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Abstract: We give the operadic formulation of (weak, strong) topological vertex
algebras, which are variants of topological vertex operator algebras studied recently
by Lian and Zuckerman. As an application, we obtain a conceptual and geometric
construction of the Batalin-Vilkovisky algebraic structure (or the Gerstenhaber algebra
structure) on the cohomology of a topological vertex algebra (or of a weak topological
vertex algebra) by combining this operadic formulation with a theorem of Getzler (or
of Cohen) which formulates Batalin-Vilkovisky algebras (or Gerstenhaber algebras) in
terms of the homology of the framed little disk operad (or of the little disk operad).

1. Introduction

Recently operads have received a lot of attention from mathematicians working in
different areas. Many complicated algebraic structures can now be formulated and
studied conceptually using the language of operads. In the present paper, we give the
operadic formulation of another type of algebraic structures — (weak, strong) topological
vertex algebras — which are variants of topological vertex operator algebras defined in
[LZ]. As an application, we obtain a geometric construction of the Batalin-Vilkovisky
algebraic structure (or the Gerstenhaber algebra structure) on the cohomology of a
topological vertex algebra (or of a weak topological vertex algebra) using this operadic
formulation and a recent theorem of Getzler [Get] (or a theorem of Cohen [C, Get]).
Operads are devices to describe operations. For classical algebraic structures, the
corresponding operads are so simple (geometrically they are usually constructed from
one-dimensional objects) that these operads themselves do not have any interesting
structure to be studied. Even though the notion of operad is very natural, it would be
only a fancy language rather than a necessary and deep way to understand operations
conceptually for these classical algebraic structures. But the situation changes when
we consider more complicated operations. The first important example of an operad-
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like structure occurred in Stasheff’s notion of A__-space [S1]. Unlike the operads for
classical algebraic structures, it has rich geometric structure. In [May], May formalized
the notion of operad and began to use it systematically in the study of iterated loop spaces.
The recent studies of Gerstenhaber algebras, Batalin-Vilkovisky algebras, homotopy Lie
algebras and vertex operator algebras in terms of operads (see, for example, [Get, HS,
HL1, HL2]) show the power and importance of the notion of operad. See also [S2] for
arecent survey.

The notion of vertex operator algebra and its various variants arise naturally in the
vertex operator construction of the Monster sporadic group by Frenkel, Lepowsky and
Meurman [FLM1]. It is essentially the same as the notion of chiral algebra in conformal
field theory (see, e.g., [MS]). In [B] Borcherds introduces the notion of vertex algebra
based on his insightful understanding of the theory of vertex operators and of [FLM1]. In
[FLM2], the notion of vertex operator algebra — a modification of that of vertex algebra —
is introduced and it is proved that the moonshine module constructed in [FLM1] has the
structure of a vertex operator algebra such that the Monster is its automorphism group.
In [FHL], the basic axiomatic theory of vertex operator algebras is developed. The
difference between vertex algebras and vertex operator algebras is that vertex algebras
do not have to satisfy those axioms on the grading and do not have to have a Virasoro
element. We can also define some other variants of vertex operator algebras by relaxing
or generalizing some other axioms. For various examples, variant and generalizations
of vertex operator algebras, see, for example, [FLM2, FHL, T, FFR, H3, FZ, DL, L].

In [H1, H2, HL1, HL2, H4] it has been established that vertex operator algebras
are in fact algebras over the partial operads of powers of the determinant line bundle
over the partial operad K of a certain moduli space of spheres with punctures and
local coordinates, satisfying a certain meromorphicity axiom. A small part of this
operadic interpretation of vertex operator algebras in fact shows that vertex algebras
are algebras over a partial suboperad Kof K satisfying the part of the meromorphicity
axiom which still makes sense for K. In this paper, the algebraic structures we will
study are variants of the topological vertex operator algebra introduced by Lian and
Zuckerman: weak topological vertex algebras, topological vertex algebras and strong
topological vertex algebras (see Definition 2.1). The main purpose of the present paper
is to give a completely geometric formulation of these topological vertex algebras using

the structure of the partial operad K.

We show that the category of topological vertex algebras (or weak topological
vertex algebras) is isomorphic to a category whose objects are triples of the form
(V,Q,{w; | j € N}), where V' is a Z x Z-graded vector space, () an operator on

V of degree 1 with respect to the second Z-grading, and w; a holomorphic form on K (©))
for every j in the set N of nonnegative integers, satisfying certain natural axioms. An
immediate consequence is that the operad of the homology of the framed little disk operad
(or the little disk operad) acts on the cohomology of a topological vertex algebra (or
of a weak topological vertex algebra). Combined with Getzler’s theorem (or Cohen’s
theorem) which describes Batalin-Vilkovisky algebras (or Gerstenhaber algebras) in
terms of the operad of the homology of the framed little disk operad (or of the little disk
operad), it gives the Batalin-Vilkovisky algebra structure (or the Gerstenhaber structure)
on the cohomology of a topological vertex algebra (or of a weak topological vertex
algebra). This last result has been obtained first by Lian and Zuckerman [LZ]. Also,
beginning with the geometric axioms of topological conformal field theories, Getzler
has shown that the cohomology of a topological conformal field theory has the structure
of a Batalin-Vilkovisky algebra [Get]. The main new result of the present paper is the
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equivalence between the algebraic formulation and the geometric formulation of (weak,
strong) topological vertex algebras and, as a consequence, Lian- Zuckerman’s result can
now be understood conceptually using the results of this paper and Getzler’s theorem or
Cohen’s theorem. This equivalence also provides examples of what Getzler begins with.
In fact it can be shown further that the category of strong topological vertex algebras is
isomorphic to the category of algebras over the partial operad of the differentiable chain

complexes of the partial operad K satisfying a certain meromorphicity axiom. But since
the meromorphicity axiom of these algebras over the differentiable chain complexes is
much more complicated than that for w;,j € N and the formulation in terms of these
forms is already conceptual enough, we only give half of this further formulation for
future topological applications; we show that these forms give a morphism of differential
graded partial opergds from the partial operad of the differentiable chain complexes of

the partial operad K to the endomorphism partial pseudo-operad for V.

One remark on the algebraic and geometric formulations of quantum field theories
might be helpful here. In general, the geometric formulations of quantum field theories
are axiomizations of the path integral approach in physics and have the advantage that
they give conceptually satisfactory definitions and they also allow one to derive many
important results using the geometric intuition. One famous example is the Verlinde
formula. In [MS], it is shown at the physical level of rigor that the geometric axioms
plus the rationality imply the Verlinde conjecture that the modular transformation
corresponding to 7 — —1/7 diagonalizes the fusion rules. If one can show that all
irreducible highest weight representations at level k of an affine Lie algebra indeed
give a rational conformal field theory, the Verlinde formula which has attracted many
mathematicians recently will be an easy consequence. But in fact the most difficult part
is the rigorous construction of a rational conformal field theory satisfying the geometric
axioms. Even in the affine Lie algebra case, a complete construction of the corresponding
rational conformal field theories (not just the construction of the conformal blocks) is
still to be given. On the other hand, the algebraic formulations of quantum field theories
correspond to the operator product expansion approach in physics and many concrete
quantum field theories in the algebraic formulations can be constructed rigorously from
some simple algebraic data. But the axioms in the algebraic formulations are usually
complicated and are conceptually difficult to understand. It is therefore necessary and
important to establish rigorously the relationship between the algebraic and geometric
formulations. In some sense, establishing the equivalence between the algebraic and
geometric formulations can be thought of as establishing the existence of path integrals
rigorously without writing down classical fields and Lagrangians of quantum field
theories explicitly, since the axioms in the geometric formulations are nothing but the
properties of path integrals. The paper [H1, H2, HL1, HL2, H4] are in this spirit. The
present paper is another one in this spirit.

The present paper is based on the operadic formulation of (graded) vertex algebras
in terms of the partial operad K. Roughly speaking, a weak topological vertex algebra
is a graded vertex algebra together with three operators @, g(0) and g(—1) satisfying
certain natural axioms including Q> = 0. A topological vertex algebra is a weak
topological vertex algebra satisfying the additional axiom that (g(0))? is Q-exact. A
strong topological vertex algebra is a topological vertex algebra satisfying the stronger
axiom that (g(0))*> = 0. Since a (weak, strong) topological vertex algebra is a graded
vertex algebra, we have an action of the partial operad K. Here we give a heuristic
interpretation of two most important axioms on , g(0) and g(—1) in the case of strong
topological vertex algebras: [Q, g()] = L(l), I = 0,—1, where @, g(0) and g(—1)
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are operators mentioned above and L(0) and L(—1) are operators defined using the
underlying graded vertex algebra structure (see (2.9) and (2.10)). The operators L(0)
and L(—1) can be thought of as linearly representmg the Lie derivatives % and £ _| on

tensor fields on K along certain directions. On K, we have [d, 1] = %,,1 =0, —1,where
d is the exterior derivation, 4, is the interior derivation along the direction corresponding
to L(l). In general, for a graded vertex algebra, the algebraic structure on the space
of differential forms does not have to be linearly represented. If we require that the
algebraic structure on the space of differential forms is also linearly represented and
assume that d, ¢, and ¢_, are represented by ), g(0) and g(—1), respectively, then we
must have [Q, g(I)] = L(I), | = 0, —1, which are exactly the two axioms we would like
to interpret.

The main technical work in the present paper is the proofs of the properties of the
forms w,,J € N, in Sect. 3. Our construction of w; [see (3.21) and (3.20)] is motivated
by [Z]. In fact in the case that the (strong) topological vertex algebra is a weak vertex
operator algebra of central charge 26 tensored with the graded vertex operator algebra
of the ghosts, the forms w; in the present paper are completely analogous to the forms in
[Z]. The equivalence proved in Sect. 4 between the notion of (weak, strong) topological
vertex algebras and the operadic formulation in terms of these forms in fact shows that
any family of forms satisfies those properties in Sect. 3 must be of the form (3.21) and
(3.20). In the case of strong topological vertex algebras the axiom (g(O))2 = 0 and
its consequences (g(—1))> = g(0)g(—1) + g(—1)g(0) = O simplify the definition of
the forms and consequently simplify the proofs greatly. In this paper, for completeness
and for possible use in the future, we are interested in arbitrary topological vertex
algebras and also in weak topological vertex algebras. Thus we cannot assume these
relations. Consequently the proofs for (weak) topological vertex algebras are much
more complicated than those for strong topological vertex algebras.

This paper is organized as follows: In Sect. 2 we briefly discuss the notions of
graded vertex operators algebra, weak (graded) vertex operator algebra, topological
vertex operator algebra, (graded) vertex algebra, and introduce the notions of weak

topological vertex algebra, topological vertex algebra and strong topological vertex
algebra. We also discuss the action of the partial operad K on (graded) vertex algebras.
In the subsequent section we construct the forms w. from the data of a (weak, strong)

. . . J . ;
topological vertex algebra and prove their basic properties. We use these forms and their

properties to define the notions of (weak, strong) topological K -associative algebra and
show that these notions are equivalent to those of (weak, strong) topological vertex
algebra in Sect. 4. In the same section, we also show that there is a family of natural
symmetry-group-equivariant chain maps from the differential graded partial operad of
the differentiable chain complex of K to the differential graded endomorphism partial
pseudo-operad of a weak topological vertex algebra and that a strong topological vertex
algebra is an algebra over the differential graded partial operad of the differentiable
chain complex of K. In Sect. 5, we first review the definitions of Batalin-Vilkovisky
algebra and Gerstenhaber algebra, some basic results including Cohen’s and Gretzler’s
theorems and some other related notions and results. Then combining the results
obtained in Sect. 3 and in Sect. 4 with Getzler’s theorem (or Cohen’s theorem), we
obtain the Batalin-Vilkovisky algebra structure (or the Gerstenhaber algebra structure)
on the cohomology of a topological vertex algebra (or a weak topological vertex
algebra).
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2. Topological Vertex Algebras and the Action of a (Partial) Operad

In this section, we discuss various variants of vertex operator algebras, introduce the
notions of (weak, strong) topological vertex algebra and describe the actions of a (partial)
operad on these variants of vertex operator algebras. We will only give definitions and
state the theorems. All proofs are omitted since they are either easy exercises or to be
published elsewhere.

We begin with the definition of graded vertex operator algebra (or “super chiral
algebra” as is called in [LZ]). The notion of graded vertex operator algebra is a natural
generalization of that of vertex operator algebra and can be viewed as a specialization
of the notion of an abelian intertwining algebra introduced in [DL]. We assume that
the readers are familiar with the definition of vertex operator algebra, as presented in
[FLM2] or [FHL]. We only give the differences between vertex operator algebras and
graded vertex operator algebras.

For a graded vertex operator algebra, the vector space V' is Z x Z-graded (graded
by weights and by fermion numbers), that is,

v= 1 v’ = Ve = 1TV, @D

mnez neZ meZ
where . (
— m (m) _ m)
V(n) - H V(n) , V= H V(n) : 2.2
meZ neZ

ThemapY : V@V — V[[z,27!]] maps V™) @ V™2 to V™1+m2) [[x, = 1]]. For
v € V™ we say that v has fermion number m and use |v| to denote m. For the vacuum
1 and the Virasoro element w, |1| = |w| = 0. The (Cauchy-)Jacobi identity is of the
following form for u, v with homogeneous fermion numbers:

x;‘é(f%%)m,xl)m, z,) — (~1)|u”v|50515(x2—;—x—1>Y(v,xz)Y(u,xl )
0 o

=a§46(£%;£@>)ﬂyxu¢%ﬁgxﬂ. 2.3)
2
All the other data and axioms are the same as those for vertex operator algebras. We
also call a quadruple (V, Y, 1, w) satisfying all axioms for vertex operator algebras (or
for graded vertex operator algebras) except the two grading axioms —dim V{,,, < oo and
Viny = 0 for n sufficiently small — a weak vertex operator algebra (or a weak graded
vertex operator algebra).

Next we recall the definition of topological vertex operator algebra (or “topological
chiral algebra”) given in [LZ]. A topological vertex operator algebra is a weak graded

vertex operator algebra V' together with three distinguished elements f € V/;),q € V((ll))

and g € V((zl)) satisfying the following axioms:
(i) LetY(f,z)= Y f,z7™ ! Then for any v € V(™

nez
fov =mu. 2.4)
(i) LetY(g,z) = 3 ¢,z " ' and Q = q,. Then

neZ
Lin)g=0, n>0, 2.5)
Q*=0. (2.6)
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(iti) LetY(g,z) = 3. g(n)z~""? and w the Virasoro element of V. Then
nez

Lin)g=0, n>0, 2.7)
Qg=w. 2.8)

Note that (2.4) implies f € V((l(;). In fact, the construction of the Batalin-Vilkovisky
algebra (or the “coboundary Gerstenhaber algebra”) structure on the cohomology of a
topological vertex operator algebra in [LZ] also uses the additional axiom that (g(0))?
is Q-exact, though the construction of the Gerstenhaber algebra structure does not need
this axiom.

Examples of topological vertex operator algebras are weak vertex operator algebras
with central charge 26 tensored with the graded vertex operator algebra of ghosts
and the holomorphic genus-zero parts of N = 2 twisted superconformal theories.
These examples all satisfy the additional axioms (g(0))* = (g(—1))* = g(0)g(—1) +
g9(=1)g(0) = 0.

In the construction of the Gerstenhaber algebra or the Batalin-Vilkovisky algebra
structure on the cohomology of a topological vertex operator algebra by Lian and
Zuckerman [LZ], only a small part of the axioms for topological vertex operator algebras
is needed. In this paper we also need only a small part of the axioms. We summarize those
axioms which we do need in the definition of the notion of (weak, strong) topological
vertex algebra below.

Before giving the definition, we need to discuss certain variants of vertex operator
algebras and graded vertex operator algebras: the notions of vertex algebra and of graded
vertex algebra. The notion of vertex algebra is introduced by Borcherds in [B]. In
[L] they are called preVOAs. (In [DL], vertex algebra is a technical term referred to
weak vertex operator algebras mentioned above.) In this paper, by a vertex algebra we
mean a Z-graded vector apace V equipped withamap Y : V@V — V[[z,z7']],

w®vi— Y(u,v)v = Y unvx_”‘l and a vacuum 1 such that for any homogeneous
neZ

element v, v, maps Vi, to Vi, .y, g—1)» satisfying all the axioms for a vertex operator

algebra except the axioms dim Vj,,) < oo, V{,,; = 0 for n sufficiently small and those

axioms for the Virasoro element. The definition of graded vertex algebra is obvious.

Given a vertex algebra or a graded vertex algebra, we can define two operators L(0) and

L(—1) as follows: For any v € I/En),
L0 = nv, 2.9

and forany v € V,
L(—1v = ;12}) %Y(v,x)l. (2.10)

Using these definitions and the (Cauchy-)Jacobi identity, it is easy to verify the following
identities:

[L(0), L(=D] = L(=1), (2.11)
[L(~1),Y(v,2)] = Y(L(—v,z) = %Y(v,:c), (2.12)

[L(0),Y (v, 2)] = Y((LA0) + 2L(—=D)v, 2)
= Y(LOw, z) + x%yw, ). (2.13)
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Definition 2.1. A weak topological vertex algebra is a graded vertex algebra together
with operators Q, g(0) and g(—1) mapping V™ to Vm+D ym=b gpq yim-1
respectively, satisfying all the axioms for topological vertex operator algebras which
still make sense, that is, satisfying

Q =0, (2.14)

(@, 9(0)] = L(0), (2.15)

[Q,9(—=D] = L(-1) (2.16)

[L(0),9(0)] =0, (2.17)

[L(0), g(—=D)] = g(=1), (2.18)

[L(—=1),9(0)] = —g(-1), (2.19)

[L(=1),9(-D] =0, (2.20)

QY (u,z) — (=DY(u,2)Q = Y(Qu, ), (2.21)

9(0)(u, ) — (= DY (u, 2)g(0) = Y((9(0) + zg(~D)u,z),  (2.22)
g(=DY (@, z) — (= D"Y (u, 2)g(—1) = Y(g(~ Du, z), (2.23)

where the bracket [ A. B] of two operators A and B with homogeneous fermion numbers
is defined by
[A, Bl = AB — (—D)AIBIBA. (2.24)

A topological vertex algebra is a weak topological vertex algebra such that (g(0))? is a
(Q)-exact operator, that is, there exists an operator Uy, : V' — V such that

(9(0))* = [Q, Uy o] (2.25)
A strong topological vertex algebra is a weak topological vertex algebra satisfying
(9(0))* = 0. (2.26)

From (2.15)—(2.20) and the Jacobi identity for the bracket [-, -] we see that for a weak
topological vertex algebra,

[Q, [9(0), (9(=1))*1]

(g(=D)? = 5
__[@.1g(=D), [g(oxg(—l)m ’ .27
[9(0), g(— D] = [@, [(0), [g(0), g(— D)]]
= —[Q, [g(=1),(g(0))1]. (2.28)

In particular, these formulas also hold for a topological vertex algebra. From these
formulas we see that for a strong topological vertex algebra we also have

[9(0),9(=D] =0, (2.29)

and
(g(=1)*=0. (2.30)

It is also easy to show that a topological vertex operator algebra is a weak topological
vertex algebra using the (Cauchy-)Jacobi identity. When there is no confusion, we will
call V' a (weak, strong) topological vertex algebra.
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Now we discuss the projective action of a (partial) operad on graded vertex operator
algebras and in particular on topological vertex operator algebras. For the basic notions
in the language of (partial) operads, see [May, HL1 or HL2]. Let K(j),j € N (where N
is the set of all nonnegative integers), be the moduli space of one-dimensional genus-
zero compact connected complex manifolds with j + 1 ordered punctures, the zeroth
negatively oriented and the others positively oriented, and with local analytic coordinates
vanishing at these punctures. The family K = {K(j)|j € N} is an associative analytic
C*-rescalable partial operad [HL1, HL.2, H4]. The determinant line bundle over K raised
to any complex power c (denoted by K€) is also an associative analytic C*-rescalable
partial operad [HL1, HL2, H4]. On the other hand, for any Z-graded vector space
V= IEIZ Vi) and any graded subspace W of V', we have a (multilinear) endomorphism

n
partial pseudo-operad %V,W defined as follows (see [HL1, HL2]): For any j € N the
set Fy yw(5) is the set of all multilinear maps from V7 to V=11 Viny such that
nezZ

W is mapped to W = [] W,,,,. (It is understood that V' = W is the one-element
neL

set, so that the set .7, ;,(0) is equal to W.) The identity I v,w 1s the embedding map
from V to V. The symmetric group S ; acts on 7, () in the obvious way. To define
the substitution (composition) maps, we first define a contraction operation on .#y, v :
Given f € Zy (k) and g € #,, ,(j) (k,j € N) and a positive integer s < k, we say
that the contraction of f at the s-th argument and g at the zeroth argument exists if for

any vy, ..., Vg, € Vandv' € V', the series
S F @ Ve Py Uy iUy s U y)) (23D
nez

converges absolutely, where P, : V — Viny 18 the projection operator. In this case

the (well-defined) limits for all v,, ..., Vgsjo1 €V, v’ € V' define an element

fs %o g of %\(/;,W(k + j — 1), the contraction. More generally, given any subset of

{1, ..., k} and any element of |J .77y, (j) for each element of the subset, we have
jEN

the analogous contraction, deﬁ;l‘esd using the appropriate multisums, when they are

absolutely convergent. The substitution map

Tvw : %V,W(k) X %V,W(jl)x
X oo X %V,W(jk) — %V,W(.ﬁ +o )
(5915 - 9= vww (3915 -5 9i) (2.32)

is defined by this procedure, using the whole set {1, ..., k}. The family of sets
Hyw(d),j € N, equipped with the substitution maps .y, the identity I,y and
the actions of S; on .7, ,(j), j € N is a partial pseudo-operad and is denoted
Hy - A vertex associative algebra with central charge c is a Z-graded vector space

V = ] Vi, suchthatdim V|, < oo,n € Zand a morphism of partial pseudo-operads
neEZ

from K¢ to .7,y satisfying certain meromorphicity axioms [HL1, HL2, H4]. It has

been established [H1, H2, HL1, HL.2, H4] that the category of vertex operator algebras

with central charge c is isomorphic to the category of vertex associative algebras with

central charge c. In particular, for any vertex operator algebra V/, there is a projective

action of the partial operad K. See [HL1] and [HL2] for more detailed descriptions.
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These discussions can be generalized to graded vertex operator algebras without
any difficulty. Given a Z x Z-graded vector space V' (graded by weights and fermion
numbers) and a Z x Z-graded subspace W, we can define the graded endomorphism
partial pseudo-operad . 7, y;, in the same way as in the preceding paragraph except that
the left actions of the symmetry groups are defined such that for any f € .7, y,(j) and
0,1 €5, which is the transposition permuting ¢ and 7 + 1,

(Ui,z}l (f))(vl’ ety 'Ui,'l)z+1 )ttty UJ)

= (=Dt e ) (2.33)

for any vy, ..., v, € V with homogeneous fermion numbers. Using this graded
endomorphism partial pseudo-operad, we can define graded vertex associative algebra
in the same way as that defining vertex associative algebras. Then the proof in the case
of vertex operator algebras can be adopted to show that the category of graded vertex
operator algebras with central charge ¢ is isomorphic to the category of graded vertex
associative algebras with central charge c. In particular, given any graded vertex operator
algebra, there is a projective action of the partial operad K.

The partial operad K has several important partial suboperads. The two which
are useful in the present paper are K = {I?(j)lj € N}, where ]A{(j) consists of
those conformal equivalence classes whose members are conformally equivalent to
C U {oo} with the negatively oriented puncture oo, the positively oriented punctures
2y s 2 and with the standard local coordinate at co, the standard local coordinates
multiplied by nonzero complex numbers as local coordinates at zy, ..., z,, and K
which is the same as K except that the local coordinates at zy, ..., z; are also standard.
The family K is also an associative analytic C*-rescalable partial operad and K is
a partial suboperad of K. For any graded vertex algebra V/, there is an action of the

partial operad K. In fact this action can be written down easily. Let P ¢ K ).

Then P can be identified with (z, ..., 25 a1, ..., a;) € Fj((C) x (C*)7, where
FAC) = {(z, ..., z;) € Cllz;, # z, 1 <k <1 < j}. For convenience, we call
2y, .. 2, the punctures of P and a,, ..., a, the local coordinates of P. Let V be a

graded vertex algebra and W = 0. In this case .7y, (j) = Hom(V®/, V). We define
v(P) € 7y 0(j) by

v(P) v, ®---® v,)

=Y(a) vz - Ya) M) (2.34)

T{=Z] 00, Ty=2,
when [z, > -+ > |z, |. When this inequality does not hold, we can change the order of

the vertex operators or use the iterations of the vertex operators or use analytic extension
to define v(P). We have

Proposition 2.1. The maps v K(j) — .7/‘/‘0(]‘), j e N give a }110]7)]/1[5]71 ()fpar[[a[
pseudo-operad such that the image is a partial operad. In particular, the maps v give a
morphism of partial operads from K to its image.

The proof of this proposition uses only (2.13) and the duality properties of graded
vertex algebras.
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Definition 2.2. A graded meromorphic K -associative algebra is a 7. x Z-graded vector
space V of the form (2.1) together with a morphism v of partial pseudo-operads from

K to F#y such that for any v € V,

ny
v((0;a))v = a v (2.35)
where (0;a) € F (C) x C* = I?(l) and such that for any vy, ..., v; €V, v eV =
11 V(n) and for P € K(g) F,(©) x (C*Y of the form (zy, ..., zi; 1, .., 1),
neZ
(W' v(P)(vy, ..., v])> as a function of z,, ..., z; is meromorphic on IF'j(C) with
z; = 2, © < k, and z; = oo as the only possible poles, and for fixed v,,v,, € V there is
an upper bound for the orders of the pole z, = 2, of the functions (v', V(P) (vy, ..., v;))
forallvy, ..., v, 1, Viys ooy Upopy Vpys -5 U; €V, 0 €V

Part of the proof of the equivalence theorem for graded vertex operator algebras in
fact proves the following equivalence theorem for graded vertex algebras:

Theorem 2.2. The functor given by (V,Y,1) — (V,v) is an isomorphism from

the category of graded vertex algebras to the category of graded meromorphic K-
associative algebras.

3. The Meromorphic Forms Constructed From a (Weak, Strong)
Topological Vertex Algebra

Now we would like to see what kind of topological and geometric information the
extra data and axioms in the definitions of (strong, weak) topological vertex algebra
give. Let V' be a weak topological vertex algebra. We define a holomorphic form w; €

.Q*(I? (4), #y0(5)) valued in the space 7y, ,(j) for each j € N. Since holomorphic
forms valued at a point are multilinear skew-symmetric maps from products of the
holomorphic tangent space at this pomt of C, we first have to discuss the holomorphic
tangent space of K (j)- Recall that K (]) can be identified with F ((C) x (C*)7 whose
elements are denoted (2, ..., z.;a(, ..., a ) Therefore aholomorphlc tangent vector

Xp atthe point P = (2, ... Apyoees aj) € IA{(j) can be written in the form

>+ +C(])1< aj_Ii )
p 0z |p

) ]’

m 1 0
Xp=c_ 1( ay =

0] ; 19,
(1) ()
+co(—a1— >+...+c <_a,_ ) 3.1)
day |p ’ ?da;|p
where c(l) .. cml, cé”, o c(()j) € C. Let
, ) o . Io}
X(“=c(i)<—-a»~l— >+c(z)(——al ), 1<i<y (3.2)
b 1 i 821‘ P 0 3% P
Then ,
j
Xp=) XP. (3.3)

We denote the space of holomorphic tangent vectors at P € K () by TP(IA( ),

[p and —a;5—|p by TG,

9
0z

%

the subspace of Tp(l? (7)) spanned by —a, !
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i=1,...,j. Then dimg Tp(K () = 2§, dime TP(K(j) = 2,i = 1, ..., j, where
dim¢ means the complex dimension. And we have

J
Tp(K(3) = PTHEG)) . (3.4)

i=1

Let T(K (j)) be the holomorphic bundle over K (j) whose fiberat P € K (j)is Tp(K(5))
and Tl(i)(K (), ¢ = 1,..., 7, the holomorphic bundles over K(j) whose fibers at
P e K(j) are T}(,’)(K (7))- Then we also have a decomposition

J
T(K(G)) = P TEG)). (3.5)
i=1

Any holomorphic section X of TOK () fori = 1, ..., j is of the form

. P ,
e =C(f)1<—ail—(97> +cg><_ai£), (3.6)

where c(f)l and cg) are analytic functions on K (y). For any holomorphic section X of
T(IA{ (1)), from (3.5) we have a decomposition

J
X = Zx<i>, (3.7)

where X® i = 1, ..., j, are holomorphic sections of T(”(I?(j)) i=1,...,7,
respectlvely We denote the spaces of holomorphic sections of T“)(K Gn.i=1,...,74,

and T(K (5)) by D(TO(K(5))), i = 1, ..., j, and by I(T(K(j))), respectlvely Then
by (3.7),

J
D(T(KG) = P DATOEG)) - (3.8)
=1

We can discuss the holomorphic tangent vector space TP(I—( (9)) at P € K (7), the
holomorphic tangent bundle T'(K (7)) and the space I'(T'(K (5))) of holomorphic sections
of T(K (5)) for each j € N in the same way. In particular, we also have T (K (5)) and

T(i)(F(j)), 1 <4 < 7,5 € N defined in the obvious way. All these vector spaces and
vector bundles can be embedded naturally in the corresponding vector spaces and vector

bundles for & (5). 4 A
We define 45 operators g(0), g¥(—1), LY(0) and L®(~1),i =1, ..., j,on V&’
by

0@, @ ®v,® - D)
= (=Dl @ g g0 @ - ® v, (3.9)
D0 @Y, ® )
= (=D licly @@ g(-Dy @ @, (3.10)
LYO)v, @ Qv)=0,® - @LOW,®- - Qu,, (3.11)
LD, ® - ®v)=v, @ @ L=y, ® - Qv,. (3.12)
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From these definitions and the formulas (2.11), (2.17)—(2.20), we see that they satisfy

9P ®), @1 = dP®9g“ (@) + ¢P(Dg®®) = 0

p,g=0,-1, k#I, (3.13)

[LP@), L] = LO@LY @) — LO@ LD p)
=60~ QLP(p + @), p,g=0,—1, (3.14)

LP®), ¢¥ @] = LP@)g® (@) — ¢ @ L® ()
=6, — QLP @ +q), p,g=0,—1. (3.15)

For a fixed ¢,1 <4 < 7, let Xg) S Tg). We define the operators g(Xg)) on V&I by

9 : ‘
replacing —a, =—| and —a;'=—| in X'? by g®(0) and g(—1), respectively, and
a,\p azl P
0 0 ;
define the operators L(X (”) on V®J by replacing —a, — 2, and —a;l 9 in X;i)
ilp

by L®(0) and L™ (—1), respectively. For X € TP(K (j)) of the form (3.3), we define

j .
9(Xp) = g(XP), (3.16)
i=1
j .
L(Xp) =Y LX), (3.17)

2=1

For holomorphic sections X@ of T®(K(5)) and X of T'(K (5)), we can define g(X®),
9(X), L(X®) and L(X) in the obvious way. Using (2.12) and the definition of v(P),
we have

Xv(P) = v(P)L(X). (3.18)

Given X, p, ..., X, p € TP(I? (7)), we use the following notation:

n,
X X ] 1) g(X X 9
9K I A NG p) = = Y (CDFTG(X g p) o 9 X gy p)- (B119)
o€Sn

We are ready to define the form w,
holomorphic form w, , of degree n by

;- For any nonnegative integer n, we define a

W nlp Xy py ooy Xy p) = V(P)(X; p) A Ag(X,, p) s (3.20)

where P € K and X 1Py -+ Xy, p are tangent vectors at P. From the definition, w,
is skew-symmetric and is holomorphlc in P. Thus it indeed gives a holomorphic form It

is obvious thatw, , = Oforn > 25 = dimg K (7)- The holomorphic form w; is defined
to be the sum of w ,, for all n, that is,

wy =Y Wi (3.21)
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From the definition and (2.35) we have
wl,Ol(O,a)v =a " (3.22)

forany v € V.
The differential forms w,, j € N, have three important properties. The first is its
meromorphicity.

Proposition 3.1. Forany integersm, iy, ..., 1, J1s -+ -y Ip—m Satisfyingl <m < n,
1<idp <0<, <5, 1 <5 <o <y Sy and forany vy, ..., v; € Vo' €
Vl
<v’ w ( a; ! 9 a;! 9 a 9
yWon - 3 —‘,...,‘—,L- '—,_j‘—',...,
1 ‘921, b Oz, laajl
0 3.23
_“jn_mgaj— (0, @ ®v;) (3.23)

as a function of P is meromorphic on F (C) with z; = z, i < k, and z; = oo as the only
possible poles, and for fixed v,, v, € V there is an upper bound for the orders of the pole

z, = z), of the functions (3.23) forallvy, ..., V,_y, V15 -y Uppp Vpuy s -5 V5 €V,
v eV
Proof. This proposition follows directly from the definition of w; ,,, Definition 2.2 and

Theorem 2.2. O

The second property concerns the exterior derivatives of these meromorphic forms.
Before stating the second property, we have to define the action of the operator ) on the
space .7y, (7). The fermion number grading on V' induces Z-gradings on V® and V.

These Z-gradings induce a Z-grading on Hom(V'®7, V) = Fy (7). We still call these
gradings the fermion number gradings. The operator ) on V extends to an operator
(still denoted @) on V. For any vy, ..., v; € V' with homogeneous fermion numbers,
we define

J
QV®J('U1®...®’U,): (_1)|U1|+~.‘+Ivz_]|,v ®®QU ®®U ) (324)
J 1 z J

i=1
Using the linearity we extend @y e; to an operator on V®7 Let h € HyoG) =
Hom(V®7, V) with fermion number n. We define Q ot € () = Hom(V®7 V)
by
Q. (MW, @+ ® ) = QAV; ® -+ - R v)))
—(=D"hQug; ®---®vy).  (3.25)
Using (2.21), the formula

[Q,LO)]=0 (3.26)
(a consequence of (2.15)) and the definition of v, we have
Qv(P) = v(P)Qye, - (3.27)

From the condition that ¥ maps V™) @ V) o Vmi+*m2[[z 2~ ']] and the

definition of v, we see that the fermion number of v(P) for any P € K is 0. Thus
(3.27) is equivalent to

Qi W(P) =0. (3.28)
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Proposition 3.2. The differential form w, satisfies the following equation:
dw; = Q%v‘o(wj)' (3.29)
Proof. The formula (3.29) is equivalent to
dwj,n = Q%v,o(wj,ml) (3.30)

for any n > 0. Since when evaluated at P € K (4), both sides of (3.30) are multilinear
skew-symmetric maps from (T'x(K(5)))™ to C, we need only to show

i (in+1) i (tn+1)
4 (Xl(ll) X! ) - Q'%V,O( Win+1 (X( v D >) (3.31)

for X" € F(T“k)(f{@)) k=1,..,n+1,1<i <---<i_ <7 equalto

n+1

0 0
either — uc 8 a,, 8 . Since dimg TI(;’“) (K () =2,k=1,...,n+1,both
ik
sides of (3.31) are zero if three of i, ..., 1,,, are the same. Thus we can assume that
there are at least two different numbers in any three of 7, ..., i, . Using the definition

of the exterior derivative and the definition of w, ,,, we have

(dwj,n) (XY‘) X(1n+1 )>

n+l
n+l ( ) y
k+1 (k) (1) Tk—1 (e (En+1)
= DR X, (X, XY XY, X))
k=1
k Gr) @) i (lk ) v Cksr)
+ Z =D +le,n([Xk1k ’Xzzl ]vXYl)v RS X ' kall ’
1<k<i<n+1
(-1 v Gper) (tn+1)
’Xl——l ’Xl+1 ) anl )
n+l

=) DXy (P)

k=1
Z (1) ag(X(lau))) g<X(i(c;c(kI)l)))
a(l) o(k—
0€Sp.1,0(k)=k
(g(k+1)) (ig(n+1)) I+k 1
g(xoasi) e a(xem) + D D)
1<l<k<n+l ’
(io(iy—1)
sgn (H—1
: Z Z =1 Ug(Xaﬁ)—l) )
p#lk 0€Sp.g,0(l+D)=l+1
o(k+D=k+1,0~()=p

(Za< n—1) (@) y(ig) <zo(p—1>—l)
9( a(ppl) 1 ) ([X X" 1)g 0'(p+l)—l
(z —1) (ro(+2)—~1)
9( a(clr) 1 ) (Xo(z+2)—1 )
(1a(k) i (10(k+2)—l)
I\ X1 X k1

(Za(n+2) 1 ))

o(n+2) 1 (332)

g
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For convenience we introduce the following notation: Since we assume that 1 <

1, < -+ <4, < J and that there are at least two different numbers in any three of
1y, -+, pyy, for any given k,1 < k < n + 1, there are at most two of 7, ..., 7,
including 7,, equal to ¢, and if there are two of ¢, ..., 4,,,; equal to ¢,, these two must

be successive. Let jy, ..., j, satisfying 1 < j, <--- < j, < j be the distinct numbers
in {4y, ..., %,,, }. Forany m, 1 < m < g, if j,, is equal to only one number i, in

{iy, «vvy iy }o we let gimhl = g(X,(:’“)> and g™ the identity operator on V®7; if
Jm = g = 1> We let gumhl = g(X,(:k)) and gUm):2 = g(X,(ffl”)). We also define
another bracket of two operators A and B of homogeneous fermion numbers by

[4,B], = AB — (-1){4IBI=Dp4 (3.33)

Then using (3.13), the k™ term in the first sum of the right-hand side of (3.32) is equal
to: (i)

. Gl 4012
(_1)k+1 XI(CZ]C)U(P) [g g ]1

2
o [g(jm)vl’ g(jm),2]1 - [g(jq),l’ g(jq),2]l (3.34)
2 2 |
where ~ means that the factor is omitted) if 4, is the only number in {3,, ..., @
(where ™ hat the f: i itted) if 4, is the only ber in {7, e 1
equal to j,,; (ii)
. . [9(9'1)11’9(11),2] . [ (Jq),l7 (Jq),2]
(_1)k le(c'Lk)l/(P) 5 | S g(Jm),Z L. g 2g 1 (335)
if g, = 4 = 9p,, ; (1)
. i [ (Jl),l’ (jl)’2] [ g1 5Ug),2
(=¥ IX,(Ck)V(P)—g——-—zg——l o glml g+]l (3.36)
e . e (i) . _, 0
if jp, = iy = 4. Since X; 7,1 =1, ..., n + 1, are equal to either —a, 3.
z;,
— 5 g and gUr:2 ¢ = 1, ..., ¢, are constant as functions on K(j) by the
definitions. Therefore, using (3.18), we have: (i)
X(ik)z/(P) [g(j1),lg(j1),2]l [g(jm),l,g(.ﬂm))z]l [g(jq),l,g(jq),Z]l
k 5 > 5
o\ [gUDiL glin2] [gUm)1, gim).2] B
- PL(X(%))____’_—I (el
v(P) k 3 )
Ug)l 4(Jg)2
.. [g 7g ]I (337)

2
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if 4, is the only number in {i,, ..., %, } equal to 7, ; (ii)

X](:k)y(P) [9(11)71729(3'1),2]1 N g(jm),Z N [g(jq),l,zg(jq)ﬂ]l
- y(P)L(Xf;k)) —[9(11)’1’2“’0[)’2]1 gt ——————[g(jq)’l’zg(jq)’q‘
if 5, = i), = iy, ; (iid)
X](:k)y(P) [g(jl),l , g(J1),2]1 . g(jm),l . [g(jq),l , g(jq),Z]l

> .. .. 2

[g(jz),l,g(ﬂ)l]l

- V(P)L(X};’k)) -

. g(Jm)yl

[g(Jq),l’g(jq)YZ]l
R S

Yi-Zhi Huang

(3.38)

(3.39)

if j,, = ip_; = i). Using (3.15) we see that the k™ term of the right-hand side of (3.32)

is equal to

Gl 41,2 ig),1 iq),2
[gjx ,go ]1 ...L(XI(:’C)> [g(]q) ,g(Jq) 1

k+1
(D ) :

in the case (i), is equal to

UM u(P) [9(11),1,2g(j1)72]1 o L(X,(:’“))g(jm)’z
[g(jq),l ) g(jq),2] 1
2 )
in the case (ii) and is equal to
O ) [g(jl):1729(jl)»2]1 L(Xl(clk))g(jm),l
[g(jq),l , g(jq),Z] .

2

in the case (iii). Using the axioms (2.15) and (2.16), we have

L(X¥) = [Qvana (X))
= Qv®jg<X;(;k)) + Q(X;ik)) Qvas

(3.40)

(3.41)

(3.42)

(3.43)
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where Qyg; : V® — V®I is defined by (3.24). Thus the k™ term of the right-hand
side of (3.32) is equal to

[9(31)71 , g(jl),Z]

D u(P) L Quesg(X)

2
Ug)l 4g)s2 (]1),17 G2
[g g ]1 +(—1)k+11/(P)[g 9 ]l
2 2
) gl 40,2
) g
"'g(X;(Zk))QV@J' [ > ]1
[g(jl)J’g(J]),z])

= (=D w(P) - Quas g™

[g(]l),l’g(.]])yz]l

2

Ul Ug)s2
. [g 9 ]1 +(_1)k:+l I/(P)

2 2
Ug)sl ;g2
; g g
g(‘]M)’lQV@] L—2L
Gl 41,2 Gm),l 4(Gm),2
= (_1)k+1,,(p)w Qv@g[g—’g_]l
2 2
(g),1 (Jq),2] G, 401),2
[9 9 1 kel [9 9 ]1
) -1 py2_27 1
> + (=D v(P) >
(Om),1 4(Gm),2 Ug)l 40g),2
[gm)t, glim)2] [giar!, gua2]
. _—E——IQ"@j e 1 (3.44)
in the case (i), is equal to
Gl (51,2
. g g i :
(=¥ ly(p)[_z__l_l Qv®jg(Xl(c k)>g(Jm),2
(Jg),1 (jq),Z] Q0,1 4,012
[9 24 1 E+1 [g 9 ]1
L LD S | pyL 7 A
> + (=D v(P) >
Ug)hl 4Ug)s2
Q(Xl(:k))Qv@jg(jm)’z _—____[g g ]1
2
G111 5(31),2 ) )
= (—Dk! V(P)Lg%i o Qg gt glm)2
g),1 ;50¢),2 1)l 41,2
[gua!, gba2]| kot 99 g9
B L b S | pyZ_ 7 4
> + (=D v(P) 2
g1 ,g)s2
; ; g g
o g Qu e, g2 [___—]1 (3.45)

2
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in the case (ii) and is equal to

Gt 4G0,2
(__1)k+l I/(P) [g ’29 ! ] I:L (X(lk)) Gm), l]
[g(jq),l , g(jq),Z] . ol [g(jl):l’g(jl)ﬂ] |
e T

(Jg)l 4(g):2
oty (g0 . 10007

Gl 401),2
- (_1)k+1 l,(p)[g_’zg_]

Gg)l )2
. [g 9 ]1 +(_1)k+1 I/(P)

[z (X(zm) Gm1]

[g(jl)sl , g(]l),Z] .

2 2
(gt (jq),Z]
ol gimiz .. 1977199,
g Qv®19 )
Gl 401),2
N g g ; ;
(=DM u(P)L—z—]‘ < g0 g2 Qy s,
gl ;g2
. _[_g___g____]_l (3.46)
in the case (iii).
We prove that
QV®J g(jm),lg(jm)»z _ g(jm)’lg(jm)’szcg)J
Gm),1 4(m),2 Gm),1 (Gm),2
g g g g

= Ques [ 5 | 5 ]‘QV@ (3.47)

for any m such that7,_; = i, = j,,,. Using (3.43), we have

QV®J g(jm),l, g(jm),Z _ g(jm),l, g(jm),ZQV®J
= Qye, [¢9™, g9™2] | + Qyeigimh?, gom!
_ g(j’")’zg(jT”)’lQV@J _ [g(Jm)»l g(jm),2] QV®j
- QV®J [g(jm),l’g(Jm)J]l [ (m), 1 (Jm) 2] QV®J'

: (2—1) ( )
+ Qv®g<X,(;k)>g(kal : ) (X(zk))g< Zk : )Qv®a
- QV® [g(jm),l g(Jm),Z]l _ [ (Gm), 1 (Jm) 2 QV®J

o) () ()45

Q(X(ik)) ( (lk l))QV®J

- QV® [ (Jm)l (Jm) 2] [ (Jm),l (Jm)z] Qv
+g(X(zk)) ( (lk )
+L(X,(C’Lk)> ( (Uc 1

L ®j
)Qves g(X““)L(X,?f;”)
) -

(X,(:k)) ( (lk l)>QV®J
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- QV®J [g(jm) 1 g(jm) 2] [g(]m) 1 g(jm) 2] QV®J
Since

oo o) o)
= —L(xI)g(x2) 4 o (X5 L(XEP), 349)
o) =2 )

L(XffI’))g(Xi”“)) ~ g( ng) L(ijf;”) . (3.50)

we have
o) o o)
N = L(x %) g (X0 - o(x0) L(x57) (3.51)
() )
= g(X0 )2 (x09) - LX) g (x50, (3.52)
Thus

() ()
) o)
(X)L (X)) - 2(X5) g (X)) (3.53)
Using (3.43), the right-hand side of (3.53) becomes
(= o{352) (s -s(x5 )
+ (Quesg (X1 + o(X¥ ) Queng (X157)
) @ (52) o5
@) s o (32
(o)) 0re v (x5
() @y o)

o [g(x,i"fr“);g(X,i’“))]1 ) [g(X,ifl‘))z,g(Xii”)]lQm

Um)s1 g(Gm),2 Gm)il g(m),2
g g g g
Qe 5 b 5 hoye,. (3.54)




124 Yi-Zhi Huang

Substituting (3.54) into the right-hand side of (3.48), we obtain (3.47). 4
Now we calculate the second sum in the right-hand side of (3.32). Since Xl(”),

0
I=1,..., n+1areequal to either —a_ ' — or —a, ,
w0z, "' 0a

u

g([X,"”,X,?k’]) =0 (3.55)

if 4, # 4. Therefore we need to consider only those terms in the sum such that i, = 7,
thatis,l =k —1landi,_; =4, = j,, forsome m,1 < m < q. From (3.15), we have

o[ )=o)
[l
=—|L

[L(x%), g9 (3.56)

Thus these terms are of the form

o)) @] [g0!, go2], [gUm) gGm)2] \
—V(P)gqufl‘ ,X,jkD : : I
3 [g(jnﬂ ),l’g(jnﬁ )»2]1
2
N [g(ﬁ),l g(jl),2]
= (=1 k—1 P ’ 1
=D /( )————2
o I:g(j'm—l)vl7 g(jm-l))z]lg([X(ik_l) X(lk)]> g[(]m+l )»l’g(jmﬂ )72]1
2 koo 2
o [g(]nH ))1, g(]n+l ),2]1
2
Gl 12
_ (—l)kV(P)[g ,29 i
. [g(jm—l)J’g(jm—l)’z]l [L (X(zk)) g(jm)sl] [g(]m+l )vl’g(jmﬂ ):2]1
2 ko) 2
Gn+1 )l 0n+1),2
Lo ’29 I, (3.57)

Substituting (3.44)—(3.46) and (3.57) into (3.32) and using (3.47), we obtain

(i) (1)
(o) (X1, -, x5
[gU], g02),  [ghmn )], gan2)
2 2
[904,g902, [ g2
: ; e

= V(P)Qv®a

+ (=)™ u(P)
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1 (io(1) (to(n+1)
= V(P)Qv®jm Z (—1)sgnag(Xa(1()l) ) 9<Xo(n(+1)l) )
ESnH
. i) xCionon)
P Z 1yeg (X0 o (X500) Qves
1 o Goy) Co(n+1))
= QV(P)W Z (=1)®" Q(Xau;”) 9<X0'(n(+1)l) )
+ (a ) (1gn+ )
D) 1), Z g (x5 - g(X5e ) Ques

= Qg (gt (KT, - Xffff”)) O (3.58)

The third property describes how the partial operad K (or K) acts on w,,j € N.In
factitis this property which characterizes the three classes of topological vertex algebras.

LetF, € K(k) P e K(]l), ., Be K(]k) Assumethat'yK(PO, 15 .. P exists.
Since there is a natural 1somorph1sm from TPO(K k)& TP1 KGNS---@ Tpk (K(G)
to T, By, . Pk)(K (k) x K(j;) x --- x K(j,)) (the holomorphic tangent space of
K(k)xK(gl)x XK at(Fy, ..., Pk)),theholomorphictangentspacesTPO(K(k)),
Tp, (K(yl)), .-+, Tp (K(jj)) can all be embedded in Tip  p, (K (k) x K(j;) % --- X
K(j,)). We denote these embeddings by e©, ..., e®, respectively. For convenience
we sometimes use the notation j, = k. Let X, € Tpl(K(jl)), 1= 1,...,n,
l=0,...,k Then (’yK)*(e*)(Xll)) i =1, ,n, L =0, ..., k, are elements of
T’v;((Po;Pn, Pk)(K(jl --+7,)). For any vector bundle B, we use.” (B) to denote the
direct sum of all tensor powers of B. Then the maps e,/ = 0, ..., k, and (z) can be
extended naturally to maps fromf(T(K(jl)) to 7(T(K(k) x K(j§;) %+ - x K(j,)))and
amap fromf(T(K(k) X K(Jx) X+ X K(_]k))) to <7(T(K(g1 +3k))), respectlvely,

and we still use e, [ = , K, and () to denote these maps. Let eO 4. e be
themapfromf(T(K(yO)))x ><7(T(K(]k))) tof(T(K(k:)xK(]l)x xKUk)))
defined by taking sum of the images of e, 1 = 0, ..., k. Then ()4 0 (€@ +- - - +e*))

is a map from Y(T(I?(jo))) X oee X Y(T(I?(jk))) to Y(T(IA{(j1 + o+ ). Ttis
easy to see that the family {7~ (T(KG))) | 7 € N}, equipped with these maps, the zero
vector in the fiber of .7~ (T(IA{ (1))) at the identity I of K and the obvious actions of the
symmetry groups, is a parnal operad We denote this partial operad by .7~ (T(K ).

The manifold K (k) x K ) x - x K (j).) has natural fibrations whose fibers are
obtained by fixing certain punctures and the correspondmg local coordinates of the

projection images of its elements to K (k), K ¢ 1), .. K G k) We call these fibrations
coordinate fibrations. We also have fibrations of K (k:) x K Gy x - x K (ji) whose
fibers are obtained by fixing certain punctures and the corresponding local coordinates
of the images of its elements under the map vz : IA{(k) X I?(jl) X oo X I?(jk) —
K (J, + -+ + Ji)- We call these fibrations pull-back coordinate fibrations.

We also denote the space of holomorphic functions on a complex manifold M by
Hol(M).
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Proposition 3.3. Let V' be a strong topological vertex algebra and Y2y o be the
substitution map (composition map) for the endomorphism partial pseudo-operad %V,O'

Then the forms w;, j € N, define a morphism from .7 (T(IA{ ) to Hy . More precisely,
we have

0
wjl+...+]k,n0+~~-+nk ((’yf)*(egk)(XOl))’ Tt (/7?{\)*

(k)
X (6* <ank>)) LYR<P0;P1, s Py)

= Vv (Wk,no (ef)(Xm)a ) egl?)(XOno)) |Po§
Wi (e;l)(X“), e eEkl)(lel)) lPl s Wiy g (e(*k)(Xkl),
, eP(X ,mk)) | p,c) (3.59)
Jor P e K, 1=0,... kand X;; € Tp(K(G)i=1,...,m,1=0, ..., k and
ow,|p) = wlyp (3.60)

for any element o of the symmetry group S; and any element P of K G IfVisa
topological vertex algebra, then there exist maps

h,o: (F(T(.R—(k‘) X [?(]1) X oo X ]?(jk))))®(n0+...+nk)
- %V,O(jl o +]k)®HOI(I’(\'(k) X I?(]l) X -0 X I?(-]k))a

where « is a sum of maps which are holomorphic forms when restricted to certain tensor
factors of

(DTRE) x RGy) % - € B(j,)))8mor )

and are exact form when these holomorphic forms are restricted to fibers of certain
coordinate fibrations or pull-back coordinate fibrations of K (k) x K G x---x K U
such that modulo @) My © h and «, the forms Wi, j € N, is a morphism as in the case
of strong topological vertex algebras. More precisely, in this case (3.60) and

Dy rgpmgresm, (ORE X)), - O X Wy _rip, . P
= Vottys Wiy €6 X0, -+ 5 € Xong Dy
RN CEC I RS0 6) P9
o wy @O0, - (X D)
+ Qg MO (X)) s s €L Xy Wiy, . )
+ (R X)), - (R X Wimy, ..., P (3.61)

hold. Moreover,
h=0 whenny;=0 or n;=---=n,=0 (3.62)

and
a=0 when nyg,n;,...,n, =0,1. (3.63)
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If V is a weak topological vertex algebra, (3.59) holds when ny = 0 orm; = --- =
n, = 0 and (3.61) and (3.63) hold for P, € K, 1=0,..., kand X, € TPZ(R(jl)),
i=1,...,n,1=0,...k

Proof. 1n all three cases, property (3.60) follows from the fact that v is a morphism of
partial operad.

We first prove (3.59) for strong topological vertex algebras. For convenience we use

the notations Y}, = DX, i=1,..., n;, L =0, ..., k. Also in the proof below,
we regard I, ..., P as variables and omit the symbols | . ..., |p, , |7[A<(P0;P1, Py
and |(P0 .., pp)- By the definition of w ;0 oy, We have

W bty ngt g ((7?)*(%1% cee (VE)*(Yknk))
VO Py Py s PO o) A+ A g0 Ve ) (3:64)

Since for strong topological vertex algebras, g((7;)x(Y;,)) and g((v72)+((Yy,4))
anticommute with each other fors = 1, ..., n,,t =1,...,n,,,l,m =0, ...
the right-hand side of (3.64) can be written as

> )

v(yg(Po: Py s POX((rg) (Yo ) A= A glOrz) 6 (Yo )

(GO R) Y DA A gV« (Y, ) - (3.65)
On the other hand,
Vi @rong Yors - Yong @5 Vi - Vi Dy oo @ Ko Vi)

= 'Y,}/V_’W(V(Po)g(ym) ARERRA g(%no);
v(PgY ) A AgYy, ),
L U(Pg(Y )N A g(Yknk)) . (3.66)

To prove that (3.65) is equal the right-hand side of (3.66), we need only to prove

9Py Py s PO« (Vo)) - 9(Ovg )5 (Yo,,)0)
(9O Vi, ) - g(O)« (Y, )
= Vg WG - 9(Yo,, s (P9 ) - g(Yyy,)
PRIV - gV, ) (3.67)

To prove (3.67), we first note that the bracket formulas of g(0), g(—1) with vertex
operators and with L(0), L(—1) are the same as those of L(0), L(—1) with vertex
operators and with L(0), L(—1) themselves, except suitable signs coming from the
difference between the fermion numbers of g(0), g(—1) and of L(0), L(—1). Therefore
if we can prove

V(’Yg(Po; P1, Sy Pk))L((’Yf(\)*(YEn)) . L((Wﬁ)*(yjmk))
=y WPLY) - DYy )
v(P)L(Y,)) ... L(Ylm )o oo, V(POL(Y) - L(Yknk)) (3.68)
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without using the bracket formulas for L(0) and L(—1), (3.67) will be a consequence.
To prove (3.68), we first use (3.18) and the fact that v is a morphism of partial pseudo-
operads to obtain

V('Yf{\(Po§ P,..., Pk))L(('YE)*(Ym)) S L((’Yﬁ)*(ylmk))
= (@Yo - ORI« Vi WOrR(Fps Py -+, B)
= @Yo - VsV g,y WE; (P, -y v(By)). - (3.69)

Note that as differential operators (7z)(Y};)’s are the same as Y);’s. We denote these
differential operators as J,;. Then

)« Yor) -« Vs Vi )V, 4y, W(ED; (P, oy (By))
=0 - aknkf}{%VYW(V(PO);V(Pl)y oy U(P))
= ’x%v’w((?Ol o O V(F); 01y - D1 (P, -y Oy oo Oy, V(B))
= Vo W)LY - LYo, );
UPYLY,) .. LYy, -y UPOL(Y) - LY, ), (3.70)

where we have used (3.18) and
ov(P)=0, i=1,...,n, l#m. (3.71)

This proves (3.59). Note that the proof above also proves that (3.65) is equal to the
right-hand side of (3.66) even for weak topological vertex algebras.

To prove the case for topological vertex algebras, we first notice that from the
definition that

1+t
Ve P TTUKG +-+5)),

J=g1+ 491 +1

i =1,..., n. Thus by (3.13) g((vz)«(¥};)) and g((vz)«(Y,,,)) anti-commute with

each other if | # m and I,m # 0. We take X, to be in F(T(p)(l?(jl))) for some p,

1 < p < n;. Then if there exist [ and p such that more than two of X;;,7 =1, ..., n;,
are in I(T® (K (4,))), both the left-hand side and the first term in the right-hand side of
(3.61) are zero. Thus we can define the values of & and « on these tangent vector fields
to be zero. The formula (3.61) holds in these cases. Thus we can assume that for any /
and any p there are at most two of X;,,i =1, ..., n;, in F(T(P)(I?(jl))). In these case
the left-hand side of (3.61) can be written as a sum with suitable sign of terms of the
form

v(v(Py; Py, ..., P)AD L AGae) (3.72)

where A@ g =1,...,j, +-+jj, are operators on V®U1**Jk) equal to the skew-
symmetrization of the product of at most four of g(((vg)*(Yli))@)) such that at most
two of X, are in the set {X; | ¢ = 1, ..., ny} and at most two of X; are in the set
{X,li=1,...,n,l=1,..., k}. We need the following lemma.
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Lemma3.4. Forany qsatisfyingl < q < ji+---+j,, wecanwriteq = j,+- - j,_, +1
for some i satisfying 1 < 1 < k,l < i < jy, respectively. Then AP can be written
as a sum of three terms: the first term is the product of the skew-symmetrization of
the product of those g((vz)«(Y,, NDYswith X, sin{Xy, | s=1,...,n} and
the skew-symmetrization of the product of those g(((’y w2 (Yo, DNDY’s with X,,.,’s in
{Xjsls =1, ..., n,l =1, ..., k}; the second term is Q-exact; and the third term
satisfies the property that the composmon of V(v (Po; Py, - .., Py)) with it is an exact
form evaluated at those tangent vector fields defining A'? on any leave of the fibration
of K (k) x K ) x--x K (ji,) obtained by fixing all punctures and local coordinates

of elements of K(j,,),m =0, ..., k, except the '™ ones of elements of IA((k) and the

i™ ones of elements of K ().

Proof. For simplicity, we prove only the case that A is the skew-symmetrization of
the product of three of 9((rg) *(Yms))(q) with only one of them obtained from a tangent

vector field on K (k).LetP,, = (2 ), m =0, , k. We

, 2 s a

mlr 0 Pmgm s Amls s G,

. 0 8
assume that the corresponding three X, ’s are —ay, =—— fag —ag;'! 8 and —a;; — 9a .The
ay;
0
other cases can be proved in the same way. For convenience, we denote e | —ag; —— 3
oy

0 0
P~ a;’! —) and e | — a;, = | by Yy, Y}, and Y},, respectively. It is easy to
0z, Oay,

see that

YeEos Py ooy B = 2y + agi 2115 -5 Zop + Ggp 21y, - -5
Zok t QopZr1s -+ 2ok T Aok,
Ao10yys - -y G Qs -5 Qs -+ - aOkak]k) , (3.73)
9 Yo D) = 2,99 (=1) + g9(0), (3.74)
IR = gD(—1), (3.75)
IR YD) = g9(0). (3.76)
Let
0 1 1
U, = - Lo, Ie( 2) 9D ~[g(=1),[9(0), g(— D11, (3.77)
—1),[g(0), g(0

Up.—1 = [9(0), [90), g(~ 1)) = LEDLEOLIOM. (3.78)

Also for topological vertex algebras, we fix a choice of Uo,o in (2.25). Let U 9{ 1 Uéq)_l
and Ué?g be the operators on V&1 *Jk ) equal to U _1,—1» Up 1, respectively, acting
on the ¢ tensor factor. For topological vertex algebras, the bf\acket 9(Z,), 9(Z,)] is
Q-exact for any tangent vectors Z,,Z, € T, (PP, Py) (K@, + -+ 3). The
bracket [g(Z,), g(Z,)] can be written as a hnear combination of [¢(—1), g™ — (D],

[g™(0), g (—=1)] and [¢(0), g™ (O)], » = 1,..., j, + -+ + j,. For any such Z,
and Z, we define an operator Uy, , on VEU1**3k) by replacing [¢"(~1), g (= )],
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[9(0), g (—Dland [¢™(0), g (0)],7 = 1, ..., j, + - -+, in the linear expansion
of [g(Z,, 9(Z,)] by Uﬁ?)_l, U(g,r)_l and Ugg, respectively. Then

[9(21)1 Q(Zz)] = [Qv®(11+“'+]k) aUzl,Zz] (3.79)
by (2.25), (2.27) and (2.28).
We have
AD = (2,69(=1) + gP(0) A g9(~1) A g9(0). (3.80)

where the right-hand side is the skew-symmetrization of
(2,9 P(=1) + gP(0)g' (= 1)g'?(0) .
It is a straightforward calculation to obtain

(zlig(‘I)(-—l) + g P0) A gP(—1) A ¢g19(0)

[¢'P(-1), g P(0)],
2

= (2,9V(=1) + g'(0))
- %g@(O)[(zl,-g(q)(—l) +90(0)), 9= )]
+ %g@(— DIz (=1) + g0 (00, g O)]
~ S 691, (g 1) + g20)], g O)
+ %[[g@’(ox (2,9 P(=1) + PO, g P(=1)]. (3.81)

Now from (3.80), (3.81), (3.77), (3.78), (3.74)~(3.76), (3.43) and (3.79) we obtain

AD = (le‘g(q)(”l) + g(q)(o)) A g(Q)(__l) A g(q)(o)

(R« T D), () V)],
2

= 9()x (Yo ) D)
1 @\ @

+ E[QV®(7’1+”'+11€ ),g(((’}/f(\)*(ylz)) )U(’YI’{-)*(YOI)v(’YI?)*(YH)]
L @\ 7@

- E[QV®(J1+~~+J')€ ),g(((yg)*(Y“)) )U(’YIQ)*(YOI)’(’YR)*(YLZ)]

1
_ @@
= S LR YR DG ot prsvin

1
. (@7 7(D
* 5 ORIV Wiy v, )5 (Vi)

_ 7@
UW&)*(YOIM%)*(Yn»,wgn(mn : (3.82)

To prove the lemma in this case, we need only to show that the sum of the last three
terms in (3.82) composed with v(yz(Fy; Py, - .., P)) is an exact form on the fibers of
the fibration described in the lemma evaluated at

@)% Yo) ® (7)) @ (v« (Y1) ® (v« (Vi) -
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We define a 2-form 8 on K(k) x K(j,) X - - x K(j,) by:

ﬂ( Px, )ae(O)(X2)> =0 (3.83)
if X,, X, € D(T(KK)));

B( O(x, ),e(m)(X2)) =0 (3.84)
if X, € [TEG)X, € LTTG, )N Lm=1,..., k

BEP (X)), (X)) = vOR(Py; Py, -, PO (3.85)

R
if X, € IT(KkY)), X, € DTEG)), | = 1,..., k. Using the facts that
X, X, € I'(T(Kk) x K@j,) x --- x K(j)) can always be expanded as linear
combinations of those tangent vector fields occurred in (3.83), (3.84) and (3.85) and
that 3 should be skew-symmetric, (3.83), (3.84) and (3.85) give a well-defined form.
Now we restrict 3 to fibers of the fibration of IA{(k) X I?(jl) X o0 X I?(jk) given by

2, = constant, a,. . = constant, m # 0, orm = 0, s # [, s # 4. On such a fiber, we

have
(dB)(Yy, .Y}y, Y')
= Y580}, Yy,) = Y, (Y5, Yp) + Y 8(Y4, Y)y)
- /6([}/2)17}/21]7 le) + ,6([}/017}/12] Y;l) - ,8([)/21, le]; YE)1)
= —v(g(Fy By, - P)L((vg )*(Y“))(‘I))UW (Yo, (1) (Vi)

~VORE Py -y POYRUG ) 0000

. U@
+ V(’YE(PO, Py, .. Pk))L((('Yj(\)*(le))(q)) () Yo (v x (Vi)
+VORFe Py - POYRUGL vy 00w
+ V(P By - Pk))U(v;{)*%])Jw}?)*m,),(vk)*(m)}

= —v(1g(FPy P, - Pk»L«wA)*ml>)<q>>U<3;)*(ym)W*m
+ Uyp(Py; Py, .. Pk))L((wK)*(le))‘q)) YR < Yo Vi)
* WOREE Py s PO i rg il (3.86)

Thus we see that composed with v(y(Fy; Py, ..., P;)) the sum of the last three term
in (3.82) is equal to —%dﬂ(Y01 , Y}, Y},). This proves the lemma in this case. [

Using this lemma, we can write (3.72) as a sum of terms of the following types:
the composition of v(yz(Fy; Py, ..., P)) with the product of the first terms of all
A@ ¢ =1, ooy Jp o0+ Jgs the composition of v(y(Fy; Py, - .., P)) with the
product of the Q-exact terms of all AD, g = 1, ..., j, +-- -+ Jx;> compositions of
v(yz(Py; P, ..., B)) with products of some of the A?’s and the Q-exact terms of
the other A@’s; compositions of v(vz(FPo; Py, - .., P)) with products of terms in the
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A@’s such that at least one of them is the third term in some A@. Recall that the left-
hand side of (3.61) is a sum of expressions of the form (3.72) with suitable signs. Adding
terms of the first type for all expressions of the form (3.72) with the signs, we obtain
(3.65). The proof for the case of strong topological vertex algebras shows that this is
equal to the first term of the right-hand side of (3.61). The sum of all the terms of the
second type with the signs gives a Q) o -eXact operator. Using the same method used

in the proof of Proposition 3.2, it is eaéy to show that the sum of all the terms of the
third type is a sum of Q) y ,-eXact operators and maps from

(F(T(I?(k) X R(]l) X oo X [?(jk)))®(n0+~-.+nk)

to
Fy oy + -+ 5i) @ Hol(K (k) x K(jy) x -+ x K(j,))
evaluatedat X, s =1,...,n,,m =0, ..., k, satisfying the property that when

fixing some of X ’s and viewed only as functions of the remaining X _’s, these maps
are holomorphic forms on K (k) x K(j;) x -+ - x I7¢ ( Ji) and when resmcted to fibers of

certain pull-back coordinate fibrations of K (k) x K ) x---x K (J), these forms are
exact. The sum of all terms of the fourth type, by definition and Lemma 3.4, is a sum of
maps from

(F(T(I?(k) X I?(Jl) X oo X I?(jk)))®(n0+...+nk)

to
HyoGy + -+ ) @ HOl(K (k) x K (Gy) x -+ x K(jy)
evaluatedat X, _,s=1,...,n,,m=0,...,k, satistying the property that when

fixing some of X, ’s and viewed only as functions of the remaining X, ’s, these maps
are holomorphic forms on K (k:) x K (31) x -+ X K(j,) and when restricted to fibers

of the coordinate fibrations of K (k) x K G x - x K (ji) described in Lemma 3.4,
these forms are exact. Thus we see that the sum of all the terms of the second, third and
the fourth typed gives h and a.

This concludes the proof of (3.61) in the case of topological vertex algebras. The
identities (3.62) and (3.63) are obvious. The proof for weak topological vertex algebras
is the same as that for topological vertex algebras. [J

4. The Operadic Formulation of (Weak, Strong) Topological Vertex Algebras
and the Equivalence Theorem

In Sect. 5, we will see that the meromorphic forms w; and their three properties give all
the nice topological properties. Therefore it is natural to introduce the following notion
of (weak, strong) topological K -associative algebra in terms of meromorphic forms and
the three properties:

Definition 4.1. A fopological K -associative algebra is aZ. X 7Z-graded space V (graded
by weight and fermion number ) together with a differential Q of fermion number 1 on
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V, that is, an operator Q of fermion number 1 on 'V satisfying Q? = 0, and with a
Hom(V®J, V)-valued holomorphic form w; on K(j) for every j € N satisfying (3.22),
Proposition 3.1, (3.29), (3.60)—(3.63). Weak topological K-associative algebras and

strong topological K-associative algebras are defined in the same way except that the
axiom (3.61)—(3.63) are replaced by the corresponding statements for weak and strong
topological vertex algebras in Proposition 3.3, respectively.

We denote a (weak, strong) topological K -associative algebraby (V, Q,w), where V
is the underlying Z x Z- graded vector space, @ the differential on V and w = {w |j€
N}. Obviously, a topological K -associative algebra is a weak topological K -associative

algebra and a strong topological K -associative algebra is a topological K -associative
algebra.

Proposition 4.1. Let (V,Q,{w; | j € N}) be a weak topological K-associative
algebra. The pair (V,{w; , | j € N}) is a graded meromorphic K -associative algebra.

Proof. The proposition is an immediate consequence of (3.22), Proposition 3.1, (3.61)
in the case ny = 0 and (3.60). O

As expected, the notion of (weak, strong) topological K -associative algebra is
equivalent to the notion of (weak, strong) topological vertex algebra introduced in Sect. 2.
The precise statement is the following theorem:

Theorem 4.2. The category of (weak, strong) topological K-associative algebras and
the category of (weak, strong) topological vertex algebras are isomorphic.

Proof. We already know that the category of graded meromorphic K -associative
algebras and the category of graded vertex algebras are isomorphic. The results in the
previous section can be summarized as saying that given a (weak, strong) topological

vertex algebra, we can construct a (weak, strong) topological K -associative algebra

using the graded meromorphic K-associative algebra corresponding to the graded vertex
algebra underlying the original (weak, strong) topological vertex algebra. Thus we need

only the show that given a (weak, strong) topological K -associative algebra we can find
operators (, g(0) and g(—1) on the corresponding graded vertex algebra such that the
corresponding graded vertex algebra together with these operators is a (weak, strong)
topological vertex algebra, and to show that the procedure to obtain a (weak, strong)

topological K -associative algebra from a (weak, strong) topological vertex algebra and
the procedure to obtain a (weak, strong) topological vertex algebra from a (weak, strong)

topological K -associative algebra are inverse to each other.
Given a weak topological K-associative algebra V,Q,w),let (V,Y, 1) be the graded

vertex algebra corresponding to the graded K -associative algebra (V] {wJ oljeN}.
We already have the differential Q). The operator ¢(0) and g(—1) are defined by
, 4.1)

0
o0 = ),

0
i = —1
g1 W1,1( “ 8z1) I

(4.2)
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where [ is the identity of the partial operad K. From

dwl,o = Q%V,o(wlyl)’ (4.3)

0
= dw (—a —)
I ho ' 0a, I

0
@ -ogg, )

0 0
(o )| (=g )9,

= [Q, 9(0)]. (4.4)
But from the definition of L(0) for (V,Y, 1) we have

we obtain

—a) 53— Wi

Oa;

wyo| =wiolrL(0) = L(0). 4.5)
I

.—a —
laal

Thus (2.15) is proved. Similarly we can prove (2.16). The formula (2.21) follows
immediately from Q %vo(wlo) = (. To prove (2.22) welet P = (2,0;1,1) € K(2) and
from (3.61) in the case n, = 0 we obtain

Voo | Wa0lpiwi —ali+z 'afli wrols
fvo\ 92, i Pa) 5 L
0
+’Y;7£v,0 w2,0|P;w1,0]I,w1,1 _aza_az I
o )
i (o))
0
ol )
2’1< Ko\ 28a2 P
o .8
en (ot (o) s (-5
15}
of 0
+€* ( a28a2>>> .

1o}
=V (Wm ( - ‘113_.11) 1I;w2,olp) . 4.6)

When both sides of (4.6) acting on v; ® v, we obtain

P

Y ((g(0) + zg(— D)vy, 2)v, — (=DIP1Y (v}, 2)g(0)v, = g(O)Y (v, 2)v, 4.7)

which is exactly (2.22). The formula (2.23) can be proved similarly. The formulas
(2.17)—(2.20) can also be proved similarly using I instead of P. Thus we have proved
that (V,Y, 1) together with @, g(0) and g(—1) is a weak topological vertex algebra. If
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(V,Q,w) is a topological K -associative algebra, then by (3.61) and (3.63) we have

0 0
oss (00 (( ~ 5] )) 00 (0 -z )))

0 0
= Vv (Wl,l ( —a é;) I,w1,1 ( - 6_a1> I) + Q). (48)

It is easy to see that
7] 0
R (eﬁi”( ~ g, 1)> = () <e§P( g, I)) : (4.9)

Thus we left-hand side of (4.8) is zero and we conclude that the first term in the right-
hand side of (4.8) is Q) %V0(= @)-exact. From the definition of g(0) and ~y 40 WE SEE

that this (Q-exact) first term in the right-hand side of (4.8) is equal to (g(0))?. This proves
that (g(0))? is Q-exact and thus (V, Y, 1) together with @, g(0) and g(—1) is a topological
vertex algebra. If (V, @, w) is a strong topological vertex algebra, then (4.8) holds with
h = 0. Thus the same argument shows that (g(0))> = 0 and thus (V, Y, 1) together with
@, g(0) and g(—1) is a strong topological vertex algebra.

Beginning with a (weak, strong) topological vertex algebra we obtain a (weak,
strong) topological K -associative algebra using the construction in the previous section.
From this (weak, strong) topological K -associative algebra we obtain a (weak, strong)
topological vertex algebra using the construction above. Theorem 2.2, the construction
of w; and (4.1), (4.2) imply that this (weak, strong) topological vertex algebra is the

same as the original one. Beginning with a (weak, strong) topological K -associative
algebra we obtain a (weak, strong) topological vertex algebra. From this (weak, strong)
topological vertex algebra we obtain a (weak, strong) topological K -associative algebra
using the construction in the previous section. Using axioms in Proposition 3.3 and
the fact that K is generated by K ), K (1) and K (2), this (weak, strong) topological
K -associative algebra is the same as the original one. [J

Remark 4.1. The above theorem in fact shows that for (weak, strong) topological
vertex algebras, the forms w, , must be of the form (3.20). Thus we have a conceptual
interpretation of the definition of w; ,,.

A natural question is whether (weak, strong) topological vertex algebras are in
fact algebras over a certain operad. The answer is affirmative for strong topological
vertex algebras. The category of strong topological vertex algebras is isomorphic to
the category of algebras over the differential graded partial operad of the differentiable
chain complexes of K (j), j € N, satisfying a certain meromorphicity axiom. Since this
meromorphicity axiom is much more complicated to formulate thag the (equivalent) one
for the forms w;, j € N and since the notion of strong topological K-associative algebra
is conceptually simple, we will not try to give this meromorphicity axiom and therefore
we will not give the complete further reformulation of the notion of strong topological
vertex algebra in this paper. But for the topological application in the next section, in
the rest of the section we prove a proposition which in the case of strong topological
vertex algebras says that a strong topological vertex algebra has the structure of an
algebra over the differential graded partial operad of the differentiable chain complexes
of K(j),7 € N.
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We need the notion of graded (partial) operad and differential graded (partial) operad.
A graded operad is an operad in the category of Z-graded vector spaces. A differential
graded operad is a graded operad & = {&(j) | j € N} together with an operator § of
degree —1 on each #°(j) such that 6> = 0. Graded partial operads, graded partial
pseudo-operads, differential graded partial operads and differential graded partial
pseudo-operads are defined in the same way. Let (%], 6;) and (%, 6,) be two differential
graded operads. A morphism from (%], 6,) to (%,, 6,) is a morphism ) from the operad
7, to the operad & such that 6,9 = ¥§,. Morphisms for differential graded partial
operads and for differential graded partial pseudo-operads are defined in the same way.

We consider the family of the differentiable chain complexes cs (I? (7)), 7 € N with
coefficients in C. The natural chain maps

¢ C3(K(k) ® C3K(G)) ® - © C3(K ()
— C3(K (k) x K(j,) x - x K(j,) (4.10)
(see, for example, [Mas] for details) composed with the (partial) maps
Vp)x 1 CS(K (k) x K(jy) x -+ x K(j,))
— C3 (K (k) K(y), -, K(G)) (4.11)
give (partial) chain maps
Yos, t CEE (k) ® C(K() @ -+ @ CS(K ()
— C5(ya (KK, K Gy, -, KGR 4.12)
We have

Proposition 4.3. The family CS(K) = {CS(K(j)) | j € N} together with the maps
Yos®) and the boundary operator 0 is a differential graded partial operad.

Proof. The proposition follows easily from the definition and properties of ¢ (see, for
example, [Mas]) and the fact that 4 are substitution (composition) maps for the partial

operad K. O

Since C*° (IA( ) is a differential graded partial operad, the homology H (IA( )is a graded
partial operad.

Let (V, Q,w) be a weak topological K -associative algebra. We consider the endo-
morphism partial pseudo-operad #,, = {Hom(V®7,V) | j € N}. The following
proposition is obvious:

Proposition 4.4. The endomorphism operad partial pseudo-operad 7%, o together with
the negation of the fermion number grading and the differential Q 5, is a differential
graded partial pseudo-operad.

Let I™ be the unit n-cubeinR®and 7 : I™ — K (7) a differentiable singular n-cube.
We define
&T) = /wj’n = /T*wj’n. (4.13)
T In

It is obvious that for degenerate differentiable singular n-cube 7', ¢(1") = 0. From the
definition of C'(K(j)), we see that (4.13) can be extended to obtain a homomorphism
¢: C5(K(G) — Ty o(5) of vector spaces for every j € N.
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Proposition 4.5. Let (V,Q,w) be a weak topological K -associative algebra. The
homomorphism ¢ is an S, -equivariant chain map from CS(K(®)) to Fy0(9) for every
7 € N If(V,Q,w) is a strong topological K-associative algebra, the ho/r\nomorphisms
¢ is a morphism of differential graded partial pseudo-operads from C°(K) to Fyro- In
particular, in this case, V is a C° (IA( )-algebra.

Proof. We first show that ¢ is a chain map. Let s be any differentiable singular chain in
CS (K (5)). Then using (3.29) and the Stokes’ theorem, we have

Qi P8) = Q.%V’O/wj,n = /Q%v,o“"mn

- / dw; p, = / Wjn = P(0s). (4.14)

s s

The S; equivariance of ¢ follows easily from (3.60): Let s be any differentiable
singular chain in C;f (IA( () ando € S 2 Then by (3.60)

a(¢(s)) = /U(w]-,n) = /wj,n = ¢(a(s)) . (4.15)

s a(s)

This proves the first assertion of the proposition. To prove the second assertion, let
Ty : 1™ — I?(k) and7T) : [ — I?(jl),l =1, ..., k be differentiable singular
cubes. For convenience, we let j, = k. For weak topological K -associative algebras,
we consider only those 7} such that the images of 7} are in K(j,),1 = 0, ..., [, We
denote by [7}] the elements of Cfl(l?(jl)), [=0,...,k, containing 7;,1 = 0, ..., k,
respectively. From these differentiable singular cubes we obtain another differentiable
singular cube

T= 'YEO(Tno Koo X Tnk) DT — R\'(]l te +jk) (4.16)

when the right-hand side exists. If we denote the chain containing 7" by [T'], then by
definition

Yes @ (Tl T, -, [T = [T1. (4.17)

L 1,...,n;,1=0,...,k, be the vector fields on R™ parallel to the i-th

et —,1 =
ox,;,’
axis, where we use x;; to denote the coordinates of R™. Then

oty = [ 1,

™

0 0
_ *
= /1‘2 wjl'rnl(-ax—“7 ceey 5@') d‘rll dxlnl

m

0 0
= / wjl»"l ((11})* (bg}'_“-)/ ceey (,I’l)* <W>)dﬂf“ PN dIlnl (418)
m "
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for! =0, ..., k. We have
Vos @ (Tl [Th], -, [T D) = o(T1 D

_ *
- / Tw Ji++Jk R PN

oty
1o} 1o}
— k
= T le*"‘*jk»nO"""rnk (%, ey al'knk )deI R dxknk
0t
0 )
= / w.71+"'+jk7nk+'“*nk; (T* (——63301 >, ceey T* axk )) del e d:rknk
In0+"'+nk Nk
0
= ©)
- / Wit et jg,ng+e+ng <(7 )k (e ((T) <ﬂ)>> )
ot g

0
s ()« (egk’ﬂ ((Tk)* (axk ))))) dag, ... dry,, (4.19)
g

For the topological application in he next section, we use (3.61) for an arbitrary
topological vertex algebra instead of (3.59) only for strong topological vertex algebras
to obtain that the right-hand side of (4.19) is equal to

0 0
R S O R e
0

o+t

9 9
Wi ny ((T1)* <6_acl:>’ ooy (s <Wlnl>), .
9 o
Jknk((Tk)*< o, ), c ( k)*(a knk)))dacm o day,,
0
/ Qoo (00 (0 (@0 (52 )) ). -

<e* (@) e
: ( (“((T)(a%)))

ot +nk

V)x (e ((Tk)*< 5, )))) dagy ... dzy,,, . (4.20)
T

For convenience let

L, o)

ot N

o}
ng
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~ 0
i [ elown(#((55)))

RO+ g

o
(@)% <eg§> ((Tk)* (W) ) )) dagy ... dzy,,, . 4.22)
N

Using (4.18), (4.21) and (4.22), (4.20) is equal to

0 0
’Y%V,O < / wk,no ((TO)* (b{)j_()l—>, ey (TO)* <W>> d:L’Ol e denO;
mQ

™0

9 0
/wjl,m ((Tl)* (ém—“) oo (T« <Wlm)> dzyy ... day, , ...,
™

0 5]
/ Wik ng <(Tk)* (%)’ s (T« (@)) dzy, ... dx,mk)

"k

+ Q]gw) (%) +a

= Vi o GUTOD: GUTYD, -, SUATLD) + Qe (W) + & (4.23)

For strong topological K -associative algebras, the last two terms of the right-hand side
of (4.23) are zero. Thus from (4.19), (4.20) and (4.23) ¢ is a morphism of differential
graded partial operads. This finishes the proof. [J

5. Cohen’s and Getzler’s Theorem and the Gerstenhaber
or Batalin-Vilkovisky Algebra Structure

In this section we give an application of the results obtained in the previous two sections.
We first recall the definition of Batalin-Vilkovisky algebras and Gerstenhaber algebras,
results on these algebras and other related concepts and results. In particular, we state
Cohen’s and Getzler’s theorem which describes Gerstenhaber and Batalin-Vilkovisky
algebras using the operads of the holomogies of the little disk operad and the framed
little disk operad, respectively. Then by using Getzler’s theorem (or Cohen’s theorem)
and Proposition 4.5, we show that the cohomology of a topological vertex algebra (or
of a weak topological vertex algebra) has the structure of a Batalin-Vilkovisky algebra
(or of a Gerstenhaber algebra).

Definition 5.1. A Batalin-Vilkovisky algebra is a graded commutative algebra A
together with an operator A of degree —1 satisfying A? = 0 and
Aabe) = Aab)e + (—1)*laA(be) + (—D)1@=Dblp Aac)
— (Aa)be — (= Dl¥la(Ab)c — (= 1)el gh(Ac) (5.1)
for any homogeneous elements a, b, c of A.

In [LZ], Batalin-Vilkovisky algebras are called “coboundary Gerstenhaber algebras.”
In his study of the cohomology theory of associative rings and algebras [Ger],
Gerstenhaber first discovered the following algebraic structure:
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Definition 5.2. A Gerstenhaber algebra is a graded commutative algebra A together
with a bracket [-,-] : A® A — A such that [A™, A™] c A™™=D (where
A A™ 1 m € Z, are homogeneous components of A), satisfying

[a,b] = ~(=1)1e=D =D, 0], (5:2)
[a, [b, ]l = [[a,b], c] + (= D{I=D W=Dy g, €]y, (5.3)
[a,be] = [a, ble + (= Dlallel=Dprq (] (5.4)

for any homogeneous elements a, b, c of A.

(In [Get], Gerstenhaber algebras are called “braided algebras.”) In fact a Batalin-
Vilkovisky algebra is a special type of Gerstenhaber algebra. We have the following
proposition proved by Getzler {Get] and Penkava and Schwarz [PS]:

Proposition 5.1 (Getzler, Penkava-Schwarz). A Batalin-Vilkovisky algebra is a
Gerstenhaber algebra A equipped with an operator A of degree —1 such that A* = 0
satisfying the following relation between the bracket and A:

[a,b] = (—=D*l A@ab) — (= 1)*I(Aa)b — a(Ab). (5.5)
Furthermore in a Batalin-Vilkovisky algebra, A satisfies the formula

Ala, b] = [Aa, b] + (- DI [a, Ab]. (5.6)

Gerstenhaber algebras and Batalin-Vilkovisky algebras can also be described using
certain operads. For Gerstenhaber algebras we consider the little disk operad & =
{Z(j) | j € N} of Boardman and Vogt [BoV] (see also [May]) where &(j) is the space
of all maps from the disjoint union of j copies of the unit disk D to the unit disk such that
on each copy of the disk they restrict to a composition of a translation and multiplication
by a positive number and such that the images of different copies of the disk are disjoint.
Using the Kiinneth theorem it is easy to see that the homology of a topological operad
is a graded operad. Since the little disk operad is homotopically equivalent to the family
of configuration spaces {F,(C) | j € N} = K, the homology of the little disk operad
and the homology of this family of configuration spaces are isomorphic. In [C] Cohen
proves the following theorem without stating it explicitly:

Theorem 5.2 (Cohen). The category of algebras over the operad {Hy(F;(C)) | j €

N} = H,(K) (or the category of algebras over the operad of the homology of the little
disk operad) is equivalent to the category of Gerstenhaber algebras.

For Batalin-Vilkovisky algebras, we have to consider the framed little disk operad
P ={P(4) | j € N} (see [Get]), where Z°(§) is the space of all maps from the disjoint
union of j copies of the unit disk D to the unit disk such that on each copy of the disk
they restrict to a composition of a translation and multiplication by an element of C*
and such that the images of different copies of the disk are disjoint. In [Get], Getzler
proves the following theorem based on Cohen’s theorem above (Getzler and Jones also
have another proof of Cohen’s theorem):

Theorem 5.3 (Getzler). The category of algebras over the operad H (%) is equivalent
to the category of Batalin-Vilkovisky algebras.
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Note that every element of 2(j) is determined by the centers z;, ..., 2 ; of the images
of the j copies of the unit disk and the j positive real numbers a,, ..., a; multiplied to
the j copies of the unit disk and similarly every element of Z°(j) is determined by the
centers zy, ..., z; of images of the j copies of the unit disk and the j nonzero complex

numbers a,, ..., a; multiplied to the j copies of the unit disk. Therefore & can be

embedded in 7°(j) and Z°(j) can be embedded in K () =F,(C) x C*)7. The proof of
the following proposition is a direct verification:

Proposition 5.4. The little disk operad & is a suboperad of the framed little disk operad
9. The framed little disk operad 7 is a suboperad of the partial operad K.
If we define the composition maps for the families C'S(%) and C°(Z) of the

differentiable chain complexes C°(Z(5)),j € N, and of C5(2°(j)),7 € N, in the
same way as that for cs (K), by Proposition 5.4 we have

Corollary 5.5. The families C°(2) and C%(2) are differential graded suboperad of
the differential graded partial operad C°(K).

Now we consider a topological K -associative algebra (or a weak topological K-
associative algebra) (V, Q, {wj | 7 € N}).ByProposition4.5, we have an S ;-equivariant
chain map ¢ from cs (I? (7)) to %v,o(j) for every 7 € N. These maps composed with
the morphism cS (7?\—) cs (I? ) (or C3(@) — C% (I? )) induced from the embedding
of Z (or of ¥)) in K give Sj-equivariant chain maps ¢|, (or ¢|.,) from C3(2(5))

(or CS(Z( 7)) to %V,O( 7,7 € N. Except for strong topological vertex algebras, these
maps are not morphisms of partial pseudo-operads. But we have

Proposition 5.6. Let (V,Q,w) be a topological K-associative algebra (or a weak
topological K-associative algebra). Then the graded vector space H*(V) has the
structure of an algebra over the operad H(P) (or over the operad H (D).

Proof. We only prove the case for topological K -associative algebras. The proof for
weak topological K -associatived algebras is similar. From (4.19), (4.20) and (4.23), we
see that for any differentiable singular cycles s; in Cfl (K(G),1=0, ..., k, wehave

PV @) (S03 815 -+ 5 5K = Vg, o (B(50); @(s1), - -+, P(5y))
+ QW+ @, (5.7)

where h,a € Fyoy + -+ + ji) and @ is a sum of integrals of functions over the
image of s, x --- X s, where, when restricted to fibers of certain coordinate fibrations

or pull-back coordinate fibrations of K (k) x K ) x - x K (Ji.), these functions to
be integrated are exact forms evaluated at the projections of the tangent vector fields on
Sy X - -+ X 8 to the tangent space of the fibers. Since C S(2) is a suboperad of C5(K),

for any s, € C’,fl(?), 1=0,...,k, wehave
¢ICS(97)(’YCS(,¢)(30; Sps s SE))
= '7.7%‘,,0((!5 s (80)s Blas i (81), - -y Dlas(sk))

+ Q)+ 8, (5.8)
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where % and @ are the same as in (5.7). From [Get] we know that the operad H, (%) is
generated by H,(77(1)) and H,(7°(2)). Using this fact and induction, it is easy to show
that we can always find cycle s, ..., s}, homologous to s, ..., s, respectively, such
that the cycle s x - - - x s}, is a sum of cycles which when intersected with fibers of any

coordinate fibration or pull-back coordinate fibration of K (k) x K ) x - x K Ug)
are cycles with dimensions equal to the'degrees of the exact forms on these fibers given

by Proposition 3.3. Thus if we use s, ..., s, instead of sy, ..., s, in (5.8), the term &
is zero. Passing to the homology and using the fact that s;, ..., s} are homologous to
g, - - -, S, respectively, we obtain
(¢ICS(,7))*(’YH*(j)([30]§ [si], oo oy [
= ’YH*(%Vyo)(((ﬁlCS(;?))*([SO]); (¢lcs(y))*([51])»
ceey (¢ic’5‘(y))*([5k])) ) 5.9
where [sy], ..., [s,] are the homology classes containing s, ..., s, respectively.

Therefore (¢| s ()% 18 amorphism of partial pseudo-operad from H (P to H, (Hy0)-
It is easy to see that the graded partial pseudo-operad Hy () is isomorphic to the
endomorphism graded partial pseudo-operad #«(y) o of the cohomology H *(V) of
V. Thus we can identify Hy« ) o With Hy (/). From (2.15) we see that elements
of H*(V) in fact can be uniquely represented by elements of Vio)- This implies that
the endomorphism graded partial pseudo-operad %H*(V),O is in fact equal to the
endomorphism graded operad &7+ and we have a morphism (¢| s )« of graded
operads from H, (%) to & H*(V) Thus H*(V) is an algebra over H,(%?). O

Combining this proposition and Theorem 4.2 with Getzler’s theorem (Theorem 5.3)
or Cohen’s theorem (Theorem 5.2), we obtain:

Theorem 5.7. Let V' be a topological vertex algebra (or a weak topological vertex
algebra). The cohomology H* (V') of V' has the structure of a Batalin-Vikovisky algebra
(or of Gerstenhaber algebra).

We now would like to derive the concrete expressions of the operator A, the product
and the bracket on H*(V'). We only discuss the case for topological vertex algebras.
For weak topological vertex algebra, the discussion is similar. From [Get] we see that
the operator A is given by the image of the generator of H,(Z”(1)) under 1 and the
product is given by the image of the unique element of Hy(F,(C)) C Hy(7°(2)) under
the morphism . Thus from the definition of ¢ we see that A = g(0). Since any element
of F,(C) is a cycle representing the unique element of H,(FF,(C)), we can take the cycle
to be of the form P = (2,0). Let u,v € V and [u], [v] € H*(V) the cohomology
class containing u, v, respectively. Then the product [u] [v] of [u] and [v] is [Y (u, 2)v]
which is the cohomology class containing Y (u, z)v € V. Since elements of H*(V)
can be represented uniquely by elements of V|, we can assume v and v have weight
0. Since Y(u,z)v = 3 unvz'"”‘ and wtu,, v = wtu —n — 1 + wtv = —n — 1,

nez
[u,v] = 0forn # —1. Thus [Y (u, 2)v] = [u_,v]. Since the bracket can be obtained

from A and the product, we have recovered the construction of Lian and Zuckerman
completely.
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Note added in proof. In [KSV], Kimura, Stasheff and Voronov give a conceptual construction of the
homotopy Lie algebra structure on the state space of a topological conformal field theory based on
the geometric formulation of topological conformal field theory and the existence of string vertices
proved by Zwiebach. Combining their result and the geometric formulation of strong topological
vertex algebras, we obtain a homotopy Lie algebra structure on the underlying graded vector space
of a strong topological vertex algebra or on the tensor product of the underlying graded vector space
with itself of a strong topological vertex algebra.

[KSV] Kimura, T., Stasheff, J.D., Voronov, A.A.: On operad structure of moduli spaces and string
theory. Preprint, hep-th/9307115, 1993
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