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Abstract: We give a simple proof of a result conjectured by Onsager [1] on energy
conservation for weak solutions of Euler's equation.

In this note, we give a simple proof of a result conjectured by Onsager [1] on the
energy conservation for weak solutions of the 3D incompressible Euler's equation.
To avoid questions regarding boundaries, we will assume periodic boundary con-
ditions with period box D = [0,1]3. We will use the summation convention and
frequently suppress the independent variable t for notational convenience. We use

to denote the Besov spaces.

Theorem. Let u = (uu u2, w3) G L3([0, T], B*>°°(D)) Π C([0, Γ], L2(D)) be a weak
solution of the 3D incompressible Eulefs equation, i.e.

f f j j f j j
0 D D

T T

-ffdiψjix9t)ui(x9t)uj(x9t)d*xdt - JJd^i(x9t)p(x9t)d3xdt = 0 (1)
0D 0Z>

for every test function φ = (ι̂  1,^2^3) € C°°(p x Rι) with compact support. If
α > | , then we have

f\u(x,t)\2d3x - f\u(x,0)\2d3x9 for t e [0,Γ) . (2)

This is basically the content of Onsager's conjecture, except Onsager stated his
conjecture in Holder spaces rather than Besov spaces. Obviously the above theorem
implies similar results in Holder spaces. We state the results in the Besov spaces
for two reasons: The first is that it gives the sharp result. The second is that the
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Besov norms are naturally related to the generalized structure functions. Onsager
further conjectured that (2) may cease to be true for α g j . The significance of
Onsager's conjecture can be appreciated in the context of Kolmogorov's theory of
turbulence. This was also the motivation of Onsager. Kolmogorov predicts that in
a fully developed turbulent flow, the energy spectrum E( ) in the inertial range is
given by a power law:

E{k) = Coεh-5/3 , (3)

where ε is the ensemble average of the energy dissipation rate ε = v(|Vw|2). One
of the two key assumptions Kolmogorov made in order to obtain (3) is that ε is
a positive finite number, independent of viscosity. Stated in physical space, (3)
becomes

which means that u has Holder exponent | in a statistically averaged sense.
The difference between (3-4) and Onsager's statement is that (3-4) is a state-

ment about statistically averaged quantities, whereas Onsager's is path-wise.
In a series of two papers [2] Eyink has proved energy conservation (2) for the

case when the Besov space is replaced by Holder space Cα with exponent α > \,
and the case when α > \ but with the Holder norm replaced by a stronger norm

IHIc! = Σk\k\*\uk\,uk = Ju(x)eίk ' xd3x . (5)
D

The puφose of the present note is to give a simple proof for the shaφ result in
Besov spaces. The Besov space formulation corresponds to the following physical
inteφretation of the result: if

(\u(x + r) — w(x)p)3 ^ C | r | α

for a > I then ε = 0.

Proof: For the sake of simplicity, we will proceed as if the solution is differentiable
in time. The extra arguments needed to mollify in time are straightforward. Let φ e

C$°(R3) be a standard mollifier supported in 5(0, l),φ ε(x) = -j<p (-} ,vε = v * φε

for veV'(R3).
We have the following facts about functions in B^°°:

IK +y)-u(.)\L^C\yn\u\\BΓ, (6)

u\\^ , (7)

1 | | « | | B r o . (8)

Define

rβ(«, κ)(x) = / φc(y)(δyu(x) ® δyu(x))d3y , (9)
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where

δyu(x) = u(x — y) — u(x) .

Then it is easy to check that

(u 0 uf = uε <g> uc + re(w, u)-(u- uβ) <8> (M - wε) . (10)

This is the main identity of this paper and holds pointwise.

Under the assumption of differentiability in time, we get from (1),

~J\u\x9t)\2d3x = /Tr((κ® u)ε(Vuε))d3x .
2dtD D

Hence

J\uε(x,t)\2d3x - J\uε(x,0)\2d3x = 2fdτfΎτ((u 0 u)ε(Vuε))d3x .
D D 0 D

It can be easily checked that this last equality also holds when the differentiability

assumption is replaced by uε e C([0, T]\L2(D)). Using (6), we get

IMβα oo . (12)

Since /Tr((we <g> uε)Vuε)d3x = 0, we have from (10),
D

\f\if(x,t)\2d3x- J\u\x,0)\2d3x
]D D

t

0

as ε —> 0.
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