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Abstract: It is shown that there exist families of asymptotically flat solutions of
the Einstein equations coupled to the Vlasov equation describing a collisionless gas
which have a Newtonian limit. These are sufficiently general to confirm that for this
matter model as many families of this type exist as would be expected on the basis
of physical intuition. A central role in the proof is played by energy estimates in
unweighted Sobolev spaces for a wave equation satisfied by the second fundamental
form of a maximal foliation.

1. Introduction

It is a well known empirical fact that in many situations a general relativistic
description of the motion of self-gravitating matter can be replaced to a good
approximation by a non-relativistic, Newtonian one. In the usual formulation of
Newtonian gravity the interaction is described by a single scalar function, the
Newtonian potential. The relation of this to general relativity, where the fundamental
object is a Lorentz metric, is obscure. The basic idea required to understand this
relation mathematically was provided by Cartan [4]. He showed that Newtonian theory
can be formulated in such a way that the basic object is an affine connection whose
non-zero components are components of the gradient of the Newtonian potential. The
role of the potential itself is then merely that of providing a convenient representation
of this connection in certain coordinate systems. It was realised by Friedrichs [12]
that the natural way to connect the two theories is to require that the Levi-Civita
connection of the spacetime metric go over in the limit as the speed of light c goes to
infinity into the connection defined by Cartan. Since then many authors have extended
this work on the relations between the equations of the two theories and the physical
interpretations of their solutions. This knowledge has been systematised in the frame
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theory of Ehlers (see [11] and references therein). What has been achieved is to set
up a precise definition of the Newtonian limit of general relativity which encodes
that which is desirable on physical grounds. The major open question is whether this
definition is compatible with the Einstein equations in the sense that there exists a
sufficiently large class of solutions which satisfy all the axioms. The purpose of this
paper is to answer this question in the affirmative.

The case of the Newtonian limit which is of most physical interest is that of
an isolated system. This is expressed mathematically by restricting attention to
asymptotically flat solutions of the Einstein equations. (The case of cosmological
solutions, which is also of considerable interest, will not be treated here.) It is of
prime importance to have results which do not only handle the vacuum Einstein
equations since in that case only the trivial Newtonian solution (i.e. empty space)
could be expected to arise as a limit of singularity free asymptotically flat spacetimes.
It is at this point that the first serious difficulty is encountered. The most obvious
type of matter to take would be one or more bodies made of fluid or an elastic
solid. However only very limited results exist on the initial value problem for self-
gravitating bodies of this type [20]. It is for this reason that the matter model chosen
here is a collisionless gas described by the Vlasov equation. It is known that the local
in time initial value problem for the Vlasov-Einstein system is well posed for a class
of initial data which allows spatially localised matter distributions [5]. A large part
of what follows does not crucially depend on any property of the particular matter
model chosen beyond the fact that the local in time initial value problem is well
posed. There is, however, one step where a special property of the Vlasov equation is
used, namely in the last paragraph of Sect. 3. In order to generalise the results of this
paper to a different matter model it would be essential to find a replacement for the
argument of that paragraph or to modify the structure of the main proof significantly
to avoid the need for that argument.

The next difficulty which hampers the development of rigorous theorems on the
Newtonian limit is that this limit is singular in the sense that the Einstein equations,
which are essentially hyperbolic, go over into the Poisson equation, which is elliptic.
The hyperbolic nature of the Einstein equations is related to the propagation of
gravitational waves. There is one special case, namely the case of spherical symmetry,
where gravitational radiation is absent. This leads to a simplification of the problem
and the Newtonian limit of spherically symmetric asymptotically flat solutions of the
Vlasov-Einstein system was handled in [19].

When spherical symmetry is not assumed the problem of the singular limit has to
be faced and to see which way to go it is useful to consider a simpler analogue of
the Vlasov-Einstein system where a limiting situation occurs which is rather similar.
This is the Vlasov-Maxwell system whose quasi-static limit has been considered in
[1,8, 22]. Of these papers the one which is of most relevance here is that of Degond
[8]. He treats the limit using the fact that in the energy estimates for the Maxwell
equations the terms in the equations which blow up as c —> oo make no contribution.
The solutions discussed belong to a Sobolev space on each slice of constant time. For
the Einstein equations this does not hold. An asymptotically flat metric falls off only
as r~ι as r —> oo on a spacelike slice and the positive mass theorem implies that any
attempt to impose faster fall-off excludes all but the trivial solution. Thus the metric
does not belong to a Sobolev space. The usual way to get around this is to replace the
ordinary Sobolev space by a weighted one. Unfortunately it is easily seen that such
a replacement destroys the property used by Degond that singular terms drop out of
the energy estimates. In the following this difficulty is circumvented with the help of
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a formulation of the Einstein equations used by Christodoulou and Klainerman [6].
There the only object which is determined by solving a non-trivial hyperbolic equation
is the second fundamental form, which does lie in an ordinary Sobolev space. The
r~ι part of the metric is generated by solving an elliptic equation.

Now that the strategy has been outlined, the main theorem will be stated. The
notation is as follows: gab is the induced metric on the leaves of a maximal foliation
of spacetime, kab is the second fundamental form of this foliation, φ is the lapse
function, ΓβΊ are the Christoffel symbols of the spacetime metric and / is the phase
space density of particles. The spacetime metric is of the form

ds2 = -φ2dt2 + gabdxadxb . (1.1)

The notions of regular initial data and regular solutions appearing in the statement
will be defined in Sect. 5. The exact interpretation of the order symbols used will be
given at the end of Sect. 6. The parameter λ corresponds physically to c~2.

Theorem 1.1. Let (#^(λ), A^b(λ), /°(λ)) be a parameter-dependent initial data set for
the Vlasov-Einstein system which is regular of order s for some s > 6 and satisfies
the constraints and the maximal slicing condition. Suppose that as X —> 0:

(ii) k°ab(X) = O(λ3/2),

(iii) dtk°ab(λ) = O(λ3/2),

(iv) /°(λ) = f% + 0(1),

for some fy. Then a solution (gab(X), kab(λ), φ(\), /(λ)) of the Vlasov-Einstein system,
which is regular of order s and induces the given initial data on the hypersurface t = 0,
exists on a λ-independent time interval [0, Γ) and has the properties:

(i) gab(X) = XSab + o(λ\

(ii) kab(X) = o(λ),

(iii) φ(X) = l-Uλ + o(X)for some U,

(iv) Γ0

G

0(λ) = -δahVhU + o(l),

(v) all other components ΓβΊ are o(l),

(vi) f(X) = fN + o(l) for some fN.

Moreover fN and U solve the Vlasov-Poisson system with initial datum /jy .

In assumption (iii) in the hypotheses of this theorem the time derivative is to be
calculated using the Einstein evolution equation (2.4) and the function φ in that
equation is to be got by solving the lapse equation (2.12). This assumption may seem
unnatural but it is essential. Its significance will be discussed further in Sect. 7.

It is appropriate at this point to mention some recent work related to the present
paper. Fritelli and Reula [13] have suggested an interesting approach to proving
convergence of solutions of the Einstein equations in the Newtonian limit on a
spatially bounded region. Lottermoser [15] has proved the existence of rather general
families of solutions of the Einstein constraint equations having a Newtonian limit.
It was necessary to prove some new results on existence of families of solutions of
the constraints in the present paper since Lottermoser's method is not suitable for
producing solutions which satisfy a prescribed gauge condition (e.g. the maximal
slicing condition used in the following). It is also of interest that the solutions whose
existence is demonstrated in the present paper include ones which do not belong to the
class produced in [15]. This is because the basic object Zab used there and supposed
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to behave regularly as λ —» 0 diverges in general in the Newtonian limit for the data
constructed here.

The paper is organised as follows. In Sect. 2 the form of the Einstein equations used
in [6] is discussed and it is shown how the parameter λ can conveniently be introduced
into it. In the third and fourth sections estimates are derived for the Vlasov and
Einstein equations respectively. In Sect. 5 there are used to prove the local existence
of a solution on a λ-independent interval and the remainder of Theorem 1.1 is proved
in Sect. 6. The existence of a large class of regular initial data is demonstrated in
Sect. 7. Two appendices are concerned with some elliptic theory and estimates for
modified Sobolev spaces which are needed in the body of the paper.

2. Derivation of the Reduced Equations

Consider first the 3 + 1 form of the Einstein equations with zero shift. The constraints
are

R - \k\2 + (tvk)2 = I6ττφ-2TOO , (2.1)

Vakab - Vbtrk = -8πφ~ιTOb , (2.2)

and the evolution equations are

dtgab = -2φkab , (2.3)
dtkab = -Va^bΨ + Φ(Rab + t Γ k k a b ~ 2kackb

- 8πΓα 6 - 4π0- 2 T o o ^ α , + 4πTgab). (2.4)

Here Rab is the Ricci tensor of gab. The objects To o, TOα and T α 6 are components of
the matter tensor and T is obtained by taking the trace of Tab with the metric gab.
Define

A = trfe, (2.5)

. B ^ Ή - l / c l 2 , (2.6)

Cα = V 6 fc α b -5V α (trfe), (2.7)

Dab = Ψ~ldtkab + Φ~lVaVbφ - Rab + 2kack
c

b. (2.8)

It will also be useful to have the modified quantities

B = B- lβτrφ-2T00, (2.9)

α α T O α , (2.10)

Dab = Dab + 8πTα 6 + 4π(0- 2 T o o - T)gab . (2.11)

In the following the maximal slicing condition A = 0 will be used. Under that
assumption Eqs. (2.1), (2.2), and (2.4) are equivalent to B = 0, Ca = 0 and Dab = 0
respectively. If A = 0 then the lapse equation

Δφ = (\k\2 + 4πφ-2T00 + 4πT)ψ (2.12)

is satisfied. Following [6] it can be shown that (2.1)-(2.4) together with A = 0 imply
a wave equation for kab,

-(φ-'dtfkab + Δkab = Nab + τab, (2.13)
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where

τab = 8π[i φ-*Tm9ab - f ' ( V A + V6T0α) + φ-ιfab

- \ Φ~ιfgab + φ-\τOaVbφ + τObvaφ)

- (φ'2Tm - T)kab - φ^φT^gJ , (2.14)

Nab = Lab-Hab, (2.15)

φ2Lab = VaVbφ - φ~λφVaVbφ - Γc

abycφ

+ 2φ(kc

adtkbc + kc

bdtkac) + 4φ2kack
cdkbd, (2.16)

φHab = φlab + Vcφ(2Vckab - Vakbc - Vbkac) - VaφVckbc - VbφVckac

~ VcVbφkc

a - ycVaφkc

b + Δφkab, (2.17)

A c + RbcK) + Ϊ9ab(kcdRcd) + kabR. (2.18)

Here and in the following a dot is used to denote a derivative with respect to t
whenever convenient. The reduced system of Einstein equations which will be used
consists essentially of (2.3), (2.12), and (2.13). Unfortunately the occurrence of the
Ricci tensor in Iab causes trouble with the existence theory and so it will be replaced
by using the relation

Kb = Φ'ldtkab + φ~ιVaVbφ + 2kack
c

b + 8πTα 6 + 4π(φ-2T00 - T)gab , (2.19)

which is equivalent to Dab = 0. The following lemma was proved in the vacuum
case in [6].

Lemma2.1. Let (gab,kabiΦ) b e a solution of (2.3), (2.12), and (2.13) (with (2.19)
having been substituted into (2.13) to eliminate Rab). Then if the data

(9ab(0\kab(0\dtkab(0))

are such that A, B, Ca and Dab vanish for t = 0 and if VaT
aβ = 0 then A, B,

Ca and Dab vanish everywhere so that (gab, kab, φ) defines a solution of the Einstein
equations for which the hyper surf aces t = const are maximal.

Proof. This will only be sketched since it is very similar to the vacuum case. Equations
(2.3), (2.12), and (2.13) imply (with F = B + tr£>):

Ί~ιdtA = F:=F- 4πφ~2T00 - 4τrT, (2.20)

φ~ιΘtF = ΔA- 4φ-ιVaφCa + (φ~ιΔφ + R)A

- Sπ[-2φ-1 VαΓOα + 2φ~2VaφT0a - l/2φ~ιf - 2kabTab

- 3φ~4φT0Q + (-φ-2T00 + T)A + 3/2φ-%0], (2.21)

φ~ιdtCa = VbDab - l/2Vα(tr5) + φ-ιVbφDab - \/2φ~ιVaφF

- φ-ιAVbφkab - VbAkab + Sπφ-%aA, (2.22)

φ-ιdtDah = VaCb + VhCa. (2.23)

In the derivation of (2.22) the vanishing of the 4-dimensional divergence of Ta@ has
been used. The latter can also be used to simplify the equation obtained from (2.21)
by substituting for F and Ca in terms of F and Cα. Differentiating Eqs. (2.20)-(2.23)
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and substituting these equations back in to eliminate unwanted derivatives gives wave
equations of the form

- (φ~ιdt)
2A + ΔA = M, (2.24)

- (φ-χdt)
2F + ΔF = Mf, (2.25)

= MΪ, (2.26)

where M, M' and M" are homogeneous linear expressions in the quantities A,
VA, V 2 Λ F, VF, φ~ιdtF, C, VC, φ~ιdtC, D, VD. The coefficients in these
expressions depend of course on the solution under consideration. Since a fixed
solution is being examined, they can be treated as given functions. The proof of
the lemma can now be completed by deriving an inequality of the form

t

%(t)< [ %(s)ds, (2.27)

o

where

gr = ί(\A\2 + |VA|2 + \F\2 + |VF|2 + \φ~ ιdtF\2

R3

+ \C\2 + |VC| 2 + \φ~ιdtC\2 + \D\2)dVg , (2.28)

and dVg is the volume element on R3 associated with the metric gab. This would
be a straightforward consequence of the usual energy inequalities for wave equations
if it were not for the occurrence of the quantities VI) and V2A on the right-hand
side of the equations. Note that these do not appear in the definition of <§T. In fact
V-D only occurs in M" and V2A only in M' and the problem can be overcome
as follows. One of the terms which needs to be estimated is schematically of the

form j Γ J(dtCVD)(s)\ds. Integrating by parts in time converts this into the sum

o U 3 -I
of a spacetime integral and a boundary contribution on the hypersurface labelled by
t. The spacetime integral can now be handled by a partial integration in space. A
partial integration in space should also be applied to the boundary term. It is then
schematically of the form f (VCD). This can be estimated by an expression of the
form M3

where K is a constant and η may be chosen to be any positive real number. Choosing
it so that Kη < 1/2 we can absorb the first term into W. To handle the second
term express it as the integral from 0 to t of its derivative and use Eq. (2.23). The
term containing V2A can be estimated in an analogous way. Applying GronwalΓs
inequality to (2.27) now completes the proof. D

Lemma 2.1 shows that providing we are dealing with a matter model which
guarantees that \7aT

aP = 0 (and this is in particular true of matter described by
the Vlasov equation) then solving the reduced system consisting of (2.3), (2.12), and
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(2.13) suffices to solve the Einstein equations. In this paper the unknowns (gab, kab, φ)
are time-dependent objects on IR3. Normally, if asymptotically flat situations are to be
studied, the boundary conditions gab —• δab and φ —> 1 as \x\ —> oo will be imposed.
In order to study the Newtonian limit the first of these will be replaced by gab —• λδab,
where the parameter λ corresponds to c~2. The Newtonian limit then corresponds to
the limit λ —• 0 and if this is to be regular it will be the case that gab = O(λ) and
kab = O(λ) as λ -* 0. In the terminology of the frame theory (see [11]) gab is part
of the temporal metric. In view of this dependence on λ it is convenient to use the
variables j a b = λ~ιgab and κ,ab = λ~ιkab. Then j a b satisfies the standard boundary
condition that ηab —•> δab as \x\ —> oo. The basic equations are

dtΊab = -2φκab , (2.29)

ΔΊφ = \[\κ\2 + 47r<^-2T00 + 4πT]φ, (2.30)

- (φ-ιdt)
2κab + \-ιΔΊκab = \-\Nab + τab). (2.31)

In Eq. (2.30) the norm of κab is defined by 7 α 6 and not by gab. Note that T has the
same meaning as it had before, namely gabTab.

3. Estimates for the Vlasov Equation

For a discussion of the definition of the Vlasov equation in general relativity see
[18]. Recall that the phase space density, which is the unknown in this equation,
is a real-valued function on the mass shell P, i.e. the submanifold of the tangent
bundle of spacetime defined by the conditions gaβPap^ = — 1 and p° > 0. The
manifold P can be coordinatized by the spacetime coordinates xa together with the
spatial components pa of the momentum. In the situation considered in this paper it
is identified in this way with R6 x [0, Γ). The Vlasov-Einstein system in a general
spacetime takes the form:

= o, (3 Λ)

Here units have been chosen where the speed of light takes the value one. In order to
study the Newtonian limit the parameter λ needs to be introduced. This was already
done for the Einstein equations in the previous section. It can be introduced into the
Vlasov equation just as easily. All that needs to be done is to write the equation in
3 + 1 form and then to introduce the rescaled variables ηab and κab. The result is

{\-{v CΦ) - 2 < K P C

+ φil + λb | 2 Γ I / 2 Γ 6 >V] 2L = 0, (3.2)

where \p\2 = ηabp
apb. Attention will be confined to initial data for / which are

compactly supported in 1R6. Also λ will be restricted to belong to the interval (0, λ0]
for some λ0 > 0. No loss of generality results since it is only the limiting behaviour
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as λ —> 0 which is of interest here. The introduction of λ into Ta@ requires a little
more thought. This object will be called the matter tensor since it will be normalised
so that T 0 0 becomes the mass density in the Newtonian limit. If we were to take
the definition used in (3.1) directly and merely express it in terms of the rescaled
variables then we would get the absurd result that the matter density vanishes like
λ3/2 for any matter distribution which is uniformly bounded in λ. This would be
sufficient motivation for the following definition:

= -J fpapβφ\Ί\^2/p0dpιdp2dp3, (3.3)

where 7 denotes the determinant of ηab. In the following the definition (3.3) will
always be used and never the third equation of (3.1). This has the pleasant effect that
for distribution functions / which are bounded independently of λ the quantity T 0 0

is neither forced to vanish nor blow up as λ tends to zero. To understand what this
apparent redefinition means physically it is necessary to remember that, as already
mentioned, gab is part of the temporal metric. In the definition of the matter tensor
what is needed is a volume form and this should be formed using the spatial metric. In
the Ehlers frame theory the relationship between these two metrics contains a power
of λ [11]. In describing the Newtonian limit we can only take the equations of general
relativity over exactly if the distinction between the temporal and spatial metrics is
made from the start and this account for the apparent discrepancy.

In this section estimates for the solution of (3.2) will be obtained in a fixed
background geometry. It will be supposed that the quantities Γbc, κab, φ and X~ιWaφ
are continuous and bounded together with their first derivatives with respect to the
spatial coordinates xa. Let Cx denote a common bound for these. It will furthermore
be assumed that there exists a positive constant A such that j ~ ι < A and A~1δah <
ηab < Aδab. It follows that a similar estimate holds for ηab. Equation (3.2) says that /
is constant along characteristics (in the present context these are the lifts of geodesies
to the mass shell) and the assumptions on the geometry are enough to guarantee the
existence of these characteristics. Let R(t) and P(t) denote the maximum values of
\x\ and \p\ respectively contained in the support of / at time t. Then (3.2) implies

t
estimates of the form P(t) < P(0)(l + Ct)eCt and R(t) < R(0) + / P(s)ds, where

0

the constant C depends only on C1 and A. Next the Sobolev norms of / will be
estimated under the additional assumptions that j a b belongs to L°°([0, T),KS(R3))
and that κab and λ~1V'aφ belong to L°°([0,T),iϊ s(R3)). Here and in the following
Hs(Rn) denotes the standard Sobolev space of order s and || \\HS is the norm
on that space. The Lp norm is denoted by || | | p. The space KS(R3) is defined
to consist of those functions / in L°°(R3) with V/ e Hs~ι(R3) with norm
11/Hκ* = ll/lloo + HV/Htfs-1. Consider now the norm of f(t) in L2(Rβ). Liouville's
theorem implies that the L2 norm of f(t) with respect to the geometrically natural
volume form defined by ηab is constant. On the other hand, under the assumptions
already made on the geometry, this volume form defines an equivalent L2 norm to
that of the standard volume form on R6. Hence | |/(£)| | 2 < C for a constant C only
depending on A and Cλ. To estimate | | /(0 | |#s for s > 0 a method used in [8] will
be adopted. If the Vlasov equation (3.2) is written schematically as Xf — 0 then the
derivative Ds f of order s satisfies an equation of the form X(Dsf) — Qs for a certain
source term Qs. At this stage it is necessary to use the assumptions that ηab belongs
to L°°([O,T),KS(R3)) and that κab and λ~ιVaφ belong to L°°([0,T),iF(M3)). Let
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C2 be a bound for their norms in these spaces. Note that if s > 2 the assumptions
made up to now imply that ηab e L°°([0, T), KS(R 3)) since KS(M3) is then a Banach
algebra. To estimate Qs the facts will be used that (see [14, 16 or 23]):

\\D\gh)\\2 < C(\\g\U\h\\HS + llffH^IWU), (3.4)

\\D\gh)- gDkh\\2 < C(||I>(;|U|fc||H.-. + \\g\\Hs\\h\U (3.5)

for k < s. These hold provided the norms on the right-hand side of the inequalities
exist. They are valid for functions defined on the whole of M.n or on a bounded
domain. In this section the latter case is the one which is relevant, the domain in
question being an open subset of M6 which contains the intersection of the support of
/ with each hypersurface of constant time. There results the estimate

I I Q β - i l l 2 < C | | / | | H - i for s>6. (3.6)

Here C depends only on A, Cx and C2 and the Sobolev embedding theorem in R6

has been used. Combining (3.6), the equation X(Dsf) = Qs and the inequality

II/IIH. <(7( | | / | | 2 + | |D S / | | 2 ) (3.7)

shows that an integral inequality of the following form holds for s > 6,

t

S-ι < 11/(0)11^-! +C J\\f(tf)\\2

Hs^dtf, (3.8)
o

where C only depends on A, Cl9 and C2 In fact C{ can be estimated in terms of C2

and HΦlloo using the Sobolev embedding theorem.
The ί P " 1 norm of the integrand in (3.3) can be estimated by a constant (depending

only on A, Cλ, and C2) times the Hs~ι norm of /. Also for all functions F(x,p)
whose supports are contained in a given compact set an inequality of the following
form holds:

11̂ 11̂ .-1 < C\\F\\H^ , (3.9)

where Fix) — J F(x,p)dp. Combining this information with (3.8) gives

(3.10)

Suppose next that the time derivative of 7 o 6, κab and φ satisfy estimates of the same
kind as already assumed for the quantities themselves. Then an argument analogous
to that above leads to estimates of the form

t

' ) \ \ 22

H,-2 < I|0t/(O)||2HJ_2 + cj | | / ( i ' ) | | ^ - . + \\dtf(t')\\2

Hs.2dt', (3.11)
0

HS-I < c(\\djφ)\\2

Hs-2 + J 11/(̂ )11̂ -1 + \\W)fHS_2dA , (3.12)

where the constant C now depends on A, Cx, C 2 , H^Hoo, the norm of the time
derivative of 7 α b in the space L°°([0,T),Hs~l(R3)) and the norms of the time

ab

 ι 3
p ([,),

derivatives of κab and λ~ιVφ in L° ° ( [0 ,T) , i / s (M 3 ) ) .



98 A. D. Rendall

The derivative Ds~ι(dtf) still needs to be estimated. To do this, note that the
Vlasov equation says that the solution is constant along characteristics. Thus the
value of / at any point is equal to the value of /° at the point where the characteristic
through that point intersects the initial hypersurface. Let (X(s, £,£,£>), V(s,t,x,p))
be the characteristic satisfying X(t,t,x,p) = (x,p) and V(t,t,x,p) = (x,p). Then

f(t,x,p) = f(X(0,t,x,p),V(0,t,x,p)). (3.13)

Hence

dtf(t,x,p) = Dxf°(X(O,t,x,p),V(O,t,x,p))dX/ds(t,x,p)

f , p ) . (3.14)

Now the quantities dX/ds and dV/ds are bounded in Hs~ι(R6). Assuming that f°
is in HS(R6) we see that in order to estimate the Hs~ι norm of dtf it suffices to
know the following two things. Firstly, the mapping taking (t,x,p) to X(0,£,#,p)
(which is a C1 diffeomorpism) is bounded in ί P " 1 . Secondly, for s sufficiently large
(in the present case s > 5), the Hs~ι norm of the composition g o h of a mapping g
of class Hs~ι and a diffeomorphism h of class Hs~ι can be estimated in terms of
the Hs~ι norms of g and h. These facts follow from the results of [10,17]. Thus the
Hs~ι norm of dtf can be estimated by an expression of the form C||/> 0 | | JH-S, where
C depends only on the Hs~ι norm of the coefficients in the Vlasov equation. An
estimate for | |T α / 3 | | H β - i follows.

4. Estimates for the Einstein Equations

First the form of Nab will be examined when it is written in terms of j a b and κab.
The indices of κab will be raised and lowered using ηab and its inverse,

Φ2Lab = VαV 60 - φ~ιφWaVbφ - Γc

abVcφ

+ 2\<Kκc

adtκhc + κc

hdtκac) + Aφ2\κacκ
cdκM , (4.1)

φHab = φlab + Ί

cd

α K - VcVb<K + ΔΊφκah , (4.2)

cκ6

c + β 6 c < ) + 2Ίab{κcdRcd) + ̂ α 6 7 c ^ c d (4.3)

In (4.3) it is still necessary to make the substitution

Rab = λφ-1dtκab + φ-ιVaVbφ + 2\κacκl + SπTab + 4π\(φ-%0-T)Ίab^ (4.4)

Suppose that a collection of quantities (ηab, κab,φ,Taβ) is given. These are not
assumed to satisfy any equations. If ηab is a solution of

dtηab = -2φκab , (4.5)

with initial datum 7α6(0) then an estimate of the form

t

\\Vφ(t')\\2

κs^\\κab{t')\\2

Hsdtl (4.6)
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holds for any s > 2 provided the norms appearing all exist. This can conveniently be
proved using (A18). The time derivative of ηab can be estimated similarly in terms
of φ, κab and their time derivatives giving for any s > 3 the estimate

0

+ II V & O H K - I K&tfOllif'-idt'. (4.7)

Let Γbc denote the Christoffel symbols of ηah. These satisfy

dtήc = ~Vb(ΦK) - V C (#D - V α ( # 6 c ) . (4.8)

In Sect. 5 this will be used to obtain a stronger estimate for dtΓbc than could be
derived from the estimate for dtηab. Next consider the following equation which is
closely related to (2.30):

Δfφ= -(Ί

ab-δab)dadbφ-Ί

abΓCbVj + λ[\κ\2+4πφ-%0 + 4πT]φ. (4.9)

It is shown in the appendix that if ηab is a metric such that | |7 α 6 — δab\\κs-\ +
\hab ~ δabWp *s sufficiently small, if the contents of the square brackets are in
L 1 (R 3 )Πi ϊ s " 1 (R 3 ) and if λ is sufficiently small then (4.9) has a solution φ tending to 1
at infinity. Moreover if bounds for \\-yab - δab\\κs, | | 7 α b - 6ab\\p and \\ρ\\λ + \\ρ\\Hs-ι
are given then a bound for H^H^ + A'^V^H^s is obtained. Here ρ denotes the
expression in square brackets in (4.9). Now the norms of ρ appearing in this estimate
can be estimated in terms of the Hs norm of nab, the Ks norm of ηab — δab and
the Hs~ι norm of Taβ together with a bound on the size of the support of Taβ. If
Eq. (4.9) is differentiated with respect to t then the resulting equation can be used to
obtain bounds on dtφ and its spatial derivatives in a manner similar to the above.

The next equation for which estimates are needed is

-{φ-ιdt)
2Rab + λ'ιΔΊRab = λ-\Nab + τab). (4.10)

Suppose that a solution of (4.10) is given with initial data (κab(0), dtκ,ab(0)).
The fundamental energy estimate for Eq. (4.10) is obtained by multiplying it by
ηacηbddthcd and integrating in space. Define

E = f \φ-λdtκah\
2 + \~ι\VRab\

2 + \hJ2dVΊ . (4.11)

Then the energy estimate takes the form

E(t) < E(0)

( t t V

I E{t')dt' +J Jλ-ι[Ί

acγd(Ncd + τcd)dtRah\ (t')dVΊ dt'Y (4.12)
0 0 R3 /

where the constant C depends on the norm in the space L°°([0,Γ),i^ s(R3)) of the
quantity ηab - δab for s > 3, the norm in the space L°°([0,T),Hs(R3)) of the
quantities κab and λ - 1 V α 0 , the L°° norm of dtηab, the norm of λ~ι/2fbc in the
space L°°([0,T),Hs-l(R3)): the L°° norms of φ and φ and a constant A such that
A~ιI < 7 < AI, where I is the identity matrix. This is proved in a way which is
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standard for quasilinear hyperbolic equations (cf. [16]). The important point is that
the only possible λ dependence of the constant C in (4.12) is through the quantities
\~ιVφn and \~ι/2Γbc and it will be seen below that the latter quantities can be
bounded in terms of quantities which do not depend on λ.

To estimate the second term on the right-hand side of (4.12) one could try to use
the estimate

JsabdtRab <cJ\S\2 + \dtκ\2 (4.13)

for any tensor Sab. This is sufficient for Nab and for most of the terms in τab. However
it is not sufficient to estimate the terms involving spatial derivatives Ta@ without
resulting in a loss of differentiability in the iteration to be carried out in Sect. 5. This
difficulty can be overcome by the device of doing a partial integration in time already
used in the proof of Lemma 2.1. The term to be estimated is schematically of the

t
form J Γ f(dtκ,VT) (£')] dt'. Now integrate by parts in time. The resulting spacetime

0 LM3 -
integral can be handled by integration by parts in space. After partial integration in
space the boundary term is of the form f ΓV/ί. Now estimate this by the sum of a

R3

small constant times the L2 norm of VAC and a large constant times the L2 norm of
Ta@. The former term can be absorbed into the energy and the latter can be estimatd
by expressing it as the integral of its time derivative from 0 to ί. If it is known that
Γ6

α

c is O(λ 1 / 2) then the estimate for λ" 1 / |V α £ 6 c | 2 coming from (4.12) implies a
similar one for λ" 1 J \daRhc\

2.
Now consider the higher derivatives of κ,ab. Differentiate (4.10) up to s — 1 times

(using partial, not covariant, derivatives) and rearrange the result to give a hyperbolic
equation for Dmft, m < s — 1. Let Em be defined by replacing K in the definition
of E by DrnκJ. An inequality similar to (4.12) can then be obtained with E replaced

s-l

by E + Σ Eι a n d the term involving N and r being replaced by terms involving
i=\

derivatives of N and r up to order s — 1. Here a bound for the Hs~ι norm of λ~ι/2Γbc

goes into the constant appearing for the following reason. Many terms of the form
\~ιDrnληDrniR with mι,m2 > 1 occur as source terms in the equation for Dmκ.
Hence it is necessary to have bounds for spatial derivatives of \~ι/2η. These can be
obtained from the equation

d + ΊcdΓίb- (4.14)

s-1

Note that the quantity E + ^ Ei defines a norm which is stronger than ||ftα6

2 = 1

\\dttίab\\Hs-\ because of the fact that it contains λ" 1.

5. Existence on a Uniform Time Interval

In this section the existence statement of Theorem 1.1 will be proved. First the
definition of regular initial data must be given.
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Definition. An initial data set (g^(λ), k^iλ), f°W) for ^ e Vlasov-Einstein system
depending on a parameter λ G (0, λ0] is called regular of order s if for some p > 6,

(i) g°ab(λ) - λδab belongs to the space LP(R3) Π Ks+2(R3)for each fixed λ,

(ii) k°ab(λ) belongs to the space Hs(R3)for each λ,

(iii) /°(λ) belongs to HS(R6) and has compact support for each λ.

It is of course assumed that gQ

ah{\) is a Riemannian metric for each λ.
If a regular initial data set satisfies the conditions (i) and (ii) occurring in the

hypotheses of Theorem 1.1 then the quantities η°ah = \~xg°ab and κ°ab = \~ιk°ab

satisfy the conditions
), ( 5 i )

The O-symbol is to be understood in the sense of the function spaces occurring in the
above definition, both in (5.1) and in the hypotheses of Theorem 1.1. Consider now
Eq. (2.30) on the initial hypersurface. Using the definition (3.3) the expression in the
square bracket in (2.30) can be brought into a form which does not contain φ. The
results of the appendix show that for λ sufficiently small this equation has a solution
φ which tends to 1 at infinity and that Vφ is O(λ) as λ —> 0 in the space Hs

It follows that if dtκab is defined with the help of (2.4) then it belongs to Hi

for each λ. Assumption (iii) of Theorem 1.1 implies that it is O(λ1//2) in that space
as λ —• 0. In this way data for the reduced system (2.29)-(2.31) can be constructed
from regular initial data for the Vlasov-Einstein system.

To prove the existence theorem an iteration will be set up. First define 70, κ0,
φQ, /O by extending the initial data 7 0, f° and the function φ° in a time independent
manner and defining κo(t) = κ° + (dtκ)°t. These functions do not satisfy Eqs. (2.29)-
(2.31) but do satisfy the desired initial conditions. If now 7 n , κn, φn and fn have
been defined the next iterate is obtained as follows. First solve (4.5) with φ and K
replaced by φn and κn and 7 0 as initial datum. Define 7 n + 1 to be equal to the solution
7. This should only be done on an interval [0, Tn) short enough so that 7 n + 1 is a
Riemannian metric. Next solve (4.9) with 7, K, φ and / replaced by the corresponding
quantities with a subscript n and define φn+ι to be equal to the solution φ. To ensure
the existence of the solution it may be necessary to reduce the size of Tn. The value
of λ0 must also be restricted in a way described below. Now solve (4.10) with 7
replaced by ηn and the quantities occurring in the definitions of Nab and rab replaced
by the corresponding quantities with subscript n. As initial data use KP and (dtκ)°.
Let κn+ι be equal to the solution R obtained. Finally, in order to obtain / n + 1 solve
(3.2) with 7, K and φ and / replaced by 7 n , κn, φn and fn+ι respectively and initial
datum /°.

The next step is to show that this iteration is bounded in certain function spaces
and that the Tn can be chosen so that Tn>T for all n, where T is a positive constant.
Define

an(t)= max sup{ | |7 m ( t)-o
0<m<n χ

bn(t) - max
0<m<n χ

-, + \\dtfm(t)\\2

Ha-2} (5.2)

(i)l|2oo + 1 ^ ^ ( 0 1 1 ^ + H^TO(*)|lL

^ + \\λ-^2Γm(t)\\2

Hs^ + \\D'-ι(dJm)(t)\\l} (5.3)
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Lemma 5.1. Let an(t) and bn(t) be the functions on [0, Tn) defined as (5.2) and (5.3).
Let λ0 be a positive constant. Define

Qn = K l 2 + 4π</r2(T0 0)n + 4πTn . (5.4)

Suppose that for some p < 6 the inequalities \\<yab - δab\\Ks-i + ||7α6 ~ δab\\P < c\
and λodl^ίOHoo + ||^n(Q||ijs-i) < C2 hold on the whole interval [0, Tn), where the
constants Cx and C2 are chosen so that Lemma Al is applicable. Then there exists a
constant C, only depending on the initial data, and positive real-valued functions D
and Df on R2 and R respectively which are bounded on bounded subsets such that for
all n > 1:

t

an+ι(t) < C + D(supan,supbn) ίan+1(t') + bn(t')dt', (5.5)

o

bn+ι(t)<D'(sup an). (5.6)

Proof This is an application of the various estimates derived for the Vlasov and
Einstein equations in Sects. 3 and 4. Note first that the required estimates for
| |7n(ί) - Ίn(0)\\Hs and \\dtηn{t)\\HS-\ follow from (4.6) and (4.7) respectively. The
estimates for | | f t n | |# s , dtκn\\HS-\ and | |A~1/2V^n | |/ / s-i are obtained from (4.12)

and the analogous estimate for E -f Σ ^% a s described towards the end of Sect. 4.

The inequalities (3.8) and (3.11) provide the desired estimates for | | / n | |#s- i and
\\dtfn\\Hs-2. This completes the proof of (5.5). The estimation of φn+ι and its spatial
derivatives is accomplished by applying the information on the solution (4.9) given
in Sect. 4. The quantity \\λ~ι/2fn(t)\\HS-ι and its spatial derivatives can then be
estimated using (4.8). Next apply the argument of the last paragraph of Sect. 3 to
estimate the last term in (5.3). Finally, the equation for φm implies an estimate for it
in terms of an. D

I claim that the inequalities (5.5) and (5.6) imply the boundedness of an and bn

uniformly in n on an appropriate time interval. To see this, first let Kx be a constant
which is greater than C and the supremum of ao(t) + bo(t). Next choose λ0 and T so
that if λ and t are restricted to lie in the intervals (0, λ0] and [0, T) respectively the
quantity | |7 α b - δab\\RS-\ + | |7 α b - δab\\p is small enough whenever an is less than
Kx so that the equation for φn+ι can be solved and (5.5) and (5.6) hold. Let K2 be a
bound for Df under the condition that s u p a n < Kx. Let K3 be a bound for D under
the conditions that supαn < K1 and sup6n < K2. Reduce the size of T if necessary
so that

(C + K2K3T)eκiτ < Kx. (5.7)

By induction an(t) < K and bn(t) < K2 for all t G [0, T) and all n. Thus the iteration
is bounded as claimed. This bounded iteration is what is needed to show the existence
of a regular solution of the equations, as will now be shown.

Definition. A solution (gab(λ),kab(\),φ(\),f(\)) of the Vlasov-Einstein system is
called regular of order s if for each λ,

(i) gab(λ) - λδab and its time derivative belong to L°°([0, T), KS(R3)),

(ii) kab(λ) belongs to L°°([0,T),Hs(R3)) and dtkab{\) belongs to L°°([0,Γ),
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(iii) φ(X) and its time derivative belong to L°°([0, T), Ks+ι (]&?)),

(iv) /(λ) and its time derivative belong to L°°([0, Γ), f F

The boundedness of the iteration implies on the one hand that the iterates converge
weakly to a limit in the spaces introduced in this definition and on the other hand that
they converge strongly to a solution of the Vlasov-Einstein system in the analogous
spaces of functions with E 3 replaced by any ball BR C M3 and s replaced by s — 1.
The latter fact follows from the Ascoli theorem for vector-valued functions [9].

6. Convergence to the Newtonian Limit

First it is necessary to get hold of the functions fN and U which occur in the statement
of Theorem 1.1. Now /(λ) is bounded in Cl([0,T),H8~l(]SL6)). Choose a sequence
{λn} converging to zero. Let fn = / (λ n ) . (This should not be confused with the
sequence of iterates used in the last section.) The sequence {/n} is bounded in
C1([0, T), Hs~ι(R6)) and hence, the Ascoli theorem for vector-valued functions, has
a subsequence which converges strongly in C°([0,T), ίP~ 2 (R 6 )) . Call the limit fN.
Next consider the sequence {λ" 1 ^ — φn)}9 where φn = φ(\n). This is bounded in
Cl([0,T) x M3)) and the sequence { λ ^ V ^ } is bounded in Cl([0,T),Hs(R3)). By
the type of argument used in the previous section it can be seen that, after passing
to a subsequence, {\~ι(l — φn)} converges uniformly on compact subsets to a limit,
which will be denoted by U9 and that for any R > 0 the restriction of λ ^ V ^
converges in C°([0,T), HS~1(BR)) to the restriction of Vί7. Moreover, using the
weak* convergence argument, U is bounded and VU is in L ° ° ( [ 0 , T ) , J F P ( R 3 ) ) . In
the same way it can be concluded that there is a sequence {λn} converging to zero
such that 7 n = 7(λ n) and κn — κ(λn) converge in suitable function spaces as n —• oc.
From Eq. (4.4) it can be seen that the Ricci tensor of ηn tends to zero as n —» oo.
Hence the limiting metric is flat. Consider now the time derivative of the connection.
This is given by Eq. (4.8). We know already that Vφ is O(λ) and that Vft is O(λ 1 / 2)
in certain spaces. Hence Eq. (4.8) implies that Γfe

α

c is O(λ1//2). Integrating in time
shows that the Christoffel symbols of ηah are O(λ1/2). Now the partial derivatives of
ηah with respect to the spatial coordinates can be written in terms of these Christoffel
symbols and ηah itself as in (4.14) and it follows that the partial derivatives of ηah

must be O(λ1//2). In particular the partial derivatives of the limit of the 7 n vanish and
so this limiting metric must in fact be given by δab. As a consequence the limit of the
κn must also vanish. The characteristics of the Vlasov equation converge uniformly to
those of the non-relativistic Vlasov equation with force term VU along the sequence
λ . Hence fN must coincide with the unique solution of the latter equation with the
C* initial datum /^ . Passing to the limit in (2.30) and (3.2) then shows that fN

and U satisfy the Vlasov-Poisson system with initial datum /^ . Unfortunately the
convergence statements derived up to now are not enough to ensure that the function
U satisfies the standard boundary condition that U —> 0 as r —> oo. On the other
hand it is known that U is bounded and that it solves the Poisson equation with
the compactly supported source T00(0). If U' is the unique solution of the Poisson
equation with this source for which U' —> 0 at infinity then U — U! is a bounded
solution of the Laplace equation and hence constant. Thus U can be made to satisfy
the desired boundary condition by subtracting from it this constant. It will be supposed
from now on that this alteration has been made so that U vanishes at infinity. Since
the solution of the Vlasov-Poisson system with a given Cι initial datum is unique, it
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follows that for every sequence {λn} the sequence {λ ιVφn, fn} has a subsequence
tending to the same limit, namely (VE/, fN). Hence the restriction of λ"1 Vφ to any
ball of radius R converges to VU in Hs~ι and fn converges to / in Hs~2. It is also
possible to show weak* convergence globally in M?.

The convergence statements obtained up to now can be improved by estimating
the difference between the Newtonian and relativistic solutions,

Δf(\~\φ - 1) + U) = -(Ίab - 6ab)dadb(λ-ιφ) - Ί

abΓ^b(λ-ιdcφ)

+ [\κ\2 + Aπφ-2Tm - 4τrΓ00(0) + 4πT]φ.

Hence

\\χ-\Φ -1) + u\\κ. < C(\\Ίab - ^11^.-1 + K J ^ - 2

+ \\T00-Tm(0)\\H.-2 + λ).

Differentiating (6.1) gives the estimate

iμ~V + ΰ\\κ> < C(\hab - SJIKS-I + \\dtΊab\\Hβ-ι

+ lk&llff'-2 + II^««6IIH-2 + ll̂ oo -TOOWHS-2 +

Using the definition of Too it can be shown straightforwardly that the terms involving
TQQ in (6.2) and (6.3) can be replaced in these inequalities by expressions involving

f-fN,
\\λ-ι(Φ - l) + u\\κ. < C(\\Ίab - δab\\κs-ι + | |καb |lH-2

+ I I / - / J V I I H - 2 + A ) - (6-4)

The inequality (6.3) can be modified similarly. Subtracting the Vlasov equation for
fN from that for / gives the estimate

t

\\f(t) - fN(t)\\2

HS-2 < ||/(0) - fN(.0)fHs-2 +Cj(\\f(t') - fN(t')\\2

HS-2

(6.

(6.2)

(6.3)

X2)dt' (6.5)

and an analogous estimate for \\f(t) — fN(t)\\H3-2. Equation (2.29) implies an estimate
of the form

-l < C

t

(6.6)

To close the argument and obtain a useful differential inequality, it remains to estimate
κab. This can be done by examining carefully the third term in (4.12). This is mostly
routine but there are two expressions which require particular care and these will be
handled explicitly here. The first, which arises from Nab is:

/
k-2\

<
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The other, which arises from rab, is J Ί Ί Ψ 1ooΊcd
attίabav

Ί
. To estimate

this, first note that Γ 0 0 - T0 0(0) can be controlled straigthforwardly so that T 0 0 can
be replaced without loss of generality by JΓ 0 0 (0). NOW the fact can be used that
T0 0(0) = — <9αT

0α(0). After this substitution has been made it suffices to integrate by
parts in space.

The quantity dtηah satisfies \\dt^ab\\Hs-ι < | |«αδl|#s-i. Furthermore:

habit) - KbWKs-l < habit) " TαfcWllff.-l + ll7α6(0) - «α6 | |H|-l - (6.7)

Define

α(ί) = sup{||7αb(ί) - 7 2 l
A

1 - fN(t)\\Hs-2 + \\dtf(t) - dtfN(t)\\2

HS_2} . (6.8)

Then the above estimates show that

a(t) < C ί λ1 / 2 + / a(t')dt' J . (6.9)
V 0 7

It follows using GronwalΓs inequality that a(t) = O(λ1/2).
The meaning of the order symbols in the statement of Theorem 1 can now be

explained. They refer to the function spaces obtained from those occurring in the
definition of a regular solution of the Vlasov-Einstein system by replacing s by s — 1.
In other words, convergence is obtained in a space involving one less derivative than
that where the existence of the solution has been obtained. Given this definition, the
conclusions (i)-(vi) of Theorem 1.1 follow from (6.9), (6.7), and (6.4).

7. Solution of the Constraints

In terms of ηah and κah these take the form

Γ 0 0 , (7.1)

c (7.2)

for a maximal hypersurface. Let μ = φ~2T00 and Ja = φ~ιTOa. Note that when
μ and Ja are expressed in terms of / and j a b using (3.3) then it is seen that they
do not explicitly depend on φ. To solve these equations we start with the following
λ-dependent objects:

(i) a metric j a b satisfying \ b = δab + O(λ3/2),

(ii) a non-negative real-valued function / of compact support on the mass shell
defined by ηah having the form / = /(0) + O(\1/2).

It is assumed that ηah - 6ab e # f (M3) for some δ in the interval ( - 1 , -1/2), that
/ e HS(R6) and that these objects depend continuously on λ in the given spaces.
The O-symbols here also refer to those spaces. Define μ and Ja in terms of / and
7 α 6 in the same way as μ = φ~2T00 and Ja — φ~ιTOa are defined in terms of / and
7 α 6 (i.e. by (3.3)). Then μ and Ja belong to HS(R3) and depend continuously on λ in
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this space. Now let κab be a traceless symmetric tensor satisfying Rab = O(λ !/ 2) and
7°bVo&kc = — 8τrJc. Tensors κab of this type can be constructed in a standard way
using the York decomposition. From these objects it is possible to determine initial
data for the Einstein equations by solving the equation [3]

Δηφ + (1/8) (-R^φ + \\R\2ψ-Ί) + 2πλμφ~3 = 0 (7.3)

and defining 7 = φAη, K, = φ~2R and f(pa) = φ~sf(φ2pa). Note that / is a
function on the mass shell defined by ηab. A computation shows that Ja = φ~6Ja

and μ = φ~sμ. It is well known that Eq. (7.3) can be solved for a unique φ which
tends to 1 at infinity and which has the property that φ — 1 belongs to a weighted
Sobolev space provided that j a b is close to δab in a weighted Sobolev space. Because
of assumption (i) above this will be satisfied when λ is close to zero. Note that the
condition δ > — 1 implies that if s > 2 the space H$(M?) is continuously embedded
in LP(R3) for some p < 6. Let φλ be the solution of the equation Δfφλ = — 2πμ(0)
which tends to zero at infinity. Then since U satisfies the Poisson equation and φ is
identically one when λ = 0 it follows that φ1 — (l/2)U. Now a comparison with
(7.3) shows that

3^2 (7.4)

Hence φ = 1 + \φλ + O(λ3/2). This can be used to calculate the Ricci tensor of
7̂  to order λ using the formula for conformal transformations. The result is that the
contributions of order λ on the right-hand side of (2.4) cancel so that assumption (iii)
of Theorem 1.1 is satisfied by the given initial data.

Now the significance of this assumption will be discussed. It is used only once in
the proof, namely to start the iteration. If it did not hold then it would be impossible
to choose functions (70, «0, /0) inducing the correct initial data for the reduced system
in such a way that the quantity α0 defined by Eq. (5.2) was finite. This consideration
makes it clear that the condition is essential for the above proof but leaves open the
possibility that it might not be necessary for the theorem. It also gives no clue as to
why the form of ηah used in this section leads to solutions of the constraints where
the condition is satisfied. An answer to these questions is suggested by the results of
[21] where it was shown that a necessary condition for the existence of a sufficiently
regular Newtonian limit is that the coefficient of λ2 in the expansion of the spatial
part of the metric (i.e. the coefficient of λ in the expansion of ηab), considered as a
linearised metric, has vanishing linearised Bach tensor. This means that it satisfies the
linearised version of the condition of conformal flatness. Another way of expressing
this would be to say that ηab is conformally flat to first order in λ. The technical
assumptions in [21] are not easy to compare with those used here and so instead
the relevant computations will be done directly in the present set up. Suppose that
(gab(X), kab(\), 0(λ), /(λ)) is a solution of th Vlasov-Einstein system which is regular
of order s and has all the properties contained in the conclusion of Theorem 1.1 except
that (ii) is replaced by kab(λ) = O(λ). Then passing to the limit in (2.3) implies that
kab(X) — o(λ). Now look at (2.4). In terms of the rescaled variables it reads:

dtκab = -λ" 1 V α V 6 0 + φλ~lRab + t r κ κ α 6 - lκacκ\
ιTab - 4πφ-2TooΊab + 4πTΊab . (7.5)

Under the given assumptions the third, fourth, fifth and seventh terms converge to
zero as λ —> 0. It follows that

dtκab - λ~ιRab = VaVbU + ΔUδab + o(λ). (7.6)
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In principle it might happen that each term on the left-hand side of (7.6) fails to
converge as λ —> 0 although their sum converges. For this reason it is difficult to get
a clean statement. To proceed further, suppose that the solution has enough regularity
properties so that dtκab has a limit as λ —> 0 in some sense which is strong enough to
allow this limit and the time derivative to be interchanged. Then dtκab must vanish in
the limit. So it is not reasonable to expect that Theorem 1.1 would continue to hold if
O(λ3/2) in condition (iii) were replaced by O(λ). Whether it could be replaced by o(λ)
remains an open question. With the assumption on the convergence of dtκab it can
be concluded that the limit of λ~ιRab exists. Its value is determined by (7.6). Now
consider the restriction which this implies on initial data, supposed to be differentiable
enough in λ so that on the initial hypersurface we can write

(7.7)

for some hab which does not depend on λ. The result is:

\ δab(dcddhab + dadhKd - dbddhac - dadchbd) - VcVdC/ + ΔUδcd = 0. (7.8)

Let Kcd denote the first of the three terms in this equation. If hab is thought of as
a linearised metric then Kab is its linearised Ricci tensor. Let K = δabKab. The
linearised Bach tensor of hab is defined to be

Babc = VcKab ~ Vfctfoc + \ (δabVcK - δacVbK). (7.9)

Lemma 3 of [21] says that if hab belongs to a suitable weighted Sobolev space and
the corresponding Babc vanishes then there exist a function F and a covector Xa,
both belonging to weighted Sobolev spaces, such that

Kb = Fδab + VaXb + VbXa . (7.10)

Equation (7.8) implies that the linearised Bach tensor of hab vanishes and so hab

must be of the form (7.10). Substituting this back into (7.8) gives F = 2U. Thus

Ίab = δabd + 2XU) + X(VaXb + VbXa) + o(λ). (7.11)

In the special case Xa = 0 this means that j a b is conformal to a metric ηah of the
form δab -f o(λ), which is essentially the ansatz used above to construct solutions of
the constraints.

It remains to discuss the meaning of the quantity Xa. This quantity represents
gauge freedom in the sense that it can be transformed away using a λ-dependent
change of coordinates. Unfortunately, for a general solution of the Vlasov-Einstein
system the coordinates which would be required are not consistent with the condition
gOa = 0 used in this paper. This fact is relevant to the discussion of the importance
of condition (iii) of Theorem 1.1 for the following reason. To get clear-cut results it
would be very useful to have (7.7) holding for the whole solution and not just on the
initial hypersurface. The discussion in [21] suggests that in order to do this it would
be necessary to analyse the post-Newtonian equations, i.e. to extend the asymptotic
expansions in the conclusions of Theorem 1.1 by an additional power of λ. The post-
Newtonian equations are very complicated and the only thing which makes them
amenable to analysis at all is the use of a coordinate condition which sets Xa to
zero. As stated above, this cannot be done in the coordinates used in the proof of
Theorem 1.1. Thus it seems likely that a full clarification of the meaning of condition
(iii) would require a generalisation of the results of this paper which allows coordinate
conditions better adapted to the post-Newtonian equations.
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Appendix 1. Some Elliptic Theory

The discussion here will be limited to results which are not easily extracted from the
literature. For background material on the Poisson integral see [7]. In this appendix
A always denotes the Laplacian of the standard flat metric on R3. For any function φ
on R3 and a positive real number ε let φε{x) — φ(εx). If / is a continuous function
belonging to LP(M?) Π L°°(IR3) for some p < 3/2 then it possesses a Newtonian
potential u which is C 1 . This is a solution of the Poisson equation Au — f in the
sense of distributions and can be obtained as the limit for ε —> 0 of the Newtonian
potentials of the compactly supported functions φ£f, where φ is any C°° function
of compact support which takes the value 1 in a neighbourhood of the origin. The
Newtonian potentials of the functions φεf can be represented by the familiar Poisson
integral. They tend to zero at infinity. Pick a sequence εn tending to zero and let
fn = φεj. Then the fn are bounded in L°°(IR3) and converge to / in LP(R3). Let
un denote the Newtonian potential of fn. A useful estimate for the Poisson integral
will now be derived (cf. [2]). For any R > 0:

J \χ-y\ J \χ-y\ J
\χ-y\<R \χ-y\>R

f(y) dy

x-y\

Here it has been assumed that the conjugate exponent q of p is greater than 3, which
implies that p < 3/2. Putting R = (Wfllp/WfWoo^3 £ i v e s t h e estimate

Klloo <^l/nll^/3|l/nllL~2p/3

5 P<3/2. (Al)

The derivatives of un can be estimated similarly.

^ / 3 , P<3. (A2)

These estimates show that un and its first derivatives converge uniformly to u and
its first derivatives. In particular u tends to zero as |x| —• oc. Now all the functions
un have the property that un(x) = Od^l" 1 ) and Vun(x) = O(\x\~2) as \x\ -+ oo.
Hence a partial integration shows that

IIVnJI^KIUI/JI,. (A3)
If / G Lι(R?) it follows that Vun is a bounded sequence in L2(R3). Since this
sequence also converges pointwise it follows from Fatou's lemma that Vu is in
L2(R?) and that it satisfies the equivalent of (A3). Putting this together with (Al)
gives

^ f (A4)

Another estimate which is satisfied by u when / G HS(M?) is

\ \ d a d b u \ \ H S < \\f\\HS . (A5)

It has now been shown that if / G L^IR3) Π HS(R3) then its Newtonian potential u
3 ι 3

/ p
belongs to L°°(M3) and dau belongs to Hs+ι(R3). In the following another related
result will be required. Let Hab be a tensor on R3 whose components belong to
Lp(R3) Π L°°(R3) for some p < 6 and which has the property that dcH

ab belongs
to Hs~ι(R3). Let h be a function which is bounded and whose first derivatives
are in HS(R3). Consider the equation Au = Habdadbh. By Holder's inequality the
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expression on the right-hand side of this equation belongs to Lq(R3) for some q < 3/2.
Thus it can be concluded from the above discussion that u is in L°°(IR3) and an
estimate for its norm in that space follows from (Al). Now let H%b — φε Hab and
let un be the solution of Λun = H%bdadbh,

Thus the L2 norm of Vun is bounded and it is possible to argue as above that Viz-
is in L2(R3) and that its norm can be estimated in terms of {{H^W^, \\daH

ab\\2 and
I I | |
Lemma Al. Let 7 o 6 be a Riemannian metric such that Jab—δab € Lp(R3)ΠKs(R3)for
some p < β and some s > 3 and let Γa be its contracted Christojfel symbols. Let ρbea
function belonging to Lι(R3)ΠHs~~ι (R3) and λ a non-negative real number. Then there
exist positive constants Cx and C2 such that if | | 7 α 6 - δab\\p + | | 7 o 6 - δab\\Ks-i < Cx

and (\\Q\\I 4- ||^|liίs-i)λ < C2 then the equation

Δφ = (δab~Ί

ab)dadbφ+Γadaφ + λρφ (A6)

has a unique solution with the property that φ —> 1 as \x\ —•> oo. Moreover for any
k < s the solution satisfies an estimate of the form

H λ " 1 ^ - DHoo + HA"1 V0 | | f f f c < C (A7)

for a constant C only depending on Cλ, C2, \\ηah ~ δab\\κs a n d \\ρ\\χ + \\ρ\\Hs-\.

Proof. Define an iteration by solving

AΦn+ι = ( ^ 6 - Ίab)dadbφn + Γadaφn + Xρφn , (A8)

with φn+ι -» 1 as \x\ -> oo and φQ = 1. Let qn = Γadaφ + λρφ. If φn e Lc

and Vφp e HS{R3) then qn G Lι(R3) Π Hs~ι(R3), and so by the above remarks
concerning the Poisson equation the solution 0 n + 1 exists. Furthermore

+ \\Q\\H*-0)

(Halloo+ IIWn | |H*) (A9)

for any k with 3 < k < s. Thus there exist constants Cx and C2 such that if the
inequalities | | 7 α 5 - δab\\LP + | | 7 α b - δab\\κ3 <CX and {\\Q\\X + | | ρ | | H β - i ) λ < C2 hold
then

n-l\\oo

for some K < 1. It follows that {φn} and {V0n} are Cauchy sequences in L°°(IR3)
and H3(R3) respectively and hence φn converges to a solution of (A6) with φ —> 1
as \x\ —> oo. This solution satisfies

IIΦIloo + IIV0||H3 < c (Aii)
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for some C depending only on Cx and C2. Dividing (A6) by λ gives

Δ(λ'ιφ) = (δab - Ί

ab)dadb(\-ιφ) + Γada(λ~ V) + ρφ (A12)

Estimating the quantity X~ιφn in the same way as φn was estimated above shows
that {λ~\φn - 1)} and { λ ^ V ^ } are Cauchy sequences in L°°(R3) and F 3 ( E 3 )
respectively and that (A7) holds for k = 3. To see that it is true for any k < s, use the
information we already have in the right-hand side of (A 12). Using the estimates for
the Poisson equation stated at the beginning of this appendix then shows that if the
hypotheses of the lemma hold and if s > 4 we obtain (A7) for k = 4 after possibly
reducing the size of Cx. This process can be repeated until k — s. D

Appendix 2. Estimates for Modified Sobolev Spaces

This appendix is concerned with proving some useful estimates for the modified
Sobolev spaces if S(R 3) introduced in Sect. 3. Recall that

II/IIA:. = II/IIOO + I | V / | | H . - . . (A13)

The results to be proved are analogues of the results (3.4) and (3.5) for functions
belonging to ordinary Sobolev spaces and are proved in a similar way. Estimates of
this type are discussed in [14, 16 and 23]. First analogues of (3.4) will be discussed.
Supposed that f,g belong to ifs(IR3) for some s > 2. Note first the obvious fact that

< ll/IUMIoo If α is a multi-index with 1 < \a\ < s then

Da(fg) = D°fg + fDag + Σ ^ ϊ °βίDΊ9 • (A 14)

The sum is taken over all multi-indices β and 7 with \β\ + I7I = |α | and
max(|/?|, 171) < \a\. The first estimate we wish to prove is that

\\DaUg)\\2<C\\f\\κa\\g\\Ks (A15)

for some constant C. It is elementary to estimate the first two terms in (A 14) by the
right-hand side of (A 15) and so we can concentrate on the third term. Consider one
of the summands there. Suppose first that either β or 7 is less than s — 3/2. Without
loss of generality we can assume that it is β. Then

\\D^fD^g\\2 < \\D^f\U\D^g\\2 < C\\D^f\\H2\\D^g\\2. (A16)

If on the other hand both β and 7 are greater than s — 3/2 then it can be concluded
that s < 3. The only estimate which remains to be done to establish (A 15) is

\\DfDg\\2 < | |I>/| | 4 | |£>5| | 4 < | |£>/ | | H . \\Dg\\Hl , (A17)

where the Holder and Sobolev inequalities have been used. The inequality (A 15)
shows that multiplication is a continuous mapping from iί s(IR3) to itself. This is a
statement of a weaker type than (3.4). A stronger result could presumably be obtained
using the Gagliardo-Nirenberg inequality but that will not be attempted here since
(A 15) is sufficient for the applications in this paper. In a similar way it can be shown
that if / G HS(R3) and g e KS(M?) for s > 2, then fg e HS(R3) and

s<\\f\\Hs\\g\\κs. (Ai8)
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An estimate related to (3.5) can also be obtained if s > 3, namely

\\Da(fg) - fDag\\2 < C\\f\\κs \\g\\κs-ι , 1 < \a\ < s. (A19)

The final estimate which is required concerns composition with a Cr function.

Suppose then that U is an open interval in R and F:U -^ R a Cr function whose

derivatives up to order r are bounded on U. Let / be a function in K5(M3), where

2 < s <r, whose range is contained in U. Now

Dα(F(f)) = Σ Crαi...αι -^Dα>f... Dαif, (A20)

where 1 < k < \α\, \αλ\ + . . . + \αL\ — \α\ and | a j > 1 for all ί. By an argument

similar to those given above it is seen that the terms on the right-hand side of (A20) can

be estimated straightforwardly unless s — 2. In that exceptional case the embedding

Hι(R3) -• L4(R3) can be used. There results the estimate

\\F(f)\\κs<C\\F\\Cr\\f\\s

Ks. (A21)

In this paper (A21) is only needed to estimate φ~~ι and the inverse metric ^αh. In

both cases it is applied to the function F(f) = 1// with U = (c, oc) for some c > 0.
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