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Abstract: In this paper we study the compressible fluid model of uniformly rotating
starts. It was proved in [Li] that for a given mass, there exists an equilibrium
solution to the problem if the angular velocity is less than a certain constant. On
the other hand for large angular velocities there is no equilibrium solution. In this
paper we give an a-priori bound on diameters and the number of connected
components of white dwarfs.

0. Introduction, Main Results, and Notation

The object of our study in this paper are models of rotating white dwarf stars with
a prescribed angular velocity about an axis. We will henceforth denote the angular
velocity by ω. The principal problem that we address in this paper is to determine
a-priori bounds for the support of the relative equilibrium form of a homogeneous,
gravitating and compressible mass of fluid when rotating about a fixed axis (which
we will from now on select to be the z-axis) with constant angular velocity.

On the incompressible model of uniformly rotating stars (i.e. with constant
angular velocity) there has been a tremendous amount of work. The first instance
was Maclaurin (1742) who produced a family of exact solutions for the problem. In
fact these spheroids as they are known obey the identity,

(0.1)

where G is the gravitational constant, p the density, taken to be a constant and e the
eccentricity. It is understood that these spheroids are ellipsoids with the z-axis as
their symmetry axis (see e.g. [L]). It was observed by Thomas Simpson (1743) that
(0.1) has a curious property. As ω ->0 we are led to two solutions, one a small
perturbation of a ball (e -* 0) as expected, and another a highly flattened ellipsoid
(e -> 1), where the flattening is in the z-direction. Since then there have been numerous
investigations by Riemann, Jacobi, Darwin, Poincare, H. Cartan and Chandra-
sekhar, where other families have been found, bifurcation sequences studied, and
the stability and instability determined. Perturbation methods for approximating
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solutions have also been developed. The details are to be found in the treatises by
Chandrasekhar [C2], Kopal[K], Poincare[P], Wavre[W] and Lamb[L]. A his-
torical overview is presented in Chanderasekhar's article [C3].

In the case of white dwarfs the stellar material by virture of the uncertainty
principle and Pauli's exclusion principle exercises a ground state pressure which
depends on the local density. This pressure in a non-rotating white dwarf is the sole
local balance for the gravitational force as the star has no more nuclear fuel to burn
to supply additional thermal and radiation pressure gradients. If the gravitational
force is too large one has gravitational collapse leading to Chandrasekhar's
celebrated mass-radius relation [Cl] and [C4]. Well-known facts from quantum
statistics reproduced for e.g. in Chap. 10 of Chandrasekhar's book [Cl], shows that
the pressure /(p) obeys the asymptotics,

, p->0,

f ( p ) ~ C3p
4/3 - C4p

2/3 + ... , p -> oo . (0.2)

Here C, > 0(1 ^ / g 4), their precise values and higher asymptotics are noted as
Eqs. (19), (21), (24) and (25) in Chap. 10 of [Cl]. We re-iterate that the symbol p will
always stand for the density of the stellar material.

The compressible fluid model of rotating stars with prescribed constant angular
velocity was investigated earlier by one of us, Y.Y. Li [Li] who showed that for
a given mass, there exists an equilibrium solution to the problem if the angular
velocity is less than a certain constant. These solutions correspond to local
minimizers among axisymmetric configurations of the functional J(ρ) introduced
below in (O.4.). On the other hand for large angular velocities he showed there is no
equilibrium solution. Auchmuty and R. Beals [AB1-2] have proved the existence
of equilibrium solutions if the angular velocity satisfies certain decay assumptions.

There is another model which has been the focus of study. There one prescribes
the angular momentum per unit mass, instead of the angular velocity. See Auch-
muty and R. Beals [AB1], Friedman and Turkington [FT1-3]. Here our focus
shall be the constant angular velocity case. The regularity and shape of the free
boundary for this model has been investigated by Caffarelli and Friedman [CF1].

We now fix our notation. We will denote points in 1R3 by ξ and η, with
ζ,η = (x,y,z). We say that p is axisymmetric if p(x,y9z) = ρ(x',y',z) for all
x2 4- y2 = (x')2 + (y')2 In that case, we would simply use the notation p(r, z) for

ρ(x, y, z), where r = ^/x2 + y2. We assume that p is continuous and moreover
p e L1 nL00. We normalize the total mass of the fluid so that JR3 p = 1. We denote
the gravitational potential by Bp where,

Let/: [0, oo ) -> [0, oo) be an absolutely continuous, strictly increasing func-
tion, such that for some y, in the range, 1 < y < oo ,

lim /(ί)ί"y = C, > 0, lim inf/(ί)ί~4/3 = M0> 3/2(4π)1/3 . (0.3)
f->0+ ί-»χ

We do allow M0 to be infinite. In view of the fact that the total mass has been
normalized to be unity, (0.3) corresponds to the total mass being strictly less than
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the Chandrasekhar mass corresponding to the second of the two relations in (0.2).
In view of (0.2) we assume that the equation of state for the pressure p is given by
p = f ( p ) . Note (0.2) tells us that the physically important case is when γ = f. We
also define a smoothed out version of /, whose properties we develop in Sect. 1.
Precisely we define,

A(s) = s]f(t)Γ2dt.
o

Set

J(p)= j A(p)-1- J ω2r2p-\ \ pBp . (0.4)
IR3 Δ IR3 Z IR3

In the non-rotating case (ω = 0) Lieb and Yau have obtained the well known
semiclassical theory as a limit of quantum mechanics. See [LY].

Definition. Let p e CC°(IR3) be a nonnegative function with JR3 p = 1. We say that
p is a critical point of the functional J(p) if for some positive constants e, δ > 0 and
any family {pt} ( — δ <t < δ) satisfying

(1) pt e C°(IR3) is nonnegative and the map t -> pt is continuous from ( — δ,δ) to
C°(IR3). Furthermore supp ρt ( — δ <t < δ) lies in the c neighborhood of supp
ρ,po = P and JR3 pt = 1.

(2) J(pt) belongs to the class C1 ( — δ, δ).
(3) Thefamiy \ρt} is uniformly bounded in L00.

We have,

= 0. (0.5)

If p is also axisymmetric and all the above are restricted to the axisymmetric
class, we say that p is a critical point among axisymmetric configurations of the
functional J(ρ).

Since the total mass has been constrained to be unity we see that the critical
points of the functional J(p\ for some negative constant λ(ω\ satisfy the pair of
equations,

J p = 1, p ^ 0 is continuous,
IR3

A'(ρ) - T ωV - Bp = λ(ω\ on p > 0 . (0.6)

(0.6) will be referred to as the equilibrium equations. We will also suppress the
dependence of the Lagrange parameter λ on ω. We can now state our theorems.

Theorem 1. Let ω ^ ω0 > 0. Let p be a critical point of J ( ρ ) or a critical point
among axisymmetric configurations of J(p). Then there is a ball Bσ, centered at some
point on the z-axis and having a radius σ = σ(ω0) such that the support of p is
contained in Bσ.

It is reasonable to believe that we do need a lower bound on the angular
velocity ω in order to obtain the a-priori bound of the support of p since in the
incompressible case the Maclaurin spheroids (0.1) flatten out as ω ->0.
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For the local minimizers of the functional J(p), Li [Li] had obtained informa-
tion about the free boundary of the star following Caffarelli and Friedman's [CF1]
work. For the critical points of J(ρ\ the description of the free boundary seems to
be a difficult and interesting problem. In the following we provide an upper bound
of the number of connected components of the set where p > 0 uder the hypothesis
that ω ̂  ω0 > 0.

Theorem 2. Let ω ̂  ω0 > 0 and p be a critical point of J(p) or a critical point
among axisymmetric configurations of J(ρ). Then there is a number k = k(ω0) such
that the number of connected components of the set where p > 0, is at most k.

Remark 2. We will only establish Theorem 1 and Theorem 2 for p a critical point of
J(p). For p a critical point among axisymmetric configurations of J(ρ\ one only
needs to make some slight modifications.

Both Theorems 1 and 2 are proved by arguments based on contradiction.
Thus we have no explicit dependence of σ or k on ω or ω0. It is interesting to
obtain such a dependence. Furthermore, in this paper we do not address the
important question of stability. Stability questions are discussed, for example, in
[C2].

In what follows C{ ^ 1 will denote a generic constant independent of ω and ω0,
and C0 ̂  1 a constant that does depend on ω0, C0 = C0(ω0). The plan of the
paper is as follows. In Sect. 1 we collect some basic inequalities for the gravitational
potential. In Sect. 2 we establish a-priori bounds on the support of p in the
r direction. In Sect. 3 we further establish a-priori bounds on the support of p in the
z-axis direction. This completes the proof of Theorem 1. The rest of Sect. 3 is
devoted to proving Theorem 2.

1. Some Calculus Inequalities

In this section we collect some inequalities which we will use in Sects. 2 and 3.

Lemma (1.1).

Proof. Split the integral for Bp as follows,

I* ί
\ξ-η\>δ*

\\P\\i Y / 3

If we select δ = - — - — — we get the conclusion of the lemma.
4π ' '

We remark that the estimates following (2.7) can be need to show that the factor of
3p above can be replaced by the sharp value 32/3/2.

Lemma (1.2).
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Proof. The proof is identical to that of Lemma (1.1). Note,

( + C, i
-

s-2

Select (5 = ( - - I to get the conclusion of the lemma.
V l l p l l o o /

We now collect some helpful facts about the function A(s) which was defined in
the introduction.

Lemma (1.3). Let A(s) be as in Sect. 0. Then,

(a) A(s) is strictly increasing, and /(f) ^ A(s) ^ C l f ( s ) .
(b) A'(s) is continuous, strictly increasing and lim mϊs^aDAf(s)s~ί/3 > 3/2(4/π)1/3.
(c) Furthermore, A'(s)sl "7 ̂  1/d > Ofor s^s^
(d) Tfte inverse function Φ(t) to A'(s) exists and Φ(t) ^ d tl/(y~ 1} 0s ί -> 0+.

By changing variables, we can express A(s) as

Since / is strictly increasing it follows that A is strictly increasing. Further by the
definition of A,

The remaining inequality of part (a) is also an easy exercise.
Note now,

This yields Λ'(s) ̂  f ( s ) s ~ l and thus for lim inf,-^ A'(s)s~ 1/3 >
3/2(4π)1/3 and likewise for s <; si we get A'(s)sl ~7 ^ 1/d > 0. To see that Λ'(s) is
strictly increasing, we may integrate by parts, to get

A'(s) = ]f'(t)Γldt.
o

Since / is strictly increasing it follows immediately from the identity above that
A'(s) is strictly increasing, (b) and (c) are established.

Since Λ'(s) is continuous and increases strictly, Φ(t) the inverse function exists.
Now s = Φ(A'(s)) ^ Φ(CΓ J sy~l). Setting t = Cf 1 sy~l we get (d).

2. The Support Estimates in the r-Direction

Let d = sup{r|r = (x2 + y2)112, for some (x, y, z)e suppp}.
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Lemma (2.1). Let p(x, y, z) be any solution of (0.6). Let ω ̂  ω0 > 0. Then there
exists a number dG = do(^o) < °° such that d ̂  d0.

Proof. We prove this lemma by contradiction. Assume no such d0 exists. First note
that for p(x, y, z) satisfying (0.6), we certainly have d < oo . For if not one can find
a sequence of points (xn9yn,zn), such that ρ(xn,ya, zn) > 0 and
r/ι = \/(χn)2 + (yn)

2 -» °o . Since JiR3 p = 1, we can assume that in fact
p(xn,yn, zn)-+Q as rn-+ oo. Thus A'(ρ)(xn,yn, zn) ->0. However p satisfies (0.6)
and so we see that as rn -> oo , it forces λ = — oo . This is a contradiction.

Now, for ω fixed, select a sequence rn -> rf, such that p(xΛ, yM, zn) > 0. From (0.6)
we see,

A'(ρ)(xn, ya, zn) - - ω2rl - Bp(xn, yn, zn) = λ .

But A'(p)(xa, yn, zn) -> 0 as rn -> d. Hence

A + ^ ω 2 r f 2 ^ 0 . (2.2)

Using (0.6), (2.2) and the fact that A'(p) ^ 0, we have, at all points where
p(x, y, z) > 0, that

- Bp ^ A'(p) - B(p) = λ + ω2r2

We have now arrived at the estimate,

- ω2(d + r)(d — r) ̂  Bp ,

from which it follows for ω ^ co0, that

C j H B p I L
d - r ̂  —-̂ — . (2.3)

Further from (0.6) and (2.2) we also have on the set p > 0,

A'(p) = λ + -ω2r2 + Bp^Bp.

Thus it follows that,

(2.4)

But Lemma (1.1) yields HBpIL ^ 3/2 (4π)1/3 ||p||^/3. This fact and (2.4) together
yields M'(p)||oo ^ 3/2(4π)1/3 ||p||^3. It follows from part (b) of Lemma (1.3) that

B P I L ^ C ! . (2.5)
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Combining (2.5) with Lemma (1.1) yields HBpIL ^ Cv. Inserting these estimates
into (2.3), we get for ω ̂  ω0,

We will set,

c = sup{d — r | for some p(x, y, z) > 0, r = .

From the inequality above notice that if d ̂  dγ (ω0, C^), one forces ε ̂  3. We
shall thus assume this with no loss of generality. We write our conclusion (2.3) and
the one above in our new notation as,

^cjflpiL

and

(2.6')

To proceed further we need to estimate ||Bp||x. These estimates in conjunction with
(2.3) will lead us to a contradiction if d increases without bound. Notice at this point we
have shown that the support of p is contained in a cylindrical shell whose outer radius
is d, the inner radius is d — ε and has perhaps infinite length along the z-axis. Let

S = {(x, y, z) I d - ε < V*2 + y2 < d} .

It follows from the strong maximum principle that there exists ξ belonging to the
support of p, such that ||Bp||x = Bρ(ξ). Without loss of generality we can assume
ξ = (0,α, 0), d-c<a< d. Let Dt = {(x,j;,z)|x2 + (j; - a)2 + z2 < /2}, where/satisfies

||p|UD,nS| = l . (2.7)

Set E = DjnS and p = HpH^. We have

DP\<*J J / 2 , / _ \2 , 2 \ l / 2

f pdxdydz

\\o\\ f "̂̂I I P « » J ( χ 2 + ( y _ β ) 2 + z:

/-

1 ) 1 ,

pdxdydz

f (p-llpllJΛci/^z
'2 i(x 2+(>>-α) 2 + z2)1/2

r (P- \\P\\pdxdydz . pdxdydz

J (x2 + (y - a)2 + 22)1/2 + I (x2 +(y- a)2 + z2)1'2

ί Bp(ξ) + \lH(p - \\p\\Jdxdydz + ί/l J pdxdydz

= Bp(ξ) + l/l J pdxdydz -
R3

= Bp(ξ).
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It follows that

Clearly / ̂  1 because of (2.5) and (2.7).
There are three cases.

Case L I ^ 1(M.

Case 2. lOd < I ^ ίOOd.

Case 3. I > lOOd.

In Case 1, it is easy to see that

C^Ί2^\
It follows from the above and (2.7) that

It follows that

S. Chanillo, Y.Y. Li

(2.8)

(2.9)

dxdydz

The last inequality can be verified easily.
Thus, in view of (2.9),

We also observe that combining (2.4) and Lemma (1.3) we have

(2.10)

7-0. (2.11)

Using (2.9) and (2.5) we have ε"1 ^ d/2. Using (2.10) and (2.6) we have
c"1 ^Cϊlω%dl Hence

(2.12)

On the other hand, substituting (2.6) in the left half of (2.9) yields

_
= d l l

while from (2.11) and (2.10) we have H p l U HBpIL ^ d'"^7"0. Hence

When γ < 2, it follows from (2.12) and (2.13) that

When y ^ 2 , (2.12) shows that d grows sublinearly with /; therefore in view of that
fact we are considering Case 1: / ̂  10d, a bound for / and d again follow from (2.13).
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In Case 2, it is easy to see that

Cϊld2ε^\E\^Cld
2ε.

It follows from the above and (2.7) that

As in the derivation of (2.10)9 we can obtain

(2.14)

Combining (2.14) with (2.6) we get c ̂  C0d~2. It follows that in Case 2 we have
I I p I I αo ^ 1/C0. But from (2.11) it follows ||Bp||x ^ 1/C0. This contradicts (2.14) for
large d.

In Case 3, it is easy to see that

It follows from the above and (2.7) that

It follows from (2.8) that

f dxdydz

2 2 (χ2 + (y — α)2 + z2)ί/2

» dxdydz
+ •* (x2 + (v — aΫ 4- z2Ϋ/2

Eπ(x2 + (y-a)2 + z2^md2}\X ^ ̂  "> ^ Z )

f dxdydz

5</ S ̂  S 21

The last inequality follows from estimates in Case 1 and some elementary calcu-
lation.

Thus
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It follows that in Case 3 we have

(2.15)

From (2.15) and (2.11),

, i / ( y - D
(2.16)

From (2.6) and (2.15) we get,

£ < c log/

Notice that it follows from (2.16) that in Case 3 we have

Combining the last two inequalities we get,

C0 /Ίnσ/V/ί?- 1 )

This is clearly a contradiction if d and hence / increases without bound. Lemma
(2.1) is fully established.

The next lemma is established in [Li] (see Theorem 3.2 there) under slightly
different hypotheses. But the proof, after modification, clearly applies to our
situation.

Lemma (2.17). Let p satisfy (0.6) with ω g; ω0 ^ 0. Then there exists a number
dl = ί/ι(ω0) > 0 such that d^d{.

Sketch of the proof. We consider two cases. First we consider the case when
c ^ d/2. By Eq. (31) of [Li], we see for β>2,

IIBpIL g Cld
β .

Thus from (2.3) above, and the last inequality we get ω<) ^ Cιdβ~2. This immedi-
ately yields the conclusion of the lemma in this case. In the remaining case ε ̂  f, we
use Eq. (36) of [Li] to see that,

ω% ^ C^εd)*, with α > 0 .

Using the fact that ε ̂  |, we see that d ̂  C{ ω
l

0

/a. The lemma follows.
We now deduce the following corollary.

Corollary (2.18). Let p satisfy (0.6). Then λ ̂  - i ωgdf.

Proo/ We see from (2.2) and Lemma (2.17) that

The result follows.
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3. The Suport Estimates in the z-Direction

We shall prove the remaining part of Theorem 1.

Lemma (3.1). Let p be any critical point of J(p). Let ω ̂  α>0 > 0. Then there exists
a number M = M(ω0) and a point (0, 0, z { ) on the z-axis such that \z — z{ \ ̂  M,/0r
all (x, y, z) in the support of p.

Proof. We first note that for (0.6) to hold, there exists some coj > 0 such that
ω ^ α>! . This has been already established in [Li] under slightly different hypothe-
ses on the function/(p). The proof in [Li] can easily be modified to obtain the same
upper bound on ω under our hypotheses. In fact the choice of δ given by Eq. (27) in
[Li] is not necessary, and in fact, we can choose δ to be any small number such that
0 < δ < 1. The rest of the argument for Theorem (3.1) in [Li] carries over under the
hypotheses in the current paper.

We begin the proof of Lemma (3.1) by defining horizontal slabs as follows. For
n e Έ and R* ̂  2 we define,

and,
ZΛ = {(x,*z) | | z-2nK*|£l} .

Fix now a number δ = δ(ω0) > 0. Now notice that there exist at most δ~l

choices of n for which \z nρ ^ δ. This follows because JR3 p = 1. Denote the set of
these values of n by D. We now set μ = j o>o</2, (see Lemma (2.17) for the definition
of d ι ] and τ = μ 1 / 2/&>ι. We claim that if nφD, then for appropriate choices of
δ = <5(ω0) and R*(ωQ) we have,

Bp(ξ) ^ £ and \VBp(ξ)\ ^ ± ω0

2τ, for all ξ e Zn . (3.2)

We now verify (3.2). Using (2.5) and the Schwarz's inequality we get,

s i L+ ί

We now select δ and R* so that the expression on the right above is at most ^ μ. The
claim for \VBp\ is proved in a similar fashion.

We next claim that p = 0 in Zn for any nφD. We begin by showing that for
(x, y, z) in the support of p, and (x, y, z) e Zπ we have r = ̂ x2 + y2 ^ τ. To see this
we apply (0.6) and the fact that A'(ρ) ^ 0, to Cor. (2.18) to get,

1 2 2

But by (3.2) Bp ̂  ̂ , so,

This implies at once that r ^ τ.
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Now set u = λ + \ ω2r2 + Bp. Suppose for some (x0, yo> zo)e Zw, nΦD but

P(XO, yo> ZQ) φ 0. We define ΞZQ = \r\p(x, y, z0) > 0, (x, y) = — (x0, y0) f Since
I ro J

p is continuous, the set ΞZo is open. Let /2o be any maximal connected subset of ΞZo.
This /Zo is an interval and p vanishes at its end-points. Because A'(ρ) = u, u also
vanishes at the end-points of /Zo. Thus by Rolle's theorem there is a point in the

du
interior of IZQ where — = 0. But by (3.2),

Jί = ω2r + — (Bp) ^ωξτ- \VBp\ ^ ωfr - - ω^τ > 0 .
or or 2

Thus we see that p = 0 in Zn for all nφD.
We now apply a deformation argument to prove the claims that follow.

(A) The slabs Z'n, for n e D are contiguous.
(B) If nφD then p = 0 for either z ̂  2nR* or z ^ 2w/?*.

Notice this immediately proves Lemma (3.1) since the claims show that p is
suported in a slab whose total width along the z-axis is 4R*(5~1. In fact claim
(B) implies claim (A), thus we will simply show (B). We apply our deformation
argument to a family {ρt} given by,

pt(x, y, z) = pt

l (x, y, z) + p?(x, y, z),

where,

, elsewhere

and,
p(x, y, z + ί), if z > 2nRir,

0 , elsewhere .

It is easy to verify that because p = 0 in Zn the family ίp,} is an admissible
family of variations for p. Recalling the fact that pt = p] + pf and p = 0 in ZM, we
have, for |ί| ̂ ^,

J ( ρ t ) = J(ρ) - J ρt

l B(ρ2 - po).
IR3

By a change of variable it follows easily that,

_ _
J ( p t ) = J(P) - ί ((x - χ')2 + (y - y')2 + (z-z'- ί)2)1/2

,
x - χ y - y z-z- ^ αi7

z' ̂  2nR^ + t

+ ί P/Bpo
IR3

Using the fact that p = 0 in Zn and the second integral above is ί-independent we
easily see,

p ( x , y 9 z ) p ' ( x ' , y ' 9 z ' ) ( z - z f )

_ ^2)
2 3 / 2 dηdη'
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Next we observe that the integrand above is non-positive in the region of
integration. Further p is a critical point of J(p\ thus the integral on the right
vanishes. This forces p = 0 for either z g 2nR+ or z ̂  2nRif. This proves claim (B)
and hence Lemma (3.1) is fully established.

Combining the conclusions of Lemma (2.1) and Lemma (3.1) we easily have
Theorem 1.

We now prove Theorem 2.

Proof of Theorem 2. As before set u = λ -f iω2r2 + Bp. Then on the set where
p > 0 by (0.6) we have Λ'(ρ) = u. By Lemma (1.4) this gives us p = Φ(u). Let
Γj denote a connected component of the set where p > 0. Differentiating the
formula for u we see that in each component /} we must necessarily have
A u = 3ω2 — 4πp. Thus u satisfies the boundary value problem,

Δu = 3ω2 — 4πΦ(u\ on Γ j ,

κ|0/} = 0. (3.3)

We now claim that inside Γj we can find a ball of radius A0(ω0). To see this first
note by Lemma (1.2) and (2.5), || VBp\\ ^ CΊ. Thus in Γj since r ^ d0 (by Lemma
(2.1)) we also have H V w I I ^ ^ C0(ω0). Now suppose we can find a sequence of
components of Γj such that the diameters of the largest balls contained in Γj tend to
zero. Since u vanishes on 8Γj9 and the gradient of u is controlled, it means that given
τ > 0 one will have u < τ as soon as supX6Γj dist(x, d/}) < C0τ. But this means that
on such components, by Lemma (1.3) we have Φ(u) < C 0τ 1 / ( v~ u. But this means
for ω ̂  ω0, we have 3ω2 — 4πΦ(u) ^ 0. Thus from (3.3) u is subharmonic in Γj and
because A (p) = uin Γj we also have u ̂  0 in Γ7. Applying the maximum principle
we conclude that u = 0 in Γj. So our claim is proved. In particular we have

I/^C^. (3.4)

But by Theorem 1 the support is contained in a ball of radius σ. Thus if Γt Γk is
an enumeration of the connected components of p > 0 we see from (3.4) that we
should have,

This establishes Theorem 2.

Acknowledgements. Sagun Chanillo was supporterd by NSF grant DMS-9202051. Van Van Li
was supported by a grant from the Alfred P. Sloan Foundation and by NSF grant DMS-9104293.
S.C. is also indebted to Michael Kiessling for several comments on the physical viability of the
rotating star model considered in this paper. Y.Y.L. would like to thank Professor D. Chris-
todoulou for suggesting to him to study the compressible fluid model of uniformly rotating stars
a few years ago and for many useful conversations since then. We also thank the referees for
several comments which helped the presentation and simplification of the paper.

References

[Al] Auchmuty, J.F.G.: Existence of equilibrium figures. Arch. Rational Mech. Anal. 65,
249-261 (1977)



430 S. Chanillo, Y.Y. Li

[A2] Auchmuty, J.F.G.: The global branching of rotating stars. Arch. Rational Mech. Anal.
114, 179-194(1991)

[AB1] Auchmuty, J.F.G., Beals, R.: Variational solutions of some non-linear free boundary
problems. Arch. Rational Mech. Anal. 43, 255-271 (1971)

[AB2] Auchmuty, J.F.G., Beals, R.: Models of rotating stars. Astrophysical J., 165, 79-82
(1971)

[Cl] Chandrasekhar, S.: An Introduction to the Study of Stellar Structure, New York: Dover
Publications, 1992

[C2] Chandrasekhar, S.: Ellipsoidal Figures of Equilibrium, New York, Dover Publications,
1992

[C3] Chandrasekhar, S.: Ellipsoidal figures of equilibrium-an historical account. Commun.
Pure Appl. Math. 20, 251-265 (1967)

[C4] Chandrasekhar, S.: The maximum mass of ideal white dwarfs. Astrophysical J. 74, 81
(1931)

[CF1] CafTarelli, L., Friedman, A.: The shape of axisymmetric rotating fluid. J. Func. Anal. 35,
100-142(1980)

[CF2] CafTarelli, L., Friedman, A.: The free boundary in the Thomas-Fermi atomic model.
J. Diff. Eqns. 32, 335-356 (1979)

[FT1] Friedman, A., Turkington, B.: Asymptotic estimates for an axisymmetric rotating fluid.
J. Funct. Anal. 37, 136-163 (1980)

[FT2] Friedman, A., Turkington, B.: Existence and dimensions of a rotating white dwarf.
J. Diff. Eqns. 42, 414-437 (1981)

[FT3] Friedman, A., Turkington, B.: The oblateness of an axisymmetric rotating fluid. Indiana
Univ. Math. J. 29, 777-792 (1980)

[K] Kopal, Z.: Figures of Equilibrium of Celestial Bodies, Madison, WI: Univ. of Wisconsin
Press, 1960

[L] Lamb, H.: Hydrodynamics. 6th. edn., Cambridge, Cambridge Univ. Press, 1932
[Li] Li, Y.Y.: On uniformly rotating stars. Arch. Rational Mech. Anal. 115, 367-393 (1991)

[LY] Lieb, E., Yau, H.T.: The Chandraskehar theory of stellar collapse as the limit of
quantum mechanics. Commun. Math. Phys. 112, 147-174 (1987)

[Lio] P.L. Lions, minimization problems in L'(R3) and applications to free boundary prob-
lems. Vol. II (Pavia, 1979), 385-399,1st. Naz. Alta Mat. Francesco Severi, Rome, 1980

[P] Poincare, H.: Figures d'Equilibre d'une Mass Fluide, Paris: Gauthier-Villars, 1901
[W] Wavre, R.: Figures Planetaires et Geodesic. Paris: Gauthier-Villars, 1932

Communicated by J.L. Lebowitz




