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Abstract. We study the fluctuations of free energy, energy and entropy in the
high temperature regime for the Sherrington-Kirkpatrick model of spin glasses.
We introduce here a new dynamical method with the help of brownian motions
and continuous martingales indexed by the square root of the inverse temperature
as parameter, thus formulating the thermodynamic formalism in terms of random
processes. The well established technique of stochastic calculus leads us naturally
to prove that these fluctuations are simple gaussian processes with independent
increments, a generalization of a result proved by Aizenman, Lebowitz and Ruelle
[1].

1. Introduction

Among disordered systems, Gibbs measures with random interaction is of particular
interest in mathematical physics. The canonical example of mean field spin glass
model, the Sherrington-Kirkpatrick model [8], is rather well understood on physical
grounds through either the replica method and the Parisi ansatz or the cavity method.
Mezard, Parisi and Virasoro's book [5] contains a complete survey of the physical
results.

But rigorous results are very scarce. The partition function of the S.K. model at
the inverse temperature β is defined by

Z'N(β) := Σ exp \βN-1'2 ] Γ JtJσ(i)σ(j)\,
σE{_l,+l}iV L l<Kj<N J

where the Jτ j (I < i < j < N) are independent 0-1 gaussian random variables.
Aizenman, Lebowitz and Ruelle [1] showed that the law of Z'N(β)/Έ[Z'N(β)]
converges in the thermodynamical limit N —> oo to a lognormal distribution when
β < 1, i.e. to the law of exp[F — (l/2)E(y 2)], where Y is a centered gaussian variable
of variance φ(β2), where

:= (1/2) [ l o g ( l / ( l - * ) ) - * ] ; (1)
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their (heavy...) proof consists in showing the convergence of the moments of
log[Z'N(β)/Έ[Z'N(β)]] to the appropriate limits. See also Frohlich and Zegarlinski's
paper [2] for related results. More generally fluctuation analysis plays an important
role at all temperatures: Pastur and Shcherbina [6] show that the Sherrington-
Kirkpatrick solution is valid as long as some self-averaging property holds.

To study the fluctuations in the full high temperature regime, we introduce here
a dynamical method with time equal to the square root of the inverse temperature;
more precisely we consider a normalized partition function defined from independent
brownian motions Bτ 3; (1 < i < j < N) by

ZN(t):=2~N J2 eN(t>σ)>

where

eN(t, σ) := exp pV"1/2 ] £ Bi3(t)σ(i)σ(j) - (N - l)ί/4J,

so as to obtain a positive and mean one martingale ZN{.) for each N\ note that ZN(t)
has the same law as Z'N(β)/Έ[Z'N(β)] if β2 = t. Then ltd calculus whose power is
known since the fifties, allows us to introduce the logarithm of ZN(.) in the martingale
sense, i.e. the martingale MN(.) defined by its differential dMN(t) := dZN(t)/ZN(t),
so as to obtain the representation

ZN(t) = exp[MN(t) — (\/2){MN)(ty\,

where (MN) is the bracket of the martingale MN, i.e. the unique increasing random
process such that Mj^(t) — (MN)(t) is again a martingale [7]. Our main technical
result consists then in showing that the increasing random functions (MN) converge
in probability as N —> oo to the deterministic function φ on the interval [0,1[; this
implies by Rebolledo's theorem that the martingales MN themselves converge in
probability on [0,1[ to a centered gaussian process with independent increments and
variance φ.

This result contains the Aizenman-Lebowitz-Ruelle result cited above. Furthermore
the order parameter which appears in the proof of these authors is simply the quadratic
variation of the martingale MN, a fact that indicates the relevance of stochastic
calculus here. Our proof also shows that for any finite number n > 2 of configurations
(so-called replicas) σ{,... σn distributed independently and according to the Gibbs
density of states

ρN(t,σ):=[2NZN(ί)ΓιeN(t,σ),

the n(n — l)/2 scalar products N~χ/2σk.σι (1 < k < I < ή) are asymptotically when
N —>• oo, independent centered gaussian random variables with common variance
1/(1 — t) provided that t < 1. Finally the process of internal energy appears to be
another martingale, namely the logarithmic derivative of the partition function with
respect to an extra temperature-like parameter.

The paper is organized in the following manner. After the preliminaries of
paragraph 2, Aizenman-Lebowitz-Ruelle's result is obtained in paragraph 3 at the level
of random processes. Next we study the asymptotics of the n replica system and in
the last paragraph 5 the fluctuations of energy and entropy for the Gibbs state. A short
Appendix (with references) on the stochastic calculus with respect to the brownian
motion is included for the reader's convenience.
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2. Preliminaries

Given an integer N > 1, let (Bτj(t)\t G R+)\<i<j<N ̂ e a n independent collection
of standard brownian motions (Έ[Bτ jit)

2] — t) and let us define by the next formula
a family of correlated brownian motions,

HN(t, σ) := N~^2 ^ BhJ(t)σ(i)σ(j) (t G R+), (2)

indexed by the configurations σ = (σ(i); l < i < A Γ ) G S ' Λ Γ : = { - l , + l } i V . Clearly
the correlations of these brownian motions are equal to

Έ(HN(t, σ)HN(t, σ')) = tχ(N^2σ.σf) (σ, σ' G SN), (3)

where the function χ is defined by

χ(x):=(x2-l)/2. (4)

/̂ Of course: σ.σ' := ̂  σ(i)σ/(i)V In particular:

Έ[HN(t,σf] = (N-l)t/2.

Consider the exponential martingales of these brownian motions HN:

eN(t, σ) := exp[HN(t, σ) - (N - l)ί/4] (5)

which satisfy the s.d.e. (stochastic differential equations)

deN(t, σ) = eN(t, σ)dHN(t, σ),

hence their name. For each σ in SN, eN(t, σ) is a positive martingale with mean one
and furthermore

E[eN(t, σ)eN(t, σf)] = exp(E[HN(t, σ)HN(t, σ1)}) (6)

notice also that the bracket of eN(., σ) and eN(., σ') in the sense of stochastic calculus
is given by

(d/dt) < eN(., σ), eN(., σ') > (t) = eN(t, σ)eN(t, σ')χ{N-^2σ.σf). (7)

Keeping the notation E for expectations with respect to the brownian motions
Bi Γ we will denote by E σ i ^ the expectation with respect to any finite number of
configurations σ 1 ?... σk which are independent and uniformly distributed on SN, i.e.

σ{,...σk

With this notation let us next define the normalized partition function ZN on R+ by

ZN(t):=Eσ(eN(t,σ)); (8)

up to the non-random factor 2~N exp[(iV — l)t/4], it coincides at t with the partition
function Z'N(β) (defined in the introduction) of the Sherrington-Kirkpatrick model at
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the inverse temperature β = y/t. The random function ZN is a positive martingale
with mean one and by (3) and (6) its second moments are easily computed:

E [ Z N ( t ) 2 ] = E σ

1 / 2 /

= f exp(-t/2)gt(X)Eσy(exp[\N-1/2σ.σ')])d\
R

= f exp(-t/2)gt(λ)[cosh(XN-ι/2)]N dλ

R

ί exp(-t/2)gt(λ) exp(λ2/2) dλ

R

ΐ
R

as iV t oo, since then [cosh(X/y/N)]N | exp(λ2/2) !. Hence if we let φ be the
positive, increasing and continuous function defined on the interval [0,1[ as in the
introduction by

φ(t) := (1/2) [log(l/(l - t)) - t] = logE[exp(tχ(0)l, (9)

we obtain that
lim T E[ZN(t)2] = exp(^OO) if t < 1,

= oo if t > 1.

and as a consequence

sup Έ[ZN(t)2] < exp(φ(T)) < oo
N,t<T

for any T < 1.

The martingale ZN is such that

dZN(t) = Eσ[deN(t, σ)] = Eσ[eN(t, σ)dHN(t, σ)},

and hence the derivative of its bracket which by definition is positive, is given by

(d/dt){ZN)(t) = Eσσf[eN{t)σ)eN{t,σ')χ{N-^2σ.σr)} > 0. (10)

As a consequence, for any δ > 0,

E[(d/dt)(ZN)(t)] = Eσ%σ,

and thus
sup Έ[(d/dt)(ZN)(t)] < oo

ΛΓ,ί<T

for every T < 1.

Consider next the martingale M N defined on i2+ by the stochastic integral

t

MN(t) := / dZN(s)/ZN(s) (11)

o
1 0t denotes the gaussian density with mean zero and variance t and ξ will denote a 0-1 gaussian
variable with density gι
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which is called the martingale-logarithm of ZN since it solves the s.d.e,

dZN(t) = ZN(t)dMN(t).

The process MN is thus the "log E σ exp" of the family of brownian motions HN(t, σ),
being understood that log and exp are taken in the sense of stochastic calculus. Then

(d/dt)(MN)(t) = ZN(tΓ2(d/dt)(ZN)(t). (12)

Notice that by its definition MN(t) is only a local martingale; but since (σ.σ')2 < N2,
obviously

(d/dt)(ZN)(t) < ZN(t)2(N - l)/2, and hence (d/dt)(MN)(t) < (N - l)/2

this implies that MN is a L2-martingale with

E[MN(tf)<t(N-l)/2. , (13)

By the definition of MN, the martingale ZN is the exponential martingale of MN,
i.e.

ZN(t) = exp[MN(ί) - (l/2)(MN)(t)] (14)

this formula is basic for the sequel.

Remark. By (10) and (12):

[2/(N-l)](d/dt)(MN)(t)

= [2/N(N - 1)] ]Γ {ZN(tΓιEσ[eN(t,
\<ί<j<N

and this is exactly the expression of the random order parameter τN(β) defined by
the formula (2.7) of [1]. Thus (14) yields the identity

- 1)] (d/dβ)Έ[\og Z'N(β)] = 03/2) {1 - Έ[τN(β)]}

of Proposition 4.1 in [1].

3. A Martingale Convergence

For every t £ R+ and every real function F on R, define

UN(t,F) := Eσiσ,[eN(t,σ,σ')F(<N-1/2σ.σ')], (15)

where
eN(t,σ,σ') := e i V(ί,σ)e7 V(t,σ /)exp[-ίχ(iV-1/2σ.σ /)]

defines a positive martingale with mean one, which is in fact the exponential
martingale of the brownian motion HN(t, σ) + HN(t, σ1).

The following lemma is the key result of our paper.

Lemma 3.1. For every t < 1,

lim {UN(t, F) - ZN(tf exp(-0(t))E[F(O]} = 0 in Lι, (16)
iV—>oo

provided F is a continuous function such that for a T < 1:

F(x) = o(Qxp[Tχ(x)]) at ± oo .
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Proof. Let C ( T ) be the Banach space of real continuous functions F defined on R
satisfying the condition of Lemma 3.1, endowed with the norm

\\F\\{T) := sup(|F(x)| exp[-Tχ(x)]) < oc . (17)
R

Then both linear maps

F=ϊUN(t,F) and F => ZN(t)2 txp[-φ(t)]E[F(ξ)]

are continuous uniformly in TV from C ( T ) to Lι(Ω) provided ί, T < 1, the first because

Έ[\UN(t,F)\] < WFiy^ίE^ie^t.σ.σ^cxpiTxiN-'^σ.σ')]]

= ||F|| ( T )Eσ j σ,[exp[Tχ(7V-1/2σ.σ/)]]

= \\F\\(T)Έ[ZN(T)2] < | |F | | ( T ) exp[0(T)],

the second because Έ[ZN(t)2] < cxp[φ(t)] and |E[F(ξ)]| < | |F| | ( Γ )E[exp(Tχ(ξ)].
For the proof we may restrict ourselves to functions in C ( T ) such that E[F(£)] = 0

by subtracting the function exp[tχ(x) — φ(t)]E[F(ξ)] from F if necessary. It is then
sufficient to prove the lemma under the stronger hypothesis that the continuous
function F belongs to C ( 0 ) and satisfies the condition E[F(£)] = 0, since these
functions are dense in the closed hyperplane {F:K[F(ξ)] — 0} of C ( T ) .

Now, by Schwarz inequality, since ΈEσ(eN(t,σ)) = Έ[ZN(t)] = 1:

[E[|t^(ί,F)|]] 2 < ΈΈσ[eN(fi,σ)lEσ,[eN(t,σ')

xexp(-tχ(N-ι/2σ.σ'))F(N-ι/2σ.σ')]]2]

= EΈσiσ,tσ,,[eN(fi, σ)eN(t, σ')eN(t, σ")

x exp[-tχ(N-ι/2σ.σ')]F(N-ι/2σ.σ)

x exp[-tχ(N-ι/2σ.σ")]F(N-ι/2σ.σ")\.

Since

Έ[eN(t,σ)eN(t,σ')eN(t,σ")]

= εxp[t[χ(N-ι/2σ.σf) + (N-ιl2") + (N-V2'"]]

we obtain that

m[\UN(t,F)\]]2 < E^^^fexpCίx

But when (σ,σ',σ") is uniformly distributed on S3

N, the law of (N~ι/2σ.σ\
7V~1/2σ.σ//,TV~1/2σ/.σ//) converges when N —> oc to the three-dimensional 7V(0,/)
normal law; indeed the N three-dimensional random vectors (σ(i)σ/(i),σ(i)σ//(i),
σ'(i)σπ(i)) are independent, have zero means and have the identity as covariance
matrix so that the multi-dimensional central limit theorem applies; furthermore

Έσtσ,y,[exp[tχ(N-ι/2σ'.σ")]\ = E[ZN(t)2] -> exp(0(ί)) = E[exp(ίχ(ξ))]

as TV —> oo. Hence convergence in law and uniform integrability imply that

-> E[exp[tχ(O]] (E[F(01)2 = 0

as TV —• oc. D
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The process (MN)(t) is strictly increasing and goes to oo as t tends to oo; hence
there exists a brownian motion B(.) on R+ such that

MN(t) = B((MN)(t)) (19)

for every t G R+. (Conversely the random function B can be obtained from MN by
the inverse time change (MN)~ι.)

Proposition 3.2. As TV —> oo and for every T < 1:

sup I (MN) (t) - φ(t) | -» 0 in probability. (20)
0<ί<T

Proof. It is well known for the brownian motion that for all α, ε > 0, the event
{-B(t) < a + (ε/2)tVt > 0} has probability 1 - exp(-αε). Hence by the former
time change, the event

Ke := {-MNV) < a + (ε/2)(MN)(t)Wt > 0}

has a probability P(A^ε) > 1 — exp(—αε). On the other hand if

VN(t) := (d/dt)(ZN)(t) - ZN(t)2(d/dt)φ(t),

then
(d/ώ) [(M^)(i) - φ(t)] = VN(t)ZN(t

2

so that on the event A^£,

\{d/dt) [(MN)(t) - φ(t)]\ < exp(2α) |V^(i)| exp[(l + ε)(MN)(t)].

Letting

Fε(x) := [1 - exp[-(l + ε)x]/(l + ε),

the last inequality implies by integration that

T

sup \Fε[(MN)(t) - φ(t)]\ < exp(2α) /exp[(l + ε)φ(s)] \VN(s)\ ds . (21)
0<t<T J

0

on A^ε. Since VN(s) = UN(s, G) for the function

G(x) := (d/ds) exp[sχ(x) - φ(s)],

which belongs to C ( T ) if s < T and satisfies E[G(ξ)] = 0, it follows from Lemma 3.1
that

lim E[|V^(s)|] = 0
N—>oo

provided s < 1. Furthermore

sup E[| 1/̂ (5)1] < oo
N>l,s<T

so that by dominated convergence in (21)

sup \Fε[(MN)(t) - φ(t)]\
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as TV —» oo. This implies that uniformly in t, (MN)(t) converges to φ(t) in probability
on A^ε and then on the whole probability space since the probability of A^ε can be
choosen arbitrarily close to 1. D

The following theorem recovers the Aizenman-Lebowitz-Ruelle result and com-
pletes it.

Theorem 3.3. As TV —> oo, the martingale MN restricted to the interval [0,1[
converges in law to a centered gaussian process with independent increments, say
MQQ, such that

it) - M^is)]2] = φ(t) - φ{s) (22)

for all 0 < s < t < 1 and similarly the random process ZN(t) restricted to [0,1[
converges in law to the process

expIM^t) - φ(t)/2]. (23)

Proof. The continuous martingales MN(.) on [0,1[ have brackets which converge in
probability to the deterministic function </>(.); by [3] (Theorem 3.11 of chapter 8) this
implies the first part of the theorem. The second part is a direct consequence of the
first part. D

4. About the Gibbs Density of States

For each TV and each t > 0, let ρN(t,.) be the Gibbs probability law on SN defined
by

ρN(t,σ):=eN(t,σ)/2NZN(t). (24)

The next proposition describes the asymptotics of the overlap σ.τ between two
independent copies (replicas) of a configuration σ with distribution ρN(t,.).

Proposition 4.1. When N —> oo, the law of N~xI1 σ.τ for ρN(t,.) 0 ρN(t,.) weakly
converges in probability to the centered normal law with variance (1 — t)~ι provided
that t < 1. More precisely

/2σ.τ) = ί F{x)gι/{λ__t){x)dx (25)
* - ~ σ , r JR

for every continuous function F in a C ( T ) with T < 1 — t.

Proof The previous sum is equal to ZN(t)~2UN(t, G) in the notation of paragraph 3
with G(x) := exp[tχ(x)]F(x). Then by Lemma 3.1,

UN(t, G) - ZN(t)2 ί F(x)gι/(l_t)(x) dx

R

goes to 0 in L1 as TV —->• oo, taking into account the identity:

9\/{\-t)(χ) = exp[tχ(x) - φ(t)]g{(x).

Since ZN(t)2 converges in law to an almost surely non-zero limit, the former
expression divided by ZN(t)2 tends to zero in probability as TV —> oo. D
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Let us extend the preceding proposition to n(n > 2) replicas σk(l < k < ή) and
show the mutual independence and the equidistribution (quoted as "symmetry of the
replicas" in physics) of the overlaps in the thermodynamical limit.

Proposition 4.2. For any integer n > 2 and provided that t < 1, the law of

(N-ι/2σk.σt; 1 < k < I < n) (26)

when (σk, 1 < k < ή) is distributed according to ρN(t)®n, weakly converges in
probability as N —» oc to the [n(n — l)/2] t h power of the centered normal law with
variance 1/(1 — t). More precisely

limproba ^ [ J ρN(t,σk) J ] Fkl{N-χ'2σk.σι)
N->°° σ i,...,σn \<k<n \<k<l<n

-^ Π /Fk,ι(x)9i/(i-t)(x)dx (27)

for every family of Fk ι belonging to C ( 0 ).

Proof Let us first extend our definition (15) to n > 2 configurations by introducing
the positive and mean one martingales

eN(t',σu...,σn):= JJ eN(t,σk)
\<k<n \<k<l<n

and the functionals

Uϊf(t,F):=Eσi\eN(t;σι,...σn)
L \<k<l<n

Then the statement of the proposition reduces for the case of equal Fk / which it
is sufficient to consider by polarity, to the following convergence in probability as
N —> (X) for every G G C ( ί ):

r f -I n(n-1)/2

t, G) -> cxp[-φ(t)] j G(x)9ι(x)dx

letting G(x) := exp[tχ(x)]F(x) as before. Furthermore since ZN{t)~nU^{t,G) = 1
for G — exp(tχ), it is even enough to prove the previous convergence when
J G(x)gι(x)dx = 0.
R

Since U^it, F) is equal to

(ί,σ 1 )...σ n_ 1) f ] F(N-ι'2σk.σι)
l<k<l<n-l

l<fc<n-l

we see that |£/^(ί,F) | is bounded above by

^ σ , ...σn_0

Έτ\eN(t,τ)
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and then, by Schwarz inequality and by (18) extended to n + 1 factors:

F(N-ι/2σk.τ)F(N-ι/2σk.τ
f)].

J
But N~ι/2σk.τ, N~ι/2σk.r

f (1 < k < n - 1) and 7V~1/2τ.τ' are asymptotically
independent 0-1 gaussian variables as TV —> oo so that then:

-+0 (28)

if | |F | | ( 0 ) < oo and / F(x)gλ(x)dx = 0. This implies that ZN(t)-nU%(t,F) goes to
E

zero in probability under the same assumptions on F.
On the other hand, since the ρN(t,.) are probabilities on SN:

\ZN(tynUZ(t,G)\<\\G\\ΐ,

and this implies by multilinearity that the last expression is uniformly continuous for
the norm | | . | | ( ί ). Since C ( 0 ) is dense in C ( t ) this implies that

when G e C(t) and /G(x)gι(x)dx = 0.
R

5. Fluctuations of Thermodynamical Quantities

The Gibbs variational formula reads with our normalizations:

\og[ZN(t)] = ΣρN(t,σ)[HN(t,σ)-(N-l)t/2]-[h[ρN(t,.)]-(N-l)t/4], (29)
σ

where the entropy of the probability ρ(.) on SN is defined by

The asymptotic behaviour of logZ^ has been found in Theorem 3.3; the purpose of
this paragraph is to give the asymptotic behaviour of the two other terms in the Gibbs
formula.

Let us first generalize the definition (5) by letting e^(£, σ) be for each λ G C the
(martingale) exponential of \HN(t,σ), i.e.:

ex

N(t, σ) := exp[XHN(t, σ) - λ2(7V -

Then the complex-valued and mean one martingales (in t)

are also entire functions in λ, equal to ZN(t) at λ = 1. Simple computations show as
before that

t)\2] = E [ e x p [ | λ | 2 t χ ( Λ r ' / W ) ] ]
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when N -> oo (hence {Z^{t)\N > 1, |λ | 2 t < Γ} is bounded in L2 if T < 1) and
that

Let us now restrict ourselves to positive real λ, μ; a proof entirely similar to that of
Lemma (3.1), shows that:

{d/dt)(Zx

N, Zμ

N)(t) - Z*{t)Zμ

N{t) (d/dt)φ(λμt) -> 0 (30)

in the Lι-sense as N —> oo, provided that Xμt < 1. Then the martingales M^(t)
defined as the martingale-logarithm of Z^(t) by a formula similar to (11) are such
that for all real positive λ,μ,T satisfying XμT < 1:

(M^Mμ)(t) -> 0(λμί) in probability

uniformly in t E [0, T] as AT —• oo. This proves the

Proposition 5.1. For αrcv g/v^n positive reals λ j , . . . , λn, ίΛ^ vector valued process

( M ^ ( t ) l < A:<n)

converges in law on [0, T] to arc independent increments gaussian process with mean
zero and covariance matrix (φ(λkλit); 1 < fc, / < n) provided that T max λ m < 1.

l,...n

The relevance of this proposition for our problem is shown by the identities:

= (d/dλ)λ=ι log[Z^(t)] = (0/0λ)λ=1[Mά(t) - (l/2)(M^)(ί))], (31)

and

ρN(t, σ) \HN(t, σ) - ^ ρN(t, τ)HN(t, r) 1 - (N - l)ί/2
r

t)] = (d2/dλ2)λ=ι[M*(t) - (1/2)<M^)(ί)]. (32)

Before stating the main result of this paragraph, let us prove a weaker result which
is very simple to obtain.

Proposition 5.2. As N —> oo and ift< 1, the law of

HN(t, σ) := (TV - l ) - 1 / 2 ^ * , σ) - (N - l)t/2]

under the Gίbbs probability QN(t,.) weakly converges in probability to the centered
gaussian law of variance t/2. More precisely the following convergence holds in
probability

lim Y^ ρN(t, σ) exp[μHN(t, σ)] = exp(tμ2/4) (33)
σ

for every real μ.

Proof A simple computation shows that:

Σ ρN(t, σ) exp[HN(t, σ)] = cxp(tμ2/4)Z^(t)/ZN(t),
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where λ = 1+(JV— l)~1/2μ. But it is easily seen (see the proof of the next proposition)
that:

lim E[[Z^ί(t)-ZN(t)]2]=01

since here λ —> 1 when N —> oo. D

Theorem 5.3. As N —> oo, ί/i£ three-dimensional martingale

(MN(t),M'N(t),M'ά(t)) := [(0 f c/0λ*) λ = 1M£(t);O < A; < 2]

converges in law on [0,1] as N -^ oo to a centered gaussianprocess with independent
increments and with covariance matrix ((dk+ι /dλkdμι)χ=μ=zlφ(Xμty,k,l = 0,1,2).
Hence the following convergences in law hold on [0,1[ as N —> oo
a) /or ί/ze internal energy:

f ρN(t, σ) [HN(t, σ) - (N - l)t/2] -> M^(ί) - tφ'it), (34)

b) for the variance of the internal energy:

, σ) I HN(t, σ) - V ρ w (ί, T^jyίί, r) I ' - (TV - l)ί/2

-^ M^(t) - [tφ'(t) 4- 2ί 20 / /(t)], (35)

c) /or ί/ẑ  entropy:

^ (36)

Proof Fix <5, ρ e]0,1[ and a positive T such that (1 + ρ)2T < 1. For any λ belonging
to the disk D{ ρ of center 1 and radius >̂ in the complex plane, define a complex-valued
martingale by:

tΛTN

:= ί
o

with T ^ := inf i t < T : infAED |Z^(t) | = <5\, thus avoiding the possible

complex zeroes of the λ-function Zχ(t). ί As usual we put TN = T on the event

ί inf \Zχ(t)\ > δ\λ Consider also the random holomorphic functions defined

on~Dlρxblρby:

FN(λ, μ; t) := (M* , M^)(t) - φ[λμ(t A TN)].

For real λ, μ e [1 - ρ, 1 + ρ] and for any t <T:

FN(\,μ;t) = (M^M£)(t Λ TN) - φ[Xμ(t Λ TN)]

so that by Proposition (5.1):

lim FN(\,μ-,t) = 0 (37)
TV-^-oo
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in probability uniformly in t G [0, T]. On the other hand when λ, μ G Dx ,

tΛTN

\FN(λ,μ;t)\ <

o
T

<6~2

0

and since by positive definiteness

J dt\{d/dt)(Zx

N, Zμ

N)(t) - Zx

N{t)Z%{t) (d/dt)φ(λμt)\ ,

(indeed the bracket (aZ^ + bZ^,aZ^ + bZ^){t) is positive, differentiable and
increasing in t for all complex numbers α, b) we obtain the estimate

sup
5 ρ , t

sup £

ρ,ί<T

+ (1 + ^) 2 ^[(1 + Q)2T] \Z^(t)\2] < oo . (38)

The proof then consists in showing that on the one hand

(dk+ι/d\kdμι)x=μ=ιFN(\, μ;t)^O (39)

in probability when TV —> oo for k, I — 0,1,2, for fixed <5, ρ and that on the other
hand

lim lim sup F(TN < T) -> 0. (40)

Notice first that the Cauchy integral formula implies the existence of a constant C
such that for every holomorphic function / of two complex variables on Doι x Doy.

\φk+ι/d\kdμl)fφ,0) - (Z\|)*(Z\p7(0,0)|
1 1

< Cε2 / dθx j d<92|/[exp(2πz6>1),exp(2πi(92)]|,

o o

provided that ε < 1/4 and that Δε

χ is defined as the difference operator:

From this formula follows that for ε <

\(dk+ι/dλkdμι)FN(l, l ί) - (Δε

x)
k(Δε

μ)
ιFN(l, l;

1 1

< Cε2/ρ2 ίdθx ίdθ2\FN[l

o o

Hence letting TV —> oc and then ε -> 0, we obtain (39) from (37) and (38).
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In order to prove (40) let us notice that:

{TN < T} C / inf ZN(t) < 2δ\ U ί sup \Z^(t) - ZN(t)\ > δ\.

First, with the notations of the proof of Proposition (3.2):

ZN(t) > exp[-α - ((1 + ε)/2)(MN)(t)] on the event A%ε ,

so that since Ψ[(A*ε)
c] < exp(-αε),

PΓinf ZN(t) < 2δ] < exp(-αε) + Ψ[(MN)(T) >
L — J

letting δ j 0 and then a T oo, we get from (3.2) that

lim supPΓ inf ZN(t) < 2δ] = 0.
*->0 N [t<T ~ J

ε)]

Secondly it follows from Cauchy's integral formula and Schwartz inequality that if a
new constant ρ1 is chosen so that ρ' > ρ, (1 + ρ')2T < 1, one has:

sup \Zχ

N{t) - ZN(t)\2 < [ρ2/ρ'2(ρ12 - Q2)]

Since the last integral defines a positive submartingale, Doob's maximal inequality
shows that:

sup | Z * (ί) - ZN{t)\ > δ

<[Q2/[δ2β'2(β'2-β2)]]E Jdθ\Zι

N

+^
- 0

hence

< [Q2/ίS2ρ/2(ρ/2 ~ ρ2)]]

lim supPΓ sup \Z^(t) - ZN(t)\ > δ] = 0,
~̂̂ ° AT LλGD 1 ) ρ , ί<Γ J

and this concludes the proof. D

6. Appendix: Stochastic Calculus with Respect to Brownian Motion

Let [B(t)\ t > 0] be a brownian motion with values in R.d. For any given random
function Φ(t) defined on R+ with values in Rd which is right-continuous in t, adapted
(i.e. such that for every t > 0:Φ(t) depends only on (B(s); s < t)) and such that for
every t < oo,

t

I dsΈ[Φ(s)2] < oo,
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the stochastic integral of Φ with respect to B is defined as the L2-limit,

t

ί Φ(s).dB(s) := lim V Φ(kt/n).[B((k + \)t/ή) - B(kt/n)].
/ n—>oo ^ ^
£ 0<fc<nl

t

As a random function of ί, M(t) := J Φ(s). dB(s) is a martingale in L2 with
o

continuous trajectories (when properly defined); this definition is also written as a
s.d.e. (stochastic differential equation): dM(t) — Φ(t).dB(t). Furthermore for two
such functions Φ and Φ\ the random function

t

'(t)-M(t)M'(t)- dsψ(s)

is again a martingale (in Lι) in t for the unique choice ψ(t) = Φ(t).Φ'(t) of the
function ψ; the bracket of the two martingales M and M' is defined as this integral:

(M, •=f
When M = M\ the bracket (M, M) is simply denoted by (M).

More generally the stochastic integral with respect to the real martingale M is
naturally defined by:

τ τ

I φ(s)dM(s) := / ψ(s)Φ(s).dB(s).

o o

Finally the stochastic integral up to a stopping time T, is simply defined by

TΛt

ί Φ(s).dB(s) := / lβ<

0 0

The exponential formula in stochastic calculus states that

exp[λM(ί) - (l/2)λ2(M)(ί)]

is a continuous (local) martingale starting at 1 for any continuous martingale M
with M(0) = 0 and any λ. As a consequence, any continuous martingale M with
deterministic bracket ((M) = φ for a continuous increasing function φ from M+ to
itself) is a process with independent, centered gaussian increments; indeed by the
martingale property of the above exponentials, we have for 0 < t0 < tx < ... < tn:

EexpΓ Σ Xm(M(tm) - M(tm_x))
[\<m<n
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A more difficult result states that a sequence of continuous martingales Mn starting

at 0, whose brackets converge in probability to an increasing continuous and

deterministic function, converge in law to a process with independent, centered

gaussian increments.

Reference [4] is an introduction to stochastic calculus. A more detailed exposition

can be found in [7] and in [3] for limit theorems.
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