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Abstract. We evaluate the fundamental solution of the hyperbolic system describing
the generation and propagation of elastic waves in an anisotropic solid by studying
the homology of the algebraic hypersurface defined by the characteristic equation,
also known as the "slowness" surface. Our starting point is the Herglotz-Petrovsky-
Leray integral representation of the fundamental solution. We find an explicit de-
composition of the latter solution into integrals over vanishing cycles associated
with the isolated singularities on the slowness surface. As is well known in the
theory of isolated singularities, integrals over vanishing cycles satisfy a system of
differential equations known as Picard-Fuchs equations. Such equations are linear
and can have at most regular singular points. We discuss a method to obtain these
equations explicitly. Subsequently, we use the monodromy properties around the
regular singular points to find the asymptotic behavior according to the different
types of singularities that may appear on a wave front in three dimensions. This
is a method alternative to the one that arises in the Maslov theory of oscillating
integrals. Our work sheds new light on how to compute and classify the Cagniard-
De Hoop contour in the complex radial horizontal slowness plane; this contour
is used in numerical integration schemes to obtain the full time behaviour of the
fundamental solution for a given direction of propagation.

1. Introduction

Over the last few years, much attention has been paid to the evaluation of the funda-
mental solution (Green's tensor) of the hyperbolic system describing the generation
and propagation of waves in anisotropic solids in n — 3-dimensional space. One
reason for this comes from the field of exploration geophysics; recently developed
techniques in seismic acquisition and processing are powerful enough to reveal, in
principle, anisotropic properties of rock in layers at great depth. Knowledge of this
anisotropy is important to the oil and gas industries as, on the one hand some of
the anisotropy in layered hydrocarbon reservoirs is due to large joint systems (faults
and fractures), which will affect the fluid and gas flows, while on the other hand
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the caprock of the reservoir is often a shale, the degree of anisotropy of which may
be related to its sealing potential.

Wave propagation in anisotropic media is very different from propagation in
isotropic media. Generic for anisotropic media are the phenomena of shear-wave
splitting and conical refraction. In addition, several types of singularities appear,
like the self intersections, cusps and swallowtails that a shear-wave front develops.
The occurrence of a singularity affects the solution significantly; near a singularity
the leading order time behavior cannot be described by standard so-called asymptotic
ray theory. The latter approximation diverges in the vicinity of a singularity. As the
physical solution at a wave front singularity is still regular, more powerful theories
have been developed to find this solution. (The understanding of the time behavior
near a singularity is crucial to interpret it properly on measured seismograms.) A
geometrical description of waves leads to a generally valid solution of the hyperbolic
system, which is the approach we will follow in this paper.

Different approaches to solve a 3-dimensional anisotropic hyperbolic system, all
of them based on plane-wave expansions of the particle velocity or the Lame poten-
tials, have been explored to find closed-form integral representations of the solution.
We mention the Sommerfeld-Weyl representation [42], Riesz's method [39], and
the Herglotz-Petrovsky-Leray (HPL) representation [11, 38]. The reduction of the
number of integrals in the latter representation was independently achieved, employ-
ing the time-Laplace transform domain, in the Cagniard-De Hoop method [13, 20,
24]. For particular symmetries the fundamental solution could be found explicitly
(e.g., the work of Payton [36] and of Burridge, Chadwick and Norris [12]). In crys-
tal acoustics (e.g., Musgrave [32]) and phonon focusing (see Every [17]) similar
developments took place. However, most of these techniques lack a precise geo-
metrical understanding of the features typical for the wave solution in anisotropic
media.

The HPL formula gives the fundamental solution in the form of an Abelian inte-
gral of a rational closed (n — 1 )-form integrated over a complex (n — 1 )-dimensional
algebraic hypersurface [8]. From the latter integral the full Green's tensor of the
problem can be constructed. The algebraic hypersurface, known as the slowness
surface, is defined by the equation H(ξ) = 0 of degree D = In, the polynomial H
being the complexified determinant of the symbol matrix of the hyperbolic operator.
The integral is defined over a tube γ of properly oriented cycles dγ on the slowness
surface. The general form of the integral is

E(x,t)= J ^-TT , (1.1)
y(x,t) hnH

where ξn is the coordinate in slowness space chosen along the direction of prop-
agation of interest. The boundary of y, denoted by dγ, depends on a parameter t
which can be identified with time. The (n — 2)-cycle dγ is shown to be related to
the so-called Cagniard-De Hoop contour.

The theory of integrals like (1.1) is extensive and well established in the mathe-
matical literature. In particular, its frequency-domain counterpart is properly treated
by the Maslov theory of rapidly oscillating integrals [16], which is also valid near
the wave front singularities [8]. In this paper, we employ algebraic-geometrical tech-
niques, known in complex singularity theory, to analyse integrals like (1.1) with the
application to 3-dimensional wave propagation in an anisotropic, perfectly elastic
medium in mind. In particular, we analyse the asymptotic behavior of the solution
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near those parts of the wave fronts corresponding to degenerate critical points on
the slowness surface. Such points are referred to as singularities. The propagation of
wave fronts in the vicinity of critical points at which conical refraction occurs, has
been addressed recently in [10] where also an application to generic elastic media
is mentioned.

Our line of thought is different from the usual Maslov theory approach, in that
we will write the solution of the hyperbolic problem as a linear combination of
certain contour integrals uniquely associated with the polynomial functions / , say,
parametrizing the slowness surface around its critical points. The contours are in
fact not defined on the slowness surface itself, but on a non-singular level surface
of the above mentioned function / . These non-singular level surfaces follow from
the zero locus of a function F(ξ,x) defined on the phase space (with coordinates
(c,x)) with the property that F(ξ,0) = f(ξ). The contours in the phase space are
also called the vanishing cycles', they are associated with the singularity on the
slowness surface. Their name originates from the (defining) property that these
cycles skrink to a point upon projection to the slowness surface (taking all relevant
physical space coordinates zero, i.e., in the limit F —» / ). Mathematically, the space
coordinates x are the deformation parameters of the singularity defined by / . Near a
singularity the deformed slowness surface can be written as the zero locus of a quasi-
homogeneous polynomial function (F) in suitable, so-called normal coordinates. For
each different type of critical point there is a different polynomial function. The
parameters x lift the degeneracy of the critical point / into several non-degenerate
critical points. It often turns out that it is not strictly necessary to use all the x
coordinates to lift this degeneracy: a subset already does the job. This subset of
parameters can be shown to correspond to the so-called versal parameters denoted
by λ playing a central role in singularity theory. We will show explicitly how the
versal parameters λ may be introduced to replace the parameters x. In summary, we
shall rewrite the fundamental solution near a singularity on the slowness surface as
a linear combination of integrals over vanishing cycles associated with the versal
deformations of singularity. This is a somewhat unconventional approach in the
analysis hyperbolic differential equations.

It is well known in singularity theory that the vanishing cycles are not uniquely
defined by the type of the singularity. Combined with the fact that the integrand
is a closed rational form of maximum degree (it is a volume form) this leads to
the observation that the integral over a vanishing cycle satisfies a system of lin-
ear differential equations in the versal parameters of the singularity. These linear
differential equations are known as the Picard-Fuchs equations. They can have at
most regular-singular points, hence an asymptotic analysis close to the points on
the wave front corresponding to the critical points on the slowness surface is in
principle straightforward. It is one of the objectives of this paper to produce an
elementary algorithm to derive the Picard-Fuchs system from the local polyno-
mial function F(£,0) parametrizing the slowness surface in a neighborhood of any
singularity.

However, if we had chosen a different basis in the space of vanishing cycles, the
coefficients in the linear decomposition into integrals over vanishing cycles would
have been different. Furthermore, the Picard-Fuchs system would have changed.
However, the solution at the wave front is invariant under a reparameterization
of the vanishing cycles. Mathematically, this means that the integral should be
expanded in an integral homology basis. It has only recently been understood,
though in a different context [28], that such invariance can be reflected in the basis
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of cycles by studying the invariants of the Picard-Fuchs equations. These invariants
are built out of particular quotients of the solutions of the Picard-Fuchs equations,
see the references in [28]. (A solution of a linear differential equation that does
not change under a monodromy transformation around its regular singular points
is called an invariant.) In other words, a specific choice of basis cycles implies
a specific parametrization of the level surfaces. The transformation of the initially
arbitrarily chosen versal parameters to the specific ones follow from the invariants
of the Picard-Fuchs system.

In this paper we show how the freedom in the parametrization of the vanish-
ing cycles is of use in the study of the hyperbolic equation governing waves in
elastic media. It follows that one can compute the coefficients in the linear expan-
sion into vanishing cycles when they are invariantly parametrized. The formula for
these coefficients has been derived before by V.A. Vasiliev. However, the connec-
tion with the invariants of the Picard-Fuchs system is new. The advantage of the
understanding of this connection is that it shows explicitly the geometrical content
of the solution near the singular parts of the wave front (which coincides with the
high-frequency limit). This part of the solution is "topological" in that it is fixed
by the type of the singularity. Furthermore, the decomposition into vanishing cycles
is also valid away from the singularity. This is interesting in itself, as it implies a
canonical representation of the so-called Cagniard-De Hoop contours which may be
relevant in (future) numerical schemes to evaluate E close to the wave front. The
full solution E obtained after integration over the full slowness surface is completely
fixed (up to analytical functions) by the solution of the Picard-Fuchs system for
each critical point. Thus a classification of the types of possible critical points on
a generic slowness surface leads to a classification of possible solutions E near the
associated wave fronts.

The role of isolated singularities for wave front geometries has been exten-
sively studied in the mathematical literature, most notably by V.I. Arnold (see
[7] for a recent overview). The relation between a cycle δy and certain objects
in singularity theory has been explored before by Vasiliev [43] and in fact been
foreseen by Petrovsky [38], where the cycle was described in terms of a cer-
tain cohomology class, at present called the Petrovsky class, in relation with the
recognition of lacunae in the fundamental solution of a hyperbolic operator. We
will reestablish this relation, using the approach followed by Atiyah, Bott and
Garding [8].

The paper is organised as follows. In Sect. 2 we pose the seismic Cauchy
problem and recall some of its basic properties. In Sect. 3 we derive explicitly the
HPL representation for a general elastodynamic hyperbolic system from Gelfand's
plane-wave expansion [18, 25]. Along the way we discuss the geometrical properties
of the slowness surface relevant to the later analysis. In Sect. 3 we also show how
the HPL formula reduces to an integral over a (n — 2)-dimensional cycle on the
slowness surface, which can be associated with the Cagniard-De Hoop contour.
In Sect. 4 the latter integral is decomposed into integrals over vanishing cycles
associated with the singularities. Introducing the appropriate parametrization, we
compute the coefficients in the expansion of the original integral. In Sect. 5, finally,
we derive a Picard-Fuchs differential equation for the integrals over vanishing cycles
and show how the asymptotic behavior in the high-frequency limit follows from the
monodromy properties around the regular singular points.
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2. The Cauchy Problem

The Tensorial Cauchy Problem. In this section we introduce the tensorial Cauchy
problem arising in seismics. We define the physical quantities and transform the
tensorial problem into an associated scalar Cauchy problem, from which the full
Green's tensor can be constructed. The scalar problem is completely equivalent to
the tensorial problem but is more suitable for our analysis. Since the procedure
to arrive at this scalar Cauchy problem is not so well known, though standard in
functional analysis, we will present the relevant steps explicitly.

It is assumed that linear elasticity theory is applicable. Then the particle velocity
ί;m, m— l,...,w satisfies the system of equations

[δkm<% ~ P~Xorckrmsds]vm = ρ~ι[δtfk + δr(ckrmhms)], (2.1)

where the summation convention applies and

p — volume density of mass,

Ckrms = stiffness,

fk — volume source density of force,

hms — hsm = volume source density of deformation rate.

Note that hms is related to the seismic moment density tensor, mkr say, according
to

δ{njXj) = ckrmshms, (2.2)

where rij is the unit normal to the plane of dislocation. The (n x n) principal part
of the tensorial wave operator on the left-hand side of (2.1) is given by

δkmfi ~ (Zdrds , (2.3)

with
C[s

m = p - λ

C k r m s . (2.4)

From the positive definite property of the strain-energy function it follows that the
system is hyperbolic, that is, the system admits propagating waves as solutions;
in general, the system is not strictly hyperbolic, which means that different modes
may propagate with the same speed in particular directions. The symmetries of the
stiffness yield

C rs r^rm s^ks r^sr r^km /-> r\

km — C fa — ^rm ~ ^mk ~ C r s V 2 ^ )

They follow from the condition that angular momentum is conserved and from the
assumption that the processes of deformation are adiabatic. The macroscopic sym-
metry properties of the medium, collected in the "point" group of transformations 0,
say, simply reflect themselves in the relations OkιkOmιmOrιrOsιsC

sJk, = Cs

k

r

m. How
to obtain the tensor C from microstructure of rocks can be found in several papers
amongst which the ones by Hudson [23], Schoenberg and Muir [41] and Nichols,
Muir and Schoenberg [34].

For seismic applications the Green's tensor is introduced as the particle veloc-
ity due to a point body force (e.g., a vibrator) with signature H(t) (the Heaviside
function; this yields a δ behavior in time on the right-hand side of (2.1)). For
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mathematical convenience a linear combination of the causal and the anti-causal
Green's tensor is taken to constitute the fundamental solution; the latter reduces
to the causal Green's tensor on the positive real time axis. Thus, using DuhameΓs
principle [25], the tensorial Cauchy problem to construct the fundamental solution is
introduced: determine the solution gm of the homogeneous tensorial wave equation

[δkmo2

t - C?mδrδs]gm = 0 for {xj} e JR"+1 , (2.6)

satisfying the initial conditions

gm\t=o = 0, ctgm\t=0 = amδ(xu...,xn) . (2.7)

By taking for am the standard unit vectors, the columns of the fundamental solution

are found. Later on, we will ignore the separation between the space and time

coordinates and set {x,t} —• {*!,.,., xπ +i} e Z .
Through mutual elimination of the components of the system (2.6), it follows

that any component gm satisfies the D = 2w-degree equation in n dimensions

a(dhdt)gm=09 (2.8)

in which
a(dhot) = det[δkmd2 - σk

s

mdrds], (2.9)

with initial conditions

d'tgm\t=0 = </>%(**, S = Q,...,2n- \ , (2.10)

where, using our wave operator repeatedly, <^Je n ) = 0 and

Φ%°~1) = ([CndrdsY°Uδ(xu...9xn), ίo= l , . . . , n (2.11)

for m = l , . . . ,π.

The Scalar Cauchy Problem. Now, consider the particular family of scalar Cauchy
problems

a(dhδt)E^ = 0, (2.12)

with
d?&n\l=0 = δ,,,U(xu...9xn)9 / ' = 0 , . . . , 2 H - 1 (2.13)

for £ = 0,..., In ~ 1. The solution is denoted by E^[U] to indicate the initial value
function explicitly. Note that for £ = 0,..., 2n — 2,

^ ^ / ^ ^ ^ ^ (2.14)

This way, the E{f\ £ = 0,...,2« - 2, follow from E(2n~]) by recursion. The further
analysis will be focussed on the latter function. Thus, set

E = £ ( 2"-1 )[<5], (2.15)

then
Ei2n-])[U] = E *Rn U . (2.16)

The *R« denotes convolution with U in IRΛ Note that the "physical" scalar Cauchy
problem is associated with ( I )
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The function gm can now be constructed from the E^r) using (2.10):

\ } , (2-17)

where

< ? " " ( • ) = ψSί°"I)*R-., ô = l,...,n. (2.18)
In seismic applications the « = 3-dimensional problem is considered, although the
2-dimensional problem arises as well namely from propagation in a plane of sym-
metry in three dimensions. In that case a line source rather than a point source is
considered.

GeΓfand's Plane-Wave Expansion. We will now employ GeFfand's plane-wave
expansion (the inversion formula for the Radon transformation) of the <5-source in
the Cauchy problem to arrive at a plane-wave expansion of the fundamental solution.
We will employ explicit distributions on 1R which are boundary values of functions
analytic in the lower or upper complex half-plane. According to GePfand [18], we
have

δ(xu...,*„) = -^-jA^\ijXj - iO)άS(ξ)
1 π Ω

J l L / | | ( 2 . 1 9 )
L π Q

where

A(τ) = — (2.20)
πτ

is the analytic Dirac distribution (odd in τ), Ω is the unit sphere and άS(ξ) is the
volume form on this sphere. To employ this expansion in our initial value problem,
we introduce the family of analytic functions

^ , (2.21)

for z <G C\{0,1,2,...}. (Note that Γ has simple poles at 0,-1,-2, . . . . ) This is a
single-valued analytic function in the lower half-plane (Im{τ} < 0) but likewise
it is a single-valued function in the upper half-plane (Im{τ} > 0). This family of
functions satisfies the relation

^ (2.22)

The analytic Dirac distribution is contained as a member in the family:

χ - , ( τ ) = J ( τ ) . (2.23)

Using the Laurent series of (2.21) in z about the simple poles at z = 0,1,2,...,χΓ

can be defined for positive integer values for z as follows. Let m = 0,1,2,..., then

Xm(τ) - ±ζXm+ζ(τ)\ζ=0 = -L [l - ^(logίτ- 1) + cm)] τm , (2.24)
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with
m 1

co = Γ'(l), cm = c0+Σj form- 1,2,... . (2.25)

The expression in (2.24) satisfies (2.22) with z — m. Further, it is found that

1 Γ1 1 i , , 1
lim χm(τ) = — -sgn(τ)-f - - - ( l o g ( τ ι) + cm) τw , (2.26)

Im{τ}10 w! [2 2 π J

lim χm(τ) = ^ \-Ugn(τ)^^ --(\og(\τ\-ι)^cm)]τm , (2.27)
im{τ}to ml i 2 2 π J

for m = 0,1,2, Now, using (2.22) for m = 0, we find

lim J ( τ ) = lim /_,(τ) = δ(τ) + ι(Jfδ)(τ) , (2.28)
Im{τ}|0 Im{τ}10

lim J ( τ ) = lim χ_,(τ) - -δ(τ) + / ( ^ ) ( τ ) , (2.29)
Im{τ}|0 Im{τ}T0

where 2tf denotes the Hubert transform.
Explicit evaluation reveals that

Ω

- Λ ^ - iO)}άS(ξ) = 0 if n is even, (2.30)

flmiχ-^ξjXj - iO)}άS(ξ) - 0 if n is odd. (2.31)
Ω

Thus, in fact (2.19) can be written as

R e \fOX-*tfixi ~ iO)dS(ξ)} if n is odd

ϊ{ \ Λ J (2.32)
2 π [ ilm {fΩχ-n(ξiXj - iO)άS(ξ)} if n is even

or

δ(xl9...9xn) - - ^ 3 T R e ( / i ' / 7 " 1 ^ ( ^ . / ~ ^ ) d S ( l ) ) , (2.33)
Z π KΩ )

but everywhere χ_n(ξjXj — z'O) can be replaced by

(1/2) [χ-n(ξjxj - IΌ) - Z - ^ z + i

Given GeΓfand's plane-wave expansion of the 5-function, it is now straightforward
to find the plane-wave expansion both of gm in case of the tensorial problem and of
E in case of the scalar problem. We will suppress the term — /0 in all the arguments
to simplify our notation.

The plane-wave expansion of gm yields:

9m = -^Zi Σ h(p\beίP)(ξ)X-^(ξjXj ~ λP(ξ)t)dS(ξ) • (2.34)
z π p<0,p>0Ω

Here, the λp, p G {±l,±2,...,±w} are the phase velocities that must satisfy the
dispersion relation

a(ξh-λp) = 0, (2.35)
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while the e^p) are the polarization vectors corresponding with the particle velocity;
they satisfy the Christoffel equation

ψ Λp) _ ;2 (p) o *>s\

where

Jfkm = CSnll (2.37)

is the Christoffel matrix. Since this matrix is symmetric, the basis {e{p>)}p>o can

be chosen to be orthonormal at every ξ. Later on, we will group together the

spectral-domain coordinates: {ξu...,ξn,—λ} —» { ί ] , . . . ,ς / 7 + 1 } E Z, say. In view of

the symmetry under time reversal of the tensorial wave operator, we have

λ-p = -λP , (2.38)

and we can choose

£><-*> =e<">. (2.39)

Hence, (2.35) must be polynomial in }}p\ if n = 3 the equation is cubic and the

values for λp can be found with the aid of Cardano's formula. Note the homogeneity

of λp\ λp(sξ) — sλp(ξ), which also implies that —λp(—ξ) = λp(ξ).

The α(/?) follow from the initial conditions (cf. (2.10)),

Σ (-λpy*WeM = φ%ak9 t - 0,...,2π - 1 , (2.40)

where φmλ. follows from φ ^ by replacing or with ξr9 employing GeΓfand's formula.
The resulting equations reduce to

Σ *ip)e{

m

p) = 09 (2.41)

- Σ (e^λp^P^an. (2.42)

In view of the ±p symmetry, the first equation implies

a(-P) = _a(P) .

then the second equation implies

α(/?)--^-(4%). (2.44)
Zλp

The weighting functions α (^4f } - -^(2λ p )- 1 (4 / > ) e i f ) ) lead to the well-known

dyadic form of the Green's tensor. Using that the distribution Re{in~]χ_n+ι(ξjXj ±

λp(ξ)t - ίθ)} is even in £,*,- ± λp(ξ)t, and that ξjXj ± λp(ξ)t is odd in ξ (point

mirror symmetry) the expression in (2.34) can be reduced to a sum over positive

values of /?'s and integrals over the hemisphere of Ω.
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Using the symmetry in time again, the plane-wave expansion of the scalar func-
tion E is found to be

E = - ^ n x Σ fA^Kaxn-^ξjXi - λp(ξ)t)
L π p>0Ω

- χ^iξjXj + λp(ξ)t)]άS(ξ) . (2.45)

The initial conditions for E now lead to

τ Γ ( _ ; Λ2^)-1 Λp) — z / _ i „ o Λf>\
ί~ / j \ /*p j n — ^If Q — 1,2/J— 15 v U — i , . . . , ft . y^..-τ\Jy/

/7>0

Since (2.38) implies

(2.47)

the solution of (2.46) is given by

Aip) = -γ

Using the homogeneity of a, viz., a(sξ9 —sλ) = s2na(ξ, —λ), it follows that

(-λdλa)\λ=λp = (ξidξa)\λ=λp ,

and (2.48) can be written as

A ( P ) = ^ λP m (2.49)
(ξi%a)\λ=λp

3. The Herglotz-Petrovsky-Leray Formulae

The Geometry of the Slowness and the Group Velocity Hypersurfaces. In this
subsection we summarize the basic properties of the varieties which will play a
role in the further analysis. For a detailed discussion we refer the reader to Duff
[15], Musgrave [32], and Payton [36].

Let the slowness cone A C Z be defined through

A:a = 0. (3.1)

The slowness or ray vector ξ is introduced as

ξ, = λpξj9 p = 1 /i. (3.2)

If ξ G Ω then ||<f|| = \/\λp\ equals the phase slowness. In fact, (3.2) represents the
transition from Z ~ <CW+1 to the projective space1 Z ~ <£Ψ". Let the function H be
given by

..,{,,) = α ( ί i , . . . , { „ , - ! ) . (3.3)

Un-hatted variables are projective variables throughout.
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(Note that H is not homogeneous in ξ\,...9ξn.) Then the slowness hypersurface is

defined by

A:H = 0 (3.4)

(this equals the intersection of the slowness cone A with the plane / = 1). In
any local cone (with its vertex at the origin) the entirely real solution of the latter
equation, Re{Λ}, consists of n sheets. Every sheet corresponds with a (double) mode
(±)p and can be covered with (two) almost everywhere holomorphic coordinate
patches.

In general, the sheets can have multiple points, where two sheets may even
be tangent [14]. In the non-generic case (requiring a certain (rotational) symmetry
in the stiffness) sheets can have curves or higher-dimensional surfaces of multiple
points (where two sheets are tangent or where two sheets intersect). In the latter
case the space-time singularities are of a different nature: only a hypersurface of
multiple points of codimension 2 leads to an additional arrival. There the coordi-
nate patches cannot be holomorphic. (For an analysis of the local slowness surface
parametrization near a conical point in three dimensions, see Musgrave [33].) In
geophysical applications, where one investigates finite frequency representations of
the fundamental solution, "almost" (i.e., perturbed) intersecting sheets or tangent
sheets have to be treated with care: they lead to quasi-singularities (viz., the "pinch"
singularity in case of "almost" intersecting and the "kissing" singularity in case of
tangent sheets) in the sense that the coupling between the modes have to be taken
into account.

If points of tangency occur, the slowness surface as a whole is called singu-
lar; if the sheets are entirely disconnected, the surface is said to be regular. Each
sheet is smooth and either locally convex or concave (elliptic points) or locally
(Morse) saddle shaped (hyperbolic points) except at points or curves where (one
of) the principal curvatures vanish (parabolic points, e.g., inflection points in a
plane through the origin of the slowness space). In this paper we will focus on the
latter singularities.

The group velocity (t;gΓ) hypersurface is known to be the polar reciprocal of
Re{v4} through the transform

ξjX-f = 1 (3.5)

When ξj e RQ{A} varies, the {x/,t} span the variety W C Z . Another way of
introducing this so-called characteristic surface, spanned by the rays associated
with the wave operator, is the following:

W:S(x9t) = 0 (3.6)

is the surface in space-time Z following from the eikonal equation

a(ciS,ctS) = 0. (3.7)

The relevant class of characteristic surfaces is formed by the (conical) surfaces with
their vertices at the origin (the location of the source for the Green's tensor). If
ctS — (—)1, S is the travel time, being the integral of group slowness along the
ray. Then H(diS) = 0 and H is the Hamiltonian of the ray system of equations.
In inhomogeneous media H is defined through the principal symbol of the wave
operator. Later on, for notational convenience, we will replace S by F.
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At t— 1, i.e., in the protective coordinates {*///}, the characteristic surface
reduces to the wave front Σw c Zf. In the projective coordinates {x\/xn9...9xn-\/xn,
t/xn} we obtain the so-called diffraction surface Σd. The singularities of the wave
front and the diffraction surface are similar, i.e., t and xn play equivalent roles,
hence we can loosely consolidate the notation to Σ. The wave front coincides with
the group velocity surface. The surfaces Σd and Re{/ί} are called each other's dual.
This terminology will be explained in Sect. 4. It is found that

Using (2.36), the latter representation simplifies to

e{

m

p)ξs . (3.9)
t I ,e{p)Cr's' e{p)l ,

The degree of the wave front or group velocity surface cannot exceed the so-called
class number of the slowness surface. The class number of the degree D — In
surface in n dimensions is given by D(D — I ) ' 7 " 1 , and counts the total number of
linearly independent tangents that can be drawn on a closed surface. Since in the
3-dimensional problem the degree of the slowness surface is 6, the degree of Σw

is at most 150 [15]. As Re{Λ} and hence Σw are point symmetric in the origin, a
half line from the origin in space will meet Σw at most in 75 points. In practice,
the degree will be less than 150 (see e.g. Salmon [40] and Duff [15]). Still the
degree of Σw can be formidable, which generally prevents one from writing down
an equation for Σw in closed form (see also Musgrave [32]).

Now, the globally innermost slowness sheet of the slowness surface (which need
not to be smooth) must always be locally strictly convex. Thus, if the inner sheet
does not have any multiple points with any other sheet, the fastest characteristics
simply span a smooth convex surface δk, say. However, if the innermost sheet
does contain multiple points, its normal will pass discontinuities. Such a disconti-
nuity corresponds to a discontinuity of position, but the normal to the associated
wave front will be continuous. As the tangent plane to the innermost sheet turns
about the multiple point, the dual point on the wave front moves along a given
multiple {n — 1 )-dimensional plane surface ("lid"). (Double curves on the inner-
most slowness sheet correspond to portions of ruled surfaces in space). Thus, the
convex completion of the variety of fastest characteristics is obtained. The latter
forms the convex hull, which again will be denoted as δk. δk is the boundary of

the variety K C Z of all characteristic surfaces. The convex hull is an algebraic
surface known as the wave cone. Its physical significance resides in the fact that
it limits the region of influence of a disturbance originating at the origin. In fact,
δk is the boundary of the smallest convex region containing all n sheets of W.
A property of the solution to be discussed next is that it is singular on W (the
geometrical arrivals). Thus,

supp£ C K, singsupp£ c W . (3.10)

The singularities on Re{Λ} are dual to the singularities on Σj. To a double point
on Re{Λ} corresponds a double tangent on Σw. To a curve of inflections on RQ{A}
corresponds a cuspidal edge on Σw; such a curve of vanishing principal curvature
can be very complicated, see also Every [17]. From a mathematical point of view
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Fig. 3.1. The slowness surface and wave front of a hexagonal medium (an example of a cusp)

the slowness surface is therefore easier to manage. In fact, as we shall now discuss,
the fundamental solution to the wave equation can be recast in terms of an integral
over this slowness surface. The solution, in particular near the wave front, is mostly
sensitive to the topology of the slowness surface close to the singular points. We
will extract the topological part of the solution by studying more closely the effect
of singular points on the integral representation of the fundamental solution.

To illustrate the geometrical features discussed so far, we consider two realistic
media in three dimensions: a particular hexagonal one with circles of vanishing
principal curvature leading to a cusp on the wave front, and a particular orthorhom-
bic one, which is a perturbation of the hexagonal one, with swallowtail singularities.
The real slowness surface, the wave front and the corresponding polarisation vectors
are evaluated. Let the vertical axis be a principal axis of symmetry. Fig. 3.1 shows
a vertical section of the hexagonal medium; Figs. 3.2-3.3 show vertical sections at
different azimuths of the particular orthorhombic medium.

Integration over the Real Slowness Surface. The sum over the modes combined
with the integral over the unit sphere can now be expressed as an integral over
the real slowness surface (using local coordinates in a small cone and the outward
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Fig. 3.2. The slowness surface and wave front of an orthorhombic medium at zero degrees
(an example of an intersection of swallowtail, indicated by the arrow in the figure on the right)

normal or group direction δξH/\\δξH\\). For a discussion see also Auld [9] or John
[25]. Let the volume form on Re{Λ} be denoted as dS(ξ). Then (see Fig. 3.4)

(3.11)

where 0 is the angle between the group velocity and phase slowness vectors. Hence

(3.12)

Further, the weighting function A(p) transforms as (cf. (2.49) and we extracted the
positive phase velocities p > 0)

A(P) Hill2/ι-l

(3.13)

while (cf. (2.21))

lz-\{ξjXj-λp(ξ)t) Xj - 0 . (3.14)
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Fig. 3.3. The slowness surface and wave front of the orthorhombic medium of the previous figure
at 70 degrees

Set

(3.15)

upon substituting the latter results in (2.45) and taking the limit z —> n, we obtain

^ _/«-i J R e { / R e { ^ } [ x w _ ! ( ^ - 0 - χn-\(ξjXj + O]dσ(ξ)} if n is odd

"" 2"π"-χ \ ilm{fRe{A}[χn_x(ξjXj - t) - χn-\(ξjXj + t)]dσ(ξ)} if n is even.

(3.16)

This formula, known as the HPL formula, implies that the fundamental solution
can be expressed in terms of so-called non-evanescent constituents only. Here, we
made use of the fact that the system is non-dispersive. Note that the imaginary part
involves a logarithm, while the real part does not. Also note that the full solution is
found this way, which does not contain any divergencies at the singularities of the
wave fronts. Furthermore, Rt{in~λχn^{ξjxj±t-iQ)} is even in ξjX/±t. Hence,
(3.16) may be written as



270 D.-J. Smit, M.V. de Hoop

Fig. 3.4. The projection of the unit sphere onto the slowness surface

2«π«-i I nm{JRQ{A}[Xn_x(t -
- χn^(t + ξjXj)]dσ(ξ)}

) - *„_,(; + ξjxj)]άσ(ξ)}

_/»-i Γ Re{/Re{^ }[χw_,(/ - ξjxj) - χn^(t + ξjXj)]dσ(ξ)} if n is odd

I J if n is even
(3.17)

We exploit the fact that the integrand is even in t ± ξjXj further. It has been observed
that Re{Λ} is invariant under the point reflection in the origin in c -space. Now,
choose a direction of preference, xn say, relative to the principal axes of symmetry
of the medium. We can separate the "ups" and "downs" with respect to the pre-
ferred direction either according to the phase ("ph") direction of propagation,
viz. ξn < 0 or > 0, or according to the group ("gr") direction of propagation,
viz. dξnH < 0 or > 0. We set Re{A} = A^ U A^ or Re{Λ} - A% U Agl. Then A%
corresponds with the upgoing waves, identified by the wave front Σw = Σ+ U Σ_
through the polar reciprocal of A% ΌAgΣ. According to the statement below (2.44)
we can always write

/i-l

E = - ξjxj)]dσ(ξ). (3.18)

This way we have introduced an orientation for RejΛ}. Now choose coordinates
on A+. For this purpose consider the orthogonal projection V of A+ on the plane
{ξn = 0} and let (ξi,. . .,ξΛ_i) be the coordinates. The parametric representation of
the slowness surface A+ is then given by {ξ\,...9ξn-\, /(^i , . . . , ί«-i)} , where /
represents a «-plet. Then

This equality allows us to derive H from / , which will be needed in the next
section. Later on, the direction of preference will be chosen in the direction of
observation. At the singular points contributing to this direction of propagation, a
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principal curvature or its derivative may vanish. Thus, in the preferred coordinate
system, the occurrence of a singular point on a particular sheet corresponds with
multiple (μ ^ 1) roots of the equation

^,,.,{._,/ = 0. (3.19)

At these roots the normal to the slowness surface, i.e., the group direction, must be
parallel to the ίw-axis, which in turn translates into the condition

cξχ_ξn_χH = 0 with H = 0 . (3.20)

We have (see Fig. 3.4)

\\SiH\\ \dξ,,H\ '

and hence, restricting to Λ+,

dσ(ξ) -> ̂ ϊ f;'7"1 . (3.22)

Note that this (n — 1 )-form has poles at the branch points of our parametrization
/ . We will omit the superscript "gr" in the further analysis.

Cagniard Green's Function. At this stage, to reduce the integral, E is written as

= v ^ _ / Λ " 1 r,. ,/vι-i R e - - ' — ' i f « is odd
( ) / 0 W if n is even'

(3.23)
which means that

i"-λ '
- S Eφj')dt' . (3.24)

Here, ^ is denoted as the Cagniard Green's function and is given by

Eφ, 0 = 2 / [J(/ ; - </x, - ΪΌ) - A{t' + ίyxy - /O)]d(τ(ξ). (3.25)

We will now redefine £, which will be the only form of the solution we will
consider in the further analysis:

E(x,t)= / EφJW . (3.26)

It is observed that integrals of the type (3.25) have integrands which are strictly
rational in the slowness variables (in this respect note that dξnH is polynomial).

Petrovsky Cycles. We consider the decomposition Re{Λ} = Ap+ UAP^. Employing
the theorem of residues of complex function theory, one of the integrals in the
horizontal slowness variables can be evaluated. To this end, we first will choose
alternative coordinates on the real slowness surface Λ+h, viz. the ones through the
projection:
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Fig. 3.5. A particular chart on the real slowness surface

£1 =/<xi,..., ξ n - i = / α Λ - i , ξn = f, where αi, . . . ,α w _! G 1R (3.27)

(see Fig 3.5). Such a change of variables is also discussed in [18], p. 81. Now set

// = //(/αi,. . . ,/α w _i,/)ΞΞ / / ( / ) . (3.28)

Using the coordinates introduced in (3.27), we set

with X = oLjXj, αn = 1 . (3.29)

According to the point mirror symmetry of Re{A}, we label the roots fp of the
equation / / ( / ) = 0 as p — ± 1 , . . . , ±w. Then

jPh

/
(±άfH)(fp)

(3.30)

To simplify the right-hand side of (3.30), we consider Euler's formula: let P(τ) be
a polynomial in τ of degree DP and let g(τ) be a polynomial in τ of degree DQ.
Assuming that DP < DQ — 1, the formula states that

Σ
P(τ)

= 0.

Combining the "ups" and "downs" in E<$ and applying Euler's formula to the
polynomials />(/) = fn~\ Q(f) = (t±aff- iO)H(f) (the expression for A being
substituted into (3.30)) yields

J-iO
n-\ 1

. (3.31)
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We arrive at the following expression for the Cagniard's Green's function:

t-iθ

t-iO
n-\

"-]

(3.32)

We extract the integral over α,7_i and note that the contour of integration (the
real axis) can be closed both in the upper and the lower complex half plane with
vanishing contributions at infinity. Label the simple poles α,7_i(αi,...,αw_2, M ) of
the integrands, arising from the zero's of H(±(t — /0 )/#*), as 0L{

n

p}x. Introduce the
polynomials Gτ in αi,. . . ,α n _i as

Then

Res
t-iΰ

n-\
\n-\

(3.33)

Without restriction, we can assume that the direction of observation coincides with
the xw-axis. This implies that everywhere ξjXj (or #*) can be replaced by ξnxn

(or xn). The new coordinates are denoted as the old ones. After the rotation (i.e.,
Xj = . . . = χn_] = 0) (3.33) reduces to

Ut-iθyn-\

xn

(3.34)

Using ξj = (t/xn)oLj and ξ\ί

p}x = {t/xn)a!<

n

p2x, this expression transforms back to

(t _ l Όy-i I ^ j rfαi dan-2

-dtΛ. dξn-2. (3.35)

The time axis now coincides with the ί,,-axis (see Fig. 3.4) hence (see (3.26))

-dt1 -> dξn .
xn

Note that the poles parametrize the intersection of A with the hyperplane Xt defined
by

X, : TξjXj ~ t = Tf% ~ t = Tfxn - t = 0 . (3.36)
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The poles are either real-valued or occur in complex conjugated pairs, depending
on the time t. Near the arrival times of the wave constituents complex and real
poles will come together. Thus

J or
t-iθ\"~l 1

3C

(upper \ /lower \

Σ residues 1 = —2π/ ί Σ residues j

(upper lower \

Σ residues — Σ residues 1 , (3.37)
where ]Γ u p p e r refers to the sum over poles in the upper complex half plane and
flower refers t 0 t ^ e s u m o v e r p O ] e s j n tjje i 0 W er complex half plane. Taking into
account the term —iO in the arguments of the integrand, we also distinguish between
"real" poles in the upper and lower complex half planes. Thus

upper lower upper lower

Σ residues — Σ residues = Σ residues — Σ residues
complex poles complex poles

upper lower

+ Σ residues — Σ residues (3.38)
real poles real poles

Since the complex poles occur in conjugated pairs, the total sum over the complex
poles is purely imaginary. Naturally the total sum over the real poles is real. Thus,
for odd n we get the contributions from the real poles only; they define the real
Petrovsky cycles. For even n we get the contributions from the complex poles only;
they define the complex Petrovsky cycles. The cycles are denoted by δy.

Cagniard-De Hoop Contours. Reconsider the poles of the previous subsection. To
find the poles, in principle, the equation

f(ζu...,ζn^)xn = ±(t-i0) (3.39)

must be solved. Here, time t is real, but also ί i , . . . , ^ _ 2 are kept real. It t is
sufficiently small, the (pole) solution for ξn-\ is naturally real. However, if t is
large, ξn-\ must become complex. To relate these poles to the Cagniard-De Hoop
contours, we introduce the polar coordinates

2), ξn-2 =

ξ2 = qcos(ψn_2) cos(^2)sin(^!) ,

, (3.40)

with ψι G [0,2π) and φ2,...,φn-2 G [0,π). We will use the shorthand notation
ψ = (ψ],...,ψn-2) and incorporate the Jacobian, given by

qn~2 s\n"~\φn-2)smn-\ψn-3 sm(φ2)dqdφ ,

through άσ(ξ) —» dσ(q,ψ).
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Rather than applying the residual theorem to the αw_i-integral, we now apply
the same theorem to the ^-integral. If we also introduce polar coordinates (r, φ) in
the (xi,...,x,,_i)-plane, the poles in the complex g-plane are the solutions of the
equation

qrcos(η) + f(q,φ)xn = ±(t-i0) or f(q, φ)xn = ±(t - /0) (3.41)

upon rotation of the spatial coordinates, where η can be expressed in the angles φ
and φ.

The solution of either (3.39) or (3.41) can be inteφreted as the intersection of
the hypeφlane

Xt : ξjXj -t = 0 or ξnxn -t = 0 (3.42)

upon rotation, with the complex slowness surface A. (Thus, the poles are found upon
drawing a line along the α,,_i- or ίn_i-axis in the hypeφlane Xt and intersecting it
with A). We will now briefly discuss a simple way of introducing a parametrization
of the latter surface, given the one for the real slowness surface.

We consider the decomposition Re{Λ} = A% ΌAgl. The holomoφhic extension
of / , and hence dσ(q, φ)9 is carried out according to the condition lm{/} > 0.
Let Iφ denote the collection of intervals on the positive real axis in the complex
#-plane, the endpoints of which are branch points of / at the angle (azimuth) φ
(where cCnH = 0). Note that there may be branch points in the g-plane off the
real axis. (They follow directly from the f2 vs. q2 relations.) Upon integrating
over the full slowness hypersurface, however, it follows that contributions from
the associated branchcuts cancel. Then %? = [)ψlφ. Consider the tf-plet f(q,φ)

with Re{/(0,ι/0} > 0. Set Iφ = IR^0 - Iφ and <t = \Jψh- τ h e r e e x i s t s a h o l °-

moφhic extension of f(q,φ) with Im{/} g 0 on Iφ + /0 in the complex g-plane.

This defines A+ ={Jψf(ϊψ,φ)CA (corresponding with evanescent constituents).

In a similar way A- is defined. We will denote A+UA+ by Λ*, and similarly
introduce A*_.

Thus, we introduce the «-plet of cycles δy = δy+ U δy- on A through

(3.43)

In polar coordinates the cycle δy+ can be parametrized as

δy+(r,φ9xn,τ) = {q+(r9η(φ,\l/)9xniτ\ φ9 f(q+(r9η(φ9ψ)9xn9τ)9 φ)\

ψe([092π)9 [0,π),. . . ,[0,π))}.

Then q+(r,η(φ,φ),xn,τ) is the w-plet of Cagniard-De Hoop contours. The latter
contours, with parameter τ, are obtained from the tube of cycles through intersection
with the (q, ίw)-plane (fixed φ) followed by an orthogonal projection on the complex
g-plane.

In the present representation the time behaviour ("tail") of E is hidden as a
(time) parameter in the cycles at a given direction of propagation.

Some Remarks on Causality. The surface A is invariant under complex conjugation
in ί-space (enabling the use of Schwartz' reflection principle in the holomoφhic
extension of the slowness integral). Under the transformation ξ —> ξ9 A+ maps onto

A- (but A+ maps onto itself) while under the transformation ξ —> —ξ9 A+ maps
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onto Λ_ (but Ά+ maps onto itself). This symmetry implies the equality (restricting
the analysis to the spatial half space xn > 0 with coordinates t t )

/ U{t' - ξμt )dσ(O - Δ{t' + ξμ+)dσ(ξ)] = 0 , (3.44)

which is the essential property used in the so-called causality "trick" (Hubral and
Tygel [22]); since in E% we could have replaced the integrand by

Δ{t' - ξjxj - iθ)άσ(ξ) - Δ{t' + ξjXj - iθ)dσ(ξ) , (3.45)

we thus could have written

(x+, /') = / \Δ(t' - ξμΐ)dσ(ξ) - Δ{tf + Jrfjδϊζξ)] . (3.46)

The first term on the right-hand side generates the causal component Ec of the
fundamental solution (this expression follows more directly from the Sommerfeld-
Weyl representation of the fundamental solution) whereas the second term generates
the anti-causal component Ea. Applying the procedure of the previous subsection
leads, again, to the introduction of the modified Cagniard contours.

Summary. To obtain a convenient form, we finally permute some coordinates. First,
it is understood that in the representations above

ξn = ξn(ξu...,ξn^) = τ = - (3-47)
xn

(parametrization of the slowness surface) while

£„_! = £n-i(£i,...,&-2,*n,τ) (3.48)

(parametrization of the cycle). The rotation and scaling of coordinates yielded

xn = 1, xn_] — = x\ = 0 .

A tube 7 is built up from (n — 2)-cycles in the time interval [0,0 or in the vertical
slowness interval [0,t/xn); it is a connected piece of the slowness surface. The final
representation for E becomes

_ dξχ...dξn-2dξn

Permuting the coordinates £w_i and ξn now yields

E {
where the integrand is known as the Leray form.

At this point, it is observed that the construction of the fundamental solution
reduces to the construction of cycles on A, followed by an integration over these
cycles. For isotropic media it is simple to find these cycles; for anisotropic media,
however, the construction is far from trivial. In the further analysis, a basis for these
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cycles in the homology group of the associated hypersurface will be found and a
differential equation for the integral representation over any basis element will be
derived.

4. The Fundamental Solution Expressed as an Integral over Vanishing Cycles.

In this section we will show how the geometry of the slowness surface leads to a
natural decomposition of the fundamental solution E into integrals over so-called
vanishing cycles. These cycles encode the topological information of the wave op-
erator: they depend only on the topology of the singularities (certain critical points)
on the slowness surface. To achieve this decomposition, we use the geometrical
objects introduced in the two preceding sections. The decomposition of the fun-
damental solution into integrals over vanishing cycles, has in fact been foreseen
already by Petrovsky [38], and also used by Atiyah, Bott and Garding [8] and
by VasiFev [43]. This decomposition is non-unique. In principle, one may choose
any basis of cycles in the (finite dimensional) space of all vanishing cycles for a
given type of singularity, however, as we will show, only for a diagonal integral
basis the coefficients of the linear decomposition are integers and can be relatively
straightforwardly computed.

Decomposition into Vanishing Cycles. Let us begin with putting the result of the
previous section (see also [8, 27, 38]) in a more general form:

''ξ ] dξ,...dlU-i, (4.1)

where P is a degree DP ^ D — n— 1 polynomial in ξ9 where D is the degree of
H. The integral is over a complex (n — 1 )-dimensional cycle (tube) denoted by
γ in the (n — 1 )-dimensional algebraic hypersurface A : H(ξ\,...,ξn) = 0, i.e., the
cycle is a certain (connected) piece of the slowness surface, oriented such that the
coordinate ξn corresponds to the vertical direction. As was shown in the previous
section, the contour δy arises through intersection A P\Xt and the tube y corresponds
with the interval [0,/) The integrand is in fact a closed rational form of degree
(n — 1) with poles along δξnH = 0, hence the integral depends on the homology
class of y only. This fact will play a central role in this section. The quantity
δξnH corresponds to the group velocity in the nxh direction, i.e., the vertical group
velocity. Since the cycle depends continuously on the coefficients of //, we may
use these as deformation parameters of the cycle, without changing the value of the
integral.

Define coordinates ξ/ on Xt such that its local equation is simply ξnxn = t, where
t is time. We consider the solutions of the following set of equations

// = 0, 3 ί l t . . Λ _ I // = 0, (4.2)

assuming that the x,raxis is oriented along the direction of propagation (observa-
tion). In general the roots of these equations will all be different, in which case there
are μ = D(D- I ) " " 1 of them. Label them according to ξ{j\ i = l,...,μ. These
points define singular points (for vertical propagation) on the slowness surface; we
will study the topology of the slowness surface around those points in detail.

The level surfaces //(ci,...,ί,,_i,τ) = 0 for generic values for τ, considered
as a parameter and equal to tjxn (effectively, xn = 1), contain {n — 2)-cycles Δj(τ)
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which have the defining property that they "vanish" when taken along a path w,
in the complex τ-plane connecting a generic point ξ^ with the point ξ\l^: upon
approaching the point c\\\ the cycle A-t shrinks to this point. The system of paths
M/, / = l,. . .,μ is non-intersecting. The cycles Δh i= l , . . .,μ are referred to as
vanishing cycles. We will explicitly construct these cycles below. The vanishing
cycles define (« — 1 )-cycles δj on H = 0 by taking the union of all cycles J/(τ)
as we move along «/ from c^0) to ξ^\ It is a standard fact on integrals of the type
(4.1) that the cycles thus constructed are homologous to the cycle y in the sense
that there exists the following decomposition:

7 = ί > δ + G_,(#0>), (4.3)
ι = l

where the (n — l)-cycle Cn-\ is homologous to zero on / / ( £ ] , . . . , <?„_], ίί, 0 ') = 0.
This then results in the following decomposition of E over vanishing cycles:

E = J

7

' V V ' ' ^ (4 4)

where £„_! is actually a parametrization for the (n — 2)-cycle J, (τ). This is just a
rewriting of the formulae at the end of the previous section. Naturally, the Λ, (τ)
will also depend on x; this dependence will be exploited in the later analysis. The
numbers c/9 describing the decomposition of the original integral, are referred to as
intersection numbers and are of a topological nature. Generically, the coefficients ct

are rational numbers, and are difficult to compute. It is possible, however, to make
a special choice of the parameter τ for which the coefficients become integers.
This choice corresponds to an integral basis of vanishing cycles, as we will show.
The associated formula for the cz has been derived by Vasiliev [43]. However,
the connections with an integral basis and with the invariants of the Picard-Fuchs
system are new. In the rest of this section, we will apply elements of singularity
theory to make the above decomposition explicit, i.e., we will show how to compute
the intersection numbers c/.

In order to do so, we will make precise the duality between the slowness sur-
face and the wave front. This will lead naturally to the study of singularities on
specific families of hypersurfaces, which are deformations of the original slow-
ness surface. The singularities on the slowness surface are critical points of second
(non-degenerate) or higher (degenerate) order. Such points correspond to certain
singularities on the wave front. We will show, following [4, 5, 7], that those sin-
gularities can be conveniently studied in terms of critical points of the Legendre
transformation relating the slowness surface and the wave front set (the diffraction
surface). This will also lead to a complete classification of wave front singularities
that can arise in anisotropic elastic media.

The Legendre Transformation and its Singularities. The duality between the pro-
jective wave front Σj and Re{Λ} is described by a Legendre transformation and
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has extensively been discussed in [7]. Since this fact plays a central role in our
discussion, we will review the argument. Consider F(ξ,x) as a function on the hor-
izontal phase space, formed by the slowness coordinates ξ and space coordinates x,
such that

ξ,- = 3XtF. (4.5)

(Here, F denotes the travel-time function which replaces the function S of the
previous section.) The volume form on the phase space (summation overy)

-dxdξ = d(-ξdx)

closed and nondegenerate. So we may introduce F as the form

dF = d(ξdx), (4.6)

which can be written in our parametrization according to

dF=Σξidxj + fdxn. (4.7)
7 = 1

If the medium is homogeneous, integration amounts to (cf. (4.5))

F(ξ,x)=Σξ, Xj + fXπ. (4.8)
/=!

Next we define a momentary (so-called "big") front Σj in terms of the gen-
erating function F(ξ,x) with x = (x\9...,xn-\) being coordinates in space and
ξ = (ξj,...,ξn-\) being coordinates in the dual (momentum) space as the hyper-
surface in (In — 1 )-dimensional space

J:0=^> η, = ¥-, τ = F(ξ9x)\ . (4.9)
OCj CXj J

The projection (η9x9τ) —> (x,τ) is the Legendre transformation and defines the front
in the physical ^-dimensional horizontal space-time. This projection is obtained by
solving ί as a function of x from (4.5). This is a Legendre transformation of the
function /(c) . The surface thus defined is denoted by Σj and corresponds to the
momentary front in the physical space.

It is not difficult to see that this construction geometrically corresponds to "taking
the polar reciprocal" of the real slowness surface. Namely, consider the graph of
the smooth function / (c) , i.e., let y = f{ξ\ ξ e IR, with f"ξ > 0. The Legendre
transformation of / is a new function g of a new variable x constructed in the
following way. Let x be a given number and consider the line y — xξ. Take the point
ξ(x) on the c -axis such that the vertical distance between the line and / is extremal.
That is, for each x the function F(ξ9x) = ξx -f f(ξ) has a maximum at ξ — ξ(x),
following from dξF = 0, i.e., from f'(ξ)=x. The function g is now defined as
g(x) ~ F(ξ(x\x). Note that since the second derivative of/ does not change sign,
the point ξ(x) is unique. The extension to higher dimensions is straightforward.

Let us next apply this to the real slowness surface defined by the equation
H(ξ\,...,ξn) = 0 and parametrized by ξn = f(ξj,...,cn-\). The function F is, ac-
cording to the above, defined as
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F(ξ,x)=ΣξiXi+Xnf(ξ\9...9ξn-O. (4.10)

Indeed, F is the traveltime along the ray connecting the origin with x. Upon dividing
by xn φ 0, we may reset

/ Γ ( ^ ) = Σ — + / ( c i , . . . , ί w _ 0 . (4.11)
7 = 1 Xn

Henceforth, we will work exclusively with projective coordinates x//xn,j = 1,...,

w — l,x,, + 0, denoted by x} as well (we have set xn = 1). Thus, the front in w-

dimensional space-time is the (n — 2)-dimensional projective hypersurface

Σd = {(*,τ) € W\3ξix) : Sξι_ξn_{F = 0, τ - F} . (4.12)

This is the Legendre dual of the slowness surface parametrized by / .
Before, we put this construction of Σd in the context of Petrovsky cycles, in-

troduced in the previous section. The Cagniard-De Hoop contour corresponds to
a projection of the tube γ onto the complex horizontal slowness plane. The wave
arrives exactly where the contour leaves the real axis. The contour is the solution
of F = τ e 1R. The complex solutions occur in complex conjugated pairs, hence,
the point of intersection with the real axis must be a double root of the equation
defining the contour. Thus, at such a point we must have δξu^ξn_ιF — 0.

It is now evident what the origin of singularities on the wave front is: they
are precisely the Legendre transformation of the critical points of / satisfying
δξ\,...,ξn-\F = 0 in the "big" {In — l)-space defined above. At these points the func-
tion / and its dual g fail to be convex, i.e., at these points at least one of the
principal Gaussian curvatures on the slowness surface vanishes and ξ(x) becomes
multi-valued. As an example, take the cubic function f(ξ) — ξ3. Then F(ξ,x) =
ex 4- ξ3, ξ(x) = ±y/-xβ, and hence τ = g(x) = (1 - y/ϊ/9)(-xγ/2

9 which has a
cusp at the origin in the (jc,τ)-plane. The function F is called the generating func-
tion of the Legendre transformation. It can be considered as defining a family
of "slowness" surfaces described locally by / and parametrized by (xi,...,x,,_i).
This is a useful interpretation in the context of singularities. In fact, the function
F introduces a deformation of the isolated singularities of the function / , such
that F(ξ,0) = f(ξ) parametrizes the original singularity defined by a critical point
off.

So far, we discussed momentary fronts, i.e., we did not consider the evolution
of fronts in space-time. We will discuss this later in this section.

Singularity Theory. Smooth functions, like F, that define isolated singularities have
been thoroughly studied [2-7]. For our application, the most important class of func-
tions is the one formed by functions that define isolated, stable singularities, i.e., the
ones that are invariant under a local reparametrization of the surfaces. In [7] a com-
plete classification is given of all types of singularities that can occur in Legendre
transformations in low dimensions. We will apply this to the Legendre transforma-
tions of slowness surfaces in three spatial dimensions. It follows the singularities
of fronts in 3-dimensional space fall into three classes. In fact, the critical points
on the slowness surface define either a local extremum, an inflection point (i.e.,
vanishing Gaussian curvature) or a point at which at most the first-order derivative
of the curvature along a particular direction vanishes.
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In general, the multiplicity of the isolated critical point of f(ξ) gets resolved into
μ different critical points of the family F(ξ,x) for a generic choice of parameters
x. However, one usually does not need all the parameters x to lift the degeneracy
of a critical point. That is, it suffices to consider a set of μ ^ n — 1 parameters
λ, called versal parameters, for which F has only non-degenerate critical points. In
addition, one can show that there always exists local (curvi-linear) coordinates s(ξ)
parametrizing the slowness surface close to the critical point such that the function
F at such points satisfies the equalities F = 0, csF = 0. Then F is the generating
function for the front Σj introduced earlier. In terms of these coordinates F can be
brought into the following standard form:

The functions gfe) are polynomials in all variables s\9...,sn-\ forming a basis
in the μ-dimensional vector space of polynomials in 5 modulo those polynomials
generated by the first-order partial derivatives of f(s). The fact that this is a fi-
nite μ-dimensional vector space is a standard result. The vector space spanned by
gi(s) is sometimes referred to as the local ring of / . In general, the evaluation
of the canonical transformation involves numerical computations (see also [21] for
the evaluation of the canonical form of the phase function in Maslov's theory).
We postpone those computations to a future paper. The coordinates s still have the
physical interpretation of horizontal slownesses, while the parameters / are hori-
zontal space-time coordinates. In particular, λμ is associated with the polynomial
independent of s and represents time. Note that in projective space coordinates one
of the λ coordinates is set to 1.

The important point that we want to emphasize here is that for generic choices
of λ the critical points of F are all distinct (the set of Λ'S is dense in the set
of the original parameters x). In other words, in a suitably small neighborhood of
the critical point of / every analytic function near / can be obtained by analytic
changes of variables in F(s,λ) for some value of λ. The form (4.13) of F is called
a versal deformation of / . The coordinates s are called normal coordinates. We
will denote these coordinates by ξ again.

The front generated by F will be in the space of versal parameters λ. How-
ever, the dimension of this space may be lower than the dimension of horizontal
space-time. To get a description of the physical front of the "correct" dimension we
invoke the Morse lemma which states the following. As F only has non-degenerate
critical points, the equation δξF = 0 may be solved for ξ as a function of λ. (This
follows from the implicit function theorem.) The Morse lemma states that upon
substitution of ξ(λ) back into F the latter function can be parametrized in a neigh-
borhood of the critical point in terms of its critical value plus additional parameters
according to

m n—\

F(ξ, λ) = F(ξ(λ), λ) +Σή- Σ ή , (4-14)
7=1 /=m+l

where m denotes the number of positive eigenvalues of the Hessian matrix of F
(the determinant of which is non-vanishing) and z has the interpretation of hori-
zontal slowness. From this, it follows that the physical space can be coordinated
by (/] , . . . , λμ\ λμ+\,..., λn-\), such that the additional terms in F are of the form
λjξ2, j = μ + ! , . . . , « - 1.
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Table 4.1. Singularities on wave fronts in 3-
dimensional space

Type Normal form

A\ F = ξ2+λ] 1
A2 F = ί 3 + Aiς + /2 2
A3 F = c 4 + λ\ c2 + λic + A3 3

Now, we investigate what families of functions F may be realized in case of
a x-independent wave operator in a generically anisotropic medium. To this end,
we need the global properties of the slowness surface as discussed in the previous
section. Possible points of inflection on the real slowness surface can be detected
by considering the condition that a real-valued bitangent exists. A bitangent line is
a line tangent to a slowness sheet at two points. Obviously, this can only happen
when the slowness sheet is locally not convex. For every bitangent line there will
be automatically two inflection points. Note that the bitangent must be a real line as
follows from the hyperbolicity condition. A limiting case thus occurs when the two
inflection points coincide, as then the bitangent will become complex. This situation
occurs at a point (ξ^ξ®) for which F up to the third-order derivative with respect
to ξ vanishes, implying that F is proportional to (ξ — ξ0)4. As a consequence, the
function F is always of a form as listed in Table 4.1. The labelling of the three cases
that occur in 3-dimensional space is in accordance with the type of (Weyl) reflection
group2 that acts on the roots that factorize the polynomial F in ξ. They encode the
topological structure of the singularity as we shall now discuss. The wave front is
a point of transversal self intersection in the first case (A\)\ in the second case
(A2) a cuspidal edge in the (/i,/2)-plane, dividing the plane into regions of either
three real roots of F = 0 or a real one and two complex conjugated ones. This
singularity corresponds to a vanishing Gaussian curvature on the slowness surface.
In the third case (A3) the wave front is known as a swallowtail in (λ\9).2,h)-
space. Its intersection with the plane λ$ = const, is given in Fig. 4.1 along with the
location of the roots in the complex s-plane of the equation F = 0 in Fig. 4.2. On
the slowness surface this corresponds to a point where the derivative of a Gaussian
curvature vanishes.

The equation F(ξ,λ) = 0 defines for generic values of λ the non-singular level
surfaces of / . Introduce the set $f of all //, / = l,...,μ, and consider for each /
the level surface

] ) = 0, \ξ\ ^ p } , (4.15)

i.e., we intersect F — 0 with a small (n — l)-ball B of radius p > 0 centered at the
critical point of / . (This is the region of validity of the normal form representing
F.) The surfaces Vχ are for generic values of λ non-singular and for those values
they are all diffeomorphic to the non-singular level surfaces of / . The set of λ's for
which V) is singular is of codimension 1 in ίf. This set has an obvious geometrical
interpretation: it defines a singularity on a wave front, now parametrized by / instead
of x. For example, for A2, we find that the singular set in £f (corresponding to the
cusp) is constrained by the equation

2 As an aside we mention that the manifolds corresponding to the non-regular orbits of the
Weyl groups are isomorphic to the fronts.
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Fig.4.1. Some possible momentary wave front singularities in 3-D space (see also [3])

Fig. 4.2. Time evolution of wave fronts in 4-D space time

)? + cλj = 0, c =
27

2 8 - 6 Λ / 3
(4.16)

The complement of the front in physical space consists of several disconnected com-
ponents, see also Fig. 4.1. The components can be characterized by the different sets
of parameters λ which depend on the actual geometry of the critical point. In each
component, however, there is an interval of values for the parameters λ for which
the location and multiplicities of the critical points do not change qualitatively. It
is a property of the singularities in Table 4.1 that only a discrete set of values for
the versal parameters is necessary to resolve all the degenerate critical points. This
implies that the number of different components is necessarily finite. The solution of
the hyperbolic system may be fundamentally different for each component depend-
ing on the nature of the front that separates the different regions. We will discuss
this later in this section.
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Time Evolution of Fronts in Three Dimensions. Having discussed the possible
topologies of the wave fronts in a 3-dimensional (homogeneous) medium, we now
turn to the problem of how the fronts evolve in time or xn. A front moving in an
inhomogeneous medium may change its shape in time, quite generally. To study the
possible time evolution of moving fronts, we consider the union of all momentary
fronts classified in Table 4.1. This union defines a hypersurface in 4-dimensional
space-time. It follows rather easily that this hypersurface is itself a front of a Leg-
endre transformation through a Legendre variety of one dimension higher than the
Legendre variety of the momentary front. One considers xn as an additional pa-
rameter; the Legendre transformation in the higher dimensional space projects on
space-time parametrized by (x\,...,xn,t) [5]. One thus defines a front in space-time
in a similar way as a momentary front, the only difference being that one now
considers a one-parameter family of momentary fronts parameterized by xn.

This implies that the generating function F of a front moving in space-time can
again be put into the general form (4.13), but now with an extra versal parameter,
multiplying the constant term, denoting the time function. The fact that a particular
versal parameter has the interpretation of time puts a restriction on F. Namely, the
time function cannot have a critical point, of course. Furthermore, the time should
preserve the cuspidal edges of the momentary wave front. (As we work in normal
coordinates which are valid close to the singularity, this condition on the time
function should only be applied for the singularities on a momentary wave front,
and not on the full front). In [5] an important theorem is proved, which states that
for a function F(ξ,λ) with d;ιμFφ0 (λμ being time) there exists a diffeomorphism
that puts it into the form F = ±λμ preserving the front. Now use the expansion of
F in (4.14) and assume that F generates a (/ < «)-dimensional cuspidal edge. Let
the time function be of the form

/ = λμ + const, or t = λ\ ± λ2

μ+] ± ± )}f , (4.17)

where the second expression for t uses the Morse parameters. Hence, in case the
normal form of F has less than n parameters /, there are multiple choices for the
time function.

The singularities on the momentary fronts sweep out a subvariety (a lower
dimensional surface) in the hypersurface swept out by the moving front. These
singular surfaces are called caustics. The caustics are thus classified using similar
techniques as used in the classification of singularities in the Legendre transfor-
mations defining the momentary fronts. In case the dimension of the initial space
is three, the possible singularities in addition to A\, Ai and A3 are given in Ta-
ble 4.2. The time /, regarded as an extraction from the normal space-time coor-
dinates, should be a function without critical points and should preserve the "big"
front, i.e., the multi-dimensional cuspidal edges of the front. We have listed them in
Table 4.2.

The Λ4-type singularity in 4-dimensional space-time corresponds again to a swal-
lowtail, which we will discuss in detail below. The D4-type singularities are quali-
tatively different from the ^-type singularities in that they are 2-dimensional rather
than 1-dimensional (which is the case for the Ak-type singularities). They are usu-
ally referred to as the "umbilical" singularities [16]. In Fig. 4.3 we have depicted
the typical singularities of the caustics in space-time swept by the singularities of
momentary wave fronts in 3-dimensional space ([5]).

The swallowtail singularity A4 in 4-dimensional space-time is most useful to
illustrate the time evolution, as it is related to a common physical phenomenon.
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Table 4.2. Caustics swept in time by singularities of momentary fronts in 3-
dimensional space (see [7])

Type Normal form Time function

A3 F = ξ
A
 + λ\ ξ

2
 + λ

2
ζ + Λ3 t — A3, t = λ\ ± λ\

A4 F = C
5
 + Λi C

3
 -f Λ2ζ

2
 + A3C + ̂ 4 ' = A4

Df F = η2ξ ± c3 + A3^ -f Λ2C + /.,η + λ4 t = λ4, t - ±A3 + λ\ + λ2

Consider a momentary wave front in 3-dimensional space and assume that it has
cusp singularities. The cuspidal edges sweep out the caustic. Assume furthermore,
that the caustic has a 3-dimensional swallowtail singularity. The caustic is locally
difTeomorphic to the polynomial of type A4 having a multiple root. The cuspidal
edges sweep out a 2-dimensional surface on this hypersurface correponding to a
variety diffeomorphic to the A4 polynomial having roots of multiplicity of at least 3.
This variety is called an open swallowtail in 4-dimensional space-time. An important
result by Arnold [3] states that the time evolution of any cuspidal edge can always
upon a canonical transformation be put into the normal form of an open swallowtail,
i.e., into a variety given by the zero locus of the A4 polynomial with at least two
coinciding roots. This greatly facilitates the way the projection onto the physical
3-dimensional space can be carried out: it corresponds to differentiation with respect
to ξ. Note that differentiation lowers by one both the degree and the multiplicity
of the roots. Thus the problem separates into two parts: first one studies the open
swallowtail on the full hypersurface defined by the moving front, and secondly
one projects onto the space of degree four polynomials having at least roots of
multiplicity two by differentiation.

As time proceeds, the edges disappear into a singularity of type A4 in space-time,
that, when projected onto 3-dimensional space, corresponds to an Λ3-type singularity.
This type of evolution is easily identified in a physical situation. Namely, suppose
a cusp is generated (in a hexagonal medium, say) and moves into an isotropic
medium. Then the cusp will eventually evolve into a singular point on the spheri-
cal wave front after which it disappears entirely. The singular point is necessarily
of type A3 in 3-dimensional space. It is interesting that the result in [3] implies
that in general the cuspidal edge of a moving front passes the line of self inter-
section of the swallowtail in 3-dimensional space at two different times. It follows
that if the time difference between the arrivals of the two edges is Aτ, the time
towards the vertex of the swallowtail, i.e., the point after which the cusp has disap-
peared, scales as Δτ2fs. Similarly, the A3-singularity of the front in space-time leads
to a focal point in three-dimensional space, corresponding to a singularity of the
type A2.

The Decomposition of the Cycle δy. We next describe the cycles in (4.4) in terms
of the level surfaces F(c, λ) = 0. First, recall that at the end of the previous section
we introduced the cycles as the intersection of A ΠXτ. From (3.42) we draw the
conclusion that AΠXo corresponds with F(ξ,x) — 0. We have shifted the arrival
time of the singularity to the origin. To construct the contours δy near the arrivals,
we intersect the level surface with a small ball of radius p centered at a critical
point (which we have taken to be the origin of the aflfine coordinates c). Thus, we
are looking in a neighborhood of a point x located at the front. As we saw already
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this is equivalent to a particular range of values for the versal parameters λ. The
final result for the numbers Q will thus depend on the location at the front or, more
precisely, on the component of the complement defined by the front at x. Since
the front consists of several parts, that is, we can approach the front from various
inequivalent directions from the different components of its complement (the space
before and after the front) we have to perform the calculation for all components
for each singularity separately.

Close to a critical point the function F can be brought into its normal form,
i.e., into one of the three representations given in Table 4.1. The contours δy are
thus contained in the set

A nx 0 n B ~ {F(ξ,x) = 0} n B . (4.18)

Upon constraining the full set of parameters x to the deformation parameters λ and
having shifted the arrival time to zero, we conclude that the cycles Cn-2(ζn) £ B
are precisely cycles on the surfaces F(ξ, λ) = 0, which we denoted earlier as Vχ.
This space is much more convenient, since we can now invoke results by Milnor
on properties of the homology group formed by these cycles.

According to Milnor [31] the space of cycles Cw_2 is of finite dimension μ,
and any (n — 2)-cycle can be expanded into a suitably defined basis of cycles,
such that the coefficients of this expansion are all integers. More precisely, the μ-
dimensional homology of the fibers Vλ for generic values of the parameters / form
a μ-dimensional lattice:

Hn.2(A ΠX0 ΠB) = Hn-2(Vλ) = Z" . (4.19)

A basis in this homology is given by a system of μ cycles Δ*t which vanish along
suitable chosen paths connecting a given non-critical value of F with a critical one.
Such a basis is referred to as a basis of vanishing cycles. Milnor's theorem thus
states that there exists a basis of vanishing cycles such that the cycle δy on a level
surface of / can be decomposed into vanishing cycles drawn on the level surfaces
defined by F = 0, such that the coefficients are all integers. That is, there exists
a basis of cycles such that the intersection numbers Q in (4.4) are all integers. In
a generic basis the numbers c, are rational numbers; only for a special choice of
basis cycles, the numbers are integers. How to determine this particular basis will
be postponed until the next section.

We are now in a position to actually construct such systems of paths and the
associated cycles. First we divide the critical values of F(ξ,λ) into two sets: the
real critical values, and the ones that come in complex conjugated pairs. In order
to make contact with the original integral E it is obvious that we have to decide
on a particular orientation of those cycles that correspond to the real critical values:
they have to be in agreement with the chosen orientation of the slowness sheets.
Assume that the origin is a non-critical value of F. Let U be that portion of the
complex plane that contains all the critical values. Now connect the origin with any
real critical point with a path in U such that it always consists of points whose
imaginary parts are in absolute values less than the absolute values of the imaginary
parts of any other complex critical point. Further, paths joining the origin with
critical points that come in complex conjugated pairs, are conjugated and always
contained in either the positive half plane or negative half plane according to the
imaginary part of the critical value. We furthermore require that they intersect the
real axis transversally (in agreement with Schwarz's reflection principle).
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Let the appropriate system of critical paths «/(/), i — l,...,μ, in the τ-plane,
obeying the above conditions, be parametrized by λ. Applying (4.14), we find that
F is always locally parabolic away from the singularity. The vanishing sphere asso-
ciated with the critical point Z, of F is a real (n — 1 )-sphere 5/ with a /-dependent
radius

Σξt^UiW-Zi. (4.20)

Note that this sphere shrinks to a point as λ —> 0. The orientation of this sphere and
hence of 5/ is such that its volume form is positive with respect to the volume form
orienting the (real) slowness surface. The homology class in //W_2(K;) represented
by Si(λ) is the vanishing cycle corresponding to the path Uj and is denoted by Δh

The system {̂ /}f=1 forms a basis in this homology group, it is with respect to this
basis that we will compute the numbers c, in (4.4).

There is a lot of freedom in choosing a basis of vanishing cycles, which is
reflected in the invariance of this basis under automorphic transformations of the
homology group //,7_2, i.e., the isometries of the Milnor lattice. These automor-
phisms are referred to as monodromy transformations. Rather than discussing this
in detail, we will simply list the results necessary for the computation of the inter-
section numbers <:,. It turns out that a monodromy transformation can be described
analytically by studying the properties of the vanishing cycles implied by the fol-
lowing transformations. Consider the transformation of the path m to the composite
path that goes along w,- starting at a given non-critical value, then anti-clockwise
around the critical point Z/ and then back along uh Under such transformations the
critical points of F are permuted, but a vanishing cycle, i.e., a contour on a non-
singular level surface which vanishes upon taking the parameters to zero, remains
invariant. This enables one to write down a canonical representation of the vanishing
cycles in terms of a suitably chosen parametrization of the level surface. This is re-
flected in the so-called Picard-Lefschetz formula, which gives a canonical form of
the inner product on the vanishing cycles, denoted by ( . , . ) . Applying this formula
yields the following representation of the monodromy operator A/ corresponding to
a transformation encircling the /th critical point:

hi{β) = β + (-iy ? ( ' ?- 1 ) / 2(AΛ H , (4.21)

where β is an arbitrary cycle of dimension n — 2. It is thus seen that the monodromy
group acts as a (pseudo) reflection, A/(J/) = -Ah and it is the identity on the
hyperplane orthogonal to zl/. In general, the intersection product is hard to compute
explicitly, and only for a few classes of singularities there exist explicit results.
However, for simple singularities, amongst which are those of Table 4.1, it can be
computed easily. In fact, for singularities defined by

f(ξ) - ξM , (4.22)

it can be shown that one can bring a basis of vanishing cycles into the following
form:

(ΔhΔM)=-h ( 4 ,J/) = 0fbr \i-j\ £ 2 . (4.23)

Furthermore, we can construct the composition of all operators hi, denoted by /**,
which thus describes a loop based at a non-critical value, encircling all critical
values once. It turns out that, in case of A ̂ -type singularities, such an operator has
eigenvalues given by the roots of unity exp(2πz//&), j — 1,2,...,£.
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For the simple singularities of type Ak the resulting reflection groups are just
the permutation groups on respectively two or three elements, which are the Weyl
groups of the Lie groups A\,Aι and A3. For us the most important results are that
the intersection indices appearing in (4.4) are all integers in the basis (4.19). Fur-
thermore, they depend on the particular component of the complement of the front.
In terms of monodromy this is rephrased as follows. The front itself corresponds
to the "mirrors" of the monodromy group, i.e., to the so-called non-regular orbits.
These mirrors separate the Weyl chambers, which are the space in between the
mirrors, i.e., the points on the regular orbits of the monodromy group. The c, thus
depend on the particular Weyl chamber chosen.

Let us now finally compute explicitly these indices using a more general result
in [43]. As shown there, it is possible in each component of the complement of
the wave front, to organize the intervals of the versal parameters such that the
degenerate critical values are zero, while the non-degenerate critical values are all
real. Hence we only need to compute the indices for the cases Z, being positive or
negative.

In fact, using the description of the vanishing cycles (4.18) it follows that for
three spatial dimensions the intersection of the contour δy with the vanishing cycle
Δi corresponding to the /th real critical point is given by

Zi>0: a = (Ai9dγ) = - (1 + (-1) 3 "*) - Σ / 4 ' > 4 ) ,

Zi < 0 : a = (Ai9dγ) = -(1 4- (-1)*) + Σ / ( 4 > 4 ) . (4.24)

For complex conjugated critical values one has

Z-x = Zi: a = (Ah δγ) = (Δh δy) = (Ai9 A,). (4.25)

The sum over j is over those vanishing cycles associated with real critical values
that lie in between the origin and Z, . The original cycle δy thus has the following
decomposition in terms of vanishing cycles

δy = ΣctΔi, (4.26)

with the intersection numbers c, given in (4.24)-(4.25).
For the different disconnected regions shown in Fig. 4.3 the locations, in the

complex plane, of the roots of the level set of / are different, hence the c, will be
different. It may happen that for a given component all the c, vanish, thus implying
that the solution is completely vanishing. Such regions are called local lacunae.

Vasiliev has computed in [43] for the A, D and E singularities up to n = 1
dimensions how many different regions may occur for a given front. For the sin-
gularities occurring for moving fronts in 4-dimensional space-time this number is
one. This is the shaded region in Fig. 4.4. Furthermore, a simple calculation reveals
that if these regions are approached from the directions orthogonal to the limiting
tangents denoted by L, the lacuna is penetrated.

Fig. 4.3. Location of the roots of F = 0, with F of type A2
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Fig. 4.4. Location of the roots of F = 0, with F of type AT,. The shaded region is a lacuna, which
is penetrated if it is approached along the dotted lines

5. A Differential Equation for the Fundamental Solution

The main point of the previous section was that the geometry of momentary fronts
in space as well as of moving fronts in space-time are conveniently studied in
terms of the zero level surface of functions of the form (4.13) that generate the
front in space or space-time according to whether F is chosen from Table 4.1 or
from Table 4.2. The function F has the property that if all versal parameters are
vanishing F reduces to a function / (£ ) , which we used to parametrize the slowness
surface.

In this section we will study the fundamental solution E in space-time expressed
as a linear combination of integrals over vanishing cycles associated with the sin-
gularity of / whose versal deformation F generates the front in space-time (F is
of the form listed in Table 4.2). Thus F describes the caustic set swept out in
space-time by the cuspidal edges of the momentary wave fronts arising from in-
flection points on the real slowness surface discussed in Sect. 3 and 4. From our
discussion so far it is not obvious that it is precisely the caustic set of the moving
front that determines the global asymptotic behavior of the fundamental solution in
space-time. This can be shown by rewriting the original integral over the slowness
surface as an oscillatory integral in the time-frequency domain. In the exponent
in the oscillatory integral appears the phase function which, in fact, is (in normal
coordinates) the generating function F of a moving front in space-time. Upon ap-
plying the well-known method of stationary phase one concludes that the integral is
dominated in the high-frequency limit by the (non-degenerate) critical points of F.
Rather than discussing this here (see, e.g., [16]) we will concentrate on the integrals
over vanishing cycles.

As we emphasized in the previous section, the decomposition of the fundamental
solution into integrals over vanishing cycles is valid for any choice of the versal
parameters. However, only for a special choice of basis vectors in the space of versal
parameters (as given for the Ak singularities in the previous section) the intersection
indices c, are the integers given in (4.24)-(4.25). To use the latter equations, we
have to find the appropriate parametrization of versal deformations in terms of the
original arbitrarily chosen parameters. The homology basis must be integral [28]
and can be characterized by the fact that the integrals over the vanishing cycles on
the non-singular level surfaces parametrized by these coordinates satisfy the system
of non-linear differential equations associated with the monodromy invariants of the
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Picard-Fuchs equation. These invariants are uniquely determined by the topological
type of the singularity.

Our aim in this section is to exploit the invariants of the Picard-Fuchs system
to derive global asymptotic solutions of the hyperbolic system exhibiting arbitrary
caustic sets. Here, we will derive the asymptotics from the Picard-Fuchs system.
Although the Picard-Fuchs differential equation is well known amongst mathemati-
cians [19, 26], the relation between the invariants of the associated non-linear sys-
tem and the monodromy group of the singularity is apparently new, see the third
reference in [28]. We will show the Picard-Fuchs system for an integral over a
vanishing cycle. The solution of this system determines the fundamental solution
near its geometrical arrivals.

We will carry out the computations for the nontrivial singularities of Table 4.2.
First, we will explain why the integral over a vanishing cycle satisfies a linear dif-
ferential equation. Let / ( ί i , . . . , ξ w _i) be the vertical slowness having an isolated
singularity at the origin of criticality μ. Let F(ξ,λ) be a versal deformation, with the
property F(ξ,0) = /(£)• Consider also the so-called Milnor fibration π : V —* £f
whose fibers Vχ over the space Sf of versal deformation parameters are isomor-
phic to the level surface F(ς,/,) = 0. This level surface is diffeomorphic to the
non-singular level surface F(ξ, λ) — τ. The parameter τ depends implicitly on /;
it reduces to τ = ξn if all (projective) versal parameters vanish. Thus, τ defines a
"distance" function along a curve in Sf intersecting the singular set Σj at most at
isolated points. If the curve in Sf intersects Σj transversally then this "distance"
corresponds to the time function in the normal coordinates defined in the previous
section.

Our integrals are over a rational closed (n — 2)-form, which define locally con-
stant classes in the homology / / Π _ 2 ( ^ ) . This allows us to put the cycle in a canon-
ical form without changing the value of the integral. If we stay close enough to
the critical point, one may thus differentiate under the integral with respect to the
versal parameters. For convenience, we repeat here the form of the integral over a
vanishing cycle (cf. (4.1))

(&)

The integrand has poles precisely at the μ critical points of H in the ^-direction.
The differential equation which we are about to derive is actually a calculation in the
cohomology (the Poincare dual) of//W_2(F;). It is well known that the cohomology
of projective hypersurfaces can be calculated from its rational differential forms
having poles at infinity. To do the actual computation a bound on the order of the
poles is required. Such bounds can be determined using the work of Griffiths [19].
The order of the pole of the rational integrand in (5.1), which a priori has a pole
of arbitrary order, can be put in some canonical form in which it has a pole of
order one. This reduction-of-pole property is extensively discussed in [19]. Here,
we will only briefly mention the idea, which is as follows. The middle cohomology
of the complex hypersurface Vχ in d P " " 2 is described by rational differentials in
d P " " 1 having poles of arbitrary order along Vχ. Each form Pdξ/dξnH defines a
cohomology class by considering its residue on Vχ as follows. The (n — 2)-cycle
Δi(λ) on Vχ can be made into an (n — l)-cycle δ,-(λ) by considering the tube over
Δι(λ), i.e., δj(λ) is a small cylinder erected along the normal over Δι{λ) in d P " " 1 .
Then we can define the residue associated with the first-order pole as
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I (5-2)

We suppress the index / attached to the vanishing cycle from now on.
Recall that the value of the integral on the right-hand side does not change

if we add to integrand an exact differential form having poles on the hypersurface
H = 0. This can be used to lower the order of the pole of the integrand (5.1) on V;
as follows. Let / be the sum of the weights of the quasi-homogeneous polynomial
defined by the principal symbol H (of degree D). Consider quasi-homogeneous
polynomials A, 9 j — 1,...,« — 1, of degree D -f // — /, where // is the weight of
the ξj in Aj. Define the (n — 3)-form

Φ = ^-πΣUiξiAj - liξjAi)dξx -.dξr-dξr "dξn-τ (53)
°ξnH i<i

Its differential is defined as

Ψ

(cξ,,H) • ^ Λ )

This shows that any form of which the numerator can be written as a linear combi-
nation of partial derivatives dξj(dξnH)(ξ), is equivalent up to (rational) exact forms
to a rational form with a smaller order pole. By this reduction technique, one can
put the integrand in a canonical form, more precisely, one associates a specific
cohomology class to such integrands.

Let us, before we proceed, illustrate this method by way of a simple example,
where the integral (5.2) is simply a contour integral in the complex plane. The
residue in (5.2) becomes the familiar Cauchy residue. Now assume that the integrand
has a pole of order two at ξ = 0, say. Then it has a Laurent series expansion of
the form (b/ξ2 + c/ξ H )dξ with constants b,c. Let φ = b/ξ. Then

δtllH ' Ύ

has only a first-order pole. Proceeding in this way, we can reduce the pole at
δξflH = 0 of the integrand to one of order one at any point on the hypersurface for
which H — 0. This brings the rational form in its canonical form.

It is obvious that in general the integral over a vanishing cycle as a function of
λi will be multivalued due to the nontrivial monodromy. Thus, the μ-dimensional
vector

will be multivalued as well. We will now show that this vector satisfies a linear dif-
ferential equation in // with unique holomorphic coefficient functions /?/(/), whose
solutions are linear combinations of the integrals (5.5). We remark here, that in
principle there are different parameters // depending on the type of singularity. The
singularities relevant to us, all have the property that the parameter // is always
such that it resolves the singularity; such singularities are referred to as modality
zero singularities. We will refer to /, as being a relevant parameter. In contrast with
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this, there are also singularities for which there exist parameters // that continuously
deform the singularity without changing its type, i.e., without resolving it. In such
a case // is referred to as a modulus. Also in this case the integral /(/,,-) satisfies
a linear Picard-Fuchs equation, which can be derived in a similar way as for a
relevant parameter. We consider first the case of just one parameter /.

The Single-Parameter Case. We will discuss the Picard-Fuchs system for functions
F of the type A\ (a non-degenerate critical point) and of the type A2. In the latter
case the momentary wave front arises from a turning point.

Recall that the cohomology class defined by the cycle δ does not change upon
varying λ locally, so the differentiation with respect to / can be taken under the
integral:

dι

 Γ n (Pdc\ 1 r dι (Pdt \

^ir- \m= ™L*» Km • (56)

Now construct the vector IJ\λ) by taking the / h derivative with respect to λ, i.e.,

The vector spaces W\ formed by all vectors IJ\ j ^ /, must have constant dimen-
sion as function of λ, as the integrands are all closed (n — 2)-forms in /. Also,
the dimension d{ — dimWi of these spaces cannot exceed μ. Thus there will be a
smallest number s :g μ, such that

s-\

IV*) = - Σ PjV )ijV ) (5.8)
7=0

That is, the vector / satisfies a differential equation of the type

= 0 (5.9)

Such an equation is referred to as a Picard-Fuchs equation [6]. The unknown coeffi-
cient functions are determined by taking successive derivatives with respect to λ and
making repetitive use of the pole-reduction technique discussed earlier (to carry out
the partial integration, effectively). An important property of Picard-Fuchs equations
is that they can have at worst regular-singular points, at which the coefficient func-
tions may develop poles due to the monodromy around such points. By multiplying
the Picard-Fuchs operator

ds s~] dι

4
by λs, the equation takes the form

the coefficient functions of which are now holomoφhic also at the regular-singular
points. (Upon changing λ, the integral plus all its derivatives changes according to
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the monodromy operator, in the same way.) We will see shortly that the order s of
the equation is fixed by the monodromy group. (A more extensive analysis, valid
for more general types of singularities, is given in [28].)

As a simple example, consider the A\ singularity with

F = ξ2 + / .

Since μ = 1, we only have one point representing the zeroth vanishing homology
class. The differential equation in this case must be of first order, viz.

hence / = const./."1. This gives the asymptotic expansion near the critical point. The
full solution E can in this case easily be obtained. From the above we conclude
that it must be of the form

λ~]g(λ), (5.12)

with g(λ) a holomorphic function depending on λ. Since F is quadratic, / is in fact

an integral over an (n - 2)-sρhere of radius yfλ, SO that

which is half of the surface of the unit (n — 2)-sphere, independent of /. (Compare
this with the results in Sect. 3 for the HPL formula.)

The quadratic case A\ is generic, i.e., away from the degenerate critical points
the slowness surface can always be parameterized by a function F quadratic in ξ.
The points corresponding to degenerate critical points, i.e., points where F is of
type A2 or Λ3, are special. In those cases g does depend on λ and likewise the full
solution is more complicated, although its asymptotics may be readily obtained as
we will see below. For the v42-type singularity,

and the differential equation reads (after bringing it into its familiar form)

-°
Two independent solutions to this equation are the Airy functions Ai(/) and Bi(λ).
It is easy to verify that /(/) has a (holomorphic) limit / —> 0. In fact, by the
techniques outlined above we find for any isolated singularity (not only the simple
ones) a Picard-Fuchs equation whose solution has a holomorphic limit λ —* 0, and
thus gives an exact solution for / at the singularity. The Airy function is a well-
known example studied extensively in geometrical optics. Usually one arrives at
this solution using Maslov theory.

Here, we arrived at such solutions using a differential equation. As we will now
discuss, this has the advantage that it illuminates the topological aspects of the
asymptotics of / near the singularity. Namely, we investigate a solution that mani-
festly is invariant under multiplication by an analytic function of λ. As we argued at
various places throughout this paper, this expresses the freedom in choosing a basis
of vanishing cycles. In order to make this invariant property of the solution at the
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front manifest, we associate to the linear differential equation (5.14) the following
well-known non-linear equation. For any two independent solutions J\(λ), h(λ\ the
quotient

satisfies the differential equation

{ζ,λ} = ~λ, (5.16)

where the left-hand side denotes the Schwarzian differential defined as

r 3 /ζ"\2

{£,;.} = ^ - - ( M . (5.17)

It can easily be verified that the Schwarzian differential is unchanged if one replaces
(5.14) by the linear equation for g(λ)I(λ) with g(λ) an arbitrary smooth function.
Furthermore,

(5.18)
cλ + d

with a, b, c, d e (£ and ad — &cφθ. As the monodromy group of (5.14) is gen-
erated by such linear fractional transformations, we conclude that the solution is
invariant under the monodromy as required.

The monodromy invariant solution of the non-linear equation gives the preferred
decomposition of the integral E, for which the expansion coefficients c/ in (4.4) are
the integers given by (4.24)-(4.25).

The Multi-Parameter Case. We will now derive a Picard-Fuchs equation for gen-
eral directions and write it as the so-called zero-curvature condition for a flat con-
nection known as the Gauss-Manin connection. The approach followed here is
explicitly discussed in the third reference in [28]; we mention it here briefly for
completeness. Let μ be the multiplicity of the isolated singularity on H{ξ) = 0 at
ξ = 0, and let λ\,..., λμ-\ be the versal parameters multiplying non-constant polyno-
mials in ξ and let λμ be the unique parameter multiplying the constant term. (Recall
that this parameter has the inteφretation of time function in normal coordinates.)
Introduce

/('):=(__!)/+!/-(/+ i)Γ p*d<> (5.19)

where we allowed for a slight generalization to include arbitrary powers / in the
denominator. The normalization factors are only convenient for the calculation,
but inessential for the argument. The objects / satisfy the following differential
equations

$k jd) _/(/+*> k ez,

a- /(/) = y Byh)f)il~~k

k=—\
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where // = (A//), i1 — l,...,μ — 1. Next, we apply the Laplace transformation in λμ

/( . ,/„)-> / /( , 'Ψ)exp(λμ/z)dλμ , (5.21)
—oo

so that

δλμ - \ , (5.22)

; , - > - z ^ , (5.23)

and

/<'>(/.)-/<°(z, A')• (5.24)

As a result the last two equations in (5.20) reduce to

Σ j ^ { ( 5 . 2 5 )

_ ή ! ( 5 . 2 6 )

which reveals that the matrices B^ and A(k) are flat connections of a vector bundle

over the space S?, whose sections are I*\ The remarkable thing is [28] that one
may further reduce this matrix system of first-order equations to the case in which

B(f)β = 0, k ^ 1 . (5.27)

Define the covariant differentials

^ , = ^ Λ I , - 4 ? ( ; - / ) , (5.28)

Then the compatibility equation for the system (5.25)-(5.26) to have a solution can
be cast in a so-called zero curvature condition

[Dίf - z-]Q>, Djf - z~]Cr] = 0 for all z , (5.30)

which can also be written as the two simultaneous equations

[ A ' ^ / ] = [Q,C//] = 0 . (5.31)

Equation (5.31) is the multi-parameter analogue of the Picard-Fuchs equation (5.9)
derived in the single parameter case. It specifies coordinate functions in the defor-
mation parameters λ on ^ for which the matrices A and B are holomorphically
flat. Such matrices define a Gauss-Manin connection. Each corresponding section
describes the solution at the front for a different direction, specified by the param-
eter //. It is conceivable that for different intersections with Σ one finds different
asymptotic behavior; then there will be a "most singular" direction.
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We will now give the equations for the A$9 A4 and D4 singularities and discuss
the role of the various directions parametrized by the different versal parameters. In
case of the A^ singularity there are two deformation parameters, viz.

Thus we get a system of partial differential equations for I(λ). One finds

^4+i^ί-=0. (5.32)
O/J[ Cλ2

The other equation is found from δξF — 0:

4 ^ 3 - 2 / 1 ^ - + U 2 ) / = 0. (5.33)
c/?2 cλ2 )

Again, the solution is finite at the points /,// = 0, λy Φ0, i' +j\ and λ\ = λ2 — 0.
Note that there are two different directions along which the front can be approached.

Similarly, for the A4 singularity

and we obtain the equation

>^4 - 3ΛI 4T- + 2iλ2 -£- + λ3) I = 0 , (5.34)
0/7^ Cλ2 Cλi )

with the additional relations

\CΛ2CΛ3 Oλ\

Let us finally discuss the D4 singularity with

(5.35)

As this singularity depends on two normal slowness coordinates ξ\, ξ2, we find a
system of two equations, viz.

^ ^ — + A, ) / = 0 ,

= 0 . (5.36)

(Here we made use already one of the "vanishing" relations.) Without solving the
equations we will determine their asymptotic behavior for vanishing versal param-
eters, i.e., the asymptotic expansion near the front.

Asymptotic Behavior of the Integrals. The fact that Picard-Fuchs equations are
ordinary (matrix) differential equations with regular-singular points allows us to
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apply classical techniques to find the asymptotic behavior of the integrals for λ = 0.
To find the exact behavior we will rewrite (5.10) as a first-order matrix equation
as follows. Define the s x s matrix

A(λ) =

0
0

1
0

0
-q\(λ)

0
1

0
0

\

0
1

-qs-\(λ)/

(5.37)

then the following matrix equation is equivalent to (5.10)

with

Ω(λ) =

(5.38)

Pdξ

, d Pdξ
~d7.δξtlH

MΓ

(5.39)

Standard theory now implies that around / = 0 the solution can be written in terms
of a matrix Ξ whose columns provide a basis in the s-dimensional solution space

Ξ(λ) = B{λ)λM (5.40)

where B(λ) is a s x s-matrix regular at / = 0 and M is a constant s x s matrix.
The expression λM is defined as (for small λ)

λM = 1 + M(log/)
(Mlog/) 2

2!
(5.41)

The matrix B has a regular power series in λ with constant coefficient matrices,
which is absolutely convergent near λ — 0.

The monodromy resulting from going around the critical point at / — 0 is with
respect to the basis defined by Ξ given by the matrix exp(2π/M). (This is the
operator h* —h\ hi defined in the previous section.) It is easy to see that it is
a unipotent operator, i.e., there is an index mo such that (exp(2π/Λ/) — I)m° = 0 .
For the yί^-type singularities this index is equal to mo = μ, the multiplicity of the
singularity.

As a result it follows that (see [30] for a general proof) close to the point / = 0,
i.e., close to the intersection point with the singular set Σ, I{λ) has the following
general asymptotic expansion:

(5.42)

This series is absolutely convergent if \λ\ is small. The coefficients aqj of the
series are vectors in <£μ. The numbers q are non-negative rational numbers; they
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have the property that exp(2π/^) is an eigenvalue of the monodromy operator h*.

This property shows explicitly the relation between the asymptotic expansion and

the monodromy group of the singularity. All coefficients aqj vanish for £ > 0.

As an example, consider the A2 singularity discussed earlier. The eigenvalues

of h* are then exp(±2π//6) and the above result implies that close to / = 0,

oo oo

/ = 5 > ; J / 6 + ' + Σbrλ
5/β+r. (5.43)

This result agrees with the well-known high-frequency expansion of the fundamental

solution in terms of the Airy function.

The leading exponent in expansions like (5.42) is referred to as the singularity

index. Its relation to the order of the monodromy group has been extensively dis-

cussed by Arnold [2], however, not from the point of view adopted in this paper. In

fact, it is not hard to see that the general leading asymptotic formula for an isolated

singularity defined by a quasi-homogeneous polynomial F(ξ,λ) is given by

/~/1/2-«', q' = l/2-Σ,Ίi> ( 5 4 4 )

For the Ak singularities the formula for q' is given by q' — X — TΓ^ΓΎ Hence,

/ ~ λ]/β for A2, I ~ / 1 / 4 for A3 and / ~ /?/xo for A4. For the Dk singularities it

turns out that q1 = jk — 2' s o ^ ~ '«1/6 f° r D* Note ^at the energy of the wave

gets localized in the singularities corresponding to the degenerate critical points

in the phase function at higher frequencies. This phenomenon is at the origin of

caustics. We have indicated this asymptotic behavior in Fig. 4.1 and Fig. 4.3.
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