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Abstract: We study the algebra B,(g) presented by Kashiwara and introduce
intertwiners similar to g-vertex operators. We show that a matrix determined by
2-point functions of the intertwiners coincides with a quantum R-matrix (up to
a diagonal matrix) and give the commutation relations of the intertwiners. We also
introduce an analogue of the universal R-matrix for the Kashiwara algebra.

0. Introduction

In a recent work [FR], Frenkel and Reshetikhin developed the theory of g-vertex
operators. They showed that n-point correlation functions associated to g-vertex
operators satisfy a g-difference equation called the g-deformed Kniznik—Zamolod-
chikov equation. In the derivation of this equation, a crucial point is that the quantum
affine algebra is a quasi-triangular Hopf algebra. By using several properties of the
quasi-triangular Hopf algebra and the representation theory of the quantum affine
algebra, the equation is described in terms of quantum R-matrices ([FR, IIIMNT]).

In [K1], Kashiwara introduced the algebra B, (g), which is generated by
2 x rank g symbols with the Serre relations and the g-deformed bosonic relations
(see Sect. 1, (1.5)) in order to study the crystal base of U™, where U~ is a maximal
nilpotent subalgebra of the quantum algebra U, (g) associated to a symmetrizable
Kac-Moody Lie algebra g. (In [K1], B, (g) is denoted by %,(g)). We shall call this
algebra the Kashiwara algebra. He showed that U™ has a B, (g)-module structure
and it is irreducible. He also showed that B, (g) has a similar structure to the Hopf
algebra: there is an algebra homomorphism Bj (g) = U,(g) ® B, (g). Thus if M is
a U,(g)-module and N is a Bj (g)-module, then M ® N has a B, (g)-module
structure via this homomorphism.

The purposes of the present paper are the following: first we clarify the
algebraic structure of the Kashiwara algebras similar to the Hopf algebra and
develop their representation theory and then applying these to the affine case, we
obtain direct connection between the quantum R-matrices and 2-point correlation
functions for the affine Kashiwara algebra. From these results we can expect new
approaches for analyzing the quantum or other type R-matrices.



240 T. Nakashima

The organization of this paper is as follows; in Sect. 1, we shall introduce the
algebras B,(g), B,(g), U,(g) associated to a symmetrizable Kac-Moody Lie algebra
g and algebra morphisms for such algebras. The algebra B, is obtained by adding
the Cartan part to B, and the algebra B, is an algebra anti-isomorphic to By,
where we also call these the Kashiwara algebras. The algebra U, is an ordinary
quantum algebra. The Kashiwara algebra has no natural Hopf algebra structure,
but these algebras admit a certain algebra structure similar to the Hopf algebra. In
fact, there are the following algebra homomorphisms, U,— U,® U,
B,- B, ® U, B - U, ® B,, U; - B, ®Bq, an antipode S: U, — U, and an anti-
1som0rphlsm Q: B - B By using these in the former half of Sect 2, we can
consider tensor products and dual modules of B,-modules, B,-modules and U,-
modules. In the latter half of Sect. 2, we discuss properties of the category of highest
weight B;-modules. In Sect. 3, we recall the Killing form of U, due to [R,T] and
give a certain relationship between the algebra B, and the Killing form. We also
introduce a bilinear pairing {|) for highest weight B,-module H(A), which is an
analogue of an ordinary vacuum expectation value. In Sect. 4, we restrict ourselves
to an affine case and consider the following type of intertwiners similar to g-vertex
operators;

Homg, (H(), H@ & V), (0)

and examine the condition for existence of such intertwiners. By using the bilinear
pairing above for a composition of these intertwiners, we define 2-point functions.
By using the relationship between the algebra B, and the Killing form, we can
explicitly describe a 2-point function as a matrix element of an image of the
universal R-matrix. In other words, 2-point functions give matrix elements of the
quantum R-matrix up to scalar factors. This result clarifies the new aspects of
quantum R-matrices. Here note that we do not derive any type of equation. This
point differs from [FR]. Nevertheless, by pure algebraic method we can describe
2-point functions.

In order to explain precisely, we prepare some notations. Let U, be a sub-
algebra of a quantum affine algebra U, without a scaling element, let /" and ¥ be
finite dimensional U,-modules, let ¥, and W, be their affinizations, where z; and
z, are formal variables, let R"7 (z, /z, ) be the image of the universal R-matrix onto
V,, ® W,, and let u, (resp. u}) be a highest weight vector of an irreducible highest
weight left (resp. right) B,-module H(A) (resp. H"(4)).

Theorem (Theorem 5.3). For ®4"(z;)eHomg (H(A), H(W® V) and @7 (z,)e
Homy, (H(p), H(v) ® W,,), we have

Cuy| 37 (25) @5 (20) 1, > =g~ # 47V a R (21 /25) (v ® Wo) ,

where 0: a ® b—b ® a, and vye V and woe W are the leading terms of @4 (z,) and
@)% (z,) respectively (see Definition 4.1).

From this theorem and the unitarity of a quantum R-matrix, we can derive the
commutation relation of intertwiners of type (0).

The contents of Sect. 6 is divided from the ones of the previous sections. In this
section, for the algebra B, we give an element 91’ which is an analogue of the
universal R-matrix Z. Th1s satisfies, for example R12R 3Ry =Rz K13 R4, elc.
We also introduce a projector I associated to %, which acts on H(4) and singles out
only the highest weight component. In Appendix A, we list some formulae for
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algebra homomorphisms related to the algebras introduced in this paper and in
Appendix B, we recall the theory of the universal R-matrix of Uj.

The author would like to acknowledge E. Date, M. Jimbo, M. Kashiwara and
M. Okado for discussions and helpful advice.

1. Preliminary

We shall define the algebras playing a significant role in this paper. First, let g be
a symmetrizable Kac-Moody algebra over Q with a Cartan subalgebra t,
{o;€t*},;. s the set of simple roots and {h; e t};.; the set of coroots, where I is a finite
index set. We define an inner product on t* such that (o;, o;)eZy, and
Chyy A =2 (o, A)/(0;, ;) for Let*. Set Q=P Zay, @+ =P Z oo and Q- = -0
We call Q a root lattice. Let P a lattice of t*, i.e. a free Z-submodule of t* such that
t*~Q@,P, and P*={het|<h,P)cZ}. Now, we introduce the symbols
{ei i, fi, f{(iel), g"(he P*)}. These symbols satisfy the following relations;

q°=1, and q"q"=4""", (1.1)
q"eiq "=q"e;, (1.2a)
qg'ei'q "=q""ei’ (1.2b)
" fia "=q "k, (1.3a)
afiq "=q~"f, (1.3b)

lei f;1=06: ;(ti—t; Yai—ai '), (1.4)
e fi=q™ fiel +6: ;. (1.5)
fieg=qi™e;fi+6;;, (1.6)
1=<hiy o>
k; (=) XPX; X~ PP =0, (for X;=e;, ¢}, fi,fiand i£j), (L7

where ¢ is transcendental over Q and we set ¢;=¢**", t,=q" [n];=(q'—q; ")/
(gi—ai 1)’ [n];!= ﬂZ: 1 [k]; and Xgn) =X7/[n];.

Now, we define the algebras B,(g), B,(g) and U,(g). In the rest of this paper, we
denote the base field Q(g) by F. The algebra B,(g) (resp. B,(g)) is an associative
algebra generated by the symbols {e7, f;};c; (resp. {e;, fi}ic1) and g" (he P*) with
the defining relations (1.1), (1.2b), (1.3a), (1.5) and (1.7) (resp. (1.1), (1.2a), (1.3b), (1.6)
and (1.7)) over F. The algebra U,(g) is an associative algebra generated by the
symbols {e;, f; }:c; and ¢" (he P*) with the defining relations (1.1), (1.2a), (1.3a), (1.4)
and (1.7) over F. We shall call algebras B,(g) and B,(g) the Kashiwara algebras.
([K1]). Furthermore, we define subalgebras

T={g"lhe P*)=B,(5)nB,(3)nU,(g) ,
B, (g) (resp. B, (g))=<e!, fi (resp. e;, fi)lieI ) = B,(g) (resp. B,(g)) ,
U, (g) (resp. U, (9))=<ei(resp. fi)lie Iy =B (3)n U,(g) (resp. By ()" U,(a)) ,
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U; (g) (resp. Uz () =<e(resp. f,), ¢"iel, he P*)
=B,(g)n U,(g) (resp. B,(a)n Uy(9)) ,
B, (g) (resp. B, (8))={e} (resp. f7)lieIy<=B, (g)(resp By (q)) .
B (g) (resp. B (a))=<ei (resp. [1), ¢"liel, he P*)

<B,(g) (resp. By(g)) -

We shall use the abbreviated notations U, B, B, B, . . . for U,(g), B,(g), B,(g),
B, (g), . . . if there is no confusion.
For f=Y mu;e Q. we set |f|=) m; and

Uip={ueU*|q"ug "=q*"Pu(heP*)},

and call | B| a height of f and Uy (resp. UZ;) a weight space of U™ (resp. U™ ) with
a weight f§ (resp. —f). We also define Bﬂ and B_ by the similar manner.

We shall define weight completions of L‘”@ - ® L™, where L?=B or
U (see [T]).

Iw ® N ®I:("')=1£nL(1)® N ®L(m)/(L(1)® Ce ®L('"))L+’l ,
[
where LT '=Py,1s - - gzt LY @ -+ - @ L™, . (Note that U=U~ @ T® U*

and B~U~ ® T® B™".) The linear maps as below 4, 47, S, ¢, multiplication, etc.
are naturally extend for such completions.

Remark 1.1. The algebra B is introduced in [K 1] for studying the crystal base of
U~ and called the reduced g-analogue. Note that in [K 1] the algebra defined by
the relation e;fj=¢~ "*’f;e{+§;; is mainly studied, but there is no essential
difference since both are equivalently related to each other by g«>g~ .

We shall introduce the algebra homomorphisms related to the algebras defined
above.

Proposition 1.2. (1) If we define linear maps A: U~U® U, A”: B>B® U, 4": B
—-U® B and 4%: U-B® B by

A4(q")=4"(g")=4Y(¢")=4"(")=q"® ¢", (1.8)
Ae)=e;®@1+t®e, Af)=ft'+1® f;, (1.9)

A )=(qi—q V@t tetel @t ', AV(f)=f, @t +1® fi, (1.10)
Ae)=e;®@1+5®¢, AY(f)=(q—a V6 fi@1+4@ f;, (L11)

tie; A® ' fi -1
—+ea®1, AV(f)= 1®f+q_q‘_1®t,~ (112

Y

Ae)=1t;®
4

and extending these to the whole algebras by the rule: A(xy)=A4(x)4(y) and
A9 (xy)=A9(x)49(y) (i=r,1 b), then they give well-defined algebra homomor-
phisms.
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(2) If we define linear maps S: U—U and ¢: B—B by
Se)=—t; 'e;, S(fi)=—fiti, S(¢")=q~" (1.13)
1 " ’ e —
ple)=— m el, o(f)=—(@—a Vi o@)=q"", (1.14)

and extending these to the whole algebras by the rule: S(xy)=S(y)S(x) and
@(xy)=o@(y)@(x), then these maps give well-defined anti-isomorphisms.

Note that in [K1] a homomorphism similar to 4® is introduced.

Proof. By direct calculations, we can check all the commutation relations. But it is
too complicated to check the Serre relations directly. Since the map 4 is an
ordinary comultiplication, we may assume that 4 is well-defined. The formulae
(A10), (A11), (A12) and (A13) in Appendix A are useful for checking the Serre
relations. For example, from (A10) and the fact: 4{): =4,,=, we have

1—=<hsay>
A(r)( Z (_ 1)ke;/(k)e}/e;/(1—(h,,ozj>~—k)>

k=1
1=,
=0'(S®(p)A(”(p_1< Z (__l)ke;/(k)e;/e;/(l—<h.,a,>—k)>
k=1
1=hy o,
— (g7 _ 4. i-—l__ . 1*<h..ocj>o.S® A _l)kegk)e.e(ilA@,,oc,)-k) =0 .
(@ —a))gi  —ua ® i
k=1

Q.E.D.
Remark 1.3.

(1) If we define an algebra homomorphism &: U—F by &(e;)=¢( f;)=0and &(¢") =1,
then (4, S, ¢) gives a Hopf algebra structure on U.
(2) The following diagrams are commutative:

A — AD _
B e B®U B ——— U®B
4] 1®4)] an] A®1)]
A")®1 _ 1®A”’ _
BRU —— BRU®U U®B —— URUQ®B

Thus for a B (resp. _E)-module L, and U-modules M and N, there is an
isomorphism of B (resp. B)-module;

LOM)®N=LQM®N) (resp. (MON)® LM ® (N QL))

Hence we write these L ® M ® N (resp. M ® N ® L). More generally, if M is
a B (resp. B)-module and Ny, ..., N; are U-modules, then M@ N; ® - - - ® N,
(resp. Ny ® - - - ® N, ® M) is a well-defined B (resp. B)-module.
(3) If M is a B-module and N is a B-module, then M ® N has a U-module structure
via A®,
(4) From (A8) (resp. (A9)) and the coassociative laws of 4® (resp. 4Y) and 4 as in
(2), we know that B (resp. B) has a right (resp. left) U-comodule structure. (see [A].)
(5) The algebra B= (resp. B=) is isomorphic to UZ (resp. US) as an associative
algebra, but B2 (resp. B=) has no natural Hopf algebra structure, thus we do not
identify them.

We list several formulae for these operations in Appendix A.
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2. Representation Theory of the Kashiwara Algebra

We shall discuss the representation theory of the algebra B,(g). In the rest of this
paper, we assume that all representations below have a weight space decomposi-
tion and each weight space is finite dimensional, where for a vector space M with
a T-module structure, a weight space M, with weight 1et* is defined by {ue
M|q'u=qg""u(he P)}.

2.1. Dual modules. Let M be a left B-module and h: B—B an anti-isomorphism
(e.g. ¢ in Sect. 1). Then the dual space M *=Homg (M, F) has a left B-module
structure by

(xu, v)=(u, h(x)v), for xeB, ueM* veM . 2.1

We denote it by M **. Similarly, for a B-module N and an anti-isomorphism g:
B— B, the dual space N* has a left B-module structure and we denote it by N*7.

Let M be a B-module, N be a U-module and g be as above. Then we can give
a left B-module structure on Homg (M, N) by

(xf)(u)=Zx(2)f(g(x(1))u), for xe B, feHomy(M,N),ueM , (2.2)

where we denote 4 (x)=)  x;) ® xy€ B® U. Note that there is an isomorphism
as a B-module,

Homg (M, N)=M*S QN . (2.3)

Similarly, for B-modules M and N, we give a U-module structure on
HomF(Ma N) bY>

(,Vf)(“)—_*z Ve f(h(yay)u), for yeU, feHomg(M,N),uecM ,
where A9 (y)=Y y,, ® y2€ B® B.

Proposition 2.1. Let L be a B-module, M be a B-module, N be a U-module and ¢:
B— B be as in Sect. 1. Then we obtain an isomorphism of vector spaces;

Homy (L ® M, N)~Homg (M, Homg (L, N)) . (2.4)

Remark that L ® M has a U-module structure via 4®’ and Homg (L, N) has
a B-module structure via 4® according to (2.2).

Proof. We define a map @: Homy (L ® M, N)-»Homg (M, Homg (L, N)) as fol-
lows: for feHomy (L ® M, N), &(f) is given by

o(f)(y): L>N
x> f(x®y)

First we check the well-definedness of @ i.e. B-linearity of @(f). For PeB, xeL
and ye M by the definition of @, we get (D(f)(Py))(x)=f(x ® Py). From (2.2) we
can act P on @(f)(y) as follows:

(PO(f)())X) =2 P2y 2(f) () (@™ 'Pyx)
=Y Pofl¢" ' P1yx®Y)
=Zf(P(2)(P_1P(1)X ® Pa)y)
=) f(@ (P10 P2))x ® P)y) , (2.5)

for yeM .
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where (1® 4®)4"(P)=) P4, ® P ® P). From (A2) in Appendix A, the last
formulain (2.5)is equal to f(x ® Py). Hence &( f)is B-linear. The injectivity of @ is
trivial. For ke Homp(M, Homg (L, N)), we define ¥ (k)e Homy(L ® M, N) by
Y(k)(x ® y)=(k(y))(x) (xe L, ye M). We can easily check the well-definedness of
Y and ¢V (k)=k. Q.E.D.

From Proposition 2.1 and (2.3), for a B-modules L, M and a U-module N, there
is an isomorphism;
Homy ("L** ® M, N)~Homz(M,L® N), (2.6)

where "L*? is a restricted dual module of L defined by "L*® =@P,L}, Lisa weight
completion of L defined by L=[], L, and note that as a B-module: ("L**)** '~ L.
Similarly, we obtain

Corollary 2.2. For BZ-modules L, M and UZ-module N, there is an isomorphism,
Homy: ("L** ® M, N)~Homg:(M,L® N) .

Note that in the rest of this paper the expression L & N implies L. ® N.

2.2. Highest weight B-modules. We shall discuss highest weight B-modules.

Proposition 2.3. For Aet*, we set

H(3)=B/Y Be{ + ¥, Blg"—q™"),

heP*

H"(A)=B/Y fiB+ ), (¢"—q"")B. 2.7
i heP*

Then for an arbitrary A, H(Z) (resp. H"(1)) is an irreducible highest weight left (resp.

right) B-module and is a free and rank one U~ (resp. B*)-module.

We denote the highest weight vector 1 mod ), Be; + ), _p« B(q"—q*) by
u and 1 mod Y, iB+Y e ps (4" —q?)B by u}.

Proof. We show only for H (). In [K1], it is shown that the subalgebra U™ < U has
a BY-module structure and it is isomorphic to an irreducible BY-module BY/
Y.iBY €. Since B" is a subalgebra of B, H(4) is regarded as a B*-module. We can
easily obtain the following isomorphism of BY-modules and then of the U™ -
module,

BY/Y. B e/=U" SH(),

X - Xu,, (2.8)
Hence H(A) is irreducible as a BY-module and then irreducible as a B-
module. Q.ED.

Let O(B) (resp. O"(B)) be the category of left (resp. right) B-modules M such that
M has a weiglit space decomposition and for any element ue M there exists [>0
suchthate; e - - - e u=0(resp.uf, f, - fi=0)foranyiy, i,,. .., el (see [K1]).
Proposition 2.4. (See Remark 3.4.10 [K1].) The category O(B) (resp. O"(B)) is semi-
simple, (i.e. any object is a direct sum of simple objects) and for any simple object
M there exists Let* such that M~ H(A) (resp. M = H"(4)) as a B-module.
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Proof. We shall show only for ¢(B). Let M be a simple object of ¢(B) and v, be
a highest weight vector of M with a highest weight A, where a highest weight vector
implies a weight vector annihilated by any e; (ie I). Here we set u, a highest weight
vector of H(4). We can easily know that a map

. HA) - M

PeB
PulQ—)PU,{ (e )

is B-linear and surjective. The kernel of n is a B-submodule of H(Z), and by
Proposition 2.3, the kernel of n is 0. Hence 7 is injective. Next we show the
semi-simplicity of @(B). First note that if N = M are objects in O(B), then M/N is
also an object in O(B). Let M be a non-simple object of @(B). Without a loss of
generality, we may assume that M has two highest weight vectors u and v. By the
argument in this proof, Bu and By are simple. We have M = Bu+ Bv and then
B-module M/Bu has only one highest weight vector ¥ and M/Bu=~ Bo. By the
argument in this proof, we have Bo= Bo, since wt(v)=wt(?). Thus the following
exact sequence splits:

0—->Bu—-M—->Br—0.
Therefore, we obtain the desired result. Q.E.D.

Note that lowest weight B-modules, e.g. H(A)* have similar properties.

3. Bilinear Forms

In this section, after recalling the Killing form of U, we give an interpretation of the
Killing form of U by the algebra B¥. We also introduce a bilinear pairing similar to
a vacuum expectation value.

Proposition 3.1. ([R, T ) (1) There exists a unique bilinear form

(, )U=xU=-F, (3.1

satisfying the following properties;
(X, y1Y2)=(4(x), y1 ® y2), (xeU=,y;1,y,eU=), (3.2
(%1 %2 ))=(52 @ %1, A(Y), (61, X2€ UZ, ye U%), (33)
(@"g")=q " (bW eP*), (34)
(T.f)=(e:, T)=0, (3.5
(ei’fj)=5ij/(4i_l —qi), (3.6)

where (|) is an invariant bilinear form on t ([Kac]).
(2) The bilinear form (,) enjoys the following properties:

(xq", yq")=q """ (x,y), for xeU= yeU=, h,h'eP* 37
For any Be Q.. (,)u;xv-, is non-degenerate and (U, , UZ;)=0,if y£56.  (3.8)
We call this bilinear form the Killing form of U.
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By using the relation (1.5), it is easy to see that the algebra B" has the following
decomposition:

BV=F(-B(Zf,-BV+Z BVe’;>. (3.9)

Hence for any xeBY there is a unique constant ¢ such that x=cmod
Y. fiBY +) ;B e!. We denote this ¢ by 1(x).
There is the following connection between : and the Killing form of U.

Proposition 3.2. Let 1 be as above and (,) the Killing form of U. For any ue U* and
velU"™,

Hp(u)v)=(u,v) . (3.10)
Note that since ue U" =BY N U, ¢(u)e B" and then ¢(u)ve B".

Proof. We may assume u and v are weight vectors. If wt(u)+wt(v)=0, trivially
(o (u)v)=(u,v)=0. For ue Uy and ve UZ4(BeQ.), it is enough to show

¢wv=(u,v)mod) Bve; . (3.11)
We shall show by the induction on || =height of f. Set [=||. Without a loss of

generality, we can set u=e; e, - - e, and v=f f, - - f, where o; + - +o;,=
%+ +o=F

1
{ il <q,:1—qfk>}¢<u>v=e;: g ]

k=1

Chyyoy, ™+ oy

17 "
zqh ell e eiz T ﬁleil
1
Chosoy,+ 0 oy, D N e
+ Z qi; ! ’ 5i19jm eil elzfl"l -f]‘m*lsfj‘m’l ]jl :
m=1

Thus, by the hypothesis of the induction,

4. ' —q.,) e

M- M-

qglhl“ajl+. +alm-‘>5il!jm<0(€'2 o e'l)fl o ‘fj\m*l*fj‘m‘l o fj‘l mOdsze;/
i

1

gt M""“>5i1,jm(ei2 e S f S 'ﬁ,)mOdZBV ei . (3.12)

m=1

On the other hand, from the formulae (3.2)—(3.8) and the explicit form of A(f;),
(el‘l e e’i’ J1 o .ﬁl):(e’z e ei1®ei1’ A(fl‘n o f]l))

1

= Z (eiz e ein®e’1’f1 e ﬁm*lﬁm‘vl o .sf.’rl@tjl-l T tj;—llﬁmt/:+11 T [jl_i)
m=
1

_1 — — —
= (efz o eil’-f]: o 'ﬁm—lﬁm-‘-l o .f}l)(eil’ tjl ’ ﬂ t]m-llfl‘mtjm}l e t]l 1)
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1
= Z q,<mhn+ +h}”"’a’”>(3i‘afm)(eiz ... eilsfjl .. 'ﬁm~1ﬁm“ .. fJ,)
m=1

1 qI(h“,at“+ T +aJm_‘>5i j
=m§1 . (‘Ii,_l—q,,) = (e’Z e ei{’ﬁx o 'ﬁm—lﬁm*—l o f.]l) * (313)
From the equality of (3.12) and (3.13), we get the desired result. Q.ED.

We shall define a bilinear pairing similar to vacuum expectation values. For
Aet* we define a bilinear pairing { | »: H"(4) x H(4)—F as follows: similar to (3.9)
the algebra B has a decomposition,

B=T@<ZfiB+ZBe’i’>. (3.14)

Let Q: B— T be a canonical projection. Here we can define a 7-valued pairing E:
B x B—Tby E(x,y)=Q(xy) for x, ye B. By the definition of E(,) and the asso-
ciativity of B, we have

E(xy,z)=E(x, yz) for x,y,zeB . (3.15)

We define =n,: T->F by tu,=mn,(t)u; for teT. A bilinear pairing <] ):
H"(4) x H(1)—F is given by {u|v) =m,(E(P, Q)), where u=u} P and v=0u, (P, Q€
B). It is clear that this is well-defined, i.e. it does not depend on a choice of P and Q.

Proposition 3.3. Thereis a unique and non-degenerate bilinear pairing { | >: H"(1) x
H(A)—F such that

lux|vy=<u|xv),(xe B) and {u%ju;>=1. (3.16)

Proof. If we assume the existence, then the uniqueness immediately follows from
(3.16). The existence follows from the construction above and (3.15). We shall show
non-degeneracy. Let {P;} = U* and {Q;} = U~ be bases dual to each other with
respect to the Killing form such that each basis element is a weight vector. By
Proposition 3.2, we get

<p(P,~)Qj55i,jmodeiBV+ZBVe§’ . (3.17)
Hence
<“3‘P(Pi)|quz>=5i,j .

Moreover, by Proposition 2.3, {t;¢(P;)} and {Q,u;} are bases of H"(4) and H(4)
respectively. Thus we have completed the proof of Proposition 3.3. Q.ED.

From the property (3.16), we shall use the expression {u|x|v) for (ux|v)={u|xv)
(ue H" (1), ve H(A) and x € B).
4. Intertwiners

In this section and the next section, we restrict g to be an affine Lie algebra. We
shall study the following type of intertwiners, which is an analogue of so-called
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“g-vertex operators” ([FR, DJO]):

Homy, o (H(2), H(p) ® V) , (1)
where ¥} is a representation of U= U,(g) (see below).
4.1. Notations. We shall prepare notations. (See [KMN?, Kac, DJO].)

Set I={0,1,...,n} and ({h;, & ) )o<ij<n coincides with an affine Cartan matrix in
[Kac] except for the type AZ). For this type we reverse the ordering of vertices
since we need that d—age ) ;_, Zo; for a generator of null roots 6. Let ¢ be
a canonical center of g, {4;};.; a set of fundamental weights and det a scaling
element. Now, since g is affine, dimt= # I + 1. Thus we can write t = @i Qh, @ Qd,
t*=P,Q4,® Q6, P=PZA; ® 2.6 and P*=CP,Zh; ® Zd. We set t}i=1*/Q0
and (P,)* =@§’=0Zhi. Let cl: P— P, be a canonical projection and set P, =cl(P).
We fix a map af: P;,—P by afecl(o)=a; (i+0) and afecl(Aq)=A, so that
cloaf=id and afocl(og)=09—0. For a fixed keQ, we set (t*),=
{Aeaf (t})|{c,A)=k} and we say that Ae(t*), has a level k. The subalgebra of
U (resp. B) generated by {e;(resp. e;'), f;liel} and ¢"(he(P,)*) is denoted by U’
(resp. B').

For a finite dimensional U’-module V and a formal variable z, we define an
affinization V,=F[z,z~ '] ® V with a U-module structure as follows:

e("Qu=2"""QReu, fi(Z"Qu=2"""QRfiu,
wt(z" ® u)=no+af (wtu) . 4.2)

4.2. Condition for existence. We shall examine the condition for existence of the
intertwiners of B-modules of type (4.1) by the similar way of [DJO].

Definition 4.1. For A, pe(t*), and ®cHomg(H(A), H(u)® V,) and the highest
weight vector u, and u,, write the image of u; by ¢

®u1=uu®ult+ T,

where - - - implies terms of the form u® v with ue@éﬂH(u)é. We call v, the
leading term of ®.

Proposition 4.2. The map sending @ to its leading term gives an isomorphism;,

Homyg (H(A), H(W) ® V.) = (V)i -

Proof. Let Fu, be one dimensional B=-module with defining relations: e}u, =0

and q"u,=q"*u,. We prepare the following lemma.
Lemma 4.3. We have the following isomorphism,
Homs(H(4), H(w) ® Vz) > Homg= (Fu,, H(p) ® V2)

4.3
(0] o d ¢| Fu, ( )

Proof of Lemma 4.3. By B-linearity of @, one gets B=-linearity of ‘plF.u and if
Pu,; =0, then ®=0. Hence the map (4.3) is well-defined and injective. To show the
surjectivity, take a vector ve H(u) ® ¥, such that wt(v)=1 and e/ v=0 for all ie].
By the property of the category O(B) (Proposition 2.4), the B-module Bv is
isomorphic to H(4) as a B-module. Hence we obtain the surjectivity. QE.D.
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From Corollary 2.2, we have the following isomorphism:
R.H.S. of (4.3)2Homy s ("H(w)** @ Fu,, V) . (4.4)

Here note that A®(UZ2)c UZ ® BZ, and as a UZ(=BnU)-module "H(p)** is
isomorphic to

U/ Y U —q ).

heP*

It is easy to see that R.H.S. of (4.4) is isomorphic to (V});—,. Q.E.D.

5. 2-Point Functions and Commutation Relations of Intertwiners

In this section we show that a matrix determined by “2-point functions” coincides
with a quantum R-matrix up to a diagonal matrix and give commutation relations
for intertwiners.

5.1. 2-point functions. First we shall define “2-point functions” for the intertwiners
of B-modules introduced in Sect. 4. We fix keQ. For @4 (z;)e Homg (H (1),

Hp®V, V,) and d)”W(zz)eHomB(H( ), Hv ® W) (4, u,ve(t )x), We use an
abbrev1ated notation @)Y (z,)®4" (z,) for (@“W(zz)®1dy )@4" (z,). With this
notation, the following is called a 2-point function:

<“v|¢VW(22)¢AV(Z1)|U1>EFH: J]@ wev.

We shall give an explicit description of 2-point functions. For a B-module H (4),
"H(4)*¢ means the restricted dual module (P, (H (4)*); as in Sect. 2. Here "H (1)*¢ is
an irreducible lowest weight left B-module with a lowest weight vector denoted by
u} such that fjuf=0 for any iel, ¢"=q~ "”u} for any he P*, (uf,u;)=1 and
(u¥,v)=0forve (—Bw ,H(4),. From Proposition 2.1 and the formula (2.6), there is
an isomorphism for A4, pe(t*),;

¥: Homy ('H()** ® H(), V.)> Homg(H(A), HW ® V) . (5.1)

We translate this in terms of dual bases as follows. Let {u;} < H(u) and
{uf* } ="H(u)** be bases dual to each other such that u, € {u; }. Then for xe H(4) and
¢ eHomy("H(1)** @ H(4), V), ¥ is given by

P(@)x)=2u:® puf @) . (5.2)

The following lemma is immediate from (5.2) and the definition of the leading term.
Lemma 5.1. Let ¥ and ¢ be as above. Then ¢(u; ® u;) is a leading term of ¥ (¢).

Lemma 5.2. Let {P;} cU" and {Q;} = U~ be bases dual to each other with respect
to the Killing form such that each basis element is a weight vector and 1€ {P;} (and
then 1€{Q;}). Then for any Aet*, {Pu}}<"H(A)** and {Q;u;} < H(J) are bases
dual to each other.
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Proof. First note that for ue"H(1)*?, ve H(A), xe B and ye B,

(xu, yo)=(u, 9 (x) yv) = (¢~ ' (y)xu, v) . (5.3)

From Proposition 3.2 and (5.3), we get (P;u}, Q;u,)=4; ; and from Proposition 2.3
(and a similar one for lowest B-modules), we know that {Pu}} and {Qu;} are
bases. .E.

Let 2 be a universal R-matrix and £'(z) a modified universal R-matrix as in
(B10) (see Appendix B.). Let V" and W be finite dimensional U’-modules and ¥}, and
W,, their affinizations. We denote the image of the universal R-matrix onto
a U-module V, ® W,, by R"7(2)=n} g w(%#'(z)), where z=z, /z,. This coincides
with a quantum R-matrix on ¥ ® W up to a scalar factor.

Theorem 5.3. For intertwiners &4V (z;)e Homg(H (4), H (1) ® V,) and @)Y (z,)e
Homg(H (p), H(v) ® W,,), we set voe V,, and woe W,, be leading terms of 4" (z,)
and @) (z,) respectively. Then the 2-point function is given by

<u;|¢;¢w(22)‘p‘iy(z1)|“i>=q(l_”'“—v)0ORVW(Z1/22)(UO ®wo) ,
where 6: a @ b—b ® a.

Proof. Let ¥ be as in (5.1). We set ¢, =P~ *(¢4"(z1)) and ¢, =¥~ (®}” (z,)). Let
{P;} and {Q;} be as in Lemma 5.2. From (5.2) and Lemma 5.2, for x € H(4) we have

QDZW(ZZ)@’;V(ZI)(X):Z Qiu, ® ¢ (Pjuy ® Qiu,) ® ¢ (Piuj @ x) ,

and then 2-point function can be written by

| 7 (22) 94V (1) Uz ) =Z Do (uf @ Qiu,) ® ¢1 (Piuj @ uy)

eF[[§ﬂ® wev. (5.4)

By the intertwining property of ¢, (i=1, 2) and the fact that e;'u;=0 and fju;=0
for any iel, we have

Pipi(uf @ up)=d (AP (P)(u¥ @ uz))=¢1 (Puf Quyz) ,
0:02(uf @ u,)=d2(4P(Q:)(uf ® u,)) =, (uf ® Quuy) .

Hence (5.4) can be rewritten by
<ul| QXW(Zz)QD’iV(Zl)[uD:G(ZPi ® Qi)‘ {¢1(“: ® uy) ® o (uy ® M,;)} .
(5.5)

From (B9) in Appendix B, on a vector u ® v (wt(u)=¢ and wt(v)=#) we have
R=q Y P® Q. (5.6)

From Lemma 5.1, ¢;(u} ® u;) ® ¢, (uk ® u,)=ve ® wy. Therefore by the for-
mulae (5.5) and (5.6), we obtain the desired result. Q.E.D.
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Fix bases C and C’ of V and W respectively such that each basis element is
a weight vector. For a pair (v;, w;) e C x C' let @4 {,(z;) e Homg (H(A), H(w) ® V.,)
and d),”‘{f'i i(z2)eHomp (H (1), H (vj)® W,,) be intertwiners with leading terms
v; and w; respectively. Let 5(z;, z,), De End (V' ® W) be matrices defined by
E(z1,22): ;@ w0, | ¢3%)(22)¢§:(g(21)]“1> )

D: v; @ wjr> g™ )y @ w;
From Theorem 5.3, we obtain the following;
Corollary 5.4. With the notations as above, we have
E(z1,25)=DR""(z,/z,) .

5.2. Commutation relations. Let V and W be finite dimensional U’-modules. We
assume that ¥V, ® W, is an irreducible U-module. Let C and C’ be bases of V" and
W as in 5.1. Now, we fix voeC, woeC’, A, ve(t*), such that A—v=
af (Wt (vo)+wt(wo)) and let @) (z) and ®4”(z) be intertwiners such that their
leading terms are vy € C and wy e C’ respectively. Here note that we identify ve V'
and we W with 1 @ ve V, and 1 ® we W, respectively. We set

E={(v,w)eC x C'|af (Wt(v))+af (Wt(w))=af (Wt (vo))+af (Wt(wo))} .

For a pair (v;, w;) € E, we set @4 (z) and @}, (z) be intertwiners such that their
leading terms are v; and w; respectively.

For a U'-modules V' ® W, from the uniqueness and the unitarity of quantum
R-matrices, there exists some function f(x) such that

RVW(Zl/Zz)O'RWV(Zz/Z1)0'=f(Z1/Zz)idV®W‘ (5.7
We define W(z,/z,) by,
RY7(z/25) " (wo @ wo) = g™ (0, @ w;) Wilzy /z,) - (5.8)

Proposition 5.5. With the notations as above, we have the following commutation
relation (in the sense of a matrix element):

0o R (21/2,) )7 (21) @47 (22) =4 ~##7Vf (21 /25)

X Z D)7 (22) Pl (z1) Wilz1 /25) -

Proof. From (5.7) and Theorem 5.3, we have
f(z1/22) (0o ® wo)=R""(21/2,)aR"¥ (2, /21 ) 6 (vo ® Wo)

=q CTRETIRY (2 [2,) g | @) (21) @4 (22)lus ) - (5.9)
On the other hand, from (5.8) and Theorem 5.3,

vy ® Wo=UZ <u$l4’2%(22)‘1"{:'6(21)1“;> Wiz /z5) . (5.10)
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From (5.9), (5.10), the intertwining property of oo R""(z) and B-linearity of ele-
ments in Homp (H (1), H(p) ® V), we obtain the desired result. Q.E.D.

Example. Set g=s[, and V=Fu, @ Fu_. A U-module structure of ¥, is given by
eo(z"uy)=z""1u_, eo(z"u-)=0, fo(z"us ) =0, fo(z"u_)=z""'u, ,
e1(Z"us)=0,e(2"u_)=2"uy, fi(Z"uy)=2"u_, f1(z"u_)=0,
wt(z"uy =nd+(A,—Ap) .

Set

(@*2)%

@ (q*2)”

An explicit form of the image of the universal R-matrix onto ¥V, ® V,, is described
in [DFJMN], therefore 2-point functions are given as follows:

Gy | B (22) @5 (20)|uz > = p(z1 /22)

(=[] (-4, (- 0= (4*z )u(q) -

(

Uy @uy if A—p=p—v==(4,—40),

-1
qa "—q zy 1—2z/2, .
- = ot u_ f A—pu=v—u=A4,—4 s
N T @ gy @ A nm =iy

l;i‘/fz_uﬁL@uﬁ_l__q_—;:q_u_@qu if A—p=v—p=Ag—A, ,

\ 1—q°zy /2, 1—q°z,/z,

where we normalize intertwiners so that their leading term is u, or u_. Note that
we take the normalization (a;, o;) =2, thus we have (4;, A;)=6;; 6;1 /2. The function
in (5.7) is given by

0(q*2)

f(Z)“—‘q_lw-

6. An Element % and a Projector I

In this section we do not restrict g to be an affine Lie algebra. We introduce an
element #, which satisfies the properties similar to those of the universal R-matrix.

6.1. An_element 2. We follow the notations as in Appendix B. We can define
(B® U®") and extend 4™ ® 1®" by the similar manner as in Appendix B.
Let # be the universal R-matrix of U (see (B8) in Appendix B.). We define

G=q"1Y q¥P(k;' @ ky)(@S ' ® 1)(Cp)e(B& Ty . (6.1)

BeQ.

Here note that left components of C; belong to UZ, then the map ¢S~ ': U= NS
% B is well-defined, and formally we can write #= (¢S~ ' @ 1)# since ¢S~ act
as an identity for the Cartan part.
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Proposition 6.1. # enjoys the following properties;

% is invertible and

F =Y PP ® k)@ ®1)(Cplg¥,
peQ.

(A" R V)R =R13 R ,
(1@ A)R=R13%:, »
A-A"X)=(X®1)-% (XeU™),

F(0® S)aA(X)=(pS ' ® S9 a4V (X)- %, (XeB*).

~

Corollary 6.2. We have the following equation in (E ®&U® D)
RosRy3Rys=Ry2R13Ras .
Proof of Corollary 6.2. From the properties (6.4) and (B1),
RosR13R12=Rr3 (1@ )R
=(1Qao %Ry
=12 R13 R -

(6.2)

(6.3)
(6.4)
(6.5)
(6.6)

Q.E.D.

Proof of Proposition 6.1. We can derive (6.2), (6.3), (6.4) and (6.6) from the property
of . In fact, (6.2), (6.4) and (6.6) are immediate from (B1)—(B3). To show (6.3), we

only need the following:
ApS 1 (X))=(pS ' ® 1)4(X), forany XeU= .
This is easily obtained by direct calculations. Hence

(A7 Q@ NA=(4"® 1)(pS ' ® )%

=@ES'®1®NURNA=(¢S ' @1 ® 1)R13R23=TR13%,3 .

In order to show (6.5), we shall prepare some lemmas.

Lemma 6.3. Let C; be as in Appendix B. Set C'ﬁ=(<pS‘1 ® 1)Cy. For any icl we

have,
[fi®1,Cpr01=Cp(t; ® f) -

Proof. We show the following lemma.

Lemma 64. For any iel, f€ Q. and ue U,;Zra,, we have

_1 X
[fi oS )] =250
q; " —q;

(6.7)

where ve UE is uniquely determined by A(u)=u® 1+vt; @ e;+ -+ -, where - - -

implies terms whose right component is an element of P, U -

Proof. For =Y ;m;u;, assuming that u is a monomial e, e, - - - ¢;,, where I=

I
|B]1+1, we can easily show by the induction on m;.

QED.
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We return to the proof of Lemma 6.3. We write Cy= Z X ®y, ~F. We shall show
the equahty of (6.7) by applying 1 ® (u, -) to both sides of (6.7), where ue Uy and
(,) is the Killing form,

1 ® (ua ')[f; ® 1, 6[3+a‘]
=(Zfi @S (w3, X! — ST ((u, yr_ﬂ_“‘)xfﬂ')‘ﬁ) ®1

=[fioS W] .
On the other hand, by Lemma 6.4 and the properties of the Killing form,

{1@(u,-)}éﬂ(ri@)ﬁ):;w*(xf)ti®<u,y:”ﬁ)
=§rj<pS"(Xf)ti®(A(u),yf”®fi)
=Z¢S“(xf)ti®<vrz,y:”)(ei,ﬁ>
—ZqoS (e, o XD tifla ' —q1)

=S W)t /gi ' —qi) - Q.E.D.

Let us show (6.5). Multiplying ¢¥**#P(k_,_, ® k;) to both sides of (6.7), we
obtain

gl l ([ @t ks ® kpin) Cpi
=g Py @ k) G (i@ ) gk, @ k) CH(1®S) . (63)
From (6.8), (B6) and the presentation (B4) we obtain (6.5) Q.E.D.

6.2. Projector I'. We set €= 4.0 q*P(k;' @ k;)Cpe U® U and set &=
(¢S~ * ® 1)%. From the result of [ T](Sect. 4), we know that

—1_ Z g®P (1 ®kg)(S® 1)(Cy) ,
BeQ-

G l=(pS '@ NE =Y PP Qks) e ® 1)(Cy).
BeQ.

We write @1 =Y ax ® by, where a,€ B* and b,e U= and set
I'= ZS bk)akeB

This is well-defined as an endomorphism of objects in ((B).
Proposition 6.5. For any et*, we have

r’*=r, r-H(A)=Fu,, (6.9)
and in particular, T'u,=u,.

Proof From (6.8) we obtain (i@t )¢=%4(f;) for any i, and then
¢ (i@t )=AV(f;)€ . Thus

Zakfi®bkt,« =Zﬁak®t;lbk+ak ®fzbk . (610)
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Applying moa(1 ® S™1) to both sides of (6.10), where 6: a ® bbb ® a and m is
a multiplication, we have

Y ST b a fi=Y, S (bt frax—S M (by) b fiar=0 .
Thus I'-f;=0 for any i€ Il. From this and Proposition 2.3, we get (6.9). Q.E.D.
Example. For g=sl,, we have

I=Y g D(—1yfeern, (6.11)

n=0

Note that an element similar to (6.11) is introduced in [K1].

Appendix A

We list several formulae for the operations in Sect. 1, which are analogs of the
formula for a Hopf algebra:

1emM1®e@N(1®4")4(X)=X®1 (XeB), (A1)
MmN1®e@NI®A”)4"(X)=1® X (XeB), (A2)
1emMI®)I®e ' @NU?R®NAY(X)=X®1 (XeB), (A3)
MNERDI®e '@NUYRNAY(X)=1® X (XeB), (Ad)

1em1®e® 4@ NAX)=X®1 (XeU), (A3)
1eme@1@N1®47M)47(X)=1®X (XeU), (A6)
m(e ® A”(X)=e(X) (XeU), (A7)
1®ed”(X)=X®1 (XeB), (A8)
E®@D4X)=10X (X®B), (A9)

AV 1 (X)=(5"'® ¢ 1)o4"(X) (XeB), (A10)
AV (X)=(p ® S)o4V(X) (XeB), (Al1)
AX)=(1®@ ¢S HA(X) (XeU"), (A12)
AP(X)=(p ' S®@NA(X) (XeU™), (A13)

where 0: a® b - b ® a and m is a multiplication m: a ® b—ab.

These are obtained by direct calculations. We shall show, for example, (A1).
First we show for generators; this is trivial. Next, we assume that x and y € B satisfy
(A1) and write (1 @ 4®) A7 (w) =) ug) ® ) @ (). Then we have

I1eml®e®)(1® A(b))A(r)(x}’)=(1 ® m) Zx(l)y(l) ® @(¥2)) 0(x2)) ® X3)¥3)
=Y xVi) ® 0(¥2) (x2) X3y Ve3)

=Y %01 ® (V)Y =xy ® 1.
Thus we get (Al).
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Appendix B

In this appendix, we recall the theory of the universal R-matrix of U (see [D1, T]).
Recall that for the Hopf algebra (U, 4, S, ¢) the universal R-matrix £ is an
element which enjoys the following properties ([D1, T]):

RA(x)=A"(x)R for any xe U, (B1)
AV R=R13R23, (1 RAN)R=R13%12, (B2)
eRidZ2=1R1=(1dR A SRIAZ=R'=(dRS)Z . (B3)

We need some preparation to write down the explicit form of 2. Let U® U be
a weight completion of U® U as in Sect. 1. Let Het ®t be a canonical element
with respect to the mvarlant bilinear form on t. We extend the algebra U & U by
adding formal elements g*# with the following properties:

q"-q =g " q"=1®1, ¢*"(¢"®4")=1"®q¢")q*", (B4)
g e, ®@ N=(e @ tF)q*", ¢**(1®e)=(tF @e;)q™", (BS)
L D=(i®t5)q*, 7A@ f)=1 ® fi)¢*7, (B6)

(4@ Dg*F=q*g*s, (1@ A)g*7=q*Fng*i=, (87)

where g*f’s are elements corresponding to g*¥ on the i'® and the j'" components
in tensor products and they commute with each other. Thus, for example, we
identify g with ¢¥ ® 1. We denote this algebra by (U ® U). From the property
(B7) we can also extend 4®1 and 1 ® 4 to the algebra homomorphlsm
(U® Uy—(U&® U& U). More generally, we can extend U®" to (U®") by adding
gt (1Zi<j <n).

By using the Killing form (see Sect. 3) we can carry out Drinfeld’s quantum

double construction formally and get an explicit presentation of £,

R=q"7 Y qPP (ki @ks)Cre(U® DY, (BS)
BeQ+

where kg is an element of T'given by ks =[], ¢}" for f=)";m;a; and Cy is a canonical
element of U; ® UZ, with respect to the Kllhng form.

Here, for U-modules V and W, g*¥ can be regarded as an element of
End(V'® W) given by ¢*(u ® v)=q**"(u® v), (ue V; and ve W,). (See [Kac]
Sect. 2.) In such consideration, £ makes sense as an endomorphism of tensor
products of U-modules. For vectors u and v as above we get,

q " PP (et @ kg) Cplu @ v) =g " PICy (ks ® ky)(u @ v)
=g H-BH+B1-9Ch(u @ v)
=g EHB=P=BH+B-0C (4 ® v)
=g “"Chu®v).
Therefore, we obtain

Ru® v)= *”)ZC,,»(u®v) (B9)
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When g is an affine Lie algebra, we set

@’(Z)=q—H+c®d+d®c z q(ﬂ””(z“””kﬂ—l ® kﬂ)C,; , (B10)
BeQ.

where c is a canonical central element of g and d is a scaling element of g. This is
used to describe the image of the universal R-matrix onto a tensor product of
affinization for finite dimensional U'-modules (see [FR, IITMNT]).
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