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Abstract: We give a natural interpretation of the shift operators for Calogero-
Sutherland quantum problem via KZ equation using Matsuo-Cherednik map-
pings. The explicit formulas for the inversions of these mappings and versions of
shift operators for KZ equations are also found. As an application we show that the
shift operator can be described via a factorization problem for an appropriate
quantum integral (discriminant) of the Calogero system.

Introduction

The Calogero system [1] describes the motion of AT particles on the line interacting
with the potential Uc

g(x) = guc(x\

" 1

Xι are the coordinates of the points, g is a coupling constant. The value of g is not
essential in the classical case but it is in the quantum case. For N = 2 the
corresponding Schrδdinger equation

/ Λ T J C / \ \ / 17 / ff\ /")\

A = d\ + + dyf, dt = d/dxt, can be reduced to the one-dimensional one:

d y 2 y 2 j φ - φ > y - X l

If we introduce a new constant fc, such that

k(k -1) = g , (0.3)
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d2 k(k — l\
then the operator Lk = — —~ H ~— can ^e factorized as

,.__

Let us remark that

(τ + k}(τ--} <° 4>\dy y)\dy y)

.„ _ _ ' * < + *
dy yj\dy y

+ . ,0.5,

d k
which implies the following relation for the operator @k = - --- :

dy y

Lk+ι@k = @kLk. (0.6)

This means that the operator S$k maps (formal) eigenfunctions of the operator Lk to
eigenfunctions of Lk + ί: if Lkφ = λφ and φ = S>kφ, then Lk + 1φ = Lk + 1@kφ
= @kLkφ = λφ.

It turns out that such operators exist for all N. In the most general case this was
proven by Opdam [6], who considered together with Heckman the trigonometric
version of Calogero system (Sutherland system) and its generalization first pro-
posed by Olshanetsky and Perelomov (see [2-6]).

The Sutherland system describes the motion of particles on the line (circle, if ω is
purely imaginary) interacting with the potential U5

gt(0 = gus

ω,

*4M = Σ u2,ω - r- (° 7)2 - <

In the limit ω -> 0 one has the Calogero potential (0.1), so us

0 = uc.
Following Opdam, we will call such operators @k shift operators. They are

differential operators with highest term Π» <./(^ ~~d/)> which satisfy the relation

Lk + 1@k = @kLk (0.8)

for Lk = - A 4- k(k-l)tfω, Lk + 1 = -A + k(k + l)ιC
The explicit form of the shift operator ̂  for any N was first found in 1988 by

Chalykh and one of the authors in [8], where the problem of supercomplete
commutative rings of partial differential operators was discussed. It turned out that
the shift operators @k for integer k play a very important role in this problem (see
[8, 9]). Other very interesting applications of shift operators (e.g. the proof of some
of Macdonald's conjectures) were found by Opdam in [7].

In 1990 Heckman used the so-called Dunkl operator to give the explicit form of
the shift operators in the most general case [10, 11]. The Dunkl operator [12]
looks very much like the differential operator of the Knizhnik-Zamolodchikov (KZ)
equation, which appeared in conformal field theory in 1984 [13]1. This hints at
a possible relation between KZ and Calogero-Sutherland (CS) equations. The
explicit form of such relations was discovered by Matsuo [15]. The result of
Matsuo was generalized and extended by Cherednik in [19].

1 We would like to remark also the resemblance of all these operators with Moser's L-operator
for Calogero-Sutherland system (see [14])
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The main goal of our paper is to give a natural interpretation of shift operators
for the Calogero-Sutherland quantum problem via KZ equation using the
Matsuo-Cherednik isomorphisms. We prove the commutativity of the following
diagram

KZ(fc)

m,/ \ch

CS(/c) -?-> CS(/c + 1),

where m and ch denote the Matsuo and Cherednik mappings from the space of
solution of KZ equation with parameter k into that of the Calogero-Sutherland
problems with parameters k and k + 1 respectively, and 2 is proportional to the
shift operator 2k. Generically, m and ch are the isomorphisms, so the shift operator
is completely determined by this property. We also give a formula for the inverse
m"1 of Matsuo's map, which leads to a shift operator for the KZ equation.

As an application, we show that the shift operator can be described via
a factorization problem for an appropriate quantum integral (discriminant) of the
Calogero system. This is related to the duality connecting solutions of the KZ
equations with parameters k and - k. It follows from our results that the operator
2 is conjugated to this duality by Matsuo's map.

1. Calogero Quantum System and KZ Equation

Let us consider the equation

pdj)

(i.i)

where Φ = Φ(z1? . . . , ZN) takes values in the tensor product F® V® - - - ® V
= V ® N of some vector space F, P (ίj } is the permutation of the ίih and j th factors, λ is
a diagonal matrix considered as a parameter, λ(ί} is the operator in F® N acting as
λ on ith factor and identically on all other factors. When λ = 0 this equation
coincides with that for correlation functions for WZNW model in CFT, derived by
Knizhnik and Zamolodchikov in [13]. We will call (1.1) KZ equation.

Let us consider the case when dim V — N and Φ has the form

Φ = £ Φσeσ, eσ = eσ(ί} ® eσ(2) ® ® eσ(N) , (1.2)
σeSN

SN is the symmetric group. Following Matsuo [15] define the scalar function
φ = m(Φ) as

m(Φ) = £ Φσ . (1.3)
σeSN

Proposition 1. // Φ = Xσ 6swΦσ£σ is a solution of the KZ equation (1.1), then
φ = m(Φ) is eigenfunction of the Calogero operator Lc

k:

Lc

kφ:= -A + k(k-l) Σ φ = Eφ , (1.4)
\ i*j(Zi-Zj)

where E = - (λl + - + λ%)9 λ = diag(A1? . . . , λN).
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Proof. For the components Φσ one derives from (1.1) the following system:

diφσ = k^^PiL + λσ(ί}Φσί (L5)φ / Zt — Zj

pίjESN is the transposition of i and).
After summation over σ e SN one has

where χt = ^λσ(ΐ)Φσ, and therefore

In its turn

;' φ z σ

φ j Zi ^7 σ j Φ i Zi

Finally we have

Σ (zi-ZjΓ2 + ̂  Σ
i Φ j i Φ 7

In the last step we have used the identities

and

i Φ j Φ /

Proposition 1 is proven. D

It turns out that there exists another relation between the KZ equation and the
Calogero system. The following remark belongs to Cherednik [19].

Let ψ = ch(Φ) for Φ = YσΦσeσ be defined as

(1.7)
σ

where ε(σ) = sign(σ) is the sign of permutation σ.
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Proposition 2. For any solution of the KZ equation (1.1) of the form (1.2)
Φ = Σo ^^σ *Λe function ψ = ch(Φ) z's eigenfunction of the Calogero operator Lk+1:

£^ £ = -^2. (1.8)
i ^ j i - Z j

Proof. By direct calculation:

^ = Σε(σ)(/c Σ -̂  + A.wΦσ) = - W Σ Γ "̂ ϊ + Σ^R(»Φ, .
σ \ j φ i Zj — Zj / j φ i IZί — Z / J σ

Introducing ωt = ^σε(σ)λσ(i}Φσ one has

3ίω< = Σβ(σμσ,Λ Σ ̂ ^ + ^,*σ) = -* Σ -̂ ^ + ΣΦ)^0*.
σ \ j Φ i Zj - Zj J j^iZi—Zj σ

and

V vΣ i - ̂ 2 - Σ
i Φ 7 (Zi ~ ZJΪ i*t

-
t φ j (Zi — Zj)

In fact from [15, 19] it follows that φ and φ are eigenfunctions of the com-
mutative ring $c

k of quantum integrals of the Calogero problem,

(1.9)

i - (1.10)

Here ^^ = {j/: [j^,LJ] = 0 and σ*(j/) = j/ for all σESN}9 γ is the so-called
Harish-Chandra isomorphism

y:ΛJ<-*C[A]S w (1.11)

between ^£ and the ring of all symmetric polynomials C[A]SN (see e.g. [10] ).2

Moreover, Matsuo and Cherednik proved that for generic λ, more precisely, if all
λi are different, the mappings m and ch are isomorphisms between the space KZ(/c)
of solutions of KZ equation (1.1) of the form (1.2) and the spaces C(fc), C(k + 1) of
solutions of the systems (1.9), (1.10).

This means that for generic λ we have the mapping ̂  = chom~ 1 :φ-n/' from
C(k) into C(k + 1) (see the diagram)

Diagram 1

KZ(fc)

C(k) — C(k

2 It is interesting to note that the ring of all (not necessary SN-invariant) quantum integrals of the
Calogero problem for integer k is much bigger than ̂  (see [8,9])



264 G. Felder and A.P. Veselov

It turns out that 3> is related in a very simple way to the shift operator <3>k for the
Calogero system (see Introduction). Recall that £&k is the differential operator with
highest order term δ(d\

= Π (6 - ξj) (1-13)
i<j

and the property

Lc

k+1@k = @kL
c

k. (1.14)

Theorem 1. Let Q) be the operator

(1.15)

where @k is the shift operator for Calogero quantum problem, then the diagram 1 is
commutative.

Proof. We will use Heckman's results [10,11] about the shift operator for the
Calogero system via Dunkl operator.

Let Vξ be the following operator, acting on a scalar function φ = φ(z1? . . . , zN)9

v^-fcΣ^^A/* (1-16)
j φ / Zt - Zj

where dξ is the derivative in the direction ξ and

(Ptjφ)(z) = φ(PiJ(z)) , (1.17)

Pij as above is the transposition of the indices i and j. The operator Vξ is conjugated
to the Dunkl operator [12] by the gauge transformation

φ^φH(Zi-zj)k. (1.18)
i<j

In contrast with the papers by Heckman, Opdam, Dunkl and Matsuo [5-7, 10-12]
we prefer the gauge of many-body problems (cf. [4]).

G. Heckman found the following expression for the shift operator @k:

(1.19)
σeSN

Here CN is some constant (see below), Res <$# means the differential part of the
operator j/, which can be found by taking the restriction of j/ on the space of
symmetric functions (see [10, 11]). The vector ξ should be taken regular, i.e.

Thus, for given solution Φ = ΣσΦσeσ of the KZ equation (1.1), we have to
calculate the expression

The following lemma can be extracted from [15].
Let V™ be Res(V^). Then we have

ro+l _ i y ni — *lj A \ ym _
K ̂  * —Pij \°Vη \-

j * i Z i ~ Z j / J
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Lemma. IfΦ = ΣΦσeσ is a solution ofKZ equation (1.1) and φ = m(Φ) = ΣσΦσ,
then

V7(φ) = Σ(*foU)m** (1.21)
σ

Proof. By induction. For m = 0 it is obvious. Suppose that it is true for all m ̂  n.
Then

)

(σ(η\ λ)"(k Σ ^—^ Φσ*Pll + (σ(η\ λ)Φσ]
\ iφ; z i —Zj J

Zi Zj

The lemma is proven.
Now we have

Σ e(σ)^«)fo>)= Σ e(σ) Σ
μeSN

Here we used the identity

Σ e((7)(<7(£X A)d = CN Π (̂  - ^) Π

c -LsN —
112131. . .(N-l)l

Theorem 1 is proven.

2. Generalized KZ Equations and Calogero-Sutherland Problems,
Related to Root Systems

The generalizations of Calogero-Sutherland problem we are going to discuss were
considered firstly by Olshanetsky and Perelomov [3]. Corresponding versions of
the KZ equation were introduced by Cherednik (see [15-19]).
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Recall (see [20] ) that a root system is a finite subset Σ of the Euclidean space
E with inner product ( , ), such that

1) Σ does not contain 0 and spans E;
2) sa(β)eΣ for all α, βeΣ, where sα is the reflection

SΛ(X) = x-(x, α v)α, α v = 2α/(α, α)

3) (α

The Weyl group W is defined as the subgroup of GL(E) generated by the
reflections sΛ9 oceΣ. From the second property of root systems it follows that IV is
a finite group.

The following generalizations of the Sutherland operators related to Σ were
introduced in [3]:

Ls

Σtk = -A + £ /cα(/cα-l)ω2(α,α)sinh-2ω(α,z). (2.1)
α e Σ +

Here A means the laplacian on E, ka = fe(α), where k is a PF-invariant function on Σ,
Σ+ is the set of positive roots of Σ for some choice of Weyl chamber [20], ω is
a scalar parameter. In the limit ω -> 0 one has the generalized Calogero operator

Lξ.k = -A+ Σ M*« - !)(«, «)(«, *Γ2 - (2.2)
αeΣ +

In this rational limit one can use also any Coxeter group, i.e. one can omit the third
property in the definition of root systems (see [4, 10]).

The operators (2.1) generate a commutative ring of differential operators on E:

&ztk = {<**'• IX £f,*] = 0, w*(j/) - d for all we W} . (2.3)

These rings are isomorphic to the rings C[A]^ of PF-invariant polynomials on
E (Harish-Chandra isomorphism, see [5, 11]):

y:Λf,*->C|TΓ. (2.4)

The existence of shift operators for such generalizations of Sutherland operator
Lz,k was proven by Opdam [6]. More precisely, for any W-m variant subset δ c= Σ
there exists a differential operator ^(/c), which has the highest order term

Π M, Λ+=fnΣ+ (2.5)
αe^+

and satisfies the relation

. (2.6)

Here \f denotes the characteristic function of δ\ l/(α) = 1 if αe^ and 0 other-
wise (see [6, 7]).

Now let us consider the following version of the KZ equation (1.1) (see [15, 19]):

dξΦ = X ωfcα(α, £)(cothω(α,z)σα + σαεα) + eζ(λ)φ(z) . (2.7)
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Here Φ is a C[FF]- valued function, where C[JF] is the Weyl group algebra, βα, σα,
eξ(λ) are the operators on (C[W], defined by

[w] if w 1 αeZ+ ,

— [w] if w~1aeΣ- ,

Λ,ξ)Dv], ξ,λeE,

fcα = fe(α), fc is any PF-invariant function on Σ. We used here the notations of
Matsuo's paper [15].

Let us consider a character ε: W-» { +1}. It is determined by the W-invariant
subset $ c Γ, such that ε(sα) = —1 if αe<ί and ε(sα) = +1 otherwise.

Proposition (Matsuo [15], Cherednik [19]). IfΦ = Σweϊr^w[w] *s 0 solution of
the generalized KZ equation (2.7), ί/iew the functions

φ = m(Φ):= ^ Φw

and

^ = ch^(Φ):= V ε(w)Φw

are eigenfunctions of the corresponding generalized Sutherland operators:

_^ - .
αΠ+ smh2ω(α,z) / r

/c« = (fe + 1^ )(α) = /cα + 1 if aeS* and fcα otherwise, E = — (λ, λ). Moreover,
φ and ψ are common eigenfunctions of the corresponding commutative rings &%

Let SΣ(k) and SΣ(k + 1^) be the eigenspaces of these commutative rings:

SΣ(k) = {

SΣ(k + I/) = {

and KZΓ(/c) be the space of all solutions of the generalized KZ equation (2.7).

Theorem 2. TTze following diagram is commutative

KZΣ(/c)

SΣ(k) SΣ(k+l,)9

where 3) = 0/(fc)/Πα6*+ (
α' λ + ωP)» P = iΣα6r+ fcαα, and ^(/c) is the shift operator

for the generalized Sutherland system.

The proof of this theorem is rather straightforward and is based on the formulas
of the papers [11, 15, 19]. We omit it here because it is similar to that of Theorem 1.
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Remark. In the rational case (ω = 0) the corresponding generalization of Theorem
2 is true for any (not necessary crystallographic) Coxeter group.

As a corollary we have the following interpretation of the shift operator for the
usual Sutherland operator.

Let us consider the following version of KZ equation (1.1),

diΦ = Mkω( Σ cothω(z; -Zj)P(i» + T(ίj) ) + λ(i)\ Φ , (2.10)
L \ 7 Φ i / J

where Φ takes values in V®N, λ(i) is the operator in V®N acting on ith factor as the
diagonal matrix λ = diag(/l1? . . . , λn) and identically on all other factors, P is the
permutation: P(a®b) = b®a, T is the following operator on V® V\

T = Σ (Ey ® Eβ - Ejt ® E t J ) , (2.1 1)
i>J

where Etj denotes the matrix with the only non-zero entry 1 at ijth place, and P(ίj)

and T(ίj) are the corresponding operators in V®N acting only on the ith and 7th

factors. In the limit ω -> 0 one has the KZ equation (1.1).
Suppose that dim V — N and consider the solution Φ of the form

Φ = Σ φσeσ9 eσ = βσ(1) ® - (x) *ffOT . (2.12)
σe5N

It is easy to check that the corresponding system (2.10), (2.12) can be rewritten
in the form (2.7) for Σ being the root system of type AN- 1 , W = SN9 fcα = fe, and βσ is
identified with [σ"1]. In this case we have only one nontrivial character
ε(w) = sign(w), which corresponds to δ = Σ.

Corollary. If Φ is a solution of the trigonometric KZ equation (2.10) of the form
(2.12) then the functions

ψ = m(Φ):= ΣσΦσ ,

and

ψ = ch(Φ):=

satisfy the Sutherland equations

- A + k(k — 1) Σ ω2 sinh 2 ω(zf - Zj) \ ψ = Eφ ,

- A + k(k + 1) Σ ω2 sinh-2ω(z, -z7 ) }ψ = Eψ, E = -λ2 ,
i Φ ; /

and are related by the formula

^ = ̂ (λ)®fφ, (2.13)

where Ώ\ is the shift operator and

δωk(λ) = Π Λ - λ, - ωk(i -7 )) . (2.14)

Replacing ω -> ^/ — lω one has the sin-version of this result.
Notice that δωk(λ) φ 0 is a necessary and sufficient condition for the Matsuo

mapping to be an isomorphism (see [15,19]).
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3. Inversion of the Matsuo Mapping and the Shift Operators
for the KZ Equation

In this paragraph for simplicity we restrict our consideration to the rational case
only, but it can be done in the trigonometric case as well.

So we consider the solutions of KZ equation (1.1),

dtΦ = (k y - + λ(ί) Φ (3.i)
V JϊiZi-Zj J

of the form Φ = Σσes* Φσeσ> and Calogero quantum systems L% φ = Eφ,

From the results of Sect. 1 we have the following commutative diagram:

Diagram 2

---- „ KZ(fc-l) -̂  KZ(fc) ^> •••
m,/ \ch m ι

C(k) -^-*

We know from [15, 19] that m and ch are isomorphisms iff
δ(λ) = Π i < j ( λ i — λ j ) = ϊ Q . This means that for the generic λ one has the shift
operator Dκz : KZ(fc) -> KZ(/c + 1) (see diagram 2), which is defined as

^K^m^och. (3.3)

So to give the explicit expression for this operator we need the inversion of Matsuo
mapping m. Now we want to give some formula for this inversion.

Let P(ξ, λ, η) and Pσ(ξ, λ, η) be the following polynomials on ξ, λ,

P(ξ,λ,η)= Π (ξ-w-^lU), (3.4)

P.(ξ, ^ η) = Π « - w- J W, fl) = (£ . (3.5)
w φ σ IS — ̂  ^ΛJ, 77;

Here HP = 5N, σ e Pfis any permutation, ( , ) means the standard scalar product on
1RΛ One can rewrite also

Pσ(ξ, λ,η)=ϊl(x- (w-^λ), η)), x = (ξ, η)) .
w Φ σ

This allows us to define the operator

W, λ,η)=H (Vη -(w-1 (λ), η)) , (3.6)
w Φ σ

where Vη is the Dunkl differential-difference operator (1.16):
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Recall that, for such operators si. Res si denotes the differential part of si> which
can be found as restriction of si to the space of ^-invariant functions (see Sect. 1
and [10]).

Let Φ = ΣσΦσeσ be a solution of KZ equation (3.1) with regular λ: λt φ A7 for
all ί Φ j We will say that η e JR.N is generic if

θ (3.7)

(3.8)

for all W i , w2 e PF such that MΊ φ w2 .
Let

Theorem 3. The solution Φ = ΣΦσeσ of KZ equation (3.1) for regular λ can be
reconstructed from φ = m(Φ) by the following formula:

for any generic η.

Proof. We will use the formula (1.21) from the first paragraph:

Res (¥?)(<?)= £ (μtoUΓ V (3.10)
μeW

It implies that

Res (P,(V, 1, ιj))(φ) = £ ̂ (^" ' (4 ί η) Φ, .

But

Pσ(μ-\λ\λ,η)= Y\(μ~ί(λ)-τ-\λ)ίη) = Q if μ Φ σ ,
τ φ σ

and Pσ(σ-l(λ),λ,η) = l\τ^σ(σ~l(λ) -τ~l(λ\ η) Φ 0 for generic η.
So we have

Res (Pσ(V, A, η)(φ)) = Pσ(σ~ 1(A), λ, f/)Φσ ,

which proves the theorem.
Let ja/σ be the operator,

(3.11)

Corollary 1. The solution Φ = ΣΦσeσ of KZ equation (3.1) for regular λ can be
reconstructed from ψ = chΦ = Γε(σ)Φσ by the following formula: Φσ = ε(σ)£#σψ
for any generic η.

Corollary 2. The operator @κz = m"1 o ch,

(3.12)
σ \ μ

is α 5/zz/ί operator for KZ equation

®κz:KZ(fc-l)->KZ(fc).
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4. Factorizations of Discriminant and Shift Operators

In the introduction it was shown that in the simplest case N = 2 the shift operator
Q)k can be found by solving an appropriate factorization problem

L = &ϊ&k (4.1)

(see the formula (0.4)). The following natural question arises3: is it possible to
determine the shift operator in such a way for general TV?

The answer is "yes." To do it we should choose some special operator LΔ from
the commutative ring ^£, which we will call discriminant.

Recall that the ring £%% of quantum integrals of the Calogero system is
isomorphic to the ring of symmetric polynomials

The operator L we need corresponds to the symmetric function A (λ\

A (λ) = π α -λj) = (- ιy π & - λj)2 = ±§2 w > (4 2)
i Φ J i< J

where, as above, d = N(N — 1)/2. Let us denote y ~ l ( A ) as LΔ(k).

Theorem 4. The shift operator @k for the Calogero system with N particles satisfies
the following relations with discriminant operator LΔ :

@ϊ@k = LA(k), (4.3)

9k9ϊ = LΔ(k + l ) . (4.4)

^* is the operator formally adjoint to 3)k.

The proof follows from the results of the first paragraph. Let us notice that the
diagram 1 can be extended in the following way:

Diagram 3

KZ(fc) <-̂ — > KZ(-fe)

\, m \ ch J, m

C(-k-ί) = C(k) +-^-+ C(k + l) = C(-k)

Here the duality * is defined as the involution

a , (4.5)

where Φ = ΣΦσeσ, ε(σ) is the sign of σεSN. It is easy to check that

*: KZ(/c)-»KZ(-/c).

The second remark is that C(k + 1) = C(— k\ C(k) = C(- k - 1) and

We are grateful to Prof. J. Moser for this question and the stimulating discussions
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So we have from diagram 4, that ^*^ is the identity operator on C(/c). By
Theorem 1,

which gives relation (4.3). Relation (4.4) follows from the same arguments.
In the trigonometric case (for the Sutherland system) we should take

where

./)) (4-6)

and the corresponding operator L™e&l. For the generalizations related to the
root system Σ and the character ε (see §2)

αω = Π (λ±ωp,a). (4.7)

So even in the general case the shift operator Q)k for the Calogero-Sutherland
problem can be found as the solution of the factorization problem (4.3). It would be
interesting to investigate this possibility in more detail.
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