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Abstract: In this paper we want to give a new definition of fractal dimensions
as small scale behavior of the g-energy of wavelet transforms. This is a
generalization of previous multi-fractal approaches. With this particular defini-
tion we will show that the 2-dimension ( = correlation dimension) of the spectral
measure determines the long time behavior of the time evolution generated by a
bounded self-adjoint operator acting in some Hubert space J>f. It will be proved
that for φ, ψ E Jf5 we have

l i m i n f _ ^ o ^ ^ = __ κ+{2)

τ->oo logT

and that
log|^ω|<^|β-^ω(/)>|2

hm sup — — = — K (2),

where κ:±(2) are the upper and lower correlation dimensions of the spectral
measure associated with φ and φ. A quantitative version of the RAGE theorem
shall also be given.

1. Introduction

Let μ be a finite (signed) measure. A well known theorem of Wiener states that

lim — f dω\μ(ω)\2 = Y |μ{x}|2 ,
Γ-^oo λ 0 xeIR

where the Fourier transform is given by

Note that the sum is finite since μ is finite. Now let A be a self-adjoint operator
acting in some Hilbert-space 34?. For any state φ e Jti? we shall be interested in the
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long time behavior of the unitary evolution </>—> e~"Aφ. More precisely look at

oo . (1.1)
0

By the usual functional calculus the above integral is equal to

1
-
1 o

where μψtφ is the spectral measure associated with φ and φ. Therefore in the case of
an operator having only pure point-spectrum, the long time behavior of the
averaged time-evolution (1.1) of a non-zero φ is given by Wieners theorem1:

^ϊdt\(ψ\e-itAφ>\2~l ( Γ - (X)).
1 o

On the other hand let φ e J^coni belong to the continuous spectrum of A (see [1] for
the notation). Then the celebrated RAGE theorem (see e.g. [1]) states that for any
compact operator B we have

^\dt\\Be^'Aφ\\2^O (as 7 ^ oo).
1 0

In particular upon setting B: φ -+ (ψ\φ)ψ we see that the mean evolution (1.1) for
φ e f̂cont is given by

^\dt\(φ\e~itAφ}\2^0 ( Γ - > cx)). (1.2)
1 o

In this paper now we are concerned with a quantitative version of the last equation.
It will turn out that the speed of decay towards 0 is determined by the fractal
correlation dimension of the spectral measure.

The rest of the paper is organized as follows. We start by presenting our main
analysis tool, which is the wavelet transform. After that we introduce the wavelet-
dimensions for any tempered distribution. The last part considers the relation
between the correlation dimension and the averaged time evolution.

2. Introduction to Wavelet Transforms

Consider the Schwarz space S(IR) that consists of those functions that together with
all their derivatives decay at infinity faster than any polynomial. A topology is
induced by the semi-norms

( )
ίeR

Let S+(IR) be the subset of those functions in S(R) whose Fourier transform is
supported by the positive frequencies only. It is a closed subspace of S(IR) and we

1 We write s(t) ~ r(t) if there is a c > 0 such that c < s(t)/r(t) < 1/c for all (considered) t
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equip it with the topology induced by S(JR). Since the Fourier transform of any
function s e S+ (IR) is smooth at ω = 0 and identically vanishing for ω g 0 we have
that all moments for s vanish

+ oo

s(ω) = 0(ωΛ)(ω->0)o j" dttns(t) = O forallneNo (2.1)
- GC

The wavelet transform [2, 3, 4] of s e S+ (IR) with respect to the wavelet g e S + (IR)
is given by

Hrgs{b9a)= J dt-gl I s(ί) = j dtgbta(t)s(t), a > 0, b 6 IR .
-co a \ a J _00

It can easily be shown (e.g. [4, 5]), that for s, g e S + (JR) the wavelet transform of
seS + (IR) with respect to g eS + (IR) is a highly localized function over the half-
plane H = IR x IR + . More precisely let S(H) be the space of all functions 3~ over
the half-plane that are localized such that

, = s u p \ 3 r ( b , a)\(a + ί/a)n(ί + \b\f < oo f o r a l l n > 0 .
(b,a)eM

These are actually semi-norm and 5(H) is a Frechet space with the topology they
induce. The wavelet transform is then a continuous map from S+(IR) to S(M).

Now consider the wavelet synthesis Jlh\ 5(H)-> S+(IR) with respect to h e
S + QR). It is point-wise defined for J e S ( H ) by

0 a -co

The wavelet synthesis is again a continuous map. It actually is essentially the
inverse of the wavelet transform:

c:iJthiTq = t, s(t) = c~l\— dbiKs(b,a)-h\ (2.2)
o a -oo a \ a J

with any function h e S + (IR) satisfying

? dω ~ , -
^ h = | — h ( c o ) § ( c o ) 0<\cQh\<oo. (2.3)

Such a function /z is called a reconstruction wavelet for g. In particular every non
zero wavelet in 5+ (IR) is its own reconstruction wavelet up to some constant trivial
factor.

Upon reconstructing with g and analyzing with some other function h we
obtain a simple relation between the wavelet transform with respect to h and the
one with respect to g,

„ , ,7 x ^c da' +

Γ°° 7T, 1 [b — b ' a \ / / Ί l , ^ ΛS

ΨhS(b, a) = — db ~ Πq h\ » ~ ^Ks(b , a ) , (2.4)
o β / -oo «' V «' «7

with Πgjh(b, a) = c~X iV^gφ, a). For g = h this is the so-called reproducing kernel
equation.
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The Wavelet Transform of Distributions. Let η be a distribution in S"(IR). By the
usual duality approach we can define the wavelet transform with respect to g e S +

via its action on F e S(Ή),

= —
Cg,h

It can be shown [5], that we may identify iVgn with a function over the half-plane
given point-wise by

The identification is made through the (absolutely convergent) "scalar product"

00 da +co

0 W ( ^ ) = < # I ^ > H = J— ί db3t(b,a)^(b,a).
0 a -oo

The function 01 is a smooth function over the half-plane of at most polynomial
growth in b/(a + I/a) as |b | or α + l/a-+ oo . For simplicity we shall denote
this function 01 over the half-plane again by iVgr\. The action of ηeS'(WL)
on 5 e S + (IR) may now be written as an absolutely convergent integral over
the half-plane [5],

and Eq. (2.4) is still point-wise valid in this case. For further reference we note that
in Fourier space we have (in the sense of distributions)

iTβη(b9 a) = — ]dω ξ(aω) eίbωή(ω) .
Zπ 0

This shows in particular that if ή is a function and ή(ω) = O(ωn) as ω -> 0 then

irgη(b,a) = O(l/an+1) (a-> oo) (2.5)

uniformly in b.

Wavlet Analysis of Local Regularity. The wavelet transform may be seen as a sort
of mathematical microscope [6, 7] whose position is given by b whereas a is the
length-scale at which the object is examined. In particular it has been proved to be
very useful in characterizing the local fractality ( = local regularity) of functions [8]
or even arbitrary distributions. For instance global Holder regularity of degree α is
characterized by a uniform decrease of the wavelet coefficients at small scale:

s(ή - s(u) = 0(\t- u\a\ with 0 < a < \oiTgs{b,a) = O(aa) . (2.6)

If α > I and n < a < n + 1 with / i e N then one has to replace s by dn

t and the
statement is still valid. But even point-wise information is available. Suppose now
that s satisfies at some point ί0 at

s(t0 + ί) - s(t0) = Pn{t) + O(t% (t -> 0)

with some polynomial Pn of degree n and some oce(n,n+ 1]. Then

ΨgS(t0 + b,a) = O(a* 4- b*) . (2.7)
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Vice versa if one knows that globally the function is of Holder regularity with
some arbitrary small regularity exponent ε > 0 and if the wavelet transform
satisfies (2.7), with aφ N o , then there is a polynomial Pn of degree n such that
[8, 9, 10]:

Thus the small-scale behavior of the wavelet transform reflects well the local
fractality ( = local regularity).

A Functional Calculus. Although we shall not make direct use of the results listed
below we state them as instructive motivation for the rest of the paper.

Consider a self-adjoint operator A acting in some Hubert space and let
Rz — (A — z)~ι be the resolvent of A. By the standard functional calculus

[ * l λ ( b ia)
• + i

with dEλ being the spectral family. Thus the powers of the resolvent can be seen as
a wavelet transform of the spectral family with respect to the wavelet
h(t) = (t + ΐ)~n or by taking matrix elements as wavelet transform of the spectral
measures dμφfφ(λ) = {φ\dEλφ}.

The half-plane of the wavelet transform is now the complex-half plane where the
imaginary part corresponds to the analyzed scale and the real part to the position
of the mathematical microscope. Note however that h is not in S + (IR) but this
actually poses no extra difficulties.

Upon replacing t by A in the inversion formula (2.2) one might hope to get an
expression for s(A). This can actually be established in a mathematically correct
way [11]. In particular it has been proved that in a weak sense we have for n ^ 2,
geS+(WL) and A a self-adjoint operator (upon taking s(t) = e~iTt)

e-tτA = 2π J dad%_γ dbξ{aT)e~iThRn

h + ia{A)
* C 0 - o o

with c — J00 dωωn~2g(ω)e~ω and the integral over the half-plane is understood as

Xivcίp^^ j ^ —§p_ db. This shows explicitly how the behavior for large T is deter-

mined by the behavior of Rz at gz — 1/Γ. Indeed suppose that the support of g is

contained in an interval around ω — 1, then the integral over the complex z half-

plane actually runs only over a strip around gz ~ 1/Γ. Thus the long time behavior

t -» oo of the time evolution is linked to the small scale behavior of some wavelet

transform of the spectral measure, which in turn as we have seen is closely

connected with local fractal properties ( = local regularity properties) of the

measure itself. This relation can actually be quantified as we shall see in the next

sections.
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3. The Definition of the Wavelet Dimensions

From now on we are only interested in local properties therefore we suppose that
all analyzed distributions η e S;(IR) are well behaved at infinity. More precisely we
require that for all s e S(IR) we have s*η e S(]R). This condition shall be assumed
throughout. It is of a purely technical nature and may be relaxed considerably from
case to case. In particular note that the Fourier transform of such a distribution
actually is a smooth function (however it is not localized). In addition we assume
that η φ 0.

For every scale a we look at the mean q-energy at scale α,

Gg(a,q)=\\^9a)\\l= f db\1%η(b9a)\* with q ^ I.

Note that for q = 2 this actually is an energy since (e.g. [2])

+ GO 1 CO J + CO

J Jί |5(ί) | 2 = — J — J db\Hrgs{b9a)\2 . (3.1)
— oo 9>9 0 co

At small scale a scaling behavior of the form G(α, q) ~ aκ{q) can be observed - at
least for affine self-similar measures as e.g. the triadic Cantor set with Bernoulli
measure [12] - giving rise to the definition of the fractal dimensions κ(q). However
we shall use a slightly modified definition. We set

λ 'dot
Γg{a9 q) = \— Gg(oc, q) .

a

For every q ^ 1 this is a monotone function of a. Therefore the limit a -> 0 exists,
but may be infinite. This will always be the case if η is singular enough. In the

opposite case when this limit is finite we subtract the constant Jj — G(α, q) and we
rather set

"dot
Γg(a, q) = J — Gg(θί, q) .

o α

To summarize we have

Γg(a, q) = min < J — Gg(cc, q\ j — Gg(a, <
I α α 0 α

Note that Gg(a, q) ~ aκ(q) implies Γg(a, q) ~ aκ{q) unless κ(q) = 0. The generalized
dimensions κ + (q) and κ~ (q) are now defined as follows:

+ / Λ r logΓg{a,q) _ logΓg(a,q)
κ + {q) = hm sup — — , K (q) = hm mf — — . (3.2)

In the case that η = 0 we set κ:±(g) = 0. We shall refer to these numbers as the upper
and lower ^-wavelet dimensions. Note that in this form the dimensions are defined
for any distribution, in particular for measures and functions. This kind of integ-
rated wavelet transform approach to define fractal dimensions was introduced in
[12], where it also was shown that for afrlne self-similar measures these dimensions
coincide with the generalized fractal dimensions defined in [13]. More precisely we
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have κ(q) = τ(q) — (q — 1), where τ(q) is defined by the box-counting procedure as
described in [13] (see also Proposition (5.5)). Later variations of this approach
have been considered [14, 15].

The fractal dimensions κ±(q) are actually well denned as is shown by the
following theorem.

(33) Theorem. The dimensions κ±(q) do not depend on the analyzing wavelet
g e S+(ΊR)for q^l, provided g =f= 0.

Proof. We start by rephrasing expressions like (3.2). Only the first identity of this
lemma is needed in this proof now, the rest however is for later reference.

(3.4) Lemma. Let s(t) > 0 be a positive function defined for t > 0. Then we have

lim i n f - ^ ^ = sup {7 e R: s(t) = 0{t% (t -+ 0)} ,
t-o logί

lim sup ^βl^ = inf {7 e R: ty = O(s(t)\ (t -+ 0)} ,
o logί

lim inf l-ψ^l = sup {7 e R : ί ^ O(s(ί)), (t -> 00)} ,
ί->oo logί

lim sup - 5 ^ - ^ = inf {7 e R: s(ί) = O(ίy), (ί-^ oc)} .
log ί

Proof (Although this is well known we give the proof anyway.) Consider the first
equation. Call the left-hand side α and the right-hand side β. For any 7 < β there is
a constant c > 0 such that for t small enough we have

5(ί) S cty .

Therefore for 0 < t < 1 we have

logs(ί) c

log ί = log t
I Λ)

and thus upon passing to the limit t -> 0 we get α ^ 7 and since 7 < jS was arbitrary
we have

On the other hand for every 7 > β there is a sequence tn -> 0 such that

irTMiJ-* 00, (n-* 00).

Therefore (logs(ίn) — γ\ogtn)~> 00 and thus in particular if n is large enough

logs(tn) > 7logί, .

Therefore we have

. ,logs(0 , r . rlogs(ίn)
α = lim mf Λ ^ lim mf t ^ 7

t->o logί ί n^o logίΛ

Since 7 > j8 was arbitrary we have α :g /?, and we are done. The other formulas are
proved in the same way, and we leave them to the reader. D
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Therefore to prove the independency of κ~~(q) on g it is enough to show that
Γg(a, q) = O(aγ) implies Γh(a, q) = O(ay) for any pair of wavelets g, he S + (JR). This
shall be done now.

We start by modifying a little the definition of the partition function Γg. Here we

have to distinguish two cases according to whether limα_>0 J* — Gg(a, q) is infinite

or not. Consider first the case that it is infinite. Note that we may suppose for all
m > 0 ,

ή{ω)SO{ωm) (ω->0). (3.5)

Indeed the fractal dimensions of η and η + s with s e S(IR) are the same because of
the fast decay of iζs at small scale a -> 0 (see Eq. (2.6) for α arbitrarily large).
Therefore if we chose some φ e S(ΊR) satisfying for all m at ψ(ω) = 1 + O(ωm) as
ω -> 0, we may replace η by η — ψ*η without modifying the dimensions. Now this
later distribution satisfies at (3.5). Therefore by (2.5) the wavelet transform decays
fast as a -> oo and thus we may replace J1 by J°° in the definition of Γg; that is we
may consider

00 dot
Γg(a,q)= J - | | ^ ( ,α)| | ; .

We now attack the estimates. Note that from Eq. (2.4) it follows that with

\a a

the passage from ϋ^r] to Ψi,η reads

00 da'
1Thη( ,a)=l—Ka.,a*1(ςη( ,a').

o a

However we have to make sure that Ka^a is well defined. The only possible
obstruction to this is the constant cg,h as defined in (2.3) that may vanish. (Note that
it is never oo for g,he S + (lR).) However it cannot vanish for all the dilated and
translated versions gβί(X = α" ιg(\_ — /?]/α) °f 9 s m c e ^ s would merely mean that
the wavelet transform of h with respect to g vanishes, which is impossible for
h,g + 0. Now replacing g by one of its dilated and translated versions gβjOt amounts
to replace i^(b, a) by

and therefore the dimensions computed with gβta instead of g are the same. We
therefore may suppose that c9th φ 0.

Using Minkowki's and Holder's inequalities we now may write

da' 1"
— \\Kβ;ah \\iTgη( ,a')\\q
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Now we have

II Kα'.α II 1 = f db~r

a a
= H(a/a'),

with

H(a)= fάb\Πt.h(b,a)\.
— OG

This is a nonnegative function that is rapidly decaying as a + I/a gets large. It now
comes using Jensen's inequality

f00 da' ")4-i oo Aa>

n—if(α/fl')> f —
to α J o α

By the high localization of H the first integral is a finite constant and thus

00 da™ dd
Γh(ε, g) ^ 0(1) f — J — H(fl/α' \\q

\\q
ε U 0

fl

00 <i/7 °° rf/2
= 0(1) J — H(ί/a') \-\\%n{ , aa'a

0 0 da' °° da

= 0(1) f — ff(l/α') J -
r\ a cn' a

Thus we have

The same type of relation holds for g and h exchanged. Therefore the theorem will
be now an immediate consequence of the next lemma that deals with such mean
values.

(3.6) Lemma. Let s(t), t > 0, be a nonnegative, monotone ( = either nondecreasing or
nonincreasing) function of at most polynomial growth near 0,

s(ή = 0(ί" m ), (t -* 0), for some m > 0 .

Near oo we assume that it is bounded

s(ή - 0(1), ί ^ 1 .

Let further H(t) be a nonnegative function that is arbitrarily well polynomially
localized, namely

H(t) = O((t + 1/ί)-"), for alln>0.

Then for the mean values

00 da
r ( ί ) = f — H(ί/α)s(α),
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we have the following estimate:

. logr(ί) . Jog 5(0
lim mi = hm mf ,

ί-*o logί ,_><, logί

r logr(f) log s(t)
hm sup — = hm sup — .

ί-o logί f_>0 logί

Proof. Suppose s(ί) ^ O(ty) as t-+ 0. Then

da
r(ί) S O(ty) J

o a

The integral on the right converges due to the high localization of H and thus
r(ί) = O(tγ) too as was to be shown for the first estimation.

We now come to the second estimation. Suppose that the right-hand side of the
second inequality is oo . In this case clearly there is nothing to prove. Therefore we
may suppose now that there is a λ > 0 and a constant c > 0 such that

s(ή ^ ct\ (0 < ί < 1) . (3.7)

We now pick ε, 0 < ε < 1, and keep it fixed. For 0 < ί < 1 we split the integral
defining r(ί) into three parts,

ί l f £ t1-' °° ) da

ί + J + ί \ — H(t/a)s{a) = X 1 + X2 + X 3 .
0 f l - U tl-ε J a

In the last term we may estimate s(t) = 0(1) and thus

0 da
—

i/f α

Since f/(ί) is arbitrarily well polynomially localized it follows that X3 = O(tn) for all
n > 0 .

In Xx we may estimate s(t) ^ t~m and thus it comes

f Art

Since H is arbitrarily well polynomially localized the integral is rapidly decaying
and thus again X1 = O(tn) for all n > 0.

The main contribution remains which is the middle term X2. Since s(t) is
monotone as t->0 we may estimate s(a)^s(t1+ε) or s(a)^s(t1'ε) for
ί1 + t ^ a ^ ί*~ε depending on whether s is nongrowing or nondecreasing. There-
fore we end up with

X2 I C sit1 ±ε) J — HiX/ά) respectively .

The last integral is again convergent and therefore X2 ^ C"s(tί±£) for ί small
enough. Because of (3.7) it follows that this estimate also holds for the sum of the
three contributions and thus for all c > 0 we have

r(ί) I C" s(t1±ε) respectively .
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Since ε was arbitrary the lemma is proved. •

Since we may exchange the roles of g and h the theorem is proved.
The proof remains the same if l im^o Γg(s, q) < oo . D

Remark. The proof needed the high localization of the kernel ΠgJι, which in turn
reflects that the wavelets must be very regular with all moments vanishing.
However for a fixed q, and a given ε > 0 only some regularity is needed and some
moments have to vanish in order to compute the dimension κ~(q) without error
and the dimensions κ+(q) with error at most ε.

4. Localization and the Dimension κ(2)

In this section we want to establish a relation between the behavior to the Fourier
transform of η and the fractal wavelet dimension κ(2). Some evidence for such
a relation has been given in [16]. This question is of relevance whenever one
considers the long time behavior Γ~> oo of e~ιTA, where A is a self adjoint
operator. Indeed in this case we have

(ψ\e-ίTAψ) = μφ,φ(T),

where μφtφ is the spectral measure associated to ψ and φ. We are mainly interested
in the time averages of the form

] i ( θ Λ φ } \ 2 = ] dω\μφ,φ(ω)\2 .

The next theorem shows how this time average is related to the dimension κ±(2).
We will prove the following theorem not only for measures but also for essentially
any tempered distribution.

(4.1) Theorem. Let η e S'(R), η * 0, satisfy at s*η e S(R)/or all s e S(R). Suppose
that ηφL2{ΊR). Then κΓ(2) ^ 0 and it follows that

- κ+(2) = l im inf * J ° '_ S l im s u p * J o ' = - κ~(2) . (4.2)
r->oo logΓ r->oo logΓ

Ifηe L 2(R) then κ~(2) ^ 0 and the long-time behavior is trivial in the sense that the
integral in (4.2) tends to a finite constant. The speed of convergence is given by

, logj;dω\ή(ω)\2 logj; dω\ή(ω)\2

- κ + (2) - hm inf Ί-— ^ lim sup ι-— = - K: (2) .
r-^oo logΓ r->oc logΓ

This shows that if the spectral measure of a bounded self-adjoint operator A has
a certain 2 wavelet dimension then the long time behavior of e~iTA is governed by
this number. In particular for all γ < — κ + (2) there is a constant c > 0 such that
for T large enough
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This shows that the decay (1.2) may be very slow if the spectral measure has an
upper 2-wavelet-dimension that is close to — 1, which would be the 2-wavelet
dimension of the pure point spectrum. For a similar relation see [17] and [18]. For
a different approach see [19].

Proof. Let g e S+ (IR) and consider ϋ^η. As we may, we suppose that g is compactly
supported. Again we may suppose in addition that η(ω) = 0(ωm) for all m and that
therefore the wavelet transform decays fast at large scale.

Suppose ηφL2(WL). This implies (see (3.1)) that ζ — J + " db\iTgη(b, a)\2 = oo

and thus
00 da +G0

Γg(a,2)= ί — ί db\iTgη(b,a)\2 .
a α - o o

We therefore consider now κ~(2) ^ 0 and thus J — j_°° db \if£η(b, d)\2 -> oo as

α -> 0. A direct application of Parsevals equation shows that we have

+ f άb\Hr9φ, a)\2 = ]dω \g(aω)\2 \η(ω)\2 .
- oo 0

Then let

H(ω) = J - \g(a)\2 = J - \g(aω)\2 , ω > 0
ω fl 1 ^

By a simple exchange of integration we have

00 da + °° ^ da ^

J - j db|ii^(M)|2= ί - ί ^ | 0 ( α ω ) | 2 | ^ H I 2

i/r α -oo i/r α o

And finally

00 0 0 + 0 0

\dωH{ωlT)\ή{ω)\2= J f db\iTβη(b, a)\2 = Γ^Γ" 1 , 2) .
0 1/Γ - oo

Since if is non-negative, iϊ(O) > 0, and of compact support (since g is), we can find
numbers λ > 0 and Λl > 0 such that

λχ[Ot λ](ω) ^ jff (ω) ^ ylχ[0, ̂ (ω) ,

where χ7 is the characteristic function of /. Therefore

λ J d ω | ^ Λ ( ω ) | 2 ^ Γ , ( Γ - 1 , 2 ) ^ y l J rfω|^(ω)|2,
o o

and the theorem follows.
Finally the proof for the case η e L2(IR) is the same we only have to use

a da +0°
re(fl,2) = i - J db\1Tβη(b,a)\2 ,

0 a -oo

and to adapt the limits of integration accordingly. D
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As an easy corollary of this theorem we have the following quantitative version
of the RAGE theorem. Let A be a bounded self-adjoint operator acting in some
Hubert space J f and let dEλ be its spectral family. Let further B be a Hilbert-
Schmidt operator with singular decomposition

BIS*-* Σ yn(Φn\s}ψn

with respect to the ortho-normal sets {φn} and {ψn}. Since

\\Be'iωAφ\\2= Σ \7n\2KΦn\e-iωAφ}\2

neN

we have

\yn\
2Kφn\e~iωΛφ}\2 ^ \\Be~ίωAφ\\2

and thus one can use Theorem (4.1) to obtain quantitative estimates for the speed of
decay of

^]dω\\Be'iωΛφ\\2
1 o

in terms of the 2-wavelet dimensions of the spectral measures dμΦnfφ(λ) —
(φn\dEλφ).

5. Appendix: Some Estimates and Explicit Formulas

We note some easy estimates of the dimensions κ~ (q).
We start by considering the effect of deriving a distribution.

(5.1) Proposition. Let η e S"(IR) be a distribution such that for all s e S(IR) we have
s*η eS(IR). Then if we replace η by δη we have to replace ^(q) by κ(^)± — q.

Proof This follows from the identity

) . (5.2)

If some global regularity of s is known we have a lower bound for the
dimensions of 5.

(5.3) Proposition. If s is a function of Holder regularity with exponent a

then
κ + (q)^ κ~{q) ^qot .

Proof This follows from (2.7) and the rephrasing of the definition of the dimen-
sions given in Lemma (3.4). D

Another estimate of this type is well adapted to the situation where the support
of the distribution does not contain any interval but rather has some Cantor
set-like structure. Here now both the fractality of the support together with the
local regularity exponent may be used to obtain an estimate for κ~(q). As an
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example for what we mean by that look at δ and dδ. Both are supported by the
origin; however the former is more regular. This is clearly mirrored in the dimen-
sions where the former gives /c±(g) = — q, whereas the other is /c±(ζf) = — 2q.

First we need a suited definition of dimension for a set A c ]R. For all ε > 0
consider the set of points at distance from A smaller than or equal to ε,

M(A, ε) = {t e IR: \t — u\ ^ ε for some u e A} .

Suppose now that A is compact. Then M is of finite Lebesgue measures, denoted by
\M\. The cover dimension D(A) is now defined through the small scale behavior of
M(Λ9 ε),

Jog\M(Λ,ε)\
D(A) = hmmf

logε

(5.4) Proposition. Let η c S'(1R) have compact support A a IR. Suppose in addition
that uniformly in b we have

ϋςη{b,a) = O(aa) (a -> 0) .

Suppose further that η is supported by some compact set A with lower cover dimension
D(A). Then we have

Proof Following the remark after the proof of Theorem (3.3) for every q we may
compute the dimensions with a wavelet that is regular enough and has sufficient
moments vanishing but that need not be in S + (IR). In particular we may suppose
that the wavelet we use has compact support, that is, say, contained in [ — 1/2,
+ 1/2]. For a given scale a the support of ϋ^η{', a) is then contained in M(A, a).

For all ε > 0 we therefore may estimate

+ 00

J db\^η(b,a)\q = O(ί) j db a~aq = O(αD ( y l )~α^ ε) .
-oo M(Λ,a)

Thus we are done because of Lemma (3.4). •

There is at least one class of distributions with support on a Cantor set, where
all the dimensions can be computed explicitly. These are the aίfine self-similar
measures, which we shall present now.

Consider N > 1 finite closed, pairwise disjoint intervals /„. The disjointness
ensures that every interval is separated by a gap from its neighbors. Denote by / the
smallest interval that contains all the In. Let Tn\ R-> IR be aίfine maps whose
restriction to / is onto /„. If we write Tn\ t -> λnt + βn we assume λn > 0. Now let
N positive numbers pn with £ pn = 1 be given. They are usually called the "a priori"
probabilities, since the distribution we shall construct is a probability measure. It
can be shown that there is exactly one probability measure that satisfies the
following self-similarity equation for any Borel set K,

n= 1

It is called an aίfine self-similar measure with length-scales λn and probabilities pn.
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(5.5) Proposition. The q-wavelet dimensions of an affine self-similar measure with
length-scales λn and probabilities pn are the solution of the following implicit equation

±

£ rf/i^-^ ΞE 1 .
n = l

Proof Let Tn: £-> λnt + βn. We then have by direct computation,

9 α) = Σ Pn^μίT- ι b9 a/λn)/λn .

Now following the remark after the proof of Theorem (3.3), for every q we may
assume that the wavelet we use for the computation of the dimensions is compactly
supported. Since the support of μ is contained in the union of the non-intersecting
/„, for a small enough, the support of the wavelet will with at most one of the /„
have at non-empty intersection. Therefore for a small enough, for each b the sum
consists of at most one term and we may write

G(a,q)= f db\irgμ(b,a)\«

= Σ pnλ
ι

n-«G{alλn,q).

Now instead of considering μ we shall look at some mth primitive of μ and use
Proposition (5.1) afterwards. Because of (5.2) we obtain an equation of the same
type for the new g-energy that we shall again denote by G(a, q),

N

G(a,q)= Σ PqnKqΛ1~qG(alλn,q) .
n= 1

For m sufficiently large we have

Γ(a, q) = \— G(α5 q) ,
o α

and thus we have again a scaling equation for Γ

N

Γ(a, q)= Σ Pqn>'Γ+i '" Γ(a/λn, q) .
n= 1

The proposition follows now from the next lemma.

(5.6) Lemma. Let s(t) be a positive function defined for t e(0, 1] that is bounded away
from 0 and infinity,

Vie (0,1] 0 < inf s(u) ^ sup s(u) < oc ,
ue[ί, 1] ue[t, 1]
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and that satisfies pointwise at

s{t)= Σ **s(t/βn) te(0, min {/?„}]

with some constants otn > 0, βn e (0, 1). Then

logs(ί) . log s(t)
lim sup — = lim mi — = o

t-o log ί t-o log ί

is the unique solution of

Σ «.&""' = 1

Proof. We first want to show that

απ < 1 => lim s(t) = 0 ,
n= 1

N

Y oίn > \ => lim s(t) = oo .

The lemma follows then by considering ί~ys(ί) that satisfies the same type of
equation as s but where αΛ is replaced by απ/?~y .

Now consider

sup s(u), sup s(u) > ,
e[f,l] «e[0,ί] J

s~(ί) = max< inf s(u), inf s(w) > .
[«e[ί,l] «e[0,ί] J

They are the smallest (largest) monotone functions that majorize (minorize) s for
ίe(0, 1]. For ίe(0, 1] we have

0 < s~(ί) ̂  s + ( ί ) < °°?

since suppose s+(ή = oo, say, then supM e [ t ( 1 ] s(w) = oo which contradicts our
hypothesis on 5. We may estimate for 0 < t ^ min {/?„},

s ( ί ) = Σ «»s(ί/ft.)^ Σ <*«
n=ί n=1

The right-hand sides are again monotone functions that majorize (minorize) s and
thus since s 1 is optimal we have for 0 < t < min {/}„},

n= 1

N

^ Σ αBs-(ί/j8,,).
« = 1
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By monotony we may write

N

n=ί

where β± are given by either min{βn} or max{βn} respectively depending on
whether s± is non-decreasing or non-growing. Since β± e (0, 1) we are done. D

This shows the proposition. D
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