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Abstract: We prove that the GNS-representations of quasifree, Hadamard states on
the Weyl-algebra of the quantized Klein-Gordon field propagating in an arbitrary
globally hyperbolic spacetime are locally quasiequivalent. We also show that these
representations satisfy local primarity and local definiteness if the spacetime is
assumed to be ultrastatic. This implies that the local von Neumann algebras associated
with these representations are type IIIX -factors for sufficiently small regions in
ultrastatic spacetimes.

1. Introduction

Since Hawking's remarkable paper in 1975 [Haw] on the particle creation by black
holes due to quantum effects, significant progress in the mathematical foundations of
quantum field theory in curved spacetime has been made. In particular, it has been
realized that a very concise and mathematically rigorous description of quantum field
theory in curved spacetime may be reached by the methods of algebraic quantum field
theory. These methods have already been successfully applied in the case of linear
fields propagating in the background of globally hyperbolic spacetimes and have
given important insights for instance in the interplay of the geometrical structure of
the spacetime background and the algebraic structure of the theory (see e.g. [Ban;
Dim; FH1,2; Hl,2; HNS; Kay 1,3,5; KW; LR] and references cited therein).

Still, there remains the question as to which states, if any, play the role of the
"vacuum" state as in the Minkowski-spacetime quantum field theory in selecting
the set of "physically relevant states." To clarify what is meant by that, recall that
in algebraic quantum field theory the description of a system (e.g. a quantum field
propagating in a fixed spacetime background) is given through the specification of a

* Supported by the DFG, SFB 288 "Differentialgeometrie und Quantenphysik"
** Present address: II. Inst. f. Theor. Phys., Universitat Hamburg, Lumper Chaussee 149, D-22761
Hamburg, e-mail: iO2ver@dhhdesy3.bitnet



508 R. Verch

pair (A, S), where A is the algebra of quasilocal observables of the system, arising
(in the case of interest for us) as the C*-inductive limit of a net O ι—> A(O) of C*-
algebras which constitute the algebras of local observables which can be measured
within finite spacetime regions O (i.e. Ό is an open subset of the spacetime-manifold
with compact closure). S is the set of all "physically relevant states" of the system
and is a specified subset of the set A*+ of all positive, linear, normalized functionals
on A.

On grounds of principle one expects that S should be specified in such a way
that the principles of local definiteness, local primarity and local quasiequivalence (or
local normality) are satisfied, which we formulate as follows with the convention that
πω denotes the GNS-representation of ω G S, and Ίlω(O) := πω(A(O))".

Definition 1.1. For the description (A, S) of a physical system, we define:
1. Local Definiteness: f] Kω(O) = Cl for all points p in the spacetime and ω e S.

2. Local Primarity: fcω(O) is a factor for all ω G S.
3. Local Quasiequivalence: πω and π ώ are locally quasiequivalent for all ω,ώ G <S.

We give a few brief comments on these requirements, for further discussion see
the references [HI; HNS; Kay5; KW; LR] and, in particular, the recent book by Haag
[H2]. There appears to be some overlap concerning the motivation: Local definiteness
and local quasiequivalence imply that there are no nontrivial measurements of
vanishing spatio-temporal extension o n ω G <S, which corresponds to the idea that
physical states should have a finite spatio-temporal energy-density. Consequently,
physical states cannot be distinguished by measurements at single spacetime points.
Local primarity means that there are no macroscopic, or classical, observables which
could be measured within finite spacetime regions on ω G S. This is clearly expected
fur sufficiently small spacetime regions O, by the experience that in the small the
world obeys "quantum laws." Similarly, the condition of local quasiequivalence rules
out the possibility of local superselection rules, which are expected to be phenomena
of global or topological nature.

We have not given a precise statement of what we mean by "local quasiequiva-
lence." There are at least two reasonable interpretations of that (see the footnote on
p. 70 of [KW]) which are, as has already been remarked in [LR], equivalent in the
presence of local primarity. What we mean by local quasiequivalence is the following:
Given an open spacetime region Ό with compact closure, πω\A(O) and πώ\A(O) are
quasiequivalent, that is, there is an isomorphism βo : ΊZω(O) —» ΊZώ(O) such that
Po ° πω(A) = πώ(A) for all A G A(O).

It is also expected that S forms a convex subset in A*+. This is automatically
satisfied if we assume that S is maximal in the sense that if some state ω0 is in
5, then all states ω for which πω is locally quasiequivalent to πω are also in S.
(If ω0 satisfies conditions 1 and 2 of Def. 1.1, then so do all ω thus obtained by
local quasiequivalence, hence the assumption is consistent.) Then S is the set of
all ω G A*+ lying locally in the folium of ω0, i.e. for a spacetime region O with
compact closure there is a density matrix ρo ω on the GNS-Hilbertspace of ω0 such
that ω(A) = tτ(ρo ωπω (A)) for all A G A(O). In this situation ω0 determines

an equivalence class, S, in A*+ with respect to the equivalence relation "local
quasiequivalence."

For Minkowski-spacetime, there is an obvious choice for a preferred physical state
ω0: The vacuum, which is mainly characterized by the invariance under Poincare-
transformations and the spectral condition. But on a generic spacetime we do not
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have symmetries that could likewise serve to single out a distinguished state as
the vacuum. However, there might be classes of certain preferred states which are
regarded as physical states, somehow selected and specified. If So C A*+ is such
a class of preferred states, then the question is if all ω0 e <S0 define the same local
quasiequivalence class <S of states, and if they satisfy 1 and 2 above. Provided this is
the case, one may choose the set consisting of all the states lying locally in the folia
of the states in So as the set of all physical states. So, if one has made a choice of
<S0, one must check if the requirements of Definition 1.1 hold for all ω,ώ £ <S0.

Now we take a look at three prominent candidates for classes <S0 in the case that
our system is the Klein-Gordon field propagating in some spacetime (M,g). These
are

(a) So — set of all quasifree states possessing scaling limits at all spacetime points
and satisfying local stability,
(b) <S0 = set of all adiabatic vacuum states,
(c) So = set of all quasifree Hadamard states.

Let us give brief comments on these classes of states.
(a) The notion of "local stability," which roughly amounts to a suitable local
replacement of the spectral condition, has been introduced by Haag, Narnhofer and
Stein [HNS] (to which we refer for full details, see also [FH1; H2]). These authors
seem to have first formulated the requirements of Definition 1.1, which they refer
to as conditions for what they call "principle of local definiteness." Essentially, they
show that local definiteness implies both that scaling limits are those of the free,
massless theory in flat spacetime, and local stability. However, they also show that
the scaling limit assumption together with local stability is not sufficient to guarantee
local quasiequivalence.
(b) An "adiabatic vacuum" (see [LR] and references therein for full details) is a state
which satisfies a suitable condition restricting its high frequency behaviour. Lϋders
and Roberts [LR] proved that all adiabatic vacuum states on the algebra of quasilocal
observables of the Klein-Gordon field in Robertson-Walker spacetimes are locally
quasiequivalent and locally primary.
(c) We shall quote the full definition of "Hadamard state" (due to [KW]) and list a
number of relevant properties in Appendix C. Suffice it to say here that the Hadamard
condition amounts to a certain condition on the short distance behaviour of a quantum
state. (We note that (b) and (c) are more restrictive than (a). We also note that adiabatic
vacuum states can only be defined for a restricted class of spacetimes (e.g. Robertson-
Walker spacetimes) and thus the Hadamard condition is more general. However, the
relationship between Hadamard states and adiabatic vacuum states (when the latter can
be defined) is not fully investigated yet. See [LR] and literature cited there for further
discussion.) We shall also give some very brief comments on the motivation of (c).
Apparently, the main motivation to consider Hadamard states originated from the wish
to obtain a reasonable expression for the (expectation value of the) energy-momentum-
tensor of quantum fields in generic spacetimes. This, in turn, was motivated by the
attempt to gain a more complete description of gravity incorporating the "back-
reaction"-effects of particles created in strong gravitational fields and thus to arrive at
a "semiclassical" description of gravity whose central equation is the "backreactίon-
equation" or (ί generalized semiclassical Einstein equation,"

) ω (1.1)
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(see e.g. [Wall]). Wald formulated a set of axioms for (Tμv)ω so as to make it an
object giving reasonable physics and to make it "as independent as possible" from the
renormalization procedures necessary for its definition. It turned out that for the Klein-
Gordon field in globally hyperbolic spacetimes, (Tμu)ω can be defined for Hadamard
states ω such that Wald's axioms are fulfilled. The status of the ambiguity that Wald's
axioms still allow for (Tμv)ω has been source of some discussion and it seems that
this question has not reached a final answer yet (see [Ful; Kay5; KW; Wall,2] for
further discussion). However, what we just remarked should explain the interest in
Hadamard states and the reason why they are assumed to be "physically relevant."
In fact, a number of important investigations concerning the properties of Hadamard
states have been carried out ([FNW; FSW; GK; KW; Rad] are only a few significant
references). It should, however, be remarked that a fully satisfactory definition of
Hadamard states was first arrived at in the article by Kay and Wald [KW].

The results of the present work are as follows. We prove that the GNS-
representations of any two quasifree Hadamard states on the Weyl-algebra of the
massive Klein-Gordon field in an arbitrary globally hyperbolic spacetime are locally
quasiequivalent. That this should hold has already been conjectured in 1979 by Kay
[Kay2] and has been re-conjectured a couple of times since [GK; Kay5] (cf. also
[H2]). We also show that the states of the just described type are locally primary and
definite (i.e. they satisfy 1 and 2 of Definition 1.1) for ultrastatic, globally hyperbolic
spacetimes (local primarity then holds for a class of regions O forming a base of the
spacetime topology). Further, we can use a result by Wollenberg [Wol] to show that
in the ultrastatic situation, ΊZω(O) is a factor of type ///j for all quasifree Hadamard
states of the Klein-Gordon field and sufficiently small regions O.

This work is organized in the following way. In the second section we summarize
basic material about the Klein-Gordon field in globally hyperbolic spacetimes. In
Sect. 3 we present the quasiequivalence result. In Sect. 4 we establish the results on
local primarity and local definiteness in ultrastatic spacetimes. Some technical details
will be relegated to the Appendix.

2. The Klein-Gordon Field in Globally Hyperbolic Spacetimes

We start our discussion by recalling that a globally hyperbolic spacetime is a pair
(M,g) which is a four-dimensional, time-oriented Lorentz-manifold with signature
(H ) (note that we understand a manifold to be orientable, connected, paracom-
pact, smooth and Hausdorff, without boundary) possessing a smooth foliation into
smooth, spacelike Cauchy-surfaces (see [Die]): This means that there is a diffeomor-
phism F : R x M —» M, where M is a smooth, three-dimensional manifold such
that for all t e R, Mt := F({t} x M) is a spacelike Cauchy-surface for (M,g). Then
{τt}, t e R, defined by τt : F(to,x) f-» F(t0 + t,x) gives rise to a one-parametric
group of diffeomorphisms of M which, however, need not be isometries of (M,g).
But there are classes of spacetimes where this is the case, and we shall define a very
special class of those, namely the ultrastatic spacetimes.

Definition 2.1. Let (M, 7) be a smooth, three-dimensional Riemannian manifold, and
let (xl) be a local coordinate system for M. Define M. := R x M and define a
Lorentzian metric g on M. by setting the coordinate expression of g in the chart (t,xι)
equal to dt2 — η- dxι dx3. We call this (Λ4, g) the ultrastatic spacetime foliated by
(M, 7), and Mt := {t} x M, t e R the natural foliation of M (in Cauchy-surfaces, if
each Mt is a Cauchy-surface).
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One can easily show that the vector field ξa = (dt)
a is a timelike Killing vectorfield

which is orthogonal to the hypersurfaces Mt. Moreover, one can show that the
Mt are spacelike Cauchy-surfaces for (M,g) if and only if (M, 7) is a complete
Riemannian manifold, in which case the ultrastatic spacetime foliated by (M, 7) is
globally hyperbolic [Kayl]. This situation will be of interest for us later on.

A consequence of global hyperbolicity is the well-posedness of the Cauchy-
problem for hyperbolic differential equations. To ease our way of speaking, we shall
from now on always assume that our Cauchy-surfaces are spacelike. We shall consider
the Klein-Gordon equation (hereafter referred to as KG-Eq.) on a globally hyperbolic
spacetime (Λ4,g),

(VαVα + m2)(^ = 0, (2.1)

where m is a positive constant, and V is the Levi-Civita connection of g.
From now on, all spaces of functions, like V(Λ4), L2(Λ4,dη) etc. are meant to

be spaces of real-valued functions unless otherwise indicated (by a subscript C) -
where V(Λ4) = CQ°(AΛ), £(ΛΊ) = C°°(Λ4) are spaces of testfunctions endowed
with locally convex topologies as defined in [D]. Important sets of causal dependence
of subsets O of Λ4 are J^iO) = set of all points p G Λ4 which can be reached
by future(+)/past(—)-directed causal curves emanating from O (called the causal
future/past of O), J(O) = J+(O)UJ~(O), D±(O) = set of all points p G JHO) such
that every past(-h)/future(-)-inextendible causal curve starting at p passes through
O, and D(O) = D+(O) U D~(O) (called the domain of dependence of O, or the
diamond based at O). See [Wal3] for further discussion. Notice that we shall also
define 0(O) := int(D(O)).

The well-posedness of the Cauchy-problem for the KG-Eq. (2.1) has the conse-
quence that there are two unique continuous linear maps E^ : V(Λ4) —* E{M) with
the property

(V°Vα + m2)E±f = / = E±(VaVa + m2) f (2.2)

for all / G V(M) and
supp(E±f) C J^suppί/)) (2.3)

(see [Dim]). They are called the advanced(-f-) and retarded(—) fundamental solutions
of the KG-Eq. (2.1). E := E+ - E' is called the propagator of the KG-Eq., and by
(2.2) it follows that

(VαVα + m2)Ef = 0 = £(V α V o + m2)f (2.4)

for all / G V{M). So E maps V(M), by (2.3), to the set of smooth solutions of (2.1)
which have compact support on Cauchy-surfaces (and one can show that this map is
surjective, see [Dim]). Now let C be any Cauchy-surface of (M.,g) and let C^ be an
open subset of C. Define DCH< := V(C*) Θ V(C*) and

where dηc is the induced measure on C\ it is easy to see that 6C^ is a symplectic
form on D ^ . Now let K := V(M)/keτE, and [.] : V(M) -> if the quotient map.
Further, let 0(C*) = int(X>(C*)) be the open interior of the diamond based at C* and
define Kc^ := [P(O(C*))] We define for [/], [h] G Kc^

:= J fEhdη,
M
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dη denoting the metric-induced measure on M. If C* is itself a Cauchy-surface, we
will simply write K for κc^, since it is independent of the choice of the Cauchy-surface
C. The following proposition can be inferred from Lemmas A 1 and A3 in [Dim].

Proposition 2.2. (a) (Dc*>^c*) and (^c*'^c*) a r e symplectomorphic symplectic
spaces. The symplectomorphism

is given by

where na is the future-directed unit-normalfield on C.
(b) If N is any open neighbourhood, in Λ4, ofC*, then Kc^ C [Ί)(λί)].

To a symplectic space (Z,ζ) there is associated (uniquely up to C* -algebraic
equivalence) its Weyl-algebra A[Z, ζ], which is a simple C* -algebra generated by a
family W(z)9 z e Z, of unitary elements satisfying the Weyl-representations of the
CCR,

W(z) W(z) = e~ϊζ(Z}2) W(z + z)

for all zyz E Z. For the symplectic space (Z, ζ) = (K, n), we refer to Λ[K, K] as the
Weyl-algebra of the KG-field in the globally hyperbolic spacetime (.Λ/f, g).

One can show that upon defining for open subsets O of M with compact closure,
Λ(O) as the C*-subalgebra of A[K,κ] generated by {W([f]) \ f e V(O)}9

O \-^ A(O) is a net of local observable algebras (see [Dim]), of which the most
prominent properties are

A{O)dA(Oλ) for OdOλ, (2.5)

W(0M((9i)] = {0} (2.6)

if the regions O and Όx are spacelike separated,

) C A{M) (2.7)

if C^ is an open subset of a Cauchy-surface and λί an open neighbourhood, in λi, of

c*.
The last relation (2.7) is clearly implied by Proposition 2.2(b). Notice also that we

have
κcJ. (2.8)

3. Local Quasiequivalence

Let ω be a state (a positive, linear, normalized functional) on the Weyl-algebra A[Z, ζ]
of some symplectic space (Z, ζ), and let (Hω, πω, Ωω) be the GNS-representation of
ω. Assume now that for every z G Z the unitary one-parameter group 11—> πω(W(tz)),
t G R, is strongly continuous and that Ωω is in the domain of definition of its generator
Φω(z). Then the two-point function λω of ω exists and is given by

Xω(z,z):=(ΦJz)Ωω,ΦJz)Ωω)

for all z,z e Z. λ is a bilinear form on Z (with values in C).
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In the case that (Z, ζ) — (K, K) we call

ΛJf, h) := λjίfl [h]) V/, h e V(M)

the spatio-temporal two-point function ofω. It is easily proved that Λω is a bi-solution
of the KG-Eq., i.e.

^ ( ( V α V o + m 2 ) / , h) = 0 = Λ J / , (VαVα + m2)/ι) (3.1)

for all fyh e T>(M), by writing \ω(., .) = λ J T " 1 o T c ^ T ^ 1 o T c .) for some
Cauchy-surface C and noting that T c((VαVα + m 2 )/) = 0 for all / e P ( M ) , which
follows from the definition of Tc in Proposition 2.2 and from Eq. (2.4).

Let α bea state on the Weyl-algebra Λ[Z, ζ] of some symplectic space (Z, 0 and
assume that the two-point function λω of α> exists.

Definition 3.1. ω is a quasifree state if there exists a real scalar product μω on Z
such that:

1. λjMO = μw(M) + ^ C(M),

2. (C(M))2 < 4μω(z,z)μω(z,z),

3. cj(W (̂2;)) = e x p [ - i / x ω ( ^ ^ ] ,

/or α// z,z e Z.

If W is a complex Hilbert-space, we denote by FS(Ή) the symmetric Fock-space
over the one-particle space 7ί, and define

WF(χ) := exp [z(α+(χ) + α(χ))] (3.2)

for all x £ 7ί, where a and α + are the usual annihilation and creation operators,
respectively. ΩF = 1 Θ 0 Θ 0 . . . will denote the Fock-vacuum. With this notation,
we quote the following characterization of quasifree states from [KW]:

Proposition 3.2. Let ω be a quasifree state on A[Z,ζ]. Then there exists, uniquely
up to unitary equivalence, a one-particle Hilbert-space structure for ω, which consists
of a pair (k,7ΐ), where H is a complex Hilbert-space and k : Z —> Ή a real-linear
injective map, with the properties

k(Z) + ik(Z) is dense in H ,

and

(k(2), k(z))H = λjz, z) = μω(z, z)+^ ζ(z, z)

for all z^z G Z, such that the GNS-representation O~ίω,πω,Ωω) is given by
(Fs(H),πF,ΩF), where

πF(W(z)) := WF(k(z)) \Jz e Z.

(W(z) are the Weyl-representers of the CCRJ
ω is pure if and only if the range o/k is dense in H.

To formulate an important result which we shall use in the proof of the local
quasiequivalence of quasifree Hadamard states on the Weyl-algebra of the KG-field
in globally hyperbolic spacetimes we need to introduce some further concepts. Let ω
be a quasifree state on the Weyl-algebra A[Z, ζ], with associated real scalar product
μω on Z. Denoting the completion of Z with respect to the topology induced by
μω by Z, (Z,μω) becomes a real Hilbert-space. By estimate 2 of Definition 3.1, ζ
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posesses a unique extension ζ to Z satisfying the same estimate. Then there is, by
Riesz's representation theorem, a unique bounded linear operator R on Z such that

ζ(y,z) = μJy,Rz) (3.3)

for all y,z G Z. R will be called the polarizator of ω. It is easily seen that R is
antisymmetric, i.e. R* = - R. Another property of R is derived from the following
Lemma, where πω denotes as usual the GNS-representation of ω.

Lemma 3.3. ω is primary, i.e. πω(A[Z, ζ])" is a factor, if and only if one of the
following is fulfilled:
(a) ζ is a symplectic form on Z,
(b) R is injective and its range is dense in Z so that R~x is a densely defined (possibly
unbounded) linear operator in Z.

(a) is proved in Proposition 11 and Theorem 3 of [MV].
(b) If y e Z is such that μjiy, Rz) = 0 for all z G Z, this means ζ(y, z) — 0 for all
z e Z and hence y = 0 if ζ" is a symplectic form an Z. So R has dense range, and
injectivity follows from the antisymmetry of R. On the other hand, injectivity of R
clearly implies that ζ is a symplectic form, i.e. (a) and (b) are equivalent. D

Now consider two quasifree states ω3, j = 1,2 on A[Z, ζ] and suppose that their
associated real scalar products μ3- on Z induce the same topology. It is then clear by
the last Lemma that both quasifree states will be primary if and only if either of them
is primary. Also, if we assume primarity and denote by R3 the respective polarizators
of u)j, then the following holds.

Lemma 3.4. RJR~k

ι, j , k = 1,2, extend to continuous operators on (Z, μz), I = 1,2.

Proof The case j = k is trivial. For the general case, observe that for all x G Z
and all y G domCR^1) one has μ^x.R^R^y) = ξ(x,R^ιy) = μk(x,y) and so the
lemma follows from the equivalence of the norms induced by the μ3 and the fact that

domCR'1) is dense in Z (j = 1,2). D

With the assumptions on the ω^ j — 1,2 as before, let Zc := Z φ iZ be the

standard complexification of Z, let ζc and μ^ be the standard complexifications 1 of

C and μj9 j = 1,2, on Z c , define Γ(z θ iz) := z θ - iz for all ̂ Θ ^ G Z c , and set

7 := iζ"C Then (Zc,Γ,η) is a p t e ^ space in the sense of Araki, see [AY]. Using

property 2 of Definition 3.1, one can show that

5, (y, z) := μf(y, z) + 1 7(y, z) Vy, z e Z c

are polarizations in the sense of [AY]. Then we have (., . ) s . — 2μ^ in the notation of

[AY]. Define bounded, positive C-linear operators $^,$2 and S2 and Zc (the closure
taken with respect to the topology of any of the μ^ as the topologies of the μ0 are
by our assumptions equivalent) by

1 Defined so that they are conjugate-linear in the first, linear in the second variable, in line with the
convention used in [AY]
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It is easily shown that

and

URlR>1 ~ ί R \ ) 0.5)

where the matrix operators act on z G Z C as if it were a column vector. Araki
and Yamagami [AY] proved that π and π are quasiequivalent if and only if the
following two conditions are fulfilled:
(a) (., .)s and (., .)s induce the same topology on Z c , and

(b) $J/ 2 - Sι

2

/2 is a Hilbert-Schmidt operator on ( Z c , (., . ) 5 j ) .
Condition (a) is fulfilled by our assumptions. A lemma by Buchholz (cf. Appendix

B in [Buc]) states that (b) is fulfilled if $1 - S2 is a trace-class operator on
( Z c , ( . , .)s). This is, using (3.4) and (3.5), the case if 1 - RxR2

l is a trace-class

operator on (Z, μλ). So we obtain the following corollary to the result by Araki and
Yamagami:

Corollary 3.5. The GNS-representations πω of two primary quasifree states ω3-,

j = 1,2, whose associated real scalar products μ3 induce the same topology on Z are

quasiequivalent ifl — R\R2

l ^ a trace-class operator on (Z, μx).

Another notion from spacetime geometry, due to Kay and Wald [KW], will be
needed.

Definition 3.6. Let C be a Cauchy-surface for (*M, g). An open neighbourhood Λί of
C is a causal normal neighbourhood of C if C is a Cauchy-surface for Λί and if for
p,q G Λί with p G J+(q), there exists a convex normal neighbourhood Ό in Λ4 such
that J-(p)ΠJ+(q) C O.

The existence of such causal normal neighbourhoods is guaranteed by Lemma 2.2
in [KW]. Now let ωy j = 1,2 be two quasifree states on the Weyl-algebra A[K, K]
of the KG-field in the globally hyperbolic spacetime (M,g). Their associated spatio-
temporal two-point functions will be denoted by Ay We say that the A- are locally
distributions if for each p G M there is a neighbourhood O of p such that the Λ3

can be identified with elements of V'C(O x O). We say that Ax - Λ2 is a smooth bi-
solution near Cauchy-surfaces if every Cauchy-surface C possesses a causal normal
neighbourhood Λί such that

Λx(f,h) - Λ2(f,h) = / f(p)B(p,q)h(q)dη(p)dη(q) (3.6)

for all f,he V(ΛΓ), where B G C°°(λί x ΛO is a bi-solution, i.e.

(VαVα + m\B(p,q) = 0 = (VαVα - m2)qB(p,q) (3.7)

for all p,q e Λί.

The following lemma will be of some importance.

Lemma 3.7. Let Λί be a causal normal neighbourhood of some Cauchy-surface in
(Λ4,g)y B a smooth bi-solution of the KG-Eq. on Λί x Λί and G an open subset of Λί
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with compact closure in λί. Then there is some Q G CQ°(Λ/" X λί) such that

J f(p)B(p,q)h(q)dη(p)dη(q) = j(Ef)(p)Q(p,q)(Eh)(q)dη(p)dη(q) (3.8)

for all /, ft G 2>(G). E is the propagator of the KG-Eq.

We shall prove this lemma in Appendix A.
Now we state and prove our main technical result.

Proposition 3.8. Assume that the spatio-temporal two-point functions Λj (j = 1,2) of
two quasifree states on A[K, n] are locally distributions and that Λ{ — A2 is a smooth
bi-solution near Cauchy-surfaces. Let λίbe a causal normal neighbourhood of some
Cauchy-surface and Ό an open subset of λΛ with compact closure. Then there are
sequences Φ3, Φ3 G T>(ΛΓ), j G N, with the properties:

(a) A(Λ h) - Λ2(f, ft) =

for all /, ft G

(b) Σ j j j j

implying that there are a, β > 0 such that

(c) aAx(f, f) < Λ2(f, f) < βΛ{(f, f)

for all f e Z>(O(C>)).

Proof We shall first show how (a) and (b) together imply (c): One obtains

IA(/, /) - Mf, f)\ < Σ ι

for all / G P(0(O)), fe = 1,2, and hence

Λ{(fJ) < Λ2(fJ

for all / G V(<)(O)). The same estimate holds when interchanging the indices 1 <-» 2.
Now we show how to construct the sequences φ , φ , j G N, with the properties (a)
and (b). Let C be the Cauchy-surface of which λί is a causal normal neighbourhood.
Then there is some C* C C with compact closure such that O C CKC*). So
/ G £>(0(O)) implies that [/] G UΓC#. Note that we have

Ax(f, h) - Λ2(f, h) = λ ω i ([/] , [h]) - λ, 2 ([/], [ft]) (3.9)

for all /, ft G X>(O(C+)). Now let G be a neighbourhood, in jV, of C* such that G has
compact closure in λί. According to Proposition 2.2(b) we find for each [/] G Kc^
some / G V(G) such that [/] = [/]. Using this and (3.9), it suffices for the proof
of the proposition to construct sequences 0 , φ3- G V{λί) with the property (b), and
such that

\Λ{(f, ft) - A2(f, ft)| = Σ «([/], [(/>,]) /.([ft], [^ ])
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for all /, ft G T>(G). This will be done as follows. By Lemma 3.7 there is some
Q G Cg°(λί x λί) such that for all /, ft e V(G),

Ax (/, ft) - Λ2(/, ft) = / f(p) B(p, q) h(q) dη(p) dη(q)
j

= / Ef(p)Q(p,q)Eh(q)dη(p)dη(q), (3.10)

and we may assume that supp(Q) C G x G, where G is some compact set contained
in λί. By Ψp we denote a chart around p G λί with the following properties: (i)
dom(^p) is contained in a neighbourhood O of p for which the Λk9 k = 1,2, can be

identified with elements of X>£.(0 x ^)» a n d 0 0 t n e closure of / 4, where / := (—π, π),
is contained in Ran($p. Choose some ε G (0,1), set Iε := (—π + ε,π — ε) and
£/p(ε) := Ψ~ι(Iε). The family of neighbourhoods Up(ε), p e λί, forms an open
covering of λί. Then one can choose a locally finite partition of unity (of λί) {Qσ}σ^s
subordinate to the cover Up(ε)9 p G λί. Then G has non-void intersection with the
supports of only finitely many elements of the partition of unity, which will be denoted
by £>i, , Qk. Therefore we have:

k f

Λι(f,h)-Λ2(f,h)= Σ / <
r > β = l J

(3.11)
for all /, ft G V(G). By construction, the smooth function Qrs := (ρr 0 ρs)Q,
r, s = 1, . . . , k, has compact support in Up{τ)(ε) x Uq^(ε) for some p(r), ρ(s) G Λ/",
and hence Qrs o (l^p(r) x Φ ^ ) " 1 is a smooth function with support in l\ x IA

ε.
From what we show in Appendix B it then follows that there are sequences
ΦP G V(Up(r)(ε)), ψls) G V(Uq(s)(ε))9 v G N, r, 5 = 1, . . . , jfc, such that

Q r s(P, q)Ef(p)Eh(q) dη(p) dη(q)

Φίs)]) (3.12)

Σ
i/€N

for all / , ft G P(G), r, s = 1, . . . , k, and

ΣΛ0;\φΐΨ2Λ0j\i>PΫ'2 < oo (3.13)

for / = 1,2, r, 5 = 1, . . . , k, since the ̂  are by construction identifyable with
elements of V^(Up(r)(0) x Up(r){0)) and of V'c(Uq(s)(0) x C7g(s)(0)). Now choose a
denumeration j H-> (r j 5 5J 5 z/̂  ), j € N of the index triples r, 5 = 1, . . . , k, v G N, and

set φ3 := ̂ )ζ j ), ^ := ̂ j ) . Then we find with (3.11-13)

Λx(f, ft) - Λ2(/, ft) = ^ «([/], [^])«([h], [ψ,]) (3.14)
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for all /, h e V(G) and

ΣMΦpΦ^ΛiWpΨi)112 < oo, I = 1,2. (3.15)

This completes the proof. D

Until now we have not mentioned the term "Hadamard state." We will define
Hadamard states on the Weyl-algebra of the KG-field in (λΛ,g) in Appendix C.
Hadamard states are states for which the spatio-temporal two-point function takes a
special "Hadamard" form. One can show that spatio-temporal two-point functions of
Hadamard form fulfill the assumptions of Proposition 3.8 (cf. Appendix C), i.e. they
are locally distributions and their differences are smooth bisolutions near Cauchy-
surfaces. Spatio-temporal two-point functions of Hadamard form possess another
remarkable property, derived by [FSW; KW], which we refer to as the causal
propagation property of the Hadamard form: This means that if a spatio-temporal
two-point function is of Hadamard form near some arbitrary Cauchy-surface in Λ4,
then it is of Hadamard form near all Cauchy-surfaces. (See Appendix C for a precise
form of this statement.)

Now we are ready to present the result.

Theorem 3.9. Let LJ{ and ω2 be two quasifree Hadamard states on the Weyl-algebra
A[K,κ] of the KG-field in the globally hyperbolic spacetime (M,g), and let π 1

and π2 be their associated GNS-representations. Then πx\A(O) and π2\A(O) are
quasiequivalent for every open subset O of λΛ with compact closure.

Proof. The proof has two main parts, of which the first involves more "geometrical,"
the second more "functional analytical" elements.

1. The first part of the proof consists in explaining how, using the method of
"deforming a globally hyperbolic spacetime in the past to an ultrastatic one while
preserving global hyperbolicity" (due to [FNW]) and the causal propagation property
of the Hadamard form, the problem can be reduced to a more specialized situation.

Let ωι and ω2 be two quasifree, Hadamard states on the Weyl-algebra A[K, K]
of the KG-field in a globally hyperbolic spacetime (M,g) and π^ , j = 1,2,
their associated GNS-representations. First notice that, if τr1|^4((9) and π2\A(O) are
quasiequivalent, then πx\A{O*) and π21*4(0*) are quasiequivalent for O* c O.
Then notice that, given a Cauchy-surface C for (ΛΊ, #), and an open subset O of M
with compact closure, we find some subset C* of C with compact closure such that
O C 0(C*), and given any neighbourhood λί of C, we have A(O) C A(<>(C*)Γ\λί),
cf. (2.7). So for the proof of local quasiequivalence we may concentrate on regions
of the type 0(C*) Πλί. Given the Cauchy-surface C, one can find a neighbourhood
λί of C and a globally hyperbolic spacetime (M,g) with the following properties:
(i) There is a time-orientation preserving isometry φ : (λί,g\λί) —> (λί,g\λί), where
λί is a neighbourhood of a Cauchy-surface C in (ΛΊ, <?). φ induces also an isometry
between C and C. _ _ Λ

(ii) To the past of some Cauchy-surface C lying to the past of C, (M,g) equals the

(—oc,0) x C-part of an ultrastatic, globally hyperbolic spacetime foliated by some

complete, three-dimensional Riemannian manifold (C,7).

The construction of such an (M,g) is demonstrated in Appendix C of [FNW].
Notice that we may assume that the neighbourhood Λ/Όf C is a causal normal neigh-
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bourhood of C, since every neighbourhood of C contains a causal normal neighbour-
hood of C, as can be seen from the proof of Lemma 2.2 in [KW]. The isometry
φ of (i) induces canonically a C*-algebraic isomorphism a : A[K, K] —» A[K,k],
where A[K, k] is the Weyl-algebra of the KG-field in (ΛΊ,§). a is also an isomor-
phism between the corresponding nets of C*-algebras, i.e. a(A(O)) = A(φ(O)) (see
[Dim]). Since the Hadamard form of spatio-temporal two-point functions is preserved
under time-orientation preserving spacetime-isometries, and since we have the causal
propagation property of the Hadamard form, it follows that the quasifree Hadamard
states Uj on A[K, K] induce quasifree Hadamard states ώ3 := ω3 o a"1 on A[K, k].
Denoting their GNS-representations by π^ , it is now easily seen that π{ and π 2 are

locally quasiequivalent if the 7^1*4(0) are quasiequivalent for arbitrary open regions

O with compact closure in ΛΛ Now let Cv for some t < 0, be a Cauchy-surface in the

natural foliation of the ultrastatic part of (M,g), and Λί and arbitrary neighbourhood

of Ct. Then, by the same arguments as given above, A(O) C *A(<J>(C#) Π Λίf) for

some open subset C# of Ct with compact closure whose boundary <9C# is contained in

the union of finitely many smooth, closed (even compact), two-dimensional sub-

manifolds of Ct. (To see this, note that any compact subset of Ct may be covered by

finitely many "normal coordinate balls" whose boundaries are compact hypersurfaces

in Ct.)

Therefore, it suffices to show that the τt3 \A(^(C#)ΠΛίf), j = 1,2, are quasiequiva-
lent for the GNS-representations π of any two quasifree Hadamard states ώ3;, j = 1,2,

on A[K, k], where C# is an arbitrary open subset of Ct with compact closure such
that dC# is contained in the union of finitely many smooth, closed, two-dimensional
submanifolds of Cv and Λί' is a causal normal neighbourhood of Ct. This is the more
specialized form of the problem we desired to arrive at.

2. The second part of the proof can be subdivided into

(a) proving that τt3 (/4(<^>(C#))) , j = 1,2, are factors, and

(b) showing how this factoriality, together with our Proposition 3.8, entails the

quasiequivalence of the 7tj\A(§(C#)), j = 1,2.

The task (a) will be carried out in the next chapter,

(b) The GNS-representations πι and π 2 of the states ώ3 := ώj\A(§(C#)), j = 1,2
are subrepresentations of the representations π3\A(§(C#)), j = 1,2, and hence it
follows, by a standard result (cf. Appendix E.I), from the factoriality property (a)
that π3 is quasiequivalent to 7tj\A(§(C#)), j = 1,2. So the π3:\A($(C#)), j = 1,2,
are quasiequivalent if π{ and π2 are quasiequivalent (see Appendix E.I for details of
this argument), and we show that the latter is the case. The factoriality property (a)
entails that the ώ3 are primary. Let Λ-, μ j 5 j — 1,2, be the spatio-temporal two-point

distributions, and real scalar products on K, respectively, of the states ώ- on A[K, k]\

and denote by Λ-, μ- the corresponding objects of the states ώj on A[KC#, kc#]. Let

R-, j = 1,2, be the polarizators of the ώj. By Proposition 3.8(c) the μ3, j = 1,2,

induce the same topology on Kc#. Therefore we see from Corollary 3.5 that the

quasiequivalence of the π^ , j = 1,2, is proven if 1 - ^R^1 is a traceclass operator

on (Kc#iμλ). To show that this is the case, recall that by Proposition 3.8 there are
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sequences φv, ψv e V(λf'), v e N, such that

], [ft]) - μ2tfA M) = A(/, ft) - Λ2(/> ft)

= Σ «([/], [^Dftίtft],^]) (3-16)

foral l [/] ,[ f t ]e£ c # and

Ϋ / 2 Ϋ / 2 < o o . (3.17)

Now let i?j be the polarizator of ώι and P the projector in (K,/^) onto the closed

subspace Kc#i and define

xv := P ^ [0 J , ^ := P # j [^J , ^ N .

Thus we obtain

v), (3.18)

i i ), (3.19)

for all [/], [ft] <G 7^c# and for all v e N, and since P and i?j are bounded operators
we infer from (3.17) that

ΣhvvMVv>Vv)111 < oo. (3.20)

On the other hand, Eqs. (3.16-20) imply that

, [ft]) - fe

I/) (3.21)

for all [/], [ft] G Kc #. Since Kc# is dense in Kc#, Eqs. (3.20-21) together with the
known characterizations of trace-class operators (cf. Theorem 7.12 in [Wei]) imply

that 1 — RλR^ι is a trace-class operator in (Kc#^μx), and hence we have proved the
theorem. D

4. Local Primarity and Definiteness

In this section we shall derive the local primarity and local definiteness of quasifree
Hadamard states on the Weyl-algebra of the KG-field in ultrastatic, globally hyperbolic
spacetimes. More precisely, what we are looking at is the following situation: Let
(M,g) be the globally hyperbolic, ultrastatic space-time foliated by the complete,
three-dimensional C°°-Riemannian manifold (M,7). Let Mt, t e R, be the natural
foliation of (M,g) in Cauchy-surfaces, and for some t G R, C* an open subset of Mt

with compact closure such that dC*, the boundary of C*, is contained in the union of
finitely many (possibly intersecting) smooth, closed, two-dimensional submanifolds
of Mt. Then we obtain the following result.
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Theorem 4.1. Let ω be a quasifree Hadamard state on the Weyl-algebra A[K, κ\
of the KG-field in (M,g), and πω its GNS-representation. Then Ί
πω(A(O(C*)))" is a factor.

Proof. Let (k, H) be the one-particle Hilbert-space structure of ω. Define C :='.
and C := {x G H | Im(χ,0) = 0 V<9 G £} (notice that C is a real-linear, but in
general not a complex-linear subspace of H). Observe that by (2.8) and by Proposition
3.2 we have ΊZω((){C*)) — WF(C)". According to results by Araki [Ara], or by
Leyland, Roberts and Testard [LRT], WF(C)" is a factor if and only if CΠCy = {0}.
To show that this is the case, we note that there is a pure, quasifree Hadamard state
ώ on A[K, κ\ with the property that Ke^ + i^ ( M t\ ^ is dense in K with respect to
the norm given by μώ on K. The existence of such an ώ, the "canonical vacuum,"
will be established below. Denote by (k, Tί) the one-particle Hilbert-space structure
of ώ and set C := k(Kc^). Cy will be defined in the same manner as before. Notice
that we have ί(K^Mtχ^) C Cy\ For if [/] G K(Mt\(%y w e n a v e ^ o r a ^ W ^ ^ c * '

Im(fe[/],t[ft]> =

since supp(/) n swpp(Eh) c O(C^) Π J(Mt\C*) = 0. Now suppose that χe £Γ)£y.

Then Im(χ,k[/]) = 0 for all [/] G Kc^ and all [/] G K{M±^y By the mentioned

denseness property this implies Im(χ, k{K)) = {0}. Since ώ is pure, k(K) is dense in

H by Proposition 3.2, implying x = 0. So the theorem is proven for ώ, and we shall

carry over this result to our arbitrarily chosen quasifree, Hadamard state ω. Assume

that x G £ ΓΊ Cy. Then there is a sequence [fn] G KCs|e, n G N, with k[/n] —• x in

7ί. By Proposition 3.8(c) we find that the norms given by μω and μώ on Kc^ are

equivalent, and so we have k[/n] —> x in H for some χ G C. On the other hand, we
have for all [h] G Kc^,

0 = Im(χ,kM)

- lim Im(k[/J,k[/i]}
n—>oo

^lirn^ iκ([/n],[/ι])

= lim Im(t[/n],£[Λ]>

This implies that χ e £ Γ) £y = {0}, so k[/n] —> 0. The equivalence of the norms
of μ and μώ then implies that x = lim k[/ ] = 0, which was what we had to

n—>oo

show. D
In the same situation as described before, we obtain local definiteness:

Theorem 4.2. Let ω be a quasifree Hadamard state on the Weyl-algebra A[K, K] of
the KG-field in (M,g), and p G M. Then

O3p

Proof Clearly p G Mt for some t G R. Choose some open subset C* of Mt with
p G C* such that C^has compact closure and dC* is a smooth, two-dimensional
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submanifold of Mt. By the last Theorem, 7£w(0(C*)) is a factor. Let (k,H) be the
one-particle Hilbert-space structure of ω and set C := k(KeJ, Cp := (if ( C j | t^p^).
Then we have

^ ( £ / c R w ( p ) ; . (4.1)

To see this, let Co be any open subset of C* containing p and such that Co C C*, and
set £ 0 : = k(UΓCsic). Then obviously

From the results of [Ara] or [LRT] one obtains

wF(k(K(CΛ^))" c W F O Q " = πjOiCo))' c πω(p) ;. (4.2)

where k C K ^ ^ ) C £Q c a n ^ e s n o w n a s m the l a s t theorem. On the other hand
one has that WF(Cp)

n is the von Neumann algebra generated by the family of sets
WF(k(K^c^Q-))), the Co ranging over the open subsets of C* with C* C C* and
p G Co. Thus using von Neumann's density theorem, (4.2) implies (4.1). As p € S for
some smooth, compact, two-dimensional submanifold S of C* and K^C\S^ is dense
in ifCHc with respect to the topology given by μω (see below where this is proved
for the canonical vacuum state and use Proposition 3.8(c)), one obtains that Cp is
dense in C in the topology of H. Then WF(C)" - WF(Cp)" C ΊZω(p)\ implying
Tlπ(p) C WF{C)r. On the other hand, ΊZω(p) c W F (£) / / = 7£ω(0(C*)), and so we
have by the last theorem,

Kω(p) C ^ ( O ί C * ) ) Π 7iω(0(C#))' = C l ,

as desired. D

Remark. From the proof it also follows that

f| Ίlω{O) = Cl

if S is compact and contained in the union of finitely many smooth, closed, two-
dimensional submanifolds of any of the M f, ί G R.

Now we can make use of a result of Wollenberg (see [Wol], or Sect. 16.2.4 and
Theorem 16.2.18 in [BW]) which implies that if ω is a state possessing scaling limits
and satisfying local definiteness at all spacetime points, then ΊZω(O) is, provided it is
a factor, of type IIIγ for sufficiently small, specifically shaped spacetime regions O.
Quasifree Hadamard states on A[K, κ\ possess scaling limits at all points in spacetime
and so we arrive at the following

Proposition 4.3. Let ω be a quasifree, Hadamard state on the Weyl-algebra of the
KG-field in the ultrastatic, globally hyperbolic spacetime (ΛΊ, #). Given any point p
in M, every neighbourhood O of p possesses an open sub-neighbourhood O ofp such
that Ίlω{O) is a factor of type IIIV

Remark. In general, the regions O for which the assertion of the last proposition
has been made may be very small. In any case, the open interior of their causal
complement must be non-void.

We still have to show that there is a pure, quasifree Hadamard state with the
denseness-property as required in the proofs of the last two theorems. This will
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be the "canonical vacuum state" ώ on the Weyl-algebra of the KG-field in the
ultrastatic spacetime (Λ4, g) foliated by the complete, three-dimensional Riemannian
manifold (M, 7). We shall exhibit a one-parameter family of one-particle Hilbert-space
structures for ώ. To do this, we need the following

Theorem 4.4 Let v be the measure induced by 7 on M and ΔΊ the Laplace-Beltrami
operator for (M, 7). Then the operator

-ΔΊ + m2 : V(M) -> L2(M, v)

is essentially self adjoint in L2(M, v); its closure, denoted by A, is strictly positive and
hence invertible.

Proof. This is proved in [Che]. See also [Kayl].

Now let us define the following family (k*,7ΐ*), t G R, of one-particle Hilbert-
space structures over the symplectic space (K, K,):

k*[/] := - ^ {Aχl\ρlEf) + iA'ι'\ρ\Ef)) V[/] G K ,

where E is the propagator of the KG-Eq. and we define for t G R and ip G E(M)\

ρ\φ:=(dtψ)\MteV(M).

Here Mt, t G R, is the natural foliation of ΛΊ, and M and Mt are canonically
identified. Then one arrives at the following

Theorem 4.5. For each ί G R, (k*,?-^) is a one-particle structure for the unique
quasifree state ώ on the Weyl-algebra A[K, κ\ of the KG-field in (M,g) which is a
ground state for the time-translations, ώ is called the canonical vacuum. It is a pure
state, and its spatio-temporal two-point function is of Hadamard form.

Proof. See [Kayl] for the proof that the family of one-particle structures belongs to
a single pure ground state. The uniqueness of quasifree ground states in the case that
the spectrum of the generator of the time-translations is strictly positive (this is the
case here, cf. [Kayl]) is proved in [Kay4]. See [FNW; KW] for the proof that the
canonical vacuum is an Hadamard state.

Now we state the promised denseness-property.

Proposition 4.6. Let t G R, and C* an open subset of Mt with compact closure such
that dC* is contained in the union of finitely many smooth, closed, two-dimensional
submanifolds of Mt. Then Kc^ + KMf^ = K{Mt\de^ is dense in K in the norm
given by μώ on K.

Proof. We have

μώ([/L [/]) = <k*[/], k*[/]) w t V[/] G K .

On the other hand, if TMt is the symplectomoφhism of Proposition 2.2, we have

T^K )t l l)| |^ f = \\Aι'\\\2

L2 + \\A-ι'W\z

L2 (4.3)



524 R. Verch

for all (n0, uλ) G D M ί , where the norms on the right-hand side are given by the scalar
product on L2(M, v). Since

the proposition is proved if D(Mt\ac*) *s dense in D M i with respect to the topology
given by the right-hand side of (4.3). A~χlA is a bounded operator on L2(M, v) and so
C£°(Mt\dC*) is dense in C^(Mt) with respect to the topology given by | | A ~ 1 / 4 . | | L 2 .
It is far less obvious but also true that C^(Mt\dC*) is dense in C^°(Mt) with respect
to the topology given by ||^41/4.||L2. (A proof of this will be given in Appendix D.)
This shows that T>(Mt\dc*) *s dense in D M t with respect to the topology given by the
right-hand side of (4.3), and so the proposition is proved. D
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Appendix A

Proof of Lemma 3.7. Since C is a Cauchy-surface for Λί, λί is a globally hyperbolic
sub-spacetime of (Λ4,g) and thus, since the closure of G is a compact subset of
Λί, there are two Cauchy-surfaces C+, C~ in λί such that C and G are contained in
C := / + ( C - ) Π / - ( C + ) 2 . We set G := J(G)ΠC and note that D(G)ΠC is a compact
subset of Λί containing G, since G is a compact subset of C. Let 6 be compact
subset of C such that G is fully contained in the open interior of G. Then 1(6) (Ί Λί
is a neighbourhood of J(G) Π Λί, We introduce the following open covering of Λί:
λί° := λί\J(G), λί+ := 1(6) n /+(C~) Π λί, λί~ := 1(6) Π Γ(C+) Π λί. By ψ°,
ψ+,ψ~ we denote a partition of unity (in Λί) subordinate to that covering, and define

PMN(p,q) := ψM(p)ψN(q)B(p,q)

for all p,q e λί and M,N £ {+, —}. We also use the notation

+ if M = -

for M G {+,—}, Af is defined accordingly. Then one checks, using the support
properties of φ+, tp~, that the following holds:

(Vα VQ + m\ (Vα Vo + m\ P++(p, q)

= ~ (V° Vα + m\ (Vα V o + m 2 ) , P~+(p, q)

= - (Vα V o + m\ (Vα Vα + TO\ P+- (p, 9 )

= (Vα Vα + m 2 ) p (Vα Vα + m 2 ) q p—(p, q) (A. 1)

2 / ^ ( O ) is defined as J^(O) with "causal curve" in the definition replaced by "timelike curve,"
see [Wal3]
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for all p,qe J(G) Π λί; and if /, ft G V(G), then one has with M,N G {+, - } ,

EMf(p)ENh(q)PMN(pyq) = 0 (A.2)

for p or q in λί° U J+(C+) U J~(C~), where E+ and E~ are the advanced and
retarded fundamental solutions of the KG-Eq. Also, we have that EM f and its normal
derivatives vanish on CM for M G {+, -} and if / G V(G)\ further, PMN(p, q) and
its normal derivatives with respect to p (q) on CM (CN) vanish for p G CM or q G C N ,
M, JV = +, —. We make use of these properties applying Green's identity

(u(V - m )v — v(VαVα + m )u) dη

c

= J (unaVav - vnaVau) dη(dC)

dc

with respect to the variables p and q, yielding

J
CxC

= / f(p)h(q)PMN(p,q)dη(p)dη(q) (A3)

CxC

for all f,h e V(G) and M, TV = +, —, since the boundary terms vanish by what we
just remarked. Since the integrands in (A.3) are compactly supported in C x £, we
may replace the integration region C x C by λί x λί. Now observe that by (A.I) and
the support properties of E± one obtains

Ef(p)Eh(q)(VaVa + m\(VaVa + m\p— (p, ς)

EMf(p)ENh(q)PMN(p,q) (A.4)

M,iV=+,-

for all /, ft G £>(G) and p,qeλf, implying with (A. 1-3)

j Ef(p)Eh(q)(\/aWa + m2)p(VaVa+m2)qP--(p,q)dη(p)dη(q)

λίxλί

f(p) h(q) B(p, q) dη(p) dη(q) (A.5)

ΛΓxΛΓ

for /, ft G £>(£). The integrand of the first integral of (A.5) vanishes for all
/, ft G Ί)(G) outside of the Cartesian product of the set J(G) Π C which is compact
in λί, so if we choose a smooth function ξ compactly supported on λί x λί such that
( Ξ I O Π the Cartesian product of J(G) Π C, then the function

Q(P,q) := ξ(p,g)(VαVα + m % ( V α V α + m\p—(p,g)

is a function in CQ°(ΛΓ X ΛΛ) having the property as claimed in the statement of the
lemma. D
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Appendix B

Representation of Elements in V(ΌX x O2)for Open Sets Ox c Rk, O2 C Rι

In this section we give a proof of the denseness of the algebraic tensorproduct
V(OX)®V(O2) in V(OX x O2) which differs from the original proof in [S] in giving a
more detailed description of sequences in Ί)(ΌX )<g) T>(O2) approaching given elements
in V(Oι x O2). Namely, let / G V(OX x O2). Then there are sequences φό G V(OX),

φ3 G V(O2), j G N, with Σ Φj ®Ψj -* f f o r n -» °° i n t h e topology of V{ΌX x O2)

such that

X ^ f ^ Φj)X < oo , (B.I)

5>^®^)λ<oc, (B.2)
J'GN

for all λ > 0 and every seminorm p in the family of seminorms defining the topology
of V(OX x O?). To see this, let us define / := (—π, π) and assume that / has compact
support in I* x I1. The general case then follows by using a scaling argument. We
set, for v e N and r e I,

e2 l /(r) := - ^ sin(ϊ/r),

βo(r) := -L .

Now choose some smooth function χ compactly supported on / and equal to unity
on a large enough sub-interval of / so that the (k + /)-fold tensorproduct of \ is equal
to unity on supp(/), and define for multiindices m e N j and n e Nι

0;

Then the Fourier-coefficients of /,

<*mn '= jΊ{x,y)ίm(x)θn{y)dkχdly

have the property to fall off more rapidly than the inverse of any polynomial in the
m, n for large |ra|, \n\. More precisely, using the usual multiindex notation, it holds
that

\aΎnn\
ιmPn6 —> 0 for \m\ 4- \n\ —> oo

for every pair of multiindex β G Nk, ρ G Nι. This can be seen from the fact that
/ G V(Ik x I1) by using integration by parts inductively. On the other hand, if we
set for β G N§, ρ G N^

P(β,o)(F) := S UP
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for all F G V{Ik x I1), then it is easily seen that

for some positive constants C^i— 1,2,3, depending on β and ρ. Therefore, choosing
a denumeration j ι—>• (m , n ), j 6 N of the set of multiindex-pairs m e N j , n G NQ,
and defining ^ := α m n ξ m , ^ := θn , j G N, one obtains that

3 = 1

and (B.I) and (B.2) follow from the rapid decrease property of the amn. •

Appendix C

Hadamard States

In this Appendix we introduce the notion of Hadamard states on the Weyl-algebra
A[K, K] of the KG-Field in a globally hyperbolic spacetime. We present parts of the
discussion by Kay and Wald [KW] and hence our Hadamard states will be globally
Hadamard states. (There is a related, weaker, local Hadamard condition which one
could impose. This is discussed in [GK; Kay5], where it is conjectured that the
weaker, local Hadamard condition for states of the KG-field already implies the
global Hadamard condition as we quote it here from [KW]. A resolution of this
conjecture, showing it to be true, has recently been presented [Rad]. We refer to the
cited literature for further details.)

First we define what it means for a bilinear functional on V(M) x V(M) with
values in C to be of Hadamard form. To start with this task, let X be the subset of
those (p, q) G M x M which are causally related and are such that J+(p) Π J~(q)
and J+(q) Π J~(p) are contained within a causal normal neighbourhood. Then s(p, q),
the squared geodesic distance from p to q, is well-defined and smooth in an open
neighbourhood i?, in M x ΛΊ, of Λ\ Let the functions U and Vm, m G No, defined
on Ω, denote the square root of the VanVleck-Morette determinant, and the sequence
determined by the Hadamard recursion relations, respectively 3 . Set, for n G N and

V{n)(p,q) := ] Γ Vmt

Let T : Λ4 —> R be a smooth time-function increasing towards the future and define
for all ε > 0 and (p, g) G i?,

Q τ (p, g; ε) := s(p, g) - 2iε(T(p) - T(ςr)) - ε2

3 These objects are e.g. defined in [Gar], see also [Fri]. It is important to note that for fixed m, the
mass term appearing in the KG-Eq., they are determined solely by the spacetime metric g
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and

(In is the principal branch of the logarithm). Next, let λί be a causal neighbourhood
of some Cauchy-surface C. An λί-regularizing function χ is a smooth function on
λίxλί having the following property: There is an open neighbourhood, Ω^^inλίxλί
of the set of pairs of causally related points in λί such that Ω^ C Ω, and χ = 1 on
Ω* and χ = 0 outside of i?. It is not difficult to see that Λ/"-regularizing functions
always exist.

Definition C.I. Let Abe a linear form on V(M) x V(M) with values in C. We say
that A is of Hadamard form // there exist

(i) a causal normal neighbourhood λί of some Cauchy-surface C,
(ii) an M-regularizing function x,

(iii) a smooth time-function T on M increasing towards the future,
(iv) a sequence Hn G Cn(λί x λί)
such that

Λ(f, h) = elim+ / A^n(p, q) f(p)H(q) dη(p) dη(q) (C.I)

for all f,he V(λί) and all n G N, where

^ ' n ( p , q) := X(P, q)Gl>n(p, q) + Hn(p, q).

The following results show that this is in fact a reasonable definition.

Proposition C.2. (a) The definition of the Hadamard form is independent of the choice
ofC, λί, T and χ. This implies in particular that, if A is of Hadamard form in a causal
normal neighbourhood λί of some Cauchy-surface C (in the sense that (C.I) holds for
/, h € V(λί)), then it is of Hadamard form in some causal normal neighbourhood
λίr of any other Cauchy-surface C. This behaviour is called the ucausal propagation
property" of the Hadamard form.
(b) If A is of Hadamard form, then it is locally a distribution. This means that for
every p G Λ4 there is a neighbourhood Ό of p such that the real and imaginary parts
of A can be identified with elements ofV'(O x O).

Proof. See [FSW; KW] for (a). Part (b) of the Proposition follows from Appendix B
in [KW]. (To see this, replace on the right-hand side of Eq. (B.8) in [KW] the function
F2(x2) by a smooth function F(xι,x2) and deduce - using the same arguments as
given for F2(x2) - that the resulting family of integrals converges for ε —• 0 to a
smooth function in xλ if F is supported in a small enough region O x O. So the
limit (C.I) exists if / 0 ft is replaced by F G V(O x O). Then use that weak limits
of sequences of distributions (which are here given through the families of class Cn

integral kernels Λ^n, ε > 0 for arbitrary, but fixed n) are again distributions.) D

Definition C.3. Let ω be a state on the Weyl-algebra Λ[K, K] of the KG-field in the
globally hyperbolic spacetime (Λ4,g). Then ω is called an Hadamard state if its two-
point function exists and if its spatio-temporal two-point distribution is of Hadamard
form.

The next result shows that the set of Hadamard states which are also quasifree is
large.
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Theorem C.4. The set of quasifree Hadamard states on A[K, K] spans an infinite-
dimensional sub-vectorspace of the topological dual space of Λ[K, n\.

Proof. Adopting the methods of [FNW] (cf. [KW]) one obtains the existence of
quasifree Hadamard states. Now let ω be a quasifree Hadamard state and μω the
associated real scalar product on K. It is easily seen that we can find a sequence
φ3 G Ί)(M), j G N, such that the [φ ] form an orthonormal system in K with respect
to μω. We define a sequence of real scalar products

μά(x,y) := μω(x,y) + μω(x, [φ3])μω([φ3ly) Mx,y £ K

on K. Notice that μ3(x,x) > μω(x,x) so that the μ3- give rise to quasifree states ω3

on A[K,«]. It follows from the results of [KW] that near Cauchy-surfaces, the spatio-
temporal two-point functions A- of the ω- differ from Λω by a smooth bi-solution,
hence the ωQ are quasifree Hadamard states. The linear independence is obtained by
inspection. D

Let cjj, j = 1,2, be two quasifree, Hadamard states on A[K,κ] with associated
real scalar products μ on K, and spatio-temporal two-point distributions A . Then
the difference of the A3 is, near Cauchy-surfaces, a smooth, real-valued bi-solution
of the KG-Eq., i.e. if N is a causal normal neighbourhood of some Cauchy-surface
C in (M,g), then

Λλ(f, h) ~ A2(f, h) = J f(p)B(p, q)h(q) dη(p) dη(q) (C.2)

for all f,he V(λί), where B e C°°(λί x λί) is a bi-solution,

(Vα Vα + m\ B(p, q) = 0 = (Vα Vα + m2)q B(p, q) (C.3)

for all j9, q G ΛΛ This is easily seen from the definition of the Hadamard form and
the fact that AQ are weak bi-solutions of the KG-Eq. as remarked at the beginning
of Sect. 3, (C.3) then results from applying Green's identity. That B is real-valued
stems from the fact that

Λx(f, ft) - A2(f, h) = μλ([fl [ft]) - μ2([/], [h])

for all /, ft G V(M): The right-hand side is always real-valued.

Appendix D

Proposition D.I. With the assumptions and notation as in Sect. 4, let the compact set S
i

be contained in the union S — (J Si of finitely many smooth, closed, two-dimensional
ί=l

submanifolds of M, and let

VfeV(M).

Then V(M\S) is dense in V(M) with respect to \\ | | Λ .

Proof. Around every point p G M there is a chart Ψ — (xι) with the property

det(7 i : ? )=l on dom(^) (D.I)

(see Theorem 12.5 in [CFKS]). So choose for every point p e S a chart Ψp with the
property (D.I), and an open neighbourhood Up of p whose closure we require to be
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compact and contained in domO^ ). Now we can cover S by finitely many of the
Up, which will be denoted by f/l5 . . . , Un. It is not difficult to see that, if we find
that for each j — 1, . . . , n, V(Uj\S) is dense in T>(Uj) with respect to || \\A, then
this implies that T>(M\S) is dense in V(M) with respect to || | |^. So we only have
to prove that for U open, with Ό c dom(^), where Ψ is a chart with the property
(D.I), it holds that V(U\S) is dense in V(U) with respect to || | | A . To show this,
we introduce a smooth function χψ on M such that 0 < χψ < 1, χψ = 1 on U, and
χψ have compact support in dom(l^). We shall use the usual notation Ψ*f = foψ,
Ψ^φ = φ o Ψ~ι, write x := Ψ*Xψ and define the following linear operator:

Σ ' V(R3) —* L2(R3 d3τ) f \—> Ψ< ί γ τ Aι/2Ψ*(γf))

Notice how this operator operates: First, / e D(R3) is multiplied by χ yielding a
function in £>(Ran($0). This function is by Ψ* mapped to a function in V{άom(Ψ)), on
which A1/2 is applied, which obviously makes sense since V(άom(Ψ)) c dom(y4!/2).
The result is a function in L2(M, ι/), which after multiplication by x^ lies in the
domain of Ψ^. which maps it back into L2(R3, d3x). This shows that Σ is well-defined.
To establish further properties of Σ we introduce the following notation:

{φ,ψ)M:= j φφdv, (D.2)
M

(f,h)R3 := ί fhd3x; (D.3)

R3

notice that by the special property (D.I) of our chart we have

(Ψ*f, &*h)M = (/, ft)R3 (D.4)

and

M)M (D.5)

for all f,h£ L2(Ran(^), d3x) and all φ, ψ G L2(dom($0, ^). We also define

θ : P(R3) ^ L2(R3, d3x), / π χ ^ o i o *

and denote by (., . )/j (m), m <G R, the mth Sobolov scalar product on £>C(R3), defined

by

R3

where / stands for the Fourier-transform of / and the bar denotes complex conjuga-
tion. We denote by r the selfadjoint closure of the operator

-Δ + 1 : P(R3) -> L2(R3, d3x).

With this notation, it holds that:
1. Σ is symmetric.
2. (Σf,Σf)Λ3<(f,θf)Λ3 V / e P ( R 3 ) .
3. (/, Θ/)R 3 < C(f, f)m) = C(f, τ/)R3 V/ e P(R3), for some C > 0.

The properties 1 and 2 are verified by straightforward calculation using (D.4-5).
3 will be proved as follows: Write θ = a^d^ + β3d- + r (summation over the



Local Definiteness, Primarity and Quasiequivalence of Quantum States 531

indices iyj = 1,2,3 implied) where aι\ βi and r are functions in £>(R3). Now, given
a G £>(R3) one finds for all / G £>(R3), z, j = 1,2,3,

r
J i 3 3

J (φίί) * /+& * (ξ7>) (ξ?) ^

The second estimate follows from Young's inequality (see [RS]). Similarly, for β,
r e £>(R3) one obtains for all / € P(R3), j = 1,2,3:

β*f(djf)d3k

<

and
l</,r/) R 3 |< | | r | | L oov

With these estimates, 3 is easily deduced. So we obtain by 2 and 3:

(27/, 27/>R3 < ^ ( r 1 / 2 / , τι'2f)R3 V/ G P(R 3 )

for some C > 0. Since Σ7 is symmetric, and r, and thus also τ 1 / / 2 , is positive and
essentially selfadjoint on £>(R3), a result by Heinz (cf. Appendix E.2) states that (D.6)
implies

\(f,Σf)Ri\<

for all / € 2>(R3) with some C > 0. Since χ/ = / for all / e V(Φ(U)), we have

(D.6)

for all / G and therefore V(U\S) is dense in £>(£/) with respect to || | | Λ if
This is known to be theV(Ψ(U\S)) is dense in V(Ψ(U)) with respect to || \\H(i/2y

case under the assumptions made about S:

Lemma D.2. Let O C Ω be open subsets ofR3, and S a smooth, closed, two-
dimensional submanifold in Ω intersecting O, and let f G Ί){O). Then there is a
sequence fn G V(O\S), n G N, which approaches f in
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Notice that if we have proved this lemma, then it holds also true if we only
k

assume that S is the union | J Sτ of finitely many smooth, closed, two-dimensional

submanifolds Si of Ω. To see this, use induction over k: Fix O as above. For k = 1
the statement is proven by Lemma D.2. Assume that it is true for some finite number

/ k \

k. Then the set Ok := O\\ (J Si I is also an open set contained in β, and if Sk+ι

\i=l )

is another smooth, closed, two-dimensional submanifold of β, then V(Ok\Sk+ι) is

dense in V{Ok) with respect to || | |^ ( 1/2) by Proposition E.I. But by assumption,

T>(Ok) is dense in V(O) with respect to || ||#(i/2) a n d hence we can conclude that

T>(Ok\Sk+ι) is also dense in V(O) with respect to || \\H(ι/2y

Proof of Lemma D.2. A family Fx G V(O)9 1 > λ > 0, will be constructed such that
0 < Fx < 1, Fχ = 1 in a λ-dependent neighbourhood of 5 Π supp(/), with supp(Fλ)
shrinking to S for λ —> 0 and with 11^11 (̂1/2) uniformly bounded for 1 > λ > 0.
From these properties it then follows that the functions φx := (1 — Fx)f are in
V(O\S) for all 1 > Λ > 0, and clearly for all h G £>(R3) one has

(<P\ ~ /» ft>ff(l/2) = </*λ> h)H(l/2) ~* 0)H(l/2)

for λ —» 0, and ||<£AIIH(I/2) ^S uniformly bounded for all 1 > λ > 0 since multiplication

by £>(R3)-functions is a continuous operation in H(l/2)9 the completion of P(R 3 )

with respect to || ||/f(1/2), cf. Appendix E.3. Whence (φx) converges weakly to / in

H(l/2). Then there is (cf. Probl. 4.25 in [Wei]) a subsequence (φx.) of (φx) such

that the sequence

converges for n —> oo in || | |# ( 1/ 2) to /, and clearly we have fn G V(O\S)
for all n G N. So all that is left to do is to construct a family Fx with the
above stated properties. For each s G S there is a neighbourhood O s of S in
β and a chart ips : O s -> Vs C R3 such that O s Π 5 = ί ^ " 1 ^ , ^ ^ ) I
(^1,^2^3) ^ K } ^ e m a y c o v ^ r t n e compact set S Π supp(/) by finitely many
of such Os, say Ov . . . , Ofc, and we can choose functions χ 1 ? . . . , χfc G D((9) with
the properties: 0 < χi < 1, supp(x^) C Oi9 and ^ X j Ξ 1 in a neighbourhood
U C 0 of S Π supp(/). Now choose a smooth function /ι : R3 -* [0,1],
(^1^25^3) "^ (£3) w u " n t n e properties: /ι = 0 outside of ξ3 G (—δ,δ), and
/ι = 1 for £3 G (—δ + ε, 5 — ε), for some sufficiently small <5 > ε > 0. Set
hχ(ξ3) := ^ ( λ - 1 ^ ) for λ G (0,1). Then define Fx := Γ £.(/ιλ o ^ . ) , λ G (0,1).
One checks that these functions have the properties: Fx = 1 in a neighbourhood
Ux of S Π supp(/), supp(Fλ) shrinks to 5 as λ -> 0, and Fx G P(O). What
remains to be shown is that ||i?λ||//(i/2) is uniformly bounded for λ G (0,1). We
have

k

i=\
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Since composition by diffeomorphisms is a continuous operation in Sobolev spaces
(see Appendix E.4) there is for each i a Ci > 0 such that

Now χi o φ7ι has compact support, so choosing some function ρ G V(R) with ρ = I
on a large enough interval, we find that

(Xi ° Φ^l)hλ = (Xi o ψrι) (ρ®ρ(g) ρ)hx ,

and hence

\\(Xi°Ψί'l)hλ\\ H(l/2) <Ci\\(Q®e

<Ci\\Q®Q\\H2{l/2)Ίi\\h\\\Hί{l/2)

for some positive numbers ĉ  and 7 ,̂ where Hx{\/2) and H2(l/2) are the analogues
of #(1/2) in one and two dimensions, respectively, and we have used the continuity
of the multiplication again (cf. Appendix E.3) and also that

k\ + k\ + k\ + 1 < (k\ + k\

for all kj G R. So the proof is completed by observing that

is uniformly bounded for λ G (0,1). D

Appendix E

E.l. We summarize some results which we use in the second part of the proof of
Theorem 3.9.

Let B be a C* -algebra and π : B —> .B(W) a representation of # by bounded
linear operators on a complex Hilbertspace H. If some closed subspace K, of W is
left invariant by all π(-Λ), A G 6 , then π possesses a subrepresentation πf, defined by

π;(A) := π(A) \ K MAeB.

With this notation, we quote the following theorem (cf. Proposition 5.3.5 in [Dix]):

If the von Neumann algebra π(B)N is a factor then every subrepresentation πf of π
for which K, ^ {0} is quasiequivalent to π.

Now let B be a sub-C*-algebra of B, and ω a state of B with GNS-representation
(Ήω,πω,Ωω). Let ώ := ω\B9 and denote by (Hώ,πώ,Ωώ) its GNS-representation.
Then π ώ can be viewed as a subrepresentation of the representation
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To see this, recall that we have for all A G B,

ώ(A) = (Ωώ,πώ(A)Ωa) = (Ωω,(πω\B) (A) Ωω).

So if we denote by /C the closed subspace of Ήω which is spanned by all vectors
of the form (πω\B)(A)Ωω, A G B, then, by the characterizing properties of the
GNS-representation, (J~Lώ,πώ, Ωώ) can be identified with (/C,πω |β, Ωω).

Now consider two states ω , j = 1,2, on B, with GNS-representations πω.9 and

restrictions CJ := ωΛB to Z3, whose GNS-representations we denote by π . If the

πω {B)'r are factors, then, by the just quoted theorem, and since the τtJ are canonically

identifiable with subrepresentations of the πω \B, it can now easily be seen that the

following holds:
The πω \B are quasiequivalent if, and only if, the Έ- are quasiequivalent.

E.2. Here we quote the following specialization of a result by Heinz, which is stated
and proved as Theorem 9.3 in [Wei] (however, we refer true connoisseurs of "operator
monotony" to the original article [Hei]):

Let Ή be a Hubert space, T selfadjoint, non-negative operator and S a symmetric
operator in H with dom(Γ) C dom(S) and \\Sf\\ < \\Tf\\ for all f e dom(T). Then

\(f,Sf)\<(f,Tf) V/Gdom(T).

Observe that this result immediately generalizes to the case that T is essentially
selfadjoint, for which we employ it.

E.3. We quote a simplified version of Theorem 2.2.5 in [Hor] (to which we refer for
a proof) which states that multiplication by smooth functions with compact support
is a continuous operation on Sobolov spaces.

Let n G N, m G R, and denote by Hn(m) the completion of Uc(Rn) in the norm given
by

\2
Hn{m)) := J I/W(l*f + Vmdnk V/ G Vc(Rn),

where f is the Fourier-transform of f. Then for each h G D c ( R n ) there is a constant
ch > 0 such that

\\hf\\Hn(m) < ch\\f\\Hn{m) Vf€Hn(m).

E.4. In the notation introduced in E.3 we quote here, again in a simplified form,
Theorem 2.6.1 in [Hδr], stating that the composition with diffeomorphisms is a
continuous operation on Sobolev spaces.

Let ψ be a diffeomorphism of an open set Ωx C R n onto another open set Ω2 C Rn,
and U C Ω2. Then for each fixed m there is a C > 0 such that
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