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Abstract: We consider a model of spinless fermions on the square lattice Έ1 with
an interaction potential of strength U > 0 at distance one and strength J at
distance two, in the large U limit |ί |, | J\ « U, where ί is the hopping amplitude. As
the chemical potential μ is varied, if t = T = 0 we find three different phases
corresponding to full, half and zero filling fractions. We study the system at low
temperature T ̂  0 by a method involving a canonical transformation and a func-
tional integral representation. If T = 0 we locate the phase boundaries of the Mott
metal-insulator transition for all | J\ « U with upper and lower bounds, show that
mean field theory is valid if J < 0 but fails for J = 0 when also the Peierls condition
is violated. This result is a quantum extension of the Pirogov-Sinai theory of phase
transitions. If T > 0 we have only one sided bounds for the phase boundaries and
we can't validate mean field theory in case J < 0. We introduce a new resummation
scheme for low temperature expansions which yields finite and convergent per-
turbation series and permits us to study issues like the sign problem. Our algorithm
gives an optimal canonical transformation for the functional integral such that the

expectation of the sign observable S is ^ exp ( — ct- Ve~2), where V is the
volume and β = T ~1.

1. Introduction

We consider a family of Hamiltonians describing a system of spin polarized lattice
fermions with short range repulsive interactions:

H = -t X {c + Cy + c^cx)+ U £
<χy> c A l | χ - y | | i =

+ 2J Σ nxny ~ μ £ nx (1.1)
\\x-yh=2 xeΛ

* Partially supported by the Ambrose Monell Foundation during a visit to the Institute for
Advanced study.
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J < 0

Fig. 1

in the strong coupling limit t « U. The next neighbour coupling J is assumed to be
small in absolute value, i.e. such that J « U. Our system is defined on a finite square
A a Z2 the length of whose side is an even integer. The dimension is chosen to be
d = 2 just to fix ideas and do a few calculations explicitly, but our results extend to
all other dimensions. Finally, cx , cx are the Fermi creation and annihilation
operators for spin up electrons. We impose periodic boundary conditions. It is
convenient to fix energy units so that U = 2 and to rewrite H as follows:

(1.2)

where N is the number operator

The Hamiltonian

H0=-ί

(1.3)

is a special case of Ή enjoying particle-hole symmetry. For a numerical study of
this model, see [1]. [2] is a recent mathematical paper on the subject.

In the classical limit t = 0 and for μ in the interval [8 J, 8 + 8 J ] if J < 0 and in
[16 J, 8] if J > 0, the Hamiltonian H has a "Neel ordered" ground state in which
the filling fraction is one half and particles are arranged in a checkerboard
configuration. A "ferromagnetic" phase takes over in case either \μ — 4 — 8 J | > 4
and J < 0, or |μ — 4 — 8 J | > 4 + 8J and J > 0; in this phase, the ground state
becomes either the eigenstate in which the filling fraction is one, or the one in which
it is zero. For the special value of the chemical potential corresponding to the
symmetric Hamiltonian H o , one can prove that there are two states at the bottom
of the spectrum whose energy difference is &\A\(ct)^A\; imposing a parity
condition with respect to global spin flips, one of these states ΨN is singled out. This
wavefunction ΨN is in the sector with filling fraction one half, is separated by an
energy gap of order 4 from the first excited band and in the infinite volume limit it
exhibits off diagonal long range order of the Neel type. The two ferromagnetic
states *FF0 and ΨFί with filling fraction 0 and 1, respectively, are eigenfunctions of
H for all values of μ and they become the ground states when \μ — 4 — 8 J\ is large
enough and t is small. The phase diagram is sketched in Figs. 1, 2, 3. The cluster
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Fig. 2

J > 0

Fig. 3

expansion algorithm we use provides detailed information on the excited states and
permits one to compute the coexistence line for J < 0 in a convergent small
t expansion. This extends to the quantum case T = 0, t > 0 a celebrated result that
Pirogov and Sinai [3] obtained in the classical case T > 0, t = 0. By using particle
number symmetry, we also locate the phase boundaries beyond the tricritical point
with upper and lower bounds. The lower bound is imprecise and can't be attached
a precise physical meaning. On the other hand, the upper bound is made up of the
three curves gN = 0, gF0 = 0 and gF1 = 0 on which the gap of one quasiparticle
excitations above one of the three perturbative ground states, vanishes. The idea of
using particle number symmetry to find phase boundaries is also in a recent work
by Freericks and Monien [6] on the Bose-Hubbard model.

Mott transitions [4] for an ordered system like the one we are considering can
be first order [5]. Mathematically, these transitions are related to some kind of
level crossing among ground state energies EN corresponding to sectors with
different particle number N. The typical situation is illustrated in Fig. 4, the first
excited band of continuous spectrum in σ(Ή) intersects the t axis at the critical
value tc. As we discuss later in this article, the occurrence of this intersection doesn't
necessarily imply that the ground state wavefunction for t < tc looses analyticity
ad t = tc or develops long range correlations. If μ « 0, the quasiparticles with the
smallest gap are quasiholes. In case the quasiholes don't form bound states, the
higher order bands with n = 2, 3, . . . intersect the t axis at about t = tc, up to finite
volume corrections which vanish as if n is kept fixed and we take the thermo-
dynamic limit A\ΊL2. Hence, for t > tc we obtain a liquid of quasiparticles interac-
ting via an effective short range interacting potential of order O(t) and with an
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σ(HH-Eo)

Fig. 4

effective chemical potential of order c(t — tc), where c is the slope of the lowest edge
of the first spectral band at t = tc. If the transition is towards a metallic phase, an
important question is whether the density of holes has a first order jump at the
phase transition or whether the transition is second order, see [4] and [5].
A different kind of first order phase transition which is also possible can be
triggered by a charge density wave instability. In case the transition is first order,
the gap of quasiparticle excitations doesn't close at the phase transition and, as
a consequence, the upper bound computed by requiring the one quasiparticle gap
to close, is not saturated and the transition occurs for smaller values of t. What one
can say on the basis of the results in this paper is that, if J < 0, then on the part of
the phase boundary of the Neel ordered phase which is closest to the tricritical
point, the excitation spectrum for one quasiparticle states has a gap. Our cluster
expansions might also be useful to compute the minimum metallic conductivity,
analytically, because they provide a systematic way of renormalizing the bare
strong coupling interaction to an effective weak coupling interaction among
dressed quasiparticles near the Mott transition.

Our interest in this problem is also motivated by the desire of developing
a practical algorithm for low temperature expansions for quantum spin systems.
The convergent low temperature expansion given by Kennedy and Tasaki in [7] is
based on a direct application of the Trotter product formula to the bare Hamil-
tonian and involves (d + l)-dimensional polymers. This formalism is elegant and
mathematically under control, but it is rather inconvenient for numerical applica-
tions. To overcome this difficulty, Gelfand, Singh and Huse [14] developed
a different algorithm for zero temperature expansions which involves only d-
dimensional polymers. For similar reasons, in this article, we develop an algorithm
for low temperature expansions which can be implemented in a strictly d-dimen-
sional setting.

The extension of the classical low temperature expansions to quantum spin
systems within a d-dimensional formalism is a non-trivial problem. The difficulty
can be seen as one attempts to compute the partition function

as a sum over cluster y a A of activities z(t, y) such that

H < f ) | y> . (1.6)
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Although Z is a physical quantity whose value doesn't depend on the representa-
tion in which the operator IH is expressed, the activities z(y) are representation
dependent. The problem is that if one works in the natural Ising representation
given in (1.1), then the coefficients zn(y) of the expansion

z(t,γ)= Σ tnzn(y) (1.7)
M = 0

are such that \zn(γ)\ -> oo as β -» oo , for a large family of clusters y, see for instance
[2]. Due to this divergence, the numerical implementation of low temperature
expansions is an ill conditioned problem. The expansion coefficients of physical
quantities are computed as sums of terms of fluctuating signs. Each of these terms
diverges as β -> oo, but the physically meaningful coefficients are finite. It is hard
to keep track correctly of many cancellations between very large quantities if finite
precision arithmetics is used. Needless to say, the divergence of the activities is also
problematic for the rigorous analysis of such models. Since the activities are clearly
representation dependent, one can ask whether there is a constructive algorithm to
pass to a new representation in which the activities zn(y) are finite. In this article, we
give a possible solution to this problem and prove that not only is the low
temperature expansion we generate finite term by term, but it is also convergent as
long as t and e~β are small enough.

By means of our expansion, we can also avoid the difficulties related to the sign
problem of Fermi systems at low temperature. The sign problem is one of the
factors that limits the precision of quantum Montecarlo simulations [8] and its
understanding can help improving these numerical methods. Using functional
integrals, one can map a quantum statistical model at finite temperature into
a problem of classical statistical physics. This can be done in many different ways
and the sign pathology is more or less severe depending on the set up. Typically, if
fermions are involved, there is a signed measure μ(σ) giving the "probability" of the
configuration σ. Since Montecarlo simulations require positive definite probability
measures, one has to express the expectation of a local observable (9(σ) as follows:

where \μ\ is the positive definite probability measure \μ(σ)\ and S(σ) = sign μ(σ).
Then one evaluates <£>| μ | and < $ > | μ | independently and computes the ratio. The
problem with this approach is that both quantities <£>| μ | and <$S> ) μj tend to zero
as β -• oo, the typical asymptotic behaviour being given by e~

c'β\Λ\ where \Λ\ is
the volume. Moreover, if Θ is a local observable, then ΘS is not local. In particular,
only the ratio in (1.8) is independent of the volume, while <$S>| μ | and <S>| μ | are
very sensitive to the boundary conditions. The asymptotic behaviour of <S > is well
known to depend on the particular canonical transformation on the Hamiltonian
one performs before setting up the functional integral formalism. Hence, to solve
the sign problem, one has to find a functional integral representation that maxi-
mizes <S) | μ j . A hint of what is the right direction to go is contained in Hirsch's
paper on the half filled Hubbard model [9]. The idea is that one should transform
the Hamiltonian in such a way to lift the quantum fluctuations from the level of the
wavefunctions to the level of the operators themselves. In this article, we show how
to construct a canonical transformation for our model such that in the Neel

ordered state we have <5> ^ exp( — s ί \Λ\ e~2). In case quasiparticles or
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quasiholes are present, the sign problem is more severe. In this case, our algorithm
can also be helpful as they give a systematic way of constructing the exact creation
and annihilation operators for dressed quasiparticles; see for instance [10] for
a discussion of how this knowledge can be helpful to enhance the Quantum
Montecarlo signal.

Next, we give a precise statement of our results.

Theorem. There are constants J o > 0 and t0 > 0 such that if\J\ ^ J o and \t\ ̂  t0,
then the following is true:

(i) The Hamiltonian H o in (1.2) has a ground state wavefunction Ψo{t, J) with long
range order of the Neel type and whose energy is

E0(t, J) = \Λ\ [ - (3 - 8 j y h 2 + O((t2 + J ) 2 ) ] . (1.9)

The first excited eigenstate Ψ'0(t, J) has energy E'0(t, J) such that

E'0(t,J)-E0(t,J)S\Λ\(c t)^Λ\ . (1.10)

Above these two states, the spectrum is arranged in bands in which the spectral density
becomes absolutely continuous in the infinite volume limit. The first band is in the
interval

I, =£ 0 ( ί ,</) + 4 - 8 J + [ - 2 ί 2 , 2 ί 2 ] . (1.11)

(ii) The Hamiltonian in (1.1) admits the wavefunction Ψo{t, J) as the ground state in
a region of the form of the dotted domain in Fig. 1, 2, 3. Moreover, a phase transition
line and a tricritical point lie within the shaded regions. The equations for the curves
in this drawing are given in Sect. 3 and are analytic in t. In case J < 0, the one
quasipartίcle gap above the Neel ordered state doesn't close on the phase transition
line in a neighborhood of the tricritical point.
(iii) There is a constant To > 0 and a function d(T) such that d(T)[0 as T JO and for
which the following holds: if the temperature T ^ To and if the point (t, μ) is inside the
dotted region in Fig. 1 and at distance at least d(T)from the boundary, then the model
has off-diagonal long range order of the Neel type. Furthermore, in this region there
exists a canonical transformation for the Hamiltonian IH such that

c ί |Λ| ίΓ^). (1.12)

2. The Dressing Transformation

The Hubert space Jf for our model of spin polarized fermions can be identified
- though not in a canonical way - with the tensor product space (x)X G Λ^l being
11 }x and \e}x, where e stands for "empty." The identification J-f « (x) x e / 1C 2 is not
canonical because it depends on the choice of an order relation <̂ on A. To fix
ideas, we choose the lexicographic ordering but any other ordering relation would
work as well, as long as it is fixed once and for all. If Ae a- A is one of the two
sublattices of A of period 2 and Ao = A\Ae is the other, let \N} and |ΛΓ> denote
the two Neel states with the signs implied by the following ordered products:

Γ Γ (2.1)
xeΛc

(2.2)
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Since the Hamiltonian H o in (1.3) has global particle-hole symmetry, we can
restrict ourselves to the symmetric subspace Jf5 = P 5 Jf . Let |0>N be the coherent
superposition of IN) and \N'}, i.e.

- | Λ Γ » . (2.3)

We may also restrict the operator H o to the antisymmetric subspace #eA = ΨAJ^
and our methods would work as well. In the antisymmetric sector, the ground state
energy one obtains is slightly higher by an amount of order O(|Λ|(c t)* | y 1 ').

An excitation can be described either by a map y: A -> {0,1} or by the support
of this function, that we also denote by the same letter y. Let δy be the boundary of
y, i.e. the set of the sites xey having a neighbour outside of y. We denote with |y |
and \dy\ the volumes of these sets and with d(y) the number of bonds of the smallest
connected set containing y. Let us introduce the fermionic analog of Pauli matrices
for hard core bosons, i.e. the operators

όx — cx + cx ,

σ{

x

2) = c: - cx . (2.4)

If x φ y, we have

\σx > σy J — \σx •> iσy ) — \lσx 9 ισy J ~~ U ' l^ Ĵ

We also have

{ σ { χ \ i σ {

x

2 ) } = 0 , (2.6)

( — ( 1 ) — ( 1 ) ^ ( ' ~(2) ' ~(2)1 o ί^ H\

Finally, let πxy be the operator

If y is a connected excitation, we define τy to be the operator

Σ 'wΓT^1' (2-9)

in case \y\ is even, and the operator

τ, = τi i Σ iδ$πyιyi \\< σψ (2.10)
yieγ,y2φy

in case |y| is odd. If yί and y2 are connected excitations such that dyx n δ y 2 = 0? we
have

τ y i τ r 2 = ( - l ) ^ H ^ τ , 2 τ r i . (2.11)

If γ is the union of disjoint connected components yit . . . , γk, we set

h= W hj- (2-12)
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With this definition (2.11) extends to arbitrary excitations yu y2 such that
dy1ndy2 = 0. Thanks to the insertion of the factors πyiy2, we also have

τy|0>™ = τ y | 0 > F 1 = 0 , (2.13)

where |0>F O and |0> F 1 are the ferromagnetic eigenstates with filling fraction 0 and
1, respectively. As we discuss in the next section, this property is useful to study the
coexistence line and the crossover region between the Neel and the ferromagnetic
states.

Our perturbation expansion for the ground state wavefunction, generates
a convergent sequence of approximate solutions belonging to the cyclic subspace

Jf0 = span{H5 |0>N, n ^ 0} . (2.14)

If y is an excitation of odd volume, then due to particle number symmetry, we have
|y> _L J^o Hence, we can restrict the attention to the operators τy for which y is
admissible in the sense that the volume \y\ is even. If y and y' are two admissible
excitations such that dyndy' = 0, then we have

[τy,v]=0. (2.15)

Moreover, if we associate a state |y > to the excitation y so that

then, in case |y> is admissible, we have

(2.17)

This is due to the fact that, if y is admissible, then τy contains an even number of
operators σ^\ This also implies that the operators τy by means of which we express
our dressing transformation, respect the global particle-hole symmetry of H o and
can thus be restricted to either j ^ s or #eA.

If <xy> is a bound not intersecting the boundary y, we also have

0 . (2.18)

The commutation relations above are weaker than the ones available in [12]. Also,
since the operators τγ are not skewsymmetric, the resulting dressing transformation
is not unitary. These inconveniences are related to the presence of a spontaneously
broken symmetry and to the sign problem. However, in the following we show that
one can still establish convergence of the resulting cluster expansion and that
unitarity is neither necessary nor useful to derive low temperature expansions.

The dressing transformation we construct in this paper is given by a (nonuni-
tary) operator of the form

A(ί) = lim eR 2 ( ί ) . . . e^V{t), (2.19)
v-* oo

which solves the conjugacy problem

o A(ί)|0> = E0(t)|0> , (2.20)
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for some function E0(t). To simplify the notations, we assume that J = 0, although
the case J + 0 can be treated with exactly the same methods, as long as | J\ « 1. The
operators Rϋ(ί) are given by power series expansions in t

00

πr(t)= Σ tn^, (2 2 1 )
n = v— 1

whose coefficients IR£ have the form

R S = Σ V y . (2.22)

The coefficients rπy are nonzero only if y is an admissible excitation and v ̂  (n + 1).
In this case, they are uniquely determined by the following recurrence relations:

_ _ J y y r r§

Σ Σ , 1 [ . . . [ K o , i R ? : ] , . . . ] R g
k^O D ^ - g ί k n\υl> ' Vk)

ί i+ + t k = n - 1

(2-23)

where
00

n ( v ι , . . . , v k ) = Π (#{»:»< = «>})!> ( 2 2 4 )

K o = - Σ cϊcy + cϊcx. (2.26)
<*y>

To control the convergence of the series expansion for A(ί), we introduce the
following sequence:

r ί ^ s u p Σ \dy\\rn{γ)\9 (2.27)
xeΛ cγ3x

where ε(γ) is the number of frustrated bonds in \γ>. We have

rf = 4 . (2.28)

If n ^ 2, we can proceed by iteration in k. Let us consider the first term in (2.23) and
let ij, Vj, γj,j = 1, . . . , fe, be sequences such that ix -f -f + ίfc = w, |3y7 | = ̂  ,
î i ^ ' " * ^ UΛ. Let <xj;> be a bond, let s^ = [2(nx — i ) ( ^ - i) + i ] and let yk be
the excitation such that

[. lsxy,riιyίτyj9 . . . rikykτyk] |0>N = A . . / k « ^ X ? i J 7Λ)I?Λ> (2-29)



580 C. Albanese, N. Datta

Making use of the translation in variance of H o , we find

sup Σ Σ \fiι..ik«χy>,yi,' . yk)\

s s u p Σ l e(y*)l \fu..iΛ<χy>> y i ? yk)\
(xy> \dγi\=υi,...\εγk\=vk

•sup

k - i | = t

, V l , . . * - l ) l

•sup
zeΛ

Σ «*KJ> (2-30)
zeΛ cγk3z

where
! , (2.31)

and we use the fact that volumes are ordered, so that

\ε(yk)\ ̂  (2 + \ε(yi)\ + + \ε(yk)\ + 1 - k) ̂  \ε(γk)\ . (2.32)

The estimate in (2.30) can evidently be iterated, the final result being:

sup Σ Σ \fu..iu(<xy>,yi,. yk)\ύ2kklf\vkr*ϋk9 (2.33)
zeΛ < x y > \δγι\=vι...\_dγk\=vk: j=ί

zedγk

where
' . U = sup Σ KyJ- (2-34)

(xy} CJ3X

The contribution of the second term in (2.23) to r*, which is evaluated ana-
logously, is

S 6.2kfe! Π vjrfjvj (2.35)

The factor 6 is because each time a particle hops to a neighbouring site, under the
action of the operator Ko, six bonds become frustrated. Hence, summing the two
contributions, we have

Σ Σ +6 Σ Σ
^2 vi ^ ••• ^vk k ^ ί vι ^ ••• S

ii...ik = n i i . . . ί k = « - l

We define a formal power series

r*(ί)« £ ί"̂ *. (2.37)
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£ ί-r? g At + 6ί Σ 2*
« = 1 fc^l

or,
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+ Σ 2k f\ h fir*) (2.38)

r*(ί) ^ 4ί + 6ί [(1 - 2r*(ί))~1 - 1] + [(1 - 2r*(ί))~1 - 1 - 2r*(ί)] . (2.39)

Let α*(ί) be the function implicitly defined as the solution of the following
equation:

a*(t) = 4ί + 4 (1 - (2.40)

By the implicit function theorem α*(ί) is analytic for |ί | ^ t0 for some constant
t0 > 0. Moreover since a*(t) majorizes the series (2.37). Hence, r*(ί) also converges
and hence A(t) is analytic in t for |ί| ^ ί0.

Next we pass to the proof that the operator

(2.41)

(2.42)

V(ί) = AitΓ'ΉoAit) - § 0 - E0(t)

is relatively bounded with respect to § in the sense that:

for all wavefunctions u which are orthogonal to |0> and are symmetric with respect
to global spin flips. We have the following expression for W(λ):

Σ
l> ' > Vk)

Σ Σ

- E0(t) .

n(vί,...,vk)

(2.43)

Expanding V(ί) in a series of operators υ(γ) of support γ a Λ and using the fact
that V(ί)|0> = 0, we see that

V(ί)= Σ »(r)= Σ ad»(y),
7 c yl y c= A

where adt;(y) is the operator such that

(2.44)

(2.45)

Let us fix a vector |u> _L |0> and let us expand it in the excitation basis

(2-46)
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One then derives the following bounds:

+ 2 X Ktvll<y'|V(ί)+V(r)|y>|
γ'-\u.,\S\u,\

/ * y

V V Hadt ίyΊll! ) . (2.47)
γ , ;':xeγ'

The relative boundedness estimate in (2.42) follows from the inequality

sup X l l a d φ ' J I L ^ c f, (2.48)
b y': b e y'

which is a direct consequence of the bounds on the operators R^ in the first part of
the proof.

From the relative bound in (2.42), it follows that |0> is the ground state of
A ~* HA in the even sector and that, in this sector, it separated by a gap of order
4 + O(t2 + J) from the rest of the spectrum.

3. Phase Boundaries at Zero Temperature

In the preceding section, we construct a dressing operator A(ί) which is analytic for
\t\ <t0 for some t0 > 0, and is such that the dressed Hamiltonian A(ί)"1 H0A(ί)
computed at J = 0, admits the free vacuum

|0>=-L(|JV> + |ΛΓ» (3.1)

as the ground state. This result was obtained in the special case J = 0, but with the
same methods one can construct a ./-dependent dressing operator A(ί, J) analytic
for |ί | < ί0 and \J\ < J o , for some t0, Jo > 0. This dressing transformation com-
puted for Ho, can then be applied to the operator in (1.1) and yields the dressed
Hamiltonian

MD = A(ί, jy1 HA(ί, J) . (3.2)

Due to particle number symmetry, it suffices to consider the case μ ^ 4 + 8 J.
Thanks to particle number symmetry, |0>N is also an eigenstate of MD and we have
that

(3.3)

where
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Also the vector

± \ N ' } ) (3.5)
/2

is an eigenstate of H ^ and satisfies the equation

where E'N = EN + O(\A\(ctf^A^). This follows from the fact that the operators τγ

in Sect. 2 treat the two Neel states in a symmetric way. Finally, we have that

(3.7)

where

εP0 = \ΛΓ1EF0 = 2. (3.8)

Let us consider the case J < 0 first. The coexistence line μ = μcx(t) is deter-
mined by the equation EN = EF0. We find

μcx(t) = SJ-^t2 + O((t2 + J ) 2 ) . (3.9)

The operator MD can be split as follows:

MD = S + V + E , (3.10)

where, if μ < μcx(t), we set E = EF0 and

+ J Σ \2(n*- \) (ny ~ \ ) - τ\ + (4 " M + 8 J) Σ *χ >
||x-y||i = 2 L \ λ ) \ l J l A

while if μcx(t) ^ μ S 4 + 8 J, we see E = EN and

(3.12)

To control the spectral gap near the coexistence line, we need to use the "Peierls
condition," i.e. the lower bound

S^c J Sp. (3.13)

Here c is a constant > 0 and §>P is the diagonal operator defined as follows: If γ is
an excitation, let έP(y) be the set of Peierls contours Γ in A separating connected
regions in which the state | γ ) coincides with either one of the Neel states, or with
the Fock vacuum |0> F 0 . We define § P on \y} to be the operator of multipalication
by

s P ( γ ) = i n f {\Γ\}. (3.14)
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The operators τy defined in (2.12) contain the projections πxy which annihilate the
states in which both sites x and y are empty. If ¥ = ]Γyo c Λ v(y0) is the decomposi-
tion of ¥ into operators v(y0) built out of operators τγ covering the set γ0 and if y is
an excitation such that nx|y> = 0 for all x ey0, then we have t;(yo)ly) = 0 Hence

\W\y>h£c \t\sP(y). (3.15)

Proceeding as in the previous section, we find the following relative bounds:

and

for all functions u which are orthogonal to |0>#, |0 ') N , and |F0). We thus conclude
that if t < c -1 J | , then the wavefunction

| Q > Π0>FO Hμ<μcx(t)
; ~ ( | 0 > ^ if μcx(t)^μ<4 + SJ

is the ground state of H for μ Φ μcx{t). If μ = μcx(t), the ground state is doubly
degenerate and is a mixture of the states |0>FO and 10)^.

More accurate lower bounds can be obtained for values of μ away from μcx(t).
In fact, we have

USJ-μ)SF0 l f μ ^ 8 J

-\(iμ-2J)SN if $J^μ^4 + 8J , y

where we still suppose that J < 0 and we set

X

§N=Σ 2 ("*-f)ί ϊ | y-f) + ? (12°)
Since

¥ | 0 > N - ¥ | 0 > F O = 0, (3.21)

if ly>Λr * I°>FO we have

for all functions |w> 1 span(|0>, |0'>, |F0>). We thus conclude that the wavefunc-
tion above in (3.17) is the ground state if μ < μcx{t) — 8 J and t ^ /FO(/Ό> where

lF0(μ) = ΦJ - μ) (3.23)

In case μ > μcx{t) — 8 J, the lower bound is given by the curve

(3.24)
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This result extends by continuity to the case J = 0. If J > 0, then the lower
bounds on the operator § are

~ μ S " l ί μ = ° (3 25)

Lower bounds to the phase transition lines, are given by the curves

, μ ^ 16J , (3.26)

and

l F 0 ( μ ) = - c - μ , μ < 0 (3.27)

and the ground state of MD is |0>F O for μ S ho(ή and \0}N if μ ^ lN(t).
To find the upper bounds on the phase transition lines one has to study the

excitation spectrum. In the case of the operator H o , i.e. for μ = 4 — 8J, the
eigenprojection corresponding to the first excited band is given by the operator

where «Ί = {z e C: \z - (4 - 8J) | < i } and § 0 is given in (2.25). Let Ψlh = Ψ
i\Λ i -1 IPi, where F ^ is the orthogonal projection on the sector with N particles. To
compute the spectrum of P^lHoIPifc to the lowest orders in t and J, it is convenient
to redefine the operators τy in such a way to generate as few diagrams as possible.
The choice below is the best we know to compute with.

Let |JV> be the Neel state in which the even sublattice Λe is occupied while the
odd sublattice is empty. If y c Λ, we set

h = Π ct Π cy • (3-29)
xeΛo ye Ac

The convergence of the dressing transformation constructed with such operators is
hard to control because the τy's don't respect Peierls contours and the resulting
Ψ(t) annihilates \N) but not \N'}. This behaviour is at the original of some
technical difficulties. In fact, the bad large order behaviour related to configura-
tions with large bubbles of the opposite Neel phase invalidates both the proof of
convergence and the discussion above of the coexistence line. However a different
choice of the operator τy doesn't affect the end result as far as the expansion
coefficient of physically meaningful, i.e. representation independent, quantities are
concerned. Since convergence is already established, it is legitimate to carry out the
calculation of the lowest order coefficients by means of the new operators. The
eigenspace ΨίhJή? is spanned by the states

I — y H i =

T4 Σ I J Ί > + ^ Σ I J Ί > (3.30)
^ H > ' - y i | l 2 = V 2 ^ ° \\y-yιh = 2
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with y e Λe. Since

+ Γ 5t2l 5t2

 v 5ί2

 v

(3.31)

an orthonormal basis for P^Jf7 is given by the vectors

; > + τ ^ Σ c + cy\y>

•ITJ Σ J * > + £ Σ lyi> (3-32)
A " " II v — vt Hi = ./? Z,OO II ., _ ., I) _ 9

with yeΛe. Hence, the reduced Hamiltonian is

t2

Σ Kr+T Σ Kr >
\\yi-y\\ι = j2 4 \\yi-y\\i = 2

(3.33)

and the dispersion law for holes is

ί t

ε[°\k) = (4 - 8j - 1 1 ) + - Σ _ ̂ ίfc>3; + — Σ
ί2 t2

Σ ίfc>3; +
As μ varies, thanks to particle nuber symmetry, ΨlhJίf remains an eigenspace of
MD. The corresponding dispersion law is simply shifted by (μ — 4 — 8J), i.e. it
becomes

= μ - 16J - 2ί2 + ί2(cosfc! + cosk2)
2 . (3.35)

The bottom of the band is

inf εh(k) = infεh{k) = μ - 16J - 2ί2 . (3.36)
A k

Hence, along the line

' (3.37)

the one quasiparticle gap closes. The curve uN(μ) provides an upper bound to the
phase transition line.

A second upper bound can be obtained by considering the quasiparticles over
the ferromagnetic vacuum |F0>. In this case, we find the line

t = uF0(μ) = -~Λ. (3.38)
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4. Finite Temperature Expansions

To extend the expansions in the previous section to finite temperature
T — β ~1 > 0, we need to evaluate traces of the form

=Z'1Tτ(βe~βli)9 (4.1)

where Θ is a local observable and Z is the partition function

Z = Ύr(e~βM). (4.2)

Due to the cyclic property of traces, i.e. Ύr(AB) = Ύr(BA), and to the fact that the
excitation basis {|y>} is orthonormal, we have

Ίr{Θe~βM) =

~^\y} , (4.3)

where MD is the dressed Hamiltonian in (3.1) and

(9Ώ = Jk~ιΘIk. (4.4)

For simplicity, we consider here the special value μ = 4 + 8 J for which
IH = H o . However, the arguments below apply as well to the whole interior of the
Neel ordered phases, see Figs. 1, 2, 3, as long as the relative bound of the operator
¥ ( ί ) with respect to the operator § N in (3.20) is much larger than T = β'1.

Let us call (simple) polymer a map y(τ) defined for τ e [0, /?] with periodic
boundary conditions y(0) = y(β) and whose values are subsets of A. We assume
that the range of values of a polymer y consists of a finite number n(y) of different
subsets of A. We also assume that y(τ) is upper semicontinuous so that if
τ 0 , . . . , τw(y) are the points of discontinuity of the function y, then y(τ) is constant
on the intervals [τ i 5 τ ί + 1 ] , i = 0, . . . n(y) — 1. The support of y is the set
suppγ = \Jn

ilI
)

0~
ίy{τ;i). Adopting the notations and the terminology of Glimm and

Jaffe, see [11], we denote with ^ the set of (simple) polymers and with g?k the set of
/c-polymers, i.e. the /c-fold product &k = ̂  x x ^\. We also need a notion of
intersection bertween two polymers yί and y2. We say that yΊ and y2

 a r e disjoint
and write y i π y 2 = 0 if supp ^ n s u p p y2 = 0 This notion is appropriate for
fermion systems because activities corresponding to families of paths whose sup-
ports are mutually disjoint but which wind around each other an odd number of
times, do not factorize. Bosonic systems are slightly simpler in this respect because
they require only the condition yi(τ)ny 2 (τ) = 0 to be satisfied for all τ e [0, β~\ in
order to be declared as disjoint. If two polymers are not disjoint we say that they
intersect and write y i n y2 Φ 0. Following [11], les us denote with <3k cz 0>k and with
% c 0Pk the sets of the disjoint and of the connected /c-polymers, respectively.

The partition function is given by

2 = Σ \] ί [<*Vi ] ίdrt z(h)... z(7j). (4-5)
j=0J' %
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where

= ]
(y

••ίdyβziγ,)..

β τ 2

ί ί ̂  ί °y)eQj 0 0

j

ίτi T Y\ z(ykί
k=ί

C.

J yfc,«(yk)-li τm(/c,l)5

Albanese, N. Datta

• τm{k,n{yk)~l)\

(4.6)

where T is the time ordering operator, N = Σί = 1(n(yk) — 1), m(k,n) = n
Σ ϊ ^ ) - l ) a n d

7o, • y«;ti . . τn) = ( - l)"<7ok< t""/ ' ) SadV|y I,><y I 1 | l n >

(4.7)

The combinatorial factor ji in (4.7) is due to the fact that ζ/)j is the set of unordered
7-tuples(y1? . . . jj).

The linked cluster theorem in [11] gives

= Σ ^̂ ί C^i ] • idyjMh, .,ΎMh) . *(?,), (4.8)

where n(7i, . . . y, ) is the index of the graph {yί9 . . . y7} e ̂ .
If yt and y2

 c ^ , let their distance d{yu y2) be defined as follows:

rf(Ti? Ji) = {inf | i "], Γ c: yl such that Vx ey !\7 2 (resp.

there is a path in Γ joining it to y2 (resp. y^} . (4.9)

Lemma. If x e A and y0 a A, e~β ̂  t. Then, we have

sup j [dy]|z(y)| g(cί) i d o [β- i / ? | ί ί y o 1 + e " ^ ( c ί ) i | a y o 1 ] , (4.10)

where ^γ0(d0) is the set of simple polymers y for which we have f(0) = y0 and
d0 = d(dγ(0)9 supp y).

Proof If Vm, m ̂  1, are the operators such that

00

V ( t ) = Σ t m ¥ m , (4.11)
m = l

we have that

£ j dτπ . . . j dτx \z(y0, . . . yn; τu τj|
y i . .yn 0 o

Σ + Σ )\dτn....]dτ1 Σ
yi γn yi 7n / 0 0 m o + + m π ^ d o
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Σ t*im°+-+m»>\<y0\
mo + + mn ^ do

mo + • • • • + mn ^ do

S(c'tfdo(e^ldy°ι +e~^ldy°ι) . (4.12)

The geometrical meaning of this derivation is quite remarkable and is illus-
trated in Fig. 5. In the classical regime e~β»t the (2 + l)-dimensional polymers
that dominate in the expansion are the fat polymers in Fig. 5a, i.e. the polymers in
which the size of the boundary of the excitation never shrinks below \\ dy01. On the
other hand, in the regime dominated by quantum fluctuations, i.e. e~β«t, the slim
polymers of Fig. 5b are the most important ones.

The proof of convergence can now be completed by projecting the cluster
expansion onto coordinate space, using (4.11) and following the method in [11].
Namely, we have that

— J [dyxl . . . idyk~]n(yu . . . j ^ M ί i ) . z(yk)
κ %

1 (Ir —\\

^ v x . . . v h d ι . . . d k = l l l j ί ^ i ~~ I ) ' < e k ( v ι . . . v k , d i . . . d k )

x \_dyι} . . . [ίiy/c] |z(yΊ) . . . z(yk)\9 (4.13)

where %(vl9 . . . vk; dl9 . . . dk) is the set of connected /c-polymers (yl9 . . . yk) such
that for all i = 1, . . . fe, we have |δyi(O)| = vt and

# { 7 = 1 , . . . kj φ i: finyj Φ 0} = dx . (4.14)

Fixed a spanning tree with coordination numbers dt for the graph (yl9 . . . yk)9 one
can use the lemma above to eliminate all vertices with dt= 1, iteratively. We find

( 6 k ( v \ . . . v k ; d ι . . . d k )

fl viι(e'τβVι + e~Ί(ctfVι) . (4.15)

The point to underline here is that, thanks to the lemma above, to estimate this
integral one can choose base points in coordinate space, i.e. on the sets 7,(0). Since

1
V υ

d(e~τβv + e~ϊβ(ctYv) < cd'2e~'2β (4 16)
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Fig. 5a, b

we have

1 ° 1

ΓTΪ Σ π ί
\Λ\ k = 2 rCI ^

< C ' Q 2 β . (4.17)

Finally, let us discuss the lower bound on the expectation of the sign observable

S defined after (1.8). Using the linked cluster theorem above, we find

Thanks to the lemma above, we find the lower bound

(4.18)

(4.19)
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