (3.2) and (3.3). D

For simplicity, it is useful to introduce the notion of a Laurent series of forms.
Define J£[ΩP] to be the space of Laurent series with coefficients in Ωp, i.e. and
element of S£\QP\ is of the form

with a G Z and Vj G Ωp for all j . The operator ^ maps &[ΩP] to &[Ωp+ι] and

satisfies ^ = 0. Thus we can define, for 0 ^ p 5Ξ dimM,

where Z^, is the kernel of the map

and BPg is the image of dδ~
ι. At first it is simpler to consider instead the space

JrP _ -χP ΠβP

where _
Z ^ = kernel of d C £?[ΩP],

where d is the usual d operator acting term by term on Laurent series, and

BP<? = image of d C S£\ΩP\ .

Clearly

where Zp c ί2^ is the kernel of J, i.e. the usual space of closed forms, and if [Zp]
is the space of Laurent series with coefficients in Z.

Similarly,

where Bp C ί2^ is the image of d, i.e. the usual space of exact forms. Thus

Note that H% is an <£ denotes the ring of formal Laurent series with real coeffi-
cients, isomorphic (as if-modules) to

Hp(M, V) <g>R &
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So that, in particular,

= dimR HP(M, V).

Now observe that the map ps defined in Sect. 1 induces an isomorphism

pδ : JS?[β*] -* if [Ωp] .

Moreover, ps maps Zp

δ to Zδ,Bδ to B$, and commutes with the action of if. Thus
ps induces an isomorphism as if modules

pδ:Ή%^H$. (3.4)

Our goal now is to relate the space ESo to H^. From Lemma 3.1 there is a map

δ2v2 + ...

with t;<5 satisfying (3.2) and (3.3). The linearity of the map v *—> v$ follows from
the uniqueness of vs. That is, if υ\ + v2 = v, then (v\)s + {v2)s satisfies (3.2) and
(3.3) so we must have

For v e ESo, we have dsvs = 0, so [vs] represents a class in H^>. This map
extends to a map

E^QSe^H^, (3.5)

where the element

(so that Vj G Eoo for all y), is mapped to the element

In fact, the map (3.5) is an isomorphism. This will be proved in 2 steps

(i) The map (3.5) is an injection:
This follows from the following lemma

Lemma 3.2. Ifwβ $£[Ω] satisfies

d*δdgw = 0 ,

then

dδw = 0 .

Proof. Suppose w = Σj>aδ
JWj, and let

w

k=

Then
d%dbw

k = d*δdδ{wk -w)e δ

so that
(dswk,dsw

k) = (d*δdδw
k,J<) €
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This implies

dδw
k eδi^ΪΩPftδ]]. (3.6)

We also know
dδw - dδw

k G δkΩp[[δ]]. (3.7)

It follows from (3.6) and (3.7) that

dδw e δl(k)Ωp[[δ]],

where

l(k) = min < , k > = for k large enough .

Letting k —> oo proves the lemma. D

If vδ is harmonic and vδ = dδwδ, then

0 = d*δvδ = d*δdδwδ

which implies, by Lemma 3.2, that

vδ = dδwδ = 0 .

Thus, for OΦv G Ego, [vδ] G H^ is non-zero, so the map (3.5) is an injection,
(ii) The map (3.5) is a surjection:

This follows from the existence of a Hodge decomposition for Laurent series of
forms:

Theorem 3.3. If v e ^[Ωp] then there exist vu v2,v3 e ^[Ωp] such that
a) v\ is harmonic,

b) V2

c) v3

d) υ = v\ + v2 + vs.

Moreover, v\9 v2 and v3 are uniquely determined by v. {Note that if dδv = 0 then
we have v3 = 0 by Lemma 3.2, and this proves (3.5) is a surjection).

Proof The uniqueness of the vt is clear. To prove existence we work modulo
harmonic Laurent series.

Write
υ=

By adding the harmonic series — δa(πoova)δ to v we can assume va e E^. Then by
adding — ̂ α + 1(πoo^α+i)^ to v we can assume ca+\ G E^. Continuing in this fashion,
modulo harmonic series we can write

N-\
υ= Έδj Σ vjjc

j^a k=-l

with Vjtk G Ek for all j , k.
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We define a linear ordering on the pairs (/, k)J G Z, — 1 :g k ^ N — 1, as fol-
lows:

Say (y, i ) < (/",*') if and only if

y + A: < / + k' or y + k = f + *' and j < f .

Let (jo,ko) = m i n K y , ^ ) ! ^ Φ0} From Theorem 2.5(b), we know that

K • K - K

is an isomorphism. Therefore there exist w\ G EkQ , W2 G EkQ such that

Vjoλo=dkoWι+dkow2 - ( 3 8 )

Let

v' = v - dδ(δj»Φ'(wx)) - dϊ(δjoφ'(w2)).

As before, modulo harmonic series we can write

N-\

with Vjk G Ek for all y, k. Formula (3.8) implies Vj ^ — 0. Corollary 2.6 implies

that if '

then (j\,k\) > (jo,ko) Thus we can repeat the operation and in this fashion con-
struct the desired v2 and v3 term by term. D

4. The Leray Spectral Sequence

In this section we show that the spectral sequence {E^,πkdk7tk}9 or more precisely
{^{Eζ),%kdkTίk}, is isomorphic to the Leray spectral sequence associated to a
filtered differential complex constructed from M and the splitting TM = A+B. As
a corollary, we learn that for all p and k the dimension of Eζ is independent of
the metric g = gA + gB.

In addition, in the case that A is integreable, we show that {E^n^dkUk} is
isomorphic to the standard Leray spectral sequence associated to the corresponding
foliation.

Let us briefly recall Leray's construction of a spectral sequence from a filtered
differential complex. (See [McC] Sect. 2.2 for general discussion.)

Let {K, d} be a differential complex. That is,

K = φKi,d(Ki)CKi+ι and d2 = 0 .

Suppose further that
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is a filteration by subcomplexes, i.e.

K = \jKi and d(Kt) C Kf .
i

Then we get a spectral sequence as follows: Define

ι

9 (4.1)

U d(K^q+ι) , (4.2)

and

eP,g = ZM/z^q-1 + #£* . (4.3 )

Then ([McC] Theorem 2.1) the operator d induces a difΓerential dr on the spaces
^ such that

er+ί =H*(er,dr)9

and thus the complexes {er,δr} form a spectral sequence. Lastly, we define

so that

To place the spectral sequence {Eζ.πkdkTik} in this general framework, we
borrow an idea from Sect. 3 and let

κp =
where ^[Ωp] denotes the space of Laurent series in δ with coefficients in Ωp. Let

Kf = d^p[[d]]

so that
Kp = •-DK^'DK? ~DKf D ... .

For the differential, we take

d = δdδ= d1^ + δdι>° + δ2d°>1 + δ3d~ι>2 ,

so that

d(κ,) c Λ:, .
Note also that

HP(Kid) = Hp(K,dδ)*ί&[Eξo].

In fact, we have

Theorem 4.1. With Kx and d defined as in (4.1), (4.2) and (4.3), the induced
spectral sequence satisfies:

For every r
{er,dr} ^ {tflEr-xlnr-xdr-Wr-A ,

where πr-\dr-\πr-\ acts term by term on Jίf[Er-\].

Proof. We begin by defining the space

~9>{ = {ωδ € ΩP[[δ]]\dδωδ € δkΩP+ι[[δ]]} .

Note that 3)k is just a completion of the space <$ζ defined in (2.20).
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Then

Z r

M = δpΩp+q[[δ]] Π d-\δp+rΩp+q+ι[[δ]]) = δp~Q)PZ\ ,

B™ = δpΩp+q[[δ]] (Ί d(δp-rΩp+q-ι[[δ]]) = δp-rdΨrl\~X >

and

ZP,q δpΊ$P+q

t ° ^ i ( 4 4)

(where Dp*q and J r_2 are defined in (2.21) so that

The theorem follows from the following two facts:

(i) For all / and r

r-\

Dι

r = 0
/=—l

(ii) For all / and r

r

dr{βr ) = φ Image(π/d/π/l^-i

which is precisely the content of Lemma 2.7. (The slight difference between Q)k

r

and &r does not affect the lemma or the proof).
Now, we note that (i) and (ii), combined with (4.5) clearly yield

e'r 9* <£\E[_X\ .

Moreover, the correspondence between dr and πr-\dr-\πr-\ follows as well:

For a class α £ ep'q, let δpoί G δp@pZq be any representative of α (using the

formulation (4.5)), and as ^ ^r-ι a nY extension of α.
Then δpoc$ represents α in (4.4), and by definition

dra = [dδpoίδ],

where [dδpocs] denotes the class in ep+ 'q~ represented by dδpoί§. From (i) and (ii)

there is a unique α G δpEp^q which represents α. We can then choose oίs — Φ'(&)

(where Φ' is the extension defined in Theorem 2.4), so that

dra = [δpdaδ] = [δp+ιdδΦ'{oi)] = [^ r π Γ _ir f r _iπ r _iά] (4.6)

as claimed. D
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The spectral sequence {ep

9dk} is defined independently of the metric g =
QA + QB> Moreover, it is clear from the proof of Theorem 4.1 that the isomorphism

is as ^-modules. In particular, we learn

Corollary 4.2. For all p and k, άimEζ is independent of the metrics QAandgB in
the decomposition

For the remainder of this section we assume that A is integrable. In this case we
know that

d2'-1 = 0

so that, in particular
d = dι'°-+d°'ι+d-1'2. (4.7)

This implies that our spectral sequence satisfies

Ω* =E.X=EO.

There is a canonical filtration of the deRham complex associated to an integrable
distribution. Namely, let

K = Ω*(V)

and

Then

and (4.7) shows
d{Ki)QKi.

This data gives rise to a Leray spectral sequence defined by (4.1), (4.2) and (4.3).
In analogy with our earlier analysis, to help identify the spaces ejr'q we define

{ωe Ωp+qΠKq\dω e Ωp+q+ι ΠKq+r}

and
@P« = {ωe Ω™\ώ <E @™ with πp«ώ = ω} .

We also define the operator

dr : 9>™

by

drω : πp-r

(Note that
d(dω) = 0 and (dω) e Kq+r Π Ωp+q+ι

imply
x h r C D
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ι'q-r+ι . (4.8)

The expression on the right-hand side of (4.8) can be simplified with the following
lemma

Lemma 4.3. For all p, q and r

(i)
L/=o

(ϋ) idim Π QP-r+x«+r)

L/=o

Before proving this lemma we state two corollaries. Lemma 4.3 and (4.8) imply

Moreover, the proof of (4.6) can easily be adapted to our context to prove that the
differentials coincide. Thus we have

Corollary 4.4. If A is integrable

where {e?'q,dr} is the her ay spectral sequence associated with A

We note that the Leray spectral sequence {e?'q,dr} is defined without reference
to the metric g — gA^-gB- Moreover, it can be defined without reference to the
distribution B. This can be done by observing

Ki =^^{co G Ωp\iaιia2...iap_ι+ιω = 0 (where i = interior product

p

for all aι,...9ap-i+ι G A} .

This implies

Corollary 4.5. If A is integrable then for all p, q and r

depends only on the distribution A. In particular, άimE™ is independent of the
complementary distribution B as well as the metrices gA and gB.

Thus it only remains to prove Lemma 4.3

Proof of Lemma 4.3:
(i) We first show

Γr-l

I ι=o

To prove E?« C D?« we let

(4.9)
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Then there exist ωi,α>2,... with

dδ(ωM + δωλ + δ2ω2 + . . . ) € δrΩ[δ],

so that

dι'°ωp<i = 0,

From this it follows that

l"λ = 0 ,

which implies

From Theorem 2.8 we know

ImageπzJzπz = ^ y Imageπιdϊiii\

and

For ω77'^ G Imageπιdιπi Π Ω^7^ there is a

with

where

for some v\,v2,... .
Then

for some

Thus

or, setting (5 = 1

[ ^ + Σ^ΓUqH] = 0 (4.10)
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From (4.10) it follows that

ω™ e Dξg C D™ ,

which implies

Imageπ/έ/fπ,- Π β** C D™ .

The converse of (4.9), as well as part (ii) of this lemma are proved similarly.
That is, one simply follows the proof of Lemma 2.7 using the minor modifications
demonstrated in our proof of (4.9). D

5. Small Eigenvalues and Eigenspaces

In this section we assume that A is integrable, and hence defines a foliation of
M (so that d2~x = d2~λ* = 0 and E-\ = Eo). In addition we make assumptions
restricting the local geometry (see hypothesis (HI) and the global geometry (see
hypothesis (H2)) of the foliation. We essentially assume that A is a Reimannian
foliation with compact leaves, and g is a bundle-like metric (these terms will be
defined shortly). There are many examples of such foliations. For example, if

F^M-^N (5.1)

is any fibration of M with compact fiber F then M can be given a metric g such
that (5.1) is a Reimannian submersion. Then the foliation of M given by the fibers
of (5.1) satisfies the hypotheses. Moreover, if G is a compact Lie group acting on
M such that all orbits have the same dimension, and if the metric G is invariant
under the action of G (such metrices always exist), then the foliation of M by the
orbits of the action satisfy the hypotheses. See [Re] and [Mo] for other examples.

Under these restrictions we prove that for all p,

dimEζ < oo .

This was proven under more general hypotheses in [Sa].
We can then make precise statements about the behavior of the small eigenvalues

of L$, as well as the corresponding eigenspaces, as δ —» 0. A key role is played by
the spaces EP and the operators δp defined in Sect. 2.

In particular, we show that the number of eigenvalues which are ~ δ2k as δ —> 0

is precisely dimiί^ (Theorem 5.15), that the corresponding eigenspaces converge

to Ek (Theorem 5.17), and that the eigenvalues are asymptotic to the eigenvalues

#%':#-># (5-2)

(Theorem 5.20). Recall that the operator Δζ and the spaces EP

k in (5.2) are indepen-
dent of <5, and defined purely in terms of the Taylor series analysis of Sect. 2. That
is, loosely speaking, we demonstrate that under the hypotheses (HI) and (H2), the
formal Taylor series analysis of Sect. 2 enables one to conclude precise quantitative
statements concerning the asymptotics of the eigenvalues and eigenspaces of LP as

We begin this section with a statement of our hypotheses. We first assume

(HI) (M, A, g) is a Riemannian foliation with a bundle-like metric.
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That is, we assume (M, A, g) satisfies one of the following equivalent conditions
(see [Re] Proposition 4.2):

1) (M, A, g) locally has the structure of a Riemannian submersion.
2) For every vector field X tangent to A, ^χ(gβ) = 0 (where we have written

TM = A+ B, and g = gA+ gβ, and ££χ denotes the Lie derivative in the direc-
tion X).

3) The distribution B is totally geodesic, i.e. for every p £ M, b £ Bp and every
extension of b to a neighborhood of p

(Vbb)\p) = 0 ,

(Note that (Vbb)A(p) is independent of the extension.) Let VA denote the map

VΛ : ΩiJ -> ΓA <g> Ωij

given by

V^ω = f > ' ® V°;°ω ,
ί = l

where {«/}/= i,...jΛ denotes a basis of A and {a1} is the dual basis of T*A. The
hypothesis on the local structure of A implies the following:

Lemma 5.1. Assuming the hypothesis (HI),

a) The operator D1 '0 = dh0*(dι>°) + (rf1'0)**/1'0 has the form

where C\ is a zeroth order operator.
b) The operator dι>°(d°>1)*+(d°>l)*dl>° has the form

dl'\d°>1)* + (d°>l)*dl-° = C2o\7A + C3

for zeroth order operators C2 and C3. That is, for a basis {αz} of A there are
zeroth order operators {C2,/} and C3 such that

dι'0(d°'ιy + (dlfiTdlfl = E^V^;0 + C3 .

The same is true for the operator (dι>°)*d°>1 +rf°'1(rf1'0)*.
c) The operators ^ ' V " 1 ' 2 ) * + {d'^γd1^ and (rf1'°)*rf-1 2 -h^" 1 ' 2 ^ 1 ' 0 )* are

zeroth order. {This is true independent of (HI).)

Proof At p £ M, let {«/} be an orthonormal basis for A, {bj} an orthonormal
basis for B, and {V} and {bj} the dual bases. We now extend these bases to
orthonormal bases in a neighborhood of p. Since B is totally geodesic, we can
choose these extensions to be parallel in the B direction so that at p,

Vbjai = Vbjbk = 0 for all ί,j9k .

We can choose the extension so that, in addition, at p

V°;% = V°;% = 0 for a l l / J , * .
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Then

i j

^ '" 1 =We observe that at p V^'"1 = 0. Since

(« ) = -

where Ci is a zeroth order operator which vanishes at p, we have at p,

4- (zeroth order term)

=(using V°;oα/ = 0 for all /,y)

" ΈJa^yX + iaka^yy + (z.o.t)

A y f V°;°V°f) + z.o.t). (5.3)
i,k

Since αz/flΛ. + iaka
ι = δ^, the first term in (5.3) is, at p

Since

v β j k v β /

where R(a/c,cii) is a zeroth order curvature operator, we have
V

0,0v70,0 v7θ,Oτ7θ,O n / _ _ \0,0 . V7°'°

V v ak

 v a, τ v ak

 v a, v α, v β* v α, v β t /

For every J . V J 6 is 0th order if (α,ft)Φ(0,0). Furthermore, [ak,a{\ C A so

[ak,ai] = V°afai-^ = 0 at p.

Thus, at 7̂

Π1'0 = V^V^ + zeroth order terms.
Since p is arbitrary, this proves (a).

Parts (b) and (c) are proved similarly. D

Corollary 5.2. There are constants c\ and <?2 so that for all ω £ Ω*,
ι o o ι °ιlfi \ + \ω\)

The assumption (HI) is a restriction on the local geometry of (M,A,g). Our
second, and last, assumption restricts the global geometry.
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(H2) We assume that the positive spectrum of the operator D1 '0 = dι>°(dι>0)* +
(dι'°)*dι'° is bounded away from 0 by a positive constant.

That is, we assume there is a c > 0 such that ω e (kerD1'0)-1 implies

(Πι>oω,ω) ^ c\ω\2 .

Lemma 5.3. If(M,A,g) satisfies (HI) and, in addition, all leaves of A are compact,
then (M,A,g) satisfies (H2).

Proof First suppose A consists of the fibers of a Riemannian submersion π : M —> N
with compact fibers. Then ω G Ωhj{M, V) can be considered as a y'-form on N with
values in the infinite-dimensional bundle

Ω\F, V)

I
N

(where Ωι(A, V) denotes the bundle whose fiber at x is Ωι(π~ι(x), Vπ-ι^).) For

Co — α 0 β, a e Ωι(A, V) and β £ ΩJ(N), (or, more precisely, ω = α Λ π*β) we have

where dA,d^ and D^ are the differential, codifferential and Laplacian, resp., as an
element of Ωι{π~ι{x\ Vπ-ι{x)). Thus

kerD1'0 - Γ(N,Λ*T*N 0 π\A, V)),

where J^*(A, V) denotes the vector bundle over TV whose fiber at x are the harmonic
forms on π~ι(x) with values in V. Moreover

i n f μ e s p e c D 1 ' 0 | λ > 0}

= inf [inf {λ e specD v : β ^ π " 1 ^ ) , Vπ-Hx)) D\ λ > 0}] . (5.4)

The spectrum of D^ varies continuously over N, and the multiplicity of 0 is constant.
Thus the smallest positive eigenvalue is a continuous function on N and therefore
achieves a positive minimum. This implies the infimum in (5.4) is positive, which
is precisely (H2).

More generally, suppose A is any foliation with compact leaves satisfying (HI).
Then, by Proposition 3.7 of [Mo], the leaf space N —MjA has the structure of a
compact Satake F-manifold (see [Mo] for a precise definition). We will show that
the infimum in (5.4) is positive by showing that the function

λ(x) = inf {A e specD,, : β ^ π " 1 ^ ) , V) D\ λ > 0} (5.5)

is locally bounded away from 0 (from which (H2) follows by the compactness of
N). M is a locally trivial fibration over the dense set U of non-singular points in
N, and at any x e U the local boundedness of λ(x) follows as before.
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If JC is a singular point of N, then all nearby leaves cover π~1(x), with the
degree of the covers bounded above by some k. Suppose {^i,...,^} are all the
Riemannian covers of π~ι(x) with degree ^ k, and

X(<tfi) = M{λ e specD : Ω*(<$9 V) D\ λ > 0} , (5.6)

where V in (5.6) denotes the pull-back to ^ of the bundle V over π - 1 (x) .
There is a neighborhood of x which can be stratified by sets Σi such that

{ π " 1 ^ ' ) I xf e Σi} a r e a ^ diffeomorphic and as x' G Σi approaches Λ^π" 1 )^')
approaches some ^ ) . Thus, as x' G Σi approaches x,λ(x') approaches λ(^j) > 0,
which proves λ is locally bounded away from 0. D

From now on, we assume hypotheses (HI) and (H2). The significance of these
assumptions is hinted at in the following lemma.

Lemma 5.4. There is a c > 0 such that for all δ small enough,

Lδ ^ I n 1 ' 0 + ^ ( D 0 ' 1 - C) ^ ^ ( D 1 ' 0 + Π0'1 - C ) ,

where EF'* = daJ)(daJ))* + (da>b)*da>b.

Proof.

u = D 1 ' 0 + δW'1 + ^ D - 1 ' 2 + δ(dι>\d°>ιy

+s\d°> i(d- i*r + (j-1 '2)*^0 '1 + (rf 0 ' 1)*^-^+1/ 1 ' 2^ 0 ' 1)*).

To simplify notation we will write

Lδ = nl>° + ^ α 0 ' 1 + ^ π " 1 ' 2 + δKi + δ2κ2 + ̂ 3A:3 .

We observe that D~1>2 is positive, and from Lemma 5.1 (c), K2 is a zeroth order
operator, so for some c\,

Lδ ^ D 1 ' 0 + δ2ΠP-1 + δKx + δ 3 i : 3 -cxδ
2 .

We now observe that for any ω

(δ3K3ω,ω) =

so that

Thus, for δ ^ \ there is a c2 so that

\(δ3K3ω,ω)\ S

\ t

^ ^ Π1'0 + ^ 2 O ° f l + δκι ~ C2& (5.7)

Lastly, we write

δ(Kχω,ω) = δ((Kιπoω,πoω) +2(K\π\ω,πoω) + (K\π\ω,π\ώ)). (5.8)
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We note that
{K\π\co9π\ω) = 0

and, from Corollary 5.2, there is a c3 such that

\Kxπιω\ ^ c 3 |πiω| .

Thus, for any ε > 0,

= 2|επoω|
δc3

From (H2) we can choose ε small enough so that for all ω,

-(D1'°ω, ω) ^ ε2 |πoω|2 .

For such ε

2{δKxπλω9πQω) ̂  - ί j p ^ -T ω •

δc4\πoω\2 S

so for δ small enough

Moreover

δc4\πoω\2 ^ -(ΠhΌω9ω

^(D^^oω^oωJ^lπωl =2 (-^(Πh0π0ω,π0ωy/2 J

99

(5.9)

(5.10)

From Corollary 5.2 there is a c4 such that

| ( ^ i π o ω , π o ω ) | ^ δc4 ((D1 'oπoω,πoω)1/2 |πoω| + |π 0 ω| 2 ) . (5.11)

We have from (H2),

(5.12)

\πoω\
V 2

+ <5 2 )2c 2 ) |π o ω| 2 ^ ^(• 1 ' °ω,ω) + <52(2c2)|ω|2 . (5.13)
o o

Combining (5.7)—(5.13) yields the theorem. D

We observe that D1 '0 + D0'1 is an elliptic 2n d order operator with positive symbol.
Thus, for any k G R, only finitely many eigenvalues of D1 '0 -j- D0'1 — C are less
than k.

Combining this observation with Lemma 5.4 we see that at most finitely many
eigenvalues of Lp

b can be in O((54). Therefore, from (1.8) we learn

Corollary 5.5. For all p
dimisf < oc .

Before leaving this topic, we present an implication of (HI) and (H2) which
will play an important role in the analysis in this section.
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Lemma 5.6. There is a c > 0 such that

are all bounded above by c.

Proof. We prove the lemma for π$d^λπ\. The bound for the other operators
follows similarly. Suppose ω G Ωp satisfies ω G E\ — KernelD1'0 = Kernel c/1'0 Π
Kernel^ 1 ' 0)*. Write d°>ιω = a + β with

aeEu

β e Eo = jg-jL = (KernelD1'0)-1 = Imaged1'0 Θ Image (rf1'0)* .

Since

rf1VO>1ω) = -rfo 1(rf l ϊ Oω) = O
and

Λ = o
we must have

β £ Kernel^1'0 .

Then, from Corollary 5.2,

d\ω\ ^ \(d°>ι(dι>oy+(dι>°ydOΛ)ω\

= \(dι>°ydOΛω\ = \(dh0)*β\

(from (H2))
= c2\πod°'lω\ .

Thus, we have proven Lemma 4.6 with c = ^-. D

We now commence our study of the small eigenvalues of L§. We begin by
showing that the number of eigenvalues which are in o(δ2) as δ —> 0 is precisely

The first step is to show that the corresponding eigenspaces converge to E% and

Lemma 5.7. Given any c\ > 0 there is a c2 > 0 such that:
If δiJ = 1,2,3,..., is any sequence with δf —> 0, α«rf ωz αwjμ sequence of p-

forms with |ωz | = 1 α«(i

(Lδ.ωi,ωi) ίk c\δ2 ,

then

Proof. This follows directly from Lemma 5.4 and (H2) which imply

c\δ2 ^ (Lδiωhωi) ^ (Πι>°ω,ω) - c3δ
2 ^ c4\πoω\2 - c3δ

2 . D

Theorem 5.8. If δ^i — 1,2,3,..., is any sequence with δj —> 0, and ωz any sequence
of p-forms satisfying |ω/| = 1
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{Lδιωuωi) G o(δ2) ,

then a subsequence of the ωfs converges (strongly in L2) to an element ω G Eζ.

Proof. Write ωι = α, -f- ft with

α, e £ o =(kerD1 '°)-L

and
ft G £ f - k e r D 1 ' 0 .

From Lemma 5.7 it follows that there is a c > 0 with

so that

The lemma follows once we show that a subsequence of the ft's converges to an
element in E%.

(i) First we show that the ft's are bounded in H\. By definition we have

so it is enough to show that for some k > 0,

Now |̂ /^co|2 G o((52) implies

\duoω + W 0 ' ^ + δ 2rf- l ϊ 2ω| G o(<52) => πi(έ/Oίlω + δd~h2ω) -+ 0

But
π i d 0 ' ^ = πiί/Oϊl(α + j8) = (π1ί/0 '1π0)α

From Lemma 5.6

Thus
\πιd°'ιβ\-^O. (5.14)

On the other hand

\πod
OΛβ\ = \πod°>ιπιβ\ ^ c\β\ ^ c\ω\ = c . (5.15)

Together, (5.14) and (5.15) imply

\d°>ιβ\ < k.

Similarly, one can prove
\(d°'ιyβ\ <k.

Thus the βi's are bounded in H\ and hence a subsequence of the ft's converges
weakly in H\ (=Φ strongly in L2) to some β G H\.

(ii) j8 G £"f: Since ft -^ β strongly in L2, (2) implies \β\ = l. Now

0 = πoft -* πojS

implies π 0 ^ = 0 so /? G Ef.
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(iii) β G Eξ: Since βt -» β weakly in #1 we have d°>ιβi -> d°>ιβ weakly in L2.
Thus

π ^ 0 ' 1 ^ -* π{d°Λβ

weakly in L2. By (5.14) \πχd°λβi\ -> 0. This implies π\d°Λβi -> 0 strongly in Zλ
Therefore (by the uniqueness of weak limits)

β = 0. (5.16)

Similarly
π i ( ^ 1 ) j8 = 0. (5.17)

Together, (5.16) and (5.17) imply β e £f. D

Corollary 5.9.

#{λf € spec ( I f ) I liminf δ~2λf = 0} = £f .

Proof. The inequality ^ follows from (1.8). If there were a strict inequality, then
we could find <5Z —> 0 and ωz G Ωp with

|ω/| = 1, (Lδiωi9ωi) e o(δ2)

and (cθi,co) — 0 for every ω E E^, but this contradicts Theorem 5.8. D

We saw in (1.8) that

#{λf G O((54)} ^ dim^f .

Combining this with Corollary 5.9 we have

Corollary 5.10. There are constants c\,c2 > 0 such that for every i either

λf ^ cxδ
2 for all δ

or
λf S c2δ

4 for all δ .

Our next goal is to prove analogous statements about eigenvalues which are
O(δ2k).

To analyze the small eigenvalues, it is convenient to modify the Ek spaces by
using the extension map Φ' defined in Sect. 2.

Recall that for each k, Φ1 is a linear map

Φ' : Ep

k

such that for v G Ep

k

d*δΦ'(v) G δkEP

k~
X + δk+ιΩp-χ[δ] .

For each v G Eft, there is a formal power series

Vδ = v + δvχ +δ2v2 + ... . (5.18)
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such that the map v *—> υ$ is linear, and, formally,

dδvδ = d%vδ = 0 .

Define, for v G Eft

φ\υ) = υ + δυ\+ δ2v2 H h δN+2vN+2

(where the ty 's are as in (5.18)), so that

dδΦ'(v)eδN+3Ωp+ι[δ],

Now extend Φ' linearly to a map

Φ' : Ωp -> Ωp[δ] .

For every δ G [0,1] we can evaluate Φ'(v) at δ to get a map

Φ' \δ: Ω
p -> Ωp .

Let Ep

δ be the image of Ep under this map, and let π^δ denote the orthogonal

projection onto the complement of Ep

δ. Define Ekδ to be the orthogonal complement
ofEk+ι,δ inEk,δ> L e

hk,δ — πk+\,δhk,δ

and τtk,δ the orthogonal projection onto Eζδ.

Suppose v\,...,vr is the basis of Eζ+V so that Φ'{υ\)\^...,Φr(υr)\^ spanE%+ιδ.

live EP, the

πk,δΦ'(v) = Φ'(v) -
7=1

Each {Φ'(V),Φ'(VJ)) is in O(δ), since Φ'(v) = v + O(δ)9Φ'(Vj) = υj + O(δ) and
(v9Vj) = 0. Therefore,

(since dδΦ
f(vj) G <9(<5*+1) for ally), and d*dn^'(v) = δk(d'kYv + O(δk+ι. Further-

more, we have that for every δ G [0,1],

Suppose k > 0, and vδ G E^δ for δ G [0,1]. Thus

for some 1-parameter family of elements

ΰ& € Ep
k .
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Then
(Lδvδ9υδ) = δ2k(Akvδ,vδ) + O(δ2k+ι) (5.19)

(where Δk = d'k(d'kγ + ( 4 ) * 4 )
From Theorem 2.5 (b)

Δk : Ek —> Ek

in invertible. Since Ek is finite dimensional for k > 1, there are positive constants
c\ and c2 such that for all v £ E^,

cxδ
2k\v\2 < (Akυ,υ) <c2δ

2k\υ\2. (5.20)

Combining (5.19) and (5.20) we find

Lemma 5.11. For every k > 1 there are constants c\,c2 > 0 such that for all

Vδ e Ek,δ,

cλδ
2k\vδ\

2 < (Lδvδ,vδ) < c2δ
2k\υδ\

2 .

In addition, we know from the definition of Φ' that if v £ E^ then

Thus, if follows for v\ £ Ek,V2 £ Eι,k + l, we have that

{dδπκδΦ'(vλ),dδπlβΦ\v2)) e

(dlπ^Φ'iv^dlπ^Φ1^)) G ( )

This implies that for any υ and w9

k + M . (5.21)

If k > 1 or / > 1, then τtιδLδπ^δ has finite rank, so the bound in (5.21) is uniform
in v and w. That is

Lemma 5.12. There is a c > 0 such that for all k and I with

max {k, /} ^ 2 .

we have

cδk+ι if k = 1
if

This brings us to the theorem from which our main results will be derived.

Theorem 5.13.
a) There is a c > 0 such that for k ^ 1 restricted to Ej^δ,

>

b) For euery c2 > 0 there is a c2 > 0 .swc/z ίΛαί for all k ^ 1,(5 G (0,1] and
vδ e ^ // M = 1 ΛWί/ (LδVδ,vδ) ^ c i ^ - 1 ) then for all 0 ^ / ̂  it - 1,
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c) There is a c > 0 such that for every k ^ 1, and every ίj with 0 ^ ίj ^
k-1,

\πuδ{πlδLδπ^rxπj,δ\ ^ cδ'^ . (5.22)

Proof. Parts (a), (b) and (c) are intimately related, and we prove them simultane-
ously, inductively in k

k = 1 : Part (a) follows from Lemma 5.4 and Hypothesis (H2)

Part (b) is vacuous

Part (c) follows directly from (a)

k = 2 : Part (a) is Theorem 5.8)

Part (b) is Lemma 5.7.

We now proceed inductively.

Proof of (c). Assume (a) (b) and (c) have been proved for k - 1, and (a) and (b)
have been proved for k §: 2. The proof of part (c) will be by downward induction
on max{z,y}.

max{i, j} = k — 1. Assume j — k - 1. We will show that for all i :g k — 1 (leaving
off the δ subscripts)

Since

and taking adjoints preserves norms, this implies the same inequality for j ^ /
k- 1.

Suppose v e Ek-\ and \v\ = 1, and let

(π^Lπ^)~ιv = ω .

Then, by part (a), |ω| ^ cδ-2^k-χ\ Let

so that |ώ| rg 1. Then ώ G E^δ and

(Lώ,ώ) = ((π£Lπ£)ώ,ώ) = c-χδ2{k-χ\v,ώ) ^ c

Therefore, by part (b) of this theorem, there is a c > 0 with

|π/cS| ^ cδ*'1-1

which implies
π,ω| ύ

as desired.

1 ^ max {i, j} = k—r,r > 1. We assume (5.16) has been proven for msx{i,j} >
k — r. As above, it is sufficient to assume i ^ j = k — r. Suppose v G £/,<5,M = 1
and write
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[πkLπk) v = ω,

so that

%i_rΛ.λLπiω = v .

Since v G E^-r C Ejt-r+ι w e n a v e

Therefore

π^_r+λLπ^_r+λω = v -

so for z ^ A: — r

k-r k-\

= πi(π^_r+ιLπl-_r+ιy
ιπk-.rυ - Σ ΣΣ πι(π£_r+ιLπ£_r+ι)-ιπmLπmLπιω .

(5.23)

By induction on part (c),

Thus
I π ^ π ^ ^ π ^ ^ ! ) - 1 ^ - ^ ! S cδ^k~r^ (5.24)

and

++ (5.25)
m / m /

Since / > k — r, it follows by the induction on max{z,y'} that

|π/ω| = I π / ί π ^ - Z π ^ ) - 1 ^ . ^ ! ^ c < Γ M * - r ) . (5.26)

From Lemma 5.12, since I ^ k — r + 1 ^ 2 and / ^ & — r + 1 > m ,

| π m Z π / | G 0 ( ( 5 m + / + 1 ) . (5.27)

Substituting (5.26) and (5.27) into (5.25) yields

t t λ ^ k ^ ι (5.28)
m I

Combining (5.23), (5.24) and (5.28) yields the desired inequality.

i = j = 0 : The only case not previously covered is i—j — 0. Suppose v e Eo, \v\ = 1
and

(π^Lπ^)~ιv = w,

so that w G E£- and

π^Lπ^w = v .
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Then
(Lw,w) = (^Lπ^w,w) ^ |πow| . (5.29)

On the other hand, we have

(Lw9w) = \L%2 w,π2 w) + 2^ \Lκιw97tjW) . (5.30)

If max{/,/} ^ 2

From Lemma 5.12,
{πjLπ.l ^ cδi+j .

By the downward induction on max{i,j}

Similarly
|π ;

Thus, there is a ci such that if max{/,y} ^ 2,

Klπ^πyw) ! ^ c i . (5.31)

From Lemma 5.4 there is a c such that

From (H2)
(D1 'oπ^w,π^w)c|πow|2 .

Moreover
cδ2πiw\2 = ^ 2 | π o w | 2 + cδ^πxw]2 .

From the downward induction on max{/,j} there is a c such that

|πiw| = πi(π*_iZ,π*_i)~1πot;| ^ cδ~ι .

Thus for δ small enough

(Lπ^w,π^w) ^ < 2̂|τrow|2 — C3 . (5.32)

From (5.29), (5.30), (5.31) and (5.32) there is a constant c4 such that

c 2 |π ow| 2 - c4 S \πow\ .

which implies there is a cs with

|πow| = |πo(πjt_i)πot;| ^ c5

as desired.

Proof of Part (b). Assume that (a) (b) and (c) have been proved for k — 1 (where
k ^ 3). Suppose v e E^δ, \v\ = 1 and
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(Lv,v) ^cλδ
2(k~l).

Write v = a + β with α € E^_ιδ,β e Έk-ι,δ Then

^ (La,a) + 2(La,β)

^ \Li<x\2-2\ύa\ \άβ\

By the definition of E^-ig,

Since Ek-\$ is dinite dimensional for k ^ 3 there is a C2 > 0 such that

\dβ\ ^ c2δ
k~ι.

Therefore

which implies there is a C3 such that

That is
(Lα,α) ^ φ 2 ( * - 1 } . (5.33)

By induction on part (a)
(Zα,α> ^ c4<52 (^-2 ) |α|2 . (5.34)

Together, (5.33) and (5.34) imply

N 2 ^ ^^2.

c4

Therefore, | ^ Et-\,δ satisfies

By induction on part (b), for 0 ^ y ^ k — 2 there is a c > 0 s.t.

Therefore

for 0 ^ i ^ A: — 2. For / = k — 1, the estimate follows from |πjt-i^| ύ \v\ = 1. This
proves part (b).

Proof of Part (a). We assume (a), (b), (c) have been proved k — 1, and part (b)
has been proved for k(7± 3). We will show that, restricted to E^δ,
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Let λs be the smallest eigenvalue of n^Lπ^- restricted to E^δ. Since

(Lv,v)eθ(δ2{k-l))

for v € Ek-\9λs £ O(δ2^k~1^). Thus if w is the corresponding eigenfunction, \w\ — 1,
then by part (b)

| ( l - π * _ i ) H

Now we have

{ ή ^ . (5.35)

Note that

Kπ^-Iπ^Γ'πt-iH ^ λJλ\πk-M + λjι(l + O(δ)).

Therefore, (5.35) implies

{πk^w,{niLπi)-ιnk_xw) = λj'(l + O(δ)).

The desired estimate on λjι follows once we see that

Writing E^δ = E^-_ιδ φ ^ - u w e deompose n^Lπ^ into a 2 x 2 matrix of
operators

πkL7lk = [ „ ± „

Then we can write

From Lemma 5.11, there is a c > 0 with

π t _,£π t _, ^ c ^ - ] ) . (5.37)

On the other hand

- , X / ± Λ- ± r~ *e? - , - '
Tίjc—l-LUj, i (71;^ i ) TΓt i.LTΓt—i ^ > 7Γi-_ii>7Γ,

Λ A
 Λ — i V. K—1/ AC—1 Λ A / J Λ i f

Thus, applying Lemma 5.12 and part (b) for k - 1,
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\πk-\Lπk_λ(πk_λ{πk_xLπk_xlπk-ι\

k-2 j

π7 | \πjLπk-ι\

^ c 2 δ 2 ( * - 1 ) + 2 . (5.38)

Combining (5.36), (5.37) and (5.38) we see that for δ small enough,

Now πk-\Lftk-\ ^ cδ 2 ^" 1 ^ implies

Iπ^Kπ^Γ^-il ύ c-χδ-*k-ι\

is desired. D

This theorem provides enough information for us to deduce the desired results.

Corollary 5.14.

#{λi(δ) e specDf I lim mfδ-2kλi(δ) = 0}
δ—>o

= #{Uδ) e specDf |A/(5) e O(δ2k+2)} = d i m ^ + 1 .

Proof. The first quantity is clearly ^ the second, is ^ the third, by (1.8). If either
of these inequalities were strict, we could find a sequence <5/ —> 0 and a sequence
ωz G Ω77 such that |ω/| = \,ωAΈζ+χδ, and for every c > 0,

(Lδlcθi,ω,) < cδ2k

for ^ small enough. This contradicts Theorem 5.13 (a). D

Now write λi{δ) rsj δk if

Uδ) e O(δk) and (λi(δ)))~ι e O(δ~k).

Theorem 5.15.
#{λt(δ) e

Proof From Corollary 5.14

Moreover,

1 ί 0((T2*) ^ ^ ( ^ ( δ ) ) " 1 ^ 0(1) ^ lim inf δ'^λ^δ) = 0 .
50
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From Corollary 5.14, all eigenvalues λj with

(US))'1 ί O(δ2k)

are O(δ2k+2) and the number of such eigenvalues is dimE£+ι.
Thus

#{λt(δ) ~ 0(δ2k)} = #{Uδ) e θ(δ2k)} - #{Uδ) e O(δ2k+2)}

. D

Corollary 5.16. // λf(δ) G O(δk) for all k9 then λf(δ) = 0 for all δ.

Proof Clearly {λ^δ) e O(δk) for all δ} D {^(δ) = 0 for all δ}. From Corollary
5.14 #{λf(<5) G O(δk) for all k] = dimE? = d i m ^ . In addition, by the results of
Sect. 3,

dim££ = dim Hp(M9E)

= #{λ?(δ) = 0 for all δ} .

This proves the corollary. D

We now investigate the behavior of the eigenspaces as δ —» 0. Let

= span{ωz((5) = Uδ)ωt(δ) with A,(δ) G (δ2k)} .

Theorem 5.17. For k > 1,

5 j which we mean, if vs G eig^, | ^ | = 1, then we can write

Vδ=GCδ+ βδ

with aδ G Eζ9 and \β\ G O(δ). Equivalently, if pk,δ is the orthogonal projection
onto eig ̂  then

Wδ ~ πk\ £ O(δ) .

Proof If vs G eig^, \v - δ\ = 1 then

Write vs — %δ + β<3 with

O i G ^ , βsGiE^)

Then

(Z,u,ι;) = (Loc,u)+2{Loc,β) + (Lβ,β) = \0a\2 +2 (lλa,lλβ} +dβ\2

Since k > 1, there is a c > 0 with

| z i α | ^ c\δk S c2δ
k ,

so that
\Uβ\2 -2c2δ

k\ύβ\ ^(Cι-
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which implies

(Lβ,β) = \dβ\2 ύ c3δ
2k .

It follows from theorem 5.13 (a), that \β\ e O(δ). Thus vδ = aδ + O(δ), with δ e

Ks>but

which proves the theorem. D

The following two corollaries are immediate

Corollary 5.18. Let Jff(M, V) denote the kernel of Πp

δ (= the space of gδ-
harmonic p-forms), then

, V) = kerL£ = ££ + O(δ).

Corollary 5.19. Let

^ A,(<5)«,(<5) with λt(δ) ~ δ2k} ,

w = Eζ + O{δ).

We are now ready to make precise statements about the asymptotics of the
eigenvalues. We have already seen that

Uf(<5)|dim£f+1 + 1 ύ i ύ άimEζ]

are the eigenvalues of Lp

b which are ~ δ2k, and the corresponding eigenspaces con-

verge to Eζ. We now prove

Theorem 5.20. Fix p. Then for every i,

dimEζ+ι + 1 g / S άimEζ ifk>\,

άimEξ + 1 S i < oo ifk=l,

we have

for some A, . These dim Eζ values of λ\ are given by the eigenvalues of the operator

[In particular, for k > 1,

δ2k} = ^{eigenvalues of A{ : Eζ -> Έζ} + O(δ2k+ι)] .

Proof Assume k > 1. First we prove that the eigenvalues of LP which are ~ <52A:

are closely approximated by the eigenvalues of π^+ι δLδπ^+x δ. If v e Ωp,\v\ = I
then write

v = oc + β

with
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Then

(Lυ9υ) = (Lα,α) + 2 ^zJα,ZJβJ> + (Lβ,β) .

Note that

and there is a c such that for all <5 and β G

(I^jδ) S cδ2k+2\β\2 ^ cδ2k+1 .

Thus, since π£-+ι δυ = α, we have

( ^ M = <^iH-i^+1t;,i;> + c i (π^+1Z,π^+1ι>,t>) + c2 , (5.39)

where

Let μi(^) ^ ^ ί ^ ) ^ be the eigenvalues of π^+xL
pn^+ι, so that, in particular,

Then (5.39) implies that for all i

\λt-μι

This shows that for
άimEξ+ι -f- 1 S i ύ άimEξ

the eigenvalues μz(<5) are ^ (52A:, and for such i

The theorem follows from proving that these μz's have the form

with the jϋj's the eigenvalues of zί^. The inverses of the non-zero μ/s are given

by the eigenvalues of (n^+lLn^+x)~l restricted to {Eζ)-L. From Theorem 5.13 (c)

it follows that, restricted to ( ^ + 1 ) ±

Thus, if v\(δ),...,vdim—P(δ) are the inverses of the non-zero eigenvalues of

τik(π

k4.]Lπh_])~ι πk, we have, for 1 ^ i ^ dir

From (5.36) we see that

(πk(π^+ιLπ^+ι)~ιπk)~ι = πkLπk + πkLπ^λ{π^

From (5.19) we have
2*
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and from Lemma 5.12 combined with Theorem 5.13 (c) we find

^ c2δ
2k+\

which proves the theorem in the case k > 1.
If k = 1 then όiimEζ = oo, and we do not have uniform bounds for the errors

which appear. However, this is not a problem. Fix c > 0 and consider

Γc = {λi(δ)\ lim svφδ~2λi(c) < c} .
δ-*o

From Lemma 5.4 we know L$ > δ2k for a 2n d order operator k with positive
symbol, so there is an upper bound Nc, independent of δ, for the number of eigen-
values of L$ which are < cδ2. Then the same argument as for k > 1 shows that
for dimEξ + 1 ^ i ^ #ΓC,

λi(δ) = δ2λi + O(δ),

where the λt are the eigenvalues of

which are < c. Letting c —>• oo completes the proof. D

So far, we have shown that the eigenspaces of L?b approach the spaces Eζ con-
tinuously. We complete this section by showing that our previous analysis actually
implies the C°° convergence of the kernel of Lp

δ.

Theorem 5.21. The spaces

KcrLξ = pδ3*?p

δ(M, V)

form a C°° map from [0,1] to the space of(άimHp(M, V))-dimensional subspaces
of the I? p-forms on M.

(Note : This generalizes Theorem 17 of [Ma-Me].)

Proof Fix M > 0. We will show that ρ^p

b is CM. We follow the proof of
Theorem 5.17, with one modification. In defining E^δ —E^d, we truncated the

formal power series (5.18) at the δN+1 term. To prove CM convergence, we truncate
the power series at δN+M. That is, let

φ'(v) = υ + δv\ + -

so that

dδΦ
f(v)eδN+MΩp+ι[δ],

d*δΦ'(v) e δN+MΩp~ι[δ] . (5.40)

Let Eζoδ denote the image of Φr applied to the space E£Q. Then Eζoδ is C°° on
[0, 1] (in fact is polynomial). Now we continue as before. Suppose

Vδ e pδ^s ,
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so that
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and

Write

with

Then

so that

(Lδvδ,vδ) = 0 ,

M = i

Vδ = OLδ-\- βδ

0 = (Lv,υ) = |I5α|2 + 2

0 ^

Therefore

Now, α e £ ^ j

Moreover, β G

This yields

Thus

which implies

so from (5.40),

| l i α | ύ cδN+M\a\ ^ cδN+M .

implies there is a c > 0 such that

cδ

is C M as desired. D

m+λ

As noted in [Ma-Me], this implies that any formally harmonic power series
(5.12) is, in fact, the Taylor series at δ = 0 of a C°° family of forms ω^ satisfying,

for every δ G [0,1] ωδ e pδ^δ(M, V).

Applying the map pj1, we learn

Corollary 5.22 (Corollary 18 of [Ma-Me]): The space Hg(M,V) defines a C°
map from [0, 1] to the space of (dim HP(M, V))-dimensional subspaees of the L
p-forms on M.
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