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Abstract: Given a pseudodifferential operator ε(p) satisfying certain growth and
smoothness conditions in momentum space, we construct a wavelet basis of
L2(Rd) in which the corresponding matrix is diagonal dominated with arbitrarily
small prefactor.

1. Introduction

Problems arising in several branches of mathematical physics including quantum
field theory, fluid dynamics and semiclassical analysis require some sort of multi-
scale analysis. The techniques based on the tree expansion in quantum field theory
and on pseudodifferential calculus have recently been complemented by a new tool:
the wavelet bases of L 2 (R d ) discovered by Meyer, Lemarie, Daubechies, Mallat
and others. We refer to Meyer's books [ M ] for a review of these results and for
further references.

The prototypical basis found by Meyer in 1988 is given in dimension one by
a family of functions φx(ξ)eL2(J^% x = (s(x), ξ(x))9 s(x)eZ and ξ(x)e2-six)Z,
which is generated by one "mother" function ψ(ξ)eL2(1R) so that

(1.1)

and

( rr ATT )

(1.2)

Meyer's wavelets also have a "father" φ(ξ) in terms of which φ(ξ) is defined and
which helps to generate higher dimensional wavelets by the method of tensor
products. In Sect. 2, we give a selfcontained review of these constructions. This
particular basis has been named by Meyer after Littlewood and Paley. We find it
thus natural to call these basis functions "LPM-wavelets."
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Our goal in this paper is to refine Meyer's construction of LPM wavelets in
order to obtain wavelet bases with better localization properties in momentum
space. The following specific question arose in an attempt to understand the
Schwinger-Englert semiclassical expansions [E] within a rigorous framework [A],
see also [FS] for a review of the rigorous results: given a pseudodifferential
operator ε(p) in a class defined below whose prototype is p2, the problem is to
construct a wavelet basis for which the matrix

ε(x\y) = (2πΓd J dp ε(p) ψx(p) ψy(p) (1.3)

is diagonal dominated, i.e. is such that

X \ε(x\y)\<c-ε(x\x) (1.4)

for some c < ί and all x. Meyer's wavelets do not have this property for all *
functions ε(p). In fact, even if ε(p) is C00, there is no way to squeeze the support of
φ to a set of arbitrarily short diameter if we also insist on having only one mother
φ. In order to refine the partition of momentum space, we resort to wavelet bases
forming "polygamic families" which are generated by 2"(2d — 1) father functions
φa(ξ) and as many mother functions φa(ξ) with n ̂  1. In the general d-dimensional
case, this basis has the form {ψx}xeΩn, where the index set Ωn is

), s(x), ξ(x)); α(x) = 1, . . . 2"(2« - 1), s(x)eZ, ξ

(1.5)

and the functions φx(ξ) have the form

φx(ξ) = 2 ϊ ' w φaix) (2'M(ξ - ξ(x))) . (1.6)

We have

Theorem. In all dimensions d ̂  1 and for all integers N,n^ 1, there is a basis of
L 2 (R d ) of the form {φx}xeQn, where Ωn and φx are given above and we have:

(i) For all xeΩn, supp φx is invariant under reflection with respect to the coordinate
planes of lRd and we have

supp φx n Rd

+ = QH(x) n Rd

+ , (1.7)

where R d = {(pί9 . . . pd):j ^ 0 V; = 1, . . . d} and Qn(x) is a cube in R d whose side
has length 2 1~"π;
(ii) //xi, x2£Ωn are such that

e(x i)nβ(x 2 )*0, (1.8)

then |s(x!)-s(x2)| ^ 1;
(iii) For all multiindices m = (mx . . . md) such that \m\ ̂  N and all integers oce
{1, . . . 2 " ( 2 d - 1)}, we have

(1.9)

where c is a constant dependent on d and on N but not on n.

We also have
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Corollary. Let d ^ 1 and let εe(£d + 1(lRd) be a function which is symmetric under all
reflections with respect to the coordinate planes and such that for all multiindices
m = (m1 . . . md) with \m\ ̂  d + 1 we have

d\m\

(1.10)

for some constant c. Then, ifn^.1 and {ψx}xeΩn is the wavelet basis in the theorem
above corresponding to N = d + 1, we have

1)ε(x\x) (1.11)

for all xeΩ n , where c is a constant dependent on d but not on n. In particular, ifn is
large enough then the matrix ε(x\y) is diagonal dominated.

2. Littlewood-Paley-Meyer (LPM) Wavelets

Here we review Meyer's construction of LPM wavelets.
Let φeL2(ΊR) be a real valued function whose Fourier transform has the

following properties:

φ(p)=l \f\p\Sn-δ0, (2.1)

0 < φ(p) < 1 Vπ - δ0 < |p | ^ π + <50 , (2.2)

φ(p) = 0 V | p | ^ π + <5 0, (2.3)

φ(p)2 + φ(2π ~p)2 = l V0 ^ p ^ 2π , (2.4)

where δ0 e (0, π) is an adjustable parameter that we fix below. Let us remark that, as
a consequence of (2.1)-(2.4), we have

X φ(p + Ink)2 = 1 . (2.5)
keΈ

Let Lper(2π) be the Hubert space of the functions meL2

oc(lR) of period 2π with the
following scalar product:

In

(mum2)= j dpmx{p)m2{p) (2.6)
o

and let Vs, SGZ, be the subspace of L2(IR) of the functions whose Fourier transform
is of the form

m(2-sp)φ(2-sp) (2.7)

with meLper(2π). If mί9 m2eL2(2π), then thanks to (2.5) we have

2π

J dpmi(2-'p)m2(2-p)φ(2-'p)2 = 2s J dpmi(p)m2(p) (2.8)
- o o 0
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In particular, for every fixed scale seZ, the functions φx(ξ)9 xeΩu s(x) = s, such
that

φx(p) = 2-τsix) exp(i. {(x) P)Φ(2-S(X)P) (2.9)

form an orthonormal basis of Vs. Let us notice that we also have

φx(ξ) = 2^six) φ(2s(x\ξ - ξ(χ))) . (2.10)

Lemma 2.1. (Meyer). For all seZ, we have

(i) φx(ξ)9 xeΩl9 s(x) = s, is an orthonormal basis of Vs;

(ϋ) V,<zVs+1;
(in) Πsez Vs = {0} and ([jseΈ Vs) = L 2(R);
(iv)f(ξ)eVsof(2ξ)eVs + 1;
(v) For all ^ e 2 " s Z , iff(ξ)e V89 thenf(ξ - ξo)e Vs.

Proof Only (ii) requires a proof. We have to show that for all mx eLper(2π) there
exists an m 2 e Lper(2π) such that

' 1 p ) . (2.11)

It suffices to consider the case s = — 1. One can set m2{p) = 0 for |p | ̂  ^ ( π + ^o)
because in this case </>(2p) = 0. On the other hand, if \p\ ̂  \(π + δo\ we have
φ(p) = 1 so that

rn2(p) = m1(2p)φ(2p) (2.12)

Q.E.D.

A sequence of subspaces Vs, seZ, of L 2(R) with the properties above is said to
provide a multiscale decomposition of L2(JR).

Let Ws be the orthogonal complement of Vs in K5 + l J so that we have
Vs+1 = VS®WS. Thanks to Lemma 2.1, we ahve

L2(R) = © Ws . (2.13)
seΈ

We also have

Lemma 2.2. (Meyer). For all seZ, the space 3F Ws is spanned by the functions of the
form

m(2-sp)φ(2-sp) (2.14)

with meLpe r(2π) and

- \ 1 / 2

-φ(p)2) . (2.15)

Moreover the application 0t\ Lper(2π) -^ ̂ Ws such that

0t{m){p) = 2-i.m(2-sp).ψ(2-sp) (2.26)

is an isometry.
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Proof. It suffices to consider the case s — — 1. Let us introduce the following
2π-periodic function:

mo(p) = Σ 2 eiPξ° I d ξ φ ( ξ + ξ o ) φ [ - ξ ) . (2.17)
ζoeΈ. oo

Since V-γ <= Vo, we can write

= Σ Γx ϊ dξφ(ξ + ξo)φ(U\]φ(ξ + ξo). (2.18)

By taking the Fourier transform of both members, we find

φ(2p) = mo(p)φ(p) . (2.19)

Moreover, thanks to the basic equality (2.5), we have

1 = X φ(2p + 2πk)2 = X mo(p + π/c)2 φ(p + π/c)2

fceZ keZ

= Σ [mo(P + 2πkf φ{p + 2π/c)2 + mo(p + π(2/c + I))2 φ{p + π(2fc + I)) 2]
fceZ

= mo(p)2 + mo(p + π)2 . (2.20)

We have

K-! = {m(2p)mo(p)^(p), mGL2

er(2π)} (2.21)

and ί̂ _ i is the space of the functions of the form l(p)φ(p) with le L2

e r(2π) such that

0 = f dp Ί{p) m(2p)mo(p) φ(p)2 = ( dpUJ) m(2p) mo(p) (2.22)
- oo 0

for all m(p)eLp e r (2π). Hence, l(p) mo(p) has a Fourier series of the form

l(p)mo(p)= Σ c(^o)exp(i(2ξo + l)p) , (2.23)

i.e. we have

Ί(p) mo(p) + l(p + π) mo(p + π) = 0 . (2.24)

Due to (2.17), (2.20) and to the symmetry property φ(ξ) = φ(- ξ)9 (mo(p),
mo(p + π)) is a real vector of unit norm of (C2. Hence, the vector (/(p), l(p + π))
must be proportional to the orthogonal vector (mo(p + π), — mo(p)) for all p. We
thus find

/(p) = e~ίpm0(p + π)m(2p) (2.25)

for some meL 2

e r(2π). Finally, thanks to (2.18) and (2.19), we have

l(p)φ(p) = e-^l - m o (p) 2 ) 1 / 2 φ(p)m(p)

φ(2p)2\1/2 .

0(P)2 /
i-φ(2p)2)1/2rn(2p). (2.26)
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Finally, if meL 2

e r(2π), thanks to (2.5) we have

\\@(m)(p)\\22 = 2-s J dpm(2-sp)2\φ(2-sp)\2

— oo

= ] dp m(p)2 (φ (ξY - φ(p)2) = '(dp m(p)2 . (2.27)
-oo V \ZJ J 0

Q.E.D.

This completes the construction of LPM wavelets in the one dimensional case.
In dimension d ^ 1 we can also obtain LPM wavelets by using the method of
tensor products described below in Sect. 4.

3. Decomposition of the Space Lper(2π)

Let us introduce a family of real valued functions θo(δ; p)eLper(2π) paramet-

rized by δ e I 0, - J and such that

θo(δ; p) = θo(δ; - p) VpeR , (3.1)

0<θo(δ;p)< 1 ify-(5<p<y + δ, (3.3)

#o(<5; P)2 + θo(δ; p + π)2 = 1 V p e R . (3.4)

Let θι(δ; p) be the function such that

and let
3Γδ: L

2

eΓ(π) Θ L2

per(π) - LpU2π) (3.6)

be the operator defined in such a way that if m0, m1eLler(πX then we have

Lemma 3.1. The operator ZΓδ is an isometry, i.e.

\\^δ(mθ9mι)\\^2 (2π)
 = l l w o l l i * (π) + 11^x11^2 ( π ) (3 .8)

/or all mo,mι sL2

QT(π)
= L 2

e r (2π). (3.9)

. Let us start by proving that for all m0, mi eLper(π), we have

2π

J dp (mo(p) θo(δ; p) + rn.ip) θ^δ; p)) (mo(p)θo(δ; p) + mdpWάδ; p))
0

(3.10)
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By using (3.4), we find

f dp\mo(p)\2 θo(δ;p)2 = }dp\ mo(p)\2 , (3.11)
o

2π

$ dp\mi(p)\2 \ΘΛδ;p)\2 = $ dp\mi(p)\2 . (3.12)
0 0

Moreover, we have

2π

\ dp m^p) mo{p) θ^δ; p) θo(δ; p)
o

2π

= f dpm1(p)mo(p)e-i"θo(δ;p)θo(δ;p + π) = 0 (3.13)
0

because
e-i{p+π)θ0(δ;p + π)θo(δ;p + 2π) = - e"ίp0o(<5; p)θo(δ;p + π) . (3.14)

Similarly, one can show that

J dpmo(p)mί(p)θo(δ;p)θι(δ;p) = 0. (3.15)
0

It remains to prove that &an ̂  = Lper(2π). The functions of the
form m(p)θo(δ;p) (resp. m(p)θ1(δ;p)) with meLp

2

er(π), span the subspace of

Lper(2π) of the functions with support in - + <5, δ + 2πZ (resp.

— --h(5, + x — <5 + 2πZ). Moreover, if/eLper(2π) is a function with support in

- — (5,- + δ I + 2πZ, then there are two functions mOim1 eLpe r(π) with support

in ( - - (5, - + ̂  J + πZ such that

^o(p)^o(<5; P) + Wi(p)#i((5; p) = ε(p) (3.16)

for all p e R . To find these functions, let us observe that for all pe

- — δ, - + δ J + 2πZ, we must have

0 = mo(p + π)θo(δ; p + π) + mx(p + π)0i(<5; p + π)

= mo(p)e-ipe^p) - mMJ'θoiδ p) , (3.17)

and hence

mo(p) = e2ipm1(p)θo(δ;p)θ1(δ;py1 . (3.18)

For such values of p, we also have

f(p) = mι(p)ίe2ipθ0(δ;p)2 βtflpΓ1 + θi(5;p)]

P ) " 1 ^ p [ β o ( ^ ; p ) 2 + θo(δ;p + π) 2 ]

5 ; p ) - 1 ^ . (3.19)
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Hence, we find the following explicit expressions for m0 and m^.

m i ( p ) =f(p)θί(δ; p)e~2ip + / ( p + π) θx(δ\ p + π)e~2ip , (3.20)

mo(p) =f(p)θo(δ; p) +f(p + π)θo(δ; p + π) . (3.21)

Q.E.D

4. 2Π-voice LPM Wavelets

In this section, by combining Meyer's construction of LPM wavelets and the
decomposition of the space Lper(2π) given above, we construct multivoice LPM
wavelets which have all the properties required by the theorem in Sect. 1 and by its
corollary.

The decomposition of the space Lper(2π) provided by the operators ?Γb in (3.6)
can be iterated. Namely, for all integers n ^ 1 and <5e(0, 2""π) one can define an
isometry

SΓf: © L2

pet(2-nn)^L2

per(2n) (4.1)
j = l 2"

such that ϋmσeLleτ(21 ~"π) is a family of functions labelled by elements σ in the set

sn = {σ = (σi... <τn)|σme{0, 1} Vm = 1 . . . n} (4.2)

we have

fϊ (mβ)(p) = Σ mβ(p)θ,(δ; p) . (4.3)
σ

Here, we set

θσ(δ; p) = θσι(δ; p) ]̂ [ 0 1 + ( T w + ( T m _ 1 ( 5 m ; 2 m ~ x p) (4.4)
m = 2, n

where

^m = 2m~1(5, (4.5)

and the sum (1 + σm + σm_ x) is computed mod 2 and has values in {0, 1}. With this
definition of θσ9 we have

Lemma 4.1. For all fixed n ^ 1 and all δe(0, 21~Ππ), we have

θσ(δ\ — p) — θσ(δ\ p) (4.6)

σ m 2" m π + [ - δ, 2~nπ + 5] . (4.7)
m = l

/ Equation (4.6) is obvious. If n = 1, then (4.7) follows from (3.1) and (3.5).
Otherwise, if n ^ 2, (4.7) can be proved by induction in n. In fact, let us suppose (4.7)
holds for all σes,,-! and let us fix a (5e(0, 2~nπ) and a σesΠ. We have

σ M + σ n_ 1((5 n;2w-V), (4.8)
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where σ' = (σt . . . σn-jjes,,-!. We also have

= [2~nπ-δ, 3 2""π + 5]+( l + σn +σ^^ l1-^ + 22~nnZ

= [2-"(2σn + 3)π - δ, 2""(2σΠ + 5)π + <5] + an-^2x~n% + 2 2 ""

= [2-"(2σn - l)π - δ, 2""(2σΠ + l)π + <5] + π

X σm 2-mπ + 22-"πZ. (4.9)
m = l

Hence

= fπ + V σm 2~mπ + [- 5, 2""+ 1π +

π - 1

n ( π + Σ
m = l

2-"(2σn+

= π + "Σ σm 2-"π + [2"" σnπ - δ, 2~"(σn + l)π +
m = l

(4.10)

Q.E.D.

One can now construct 2"-voices LPM wavelets. The fathers φσ and the
mothers ψσ, σesn, are defined as the functions such that

(4.11)

(4.12)

where δe(0,2~nπ\ φ(p) is a function satisfying (2.1)-(2.4), and, according to
Lemma 2.1, ι̂ (p) is given by

J J . (4.13)
If we set

(4.14)

^s ί o (ί) = 25> σ (2 ( { - { 0 ) ) , (4.15)

then thanks to the preceding lemma, we have
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Lemma 4.2. For all n^ 1, <5e(0, 2 nπ) and σesn, there exist functions ψσ(ξ), φσ(ζ)
such that

(i)

(ϋ)

and

(iii)

and

forallσ,σ'esn, s,s'eZ,

(iv) Γ/iβ spaces

Φσ{P) = Φσ(- P)> ΦσiP) = Φσ(~ P) I

s u p p ^ σ π R + = π + £ σm2~mπ +[-(S,%2~Mπ +
m = l

suppφ σ nlR + =

(Φσsξo\Φσ'Sξ'o) = '

<Ψσsξo\Ψσ's'ξ'o> = δ0

Vs = span{φσsξo,σesn,ξ0e2n s:

seZ, give a multiscale decomposition of L2(ΊR);
(v) IfseΈand

Ws = ξo, σesn,

then

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(Remark. These spaces are the same ones defined in Sect. 2.) In particular, we have

L2(R) = 0 Ws (4.24)
seZ

and φσSξ0{σesni seZ, ζς>e2n SZ}, is an orthonormal basis of L2(ΊR);

(vi) For all integers m e [ l , iV] and all <5e(0, 2~nπ) we have

dn

sup

sup
P

dp'
ΦΛP) (4.25)

(4.26)

where c is a constant independent of both δ and n.
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Proof. Equation (4.19) follows from (2.8) and (3.13), while (4.20) can be derived
from Lemma 2.1 (ii) and from (2.2), (2.27) and (3.13). Only the last statement
requires a proof. Let us consider the following function:

r 0 if p ^ 0
μ(p) = \ Mo ίS dp' p'N-\p' - δf-1 if 0 g p g ± δ ,

I 1/2 if p > i (5

where μ0 is the following normalization constant:

dp'p'X-^p'-δf-Λ ' ^ const. ^" 2 j v + 1 .
, ό /

If m is an integer in [1, iV] and pe [0, ̂  <5], we have

\N-1 < const.

and

— μ(p)2 ^ const. (5~

(4.27)

(4.28)

(4.29)

(4.30)

Let us define φ(p)eL2 (IR) to be the function satisfying (2.1 -4) with δ0 = δ and such
that

Φ(p) =

We clearly have

i f — 71 — δ ^ p ^ — 7 C ,

< const. δ~m

(4.31)

(4.32)

for all 1 ̂  m g iV. Similarly, if 0(<5; p) is a function satisfying (3.1)—(3.4) and such
that

we have

~θo(δ;p)^ const, δ'

(4.33)

(4.34)

for all 1 ̂  m ^ JV. Thanks to (4.4), we also have

d"

dpm θσ(δ;p) ^ const. δ~ (4-35)

for all n ^ 1 and all σesn. Hence, (4.25) and (4.26) are also valid. Q.E.D.
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Once one knows a family of fathers φσ{ξ) and mothers φσ(ξ% σesn, of one
dimensional, 2"-voices LPM wavelets, one can construct similar wavelet bases in
any dimension d ^ 2 by the method of tensor products. In fact, let us consider the
subspaces irs and ^ seZ, of L2(Rd) such that

%= ® K, ^ + i = ^ θ * ί . (4.36)

We have

^ = 0 0^?,, (4.37)

where

td = {τ = (τx . . . τd): τ, e {0, 1},; = 1 . . . d, and (Tl . . . τd) * (0, . . . 0)} (4.38)

and
F° =

*Z}. (4.39)

If α = (σ, τ)esnxtd, let us introduce the functions

ΦΛξ)= Π / ? ( « . (4.40)
j=ί d

s(x)e

(ξ-

Λξj) •

Z,ξ(x)e2"-sI,d} .

ξ χ)

(4.41)

(4.42)

(4.43)

where { =

Let Ωn be the set in (1.5), i.e.

Qn = {(α(x), s(x), ξ(x)\ oc(x)esn x i

If xeΩn, let φx be the function such that

φx(ξ) = 2ϊsix)φaix)(2s

Then, for all xu x2eΩn we have

< Ψxi I Φxi ) = δχi X2 (4.44)

and {φx}xeΩn is an orthonormal basis of L2(Rd).
It is easy to see that if the functions φσ and φσ are chosen so that they have all

the properties in Lemma 4.2 for δ = 2~M~1π, then the basis {φx}xeΩn has all the
properties required in the theorem of Sect. 1. In fact, supp φx is invariant under all
reflections with respect to one of the coordinate planes of Rd. Moreover, we have

supp φx n R d

+ = Q (x) n Rd+ , (4.45)

where Q(x) is a cube in Rd whose side has length 21~"~s(x)π. The center
p(x) = (p1(x\ . . . pd(x))eRd of Q(x) is such that, for all j = 1, . . . d, we have

-»-i+ J ( l -σ m )2- m l (4.46)
m = l J
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in case Xj(x) = 0 and

m = l

13

(4.47)

if τ.(χ) = l. in particular, for all xeΩn there are no more than (2d + 2d — 2)
wavelets yeΩn with ξ(x) = ξ(y) such that

fiMnβ(y)Φ0, (4.48)

up to irrelevant boundaries of zero Lebesgue measure. Finally, let us pass to the
proof of the corollary in the introduction. Let εe<^d+1(JRd) be a function which is
symmetric under all reflections with respect to the coordinate planes and such that
for all multiindices m = (m1 . . . md) with \m\ ̂  d + 1 we have

δ\m\

ύ cε(p) (4.49)

for some constant c > 0. We have to prove that if n ^ 0 and {φx}xeΩn is the wavelet
basis constructed above and satisfying all the conditions in the theorem in Sect. 1
with N = d + 1, then we have

(4.50)

for all XγeΩn.
Let XiGΩn and let us introduce the shorthand notations

= p(xt), Qt = Q(Xi) (4.51)

and

= max|ε(p)| . (4.52)

We have

ε(x1\x2)(2πydμpε(p)φXi(p)φX2(p)

= (2π)-ie(p1)δXiX2

ά
( s l + S 2 ) J dp [8(p) -

Let

exp(i(ξo2-ξoi) p). (4.53)

(4.54)
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If β i n < 2 2 = 0> then we have ε(x1\x2) = O. Moreover, for all multiindices
m = (mi . . . md) such that \m\ = d + 1, we have

Π \ξθ2J- ξθίj\

S c2~dsι J d
Qi

sup |Vε(p')|2S l-π 2 | m | ( I I- S l )

+ Σ_ s u P
tn\ + Πί2 —VΛ p'eQi

mi Φ 0

< c2~dsι lε . 2~ M + ( d + 1 ) ( "~ s l ) 2~d ("~5 l )

where the constants c do not depend on n. Hence, we have

(4.55)

ί o i l Γ ( < l + 1 ) (4-56)

Since there are at most (2d + 2d — 2) possible values for a(x2)esn x t,, such that

ε(xi |x 2) + 0> w e have

ε(x 1 | x 2 ) |^c2-<' i + 1 ><"- 1 >|ε 1 | . (4.57)

Finally, if ξx — ξ2, we have

SΊ

^ c2~dSl ( sup |Vε(p)| )

(4.58)

The proof of the corollary in Sect. 1 is thus completed. Q.E.D.
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