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Abstract: Given a pseudodifferential operator ¢(p) satisfying certain growth and
smoothness conditions in momentum space, we construct a wavelet basis of
L*(R?) in which the corresponding matrix is diagonal dominated with arbitrarily
small prefactor.

1. Introduction

Problems arising in several branches of mathematical physics including quantum
field theory, fluid dynamics and semiclassical analysis require some sort of multi-
scale analysis. The techniques based on the tree expansion in quantum field theory
and on pseudodifferential calculus have recently been complemented by a new tool:
the wavelet bases of L2(RY) discovered by Meyer, Lemarié, Daubechies, Mallat
and others. We refer to Meyer’s books [ M] for a review of these results and for
further references.

The prototypical basis found by Meyer in 1988 is given in dimension one by
a family of functions ,(¢)e L?(R), x = (s(x), &(x)), s(x)€Z and &(x)e2 *™Z,
which is generated by one “mother” function y/(¢)e L2(IR) so that

s(x)

Y€)= 272 Y (2°(¢ - ¢(x)) (L.1)
and
~ i 4
suppy = {PGIR: 3 Slpl= ?} : (1.2)

Meyer’s wavelets also have a “father” ¢(¢) in terms of which (&) is defined and
which helps to generate higher dimensional wavelets by the method of tensor
products. In Sect. 2, we give a selfcontained review of these constructions. This
particular basis has been named by Meyer after Littlewood and Paley. We find it
thus natural to call these basis functions “LPM-wavelets.”
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Our goal in this paper is to refine Meyer’s construction of LPM wavelets in
order to obtain wavelet bases with better localization properties in momentum
space. The following specific question arose in an attempt to understand the
Schwinger—Englert semiclassical expansions [E] within a rigorous framework [A],
see also [FS] for a review of the rigorous results: given a pseudodifferential
operator ¢(p) in a class defined below whose prototype is p?, the problem is to
construct a wavelet basis for which the matrix

e(x]y) = (21) ™~ [ dp &(p) (p) Y (p) (1.3)

is diagonal dominated, i.e. is such that

Y lelx[y)l < c-elx]x) (1.4)

xFy

for some ¢ <1 and all x. Meyer’s wavelets do not have this property for all-
functions &(p). In fact, even if e(p) is C*, there is no way to squeeze the support of

¥ to a set of arbitrarily short diameter if we also insist on having only one mother

¥. In order to refine the partition of momentum space, we resort to wavelet bases

forming “polygamic families” which are generated by 2"(2¢ — 1) father functions

¢.(¢) and as many mother functions ¥, (¢) with n = 1. In the general d-dimensional

case, this basis has the form {y, }cq,, where the index set Q, is

Q, = {x = (ux),s(x), £(x)); a(x) = 1, ... 2" — 1), s(x) € Z, {(x) €297},
(1.5)
and the functions (&) have thed form
Yal&) = 22°% iy (2°P (€ — E())) - (1.6)
We have

Theorem. In all dimensions d = 1 and for all integers N,n = 1, there is a basis of
L*(R?) of the form {}.cq,> where Q, and Vi, are given above and we have:

(i) For all xeQ,, supp |/;x is invariant under reflection with respect to the coordinate
planes of R? and we have

supp Y, " R4 = 0,(x) nR% (1.7)

where R = {(py, ... ps):j20Vj=1,...d} and Q,(x)is a cube in R? whose side
has length 2 ~"x;
(i) If xy, x,€Q, are such that

0(x1)NQ(x2) 0, (1.8)

then |s(x,) — s(x;)| = I
(i) For all multiindices m = (m, . . . my) such that |m| £ N and all integers o€
{1,...2"(2* = 1)}, we have

<@ tm, (1.9)

o -
P Yu(p)

where ¢ is a constant dependent on d and on N but not on n.

We also have
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Corollary. Let d = 1 and let e 4°**(R?) be a function which is symmetric under all
reflections with respect to the coordinate planes and such that for all multiindices
m=(my, ...my) with |m| <d+ 1 we have

im|

p " e(p)

< c-¢e(p) (1.10)

for some constant c. Then, if n 2 1 and {Y},cq, is the wavelet basis in the theorem
above corresponding to N = d + 1, we have

2 le(xly) £ ¢-27@r DOV g(x|x) (1.11)
xX+y

for all x€ Q,, where c is a constant dependent on d but not on n. In particular, if n is
large enough then the matrix &(x|y) is diagonal dominated.

2. Littlewood—Paley—Meyer (LPM) Wavelets

Here we review Meyer’s construction of LPM wavelets.
Let ¢eL?(R) be a real valued function whose Fourier transform has the
following properties:

$(p)=1 Vipl<n—10,, 2.1)

0<p(p)<1 Va—0do<I|pl<m+60, (2.2)

d(p)=0 ViplzZn+d, 23)
é(p)?+dQ2n—p?=1 VOSp<2n, 2.4)

where d, € (0, 7) is an adjustable parameter that we fix below. Let us remark that, as
a consequence of (2.1)—(2.4), we have

Y dlp+2mk? =1. 2.5)

keZ

Let LZ..(2n) be the Hilbert space of the functions me L (R) of period 2n with the
following scalar product: ’

2z

(my, my) = [ dpm,(p)m;(p) (2.6)
0

and let V}, se Z, be the subspace of L2(IR) of the functions whose Fourier transform
is of the form

m(27*p)$(27"p) 2.7)
with me L2, (2n). If my, m, e L2, (2n), then thanks to (2.5) we have

2n

[ dpmi27 D) my27*p) $(27°p)* = 2 [ dp my(p) my(p) - (2.8)
- 0
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In particular, for every fixed scale se Z, the functions ¢,(¢), xe Q;, s(x) = s, such
that

$ulp) = 2729 expli- £() P F2*Wp) (2.9)

form an orthonormal basis of V. Let us notice that we also have

1
$:(£) = 22°7 $(2°D(E — E())) - (2.10)
Lemma 2.1. (Meyer). For all se Z, we have
(i) ¢x(&), xeQy, s(x) =s, is an orthonormal basis of V;
(i) Vi< Vorys
(ii)) (Voez Vs = {0} and (| Jsez Vi) = L*(R);

(iv) f(©)eVi=f(20) € Voyy;
(v) For all £o€27°Z, if f(E)e W, then f(E — Lo)e Vs

Proof. Only (ii) requires a proof. We have to show that for all m, € L2, (2n) there
exists an m, € L2,,(27) such that

my(27°p) $(27°p) = my2 7" p) P27 1p) . (2.11)

It suffices to consider the case s = — 1. One can set m,(p) = 0 for |p| = 3(n + o)
because in this case #(2p) = 0. On the other hand, if |p| < 4(x + J,), we have
#(p) = 1 so that

m,(p) = m;(2p) $(2p) (2.12)
Q.E.D.

A sequence of subspaces V;, se Z, of L?(IR) with the properties above is said to
provide a multiscale decomposition of L*(R).

Let W, be the orthogonal complement of ¥, in V., so that we have
Vii1 = V,® W,. Thanks to Lemma 2.1, we ahve

L*R)=PW,. (2.13)

seZ

We also have

Lemma 2.2. (Meyer). For all se Z, the space # W, is spanned by the functions of the
form

m2=°p)y(2~°p) (2.14)

~ i /2
b=t (d(30) - 07 ) @15

Moreover the application R: LZ..(2rn) > F W, such that

with me L2, (2n) and

R(m)(p) = 272-m(27*p)- h2"*p) (2.26)

is an isometry.
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Proof. It suffices to consider the case s = — 1. Let us introduce the following
2n-periodic function:
1t ., 2 — (1
mo(p) = ). Ee“’é" J dio+ &) (5 é) : 2.17)
¢o€eZ — 0

Since V_; = ¥,, we can write
1 1 1 @ - 1
5¢<5 é) =2 [5 J deoc+ 50"”(55)]“5 +¢).  (@18)

By taking the Fourier transform of both members, we find
$(2p) = mo(p)$(p) - (2.19)
Moreover, thanks to the basic equality (2.5), we have

1=Y ¢Q2p + 2nk)? = ¥ mo(p + nk)? $(p + nk)?

keZ keZ

=Y [mo(p + 2nk)* $(p + 27k)> + mo(p + n(2k + 1))> (p + n(2k + 1))*]
keZ
= my(p)® + mo(p + 1)* . (2.20)
We have )
V-1 = {m(2p)mo(p) $(p), me L3..(2m)} (2.21)
and W._, is the space of the functions of the form I(p) ¢ (p) with le L2..(27) such that

2n

0= [ dpl(p)m2p)mo(p) $(p)* = | dp I(p) m2p) mo(p) (222)
o 0

for all m(p)e L2, (2r). Hence, I(p) mo(p) has a Fourier series of the form

1(p) mo(p) = 52 c(&o) exp(i(2€o + p) , (2.23)
ie. we have L
I(p) mo(p) + U(p + M) mo(p + 1) = 0. (2.24)

Due to (2.17), (2.20) and to the symmetry property ¢(&) = ¢(— &), (mo(p),
mo(p + 7)) is a real vector of unit norm of C2. Hence, the vector (I(p), I(p + ))
must be proportional to the orthogonal vector (mo(p + n), — me(p)) for all p. We
thus find

I(p) = e~ mo(p + mM)m(2p) (2.25)
for some me L., (2n). Finally, thanks to (2.18) and (2.19), we have

1(p) $(p) = e~ (1 — mo(p)*)'/ $(p)m(p)
s <B(2p)2>”2 ~
—e Pl — 2L 2
e ( 307 é(p)m(2p)
= e "?($(p)® — H2p)*)* m(2p) . (2.26)
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Finally, if me L2, (2n), thanks to (2.5) we have

I Zm)(p)II3 =2"° _j dpm@~p)* (Y2 "*p)I?

L) 2 . 2n
= [ dpm(py (6 (;) —¢(p)2>=jdpm(p>2. @27)
0 0
Q.E.D.

This completes the construction of LPM wavelets in the one dimensional case.
In dimension d = 1 we can also obtain LPM wavelets by using the method of
tensor products described below in Sect. 4.

3. Decomposition of the Space Lﬁe,(Zn)

Let us introduce a family of real valued functions 6,(5; p)€ L2..(2n) paramet-

rized by 56(0, E) and such that

2
00(5; p) = 00(0; —p) VpeR, (3.1)
00(5; p) = 1 ifg+5§p§37n—5, (3.2)
0<0p(d;p) <1 if-%n—6<p<37n+5, (3.3)
005 p)* + 0o(0;p+m)* =1 VpeR. (3.4
Let 0,(9; p) be the function such that
01(3;p) = €7 0o(d; p + m) 3.5
and let
T Lier(m) @ Lier(m) = L3 (27) (3.6)
be the operator defined in such a way that if mg, m; € L2, (), then we have
Ts(mo, my)(p) = mo(p)0o(J; p) + my(p)61(5; p) - (3.7)
Lemma 3.1. The operator J; is an isometry, i.e.
1T 0, m)I12s 0y = 1Mol 22, sy + lImsl122 o (3.8)
for all mg, my € L. (r) and
Ran Ty = L., (2n) . (3.9)
Proof. Let us start by proving that for all my, m; € L2.(n), we have

2n

[ dp (mo(p) 06(5; p) + my(p) 0.1(5; p)) (Mo ()80 (5; p) + my(p)61(5; p))
0

= [dp(Imo(p)|* + Imy(P)I?) . (3.10)
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By using (3.4), we find

2n T
| dplmo(p)I? 00(5; p)* = | dpl mo(p)|*, (3.11)
0 0
2n T
| dplmi(p))* 161(8; p)I*> = [ dpIm.(p)|* . (3.12)
(o] 0
Moreover, we have
2n
§ dp my(p) mo(p) 61(3; p) 00(5; p)
0
2 .
= [ dpm;(p) mo(p) e™*0,(3; p)0o(0; p + 1) = 0 (3.13)
0
because

eI, p + m)0o(S; p + 2m) = — e 00(8; PO p + 1) . (3.14)

Similarly, one can show that
2n

| dp mo(p) my(p)6o(5; p)01(5;p) = 0. (3.15)
o)

It remains to prove that ZanJ;= L2.(2n). The functions of the
form m(p)0o(5; p) (resp. m(p)0;(; p)) with me L2 (n), span the subspace of

377: - 6] + 2nZ (resp.
T

LZ.(2n) of the functions with support in [g + 4,
[— g +94, + 5~ 5] + 2nZ). Moreover, if fe L2,.(2n) is a function with support in

<g - 6,% + 6> + 2nZ, then there are two functions mg, m; € L2, (n) with support

in (E - 5,2 + 5) + nZ such that

2 2
mo(p)Bo(S; p) + my(p)0:(5; p) = &(p) (3.16)
for all peR. To find these functions, let us observe that for all pe

(g — 5’% + 6> + 27Z, we must have

0=mo(p + m8(5; p + m) + my(p + m)0,(3; p + 7)
= mo(p)e”"%01(3; p) — my(p)e'?0o(3; p) , (3.17)
and hence
mo(p) = €*7 my(p)0o(5; p)01(5; p) ™" . (3.18)
For such values of p, we also have
f(p) = my(p)[e** 0o(5; p)* 01(8; )~ + 61(5; p)]
= my;(p)01(3; )~ " €*P[06(5; p)* + 60(8; p + m)*]
=my(p)01(d; p)~" €*7. (3.19)
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Hence, we find the following explicit expressions for my and m;:
my(p) = f(p)01(3; p)e™ > + f(p + m) 0,(3; p + m)e™*7, (3.20)
mo(p) = f(p)00(d; p) +f(p + )6o(d; p + ) . (3.21)

4. 2"-voice LPM Wavelets

In this section, by combining Meyer’s construction of LPM wavelets and the
decomposition of the space L2 (2n) given above, we construct multivoice LPM
wavelets which have all the properties required by the theorem in Sect. 1 and by its
corollary.

The decomposition of the space L2, (2n) provided by the operators 75 in (3.6)
can be iterated. Namely, for all integers n = 1 and é (0, 27 ") one can define an

isometry

TP @ LieQ7"m) > Li.(27) 4.1)

j=1 2n

such that if m, e L2,,(2' ~") is a family of functions labelled by elements o in the set

sp={6=(0;...0,)0,€{0,1} Vm=1...n} 4.2)
we have
T3 (mg)(p) = Y, ma(p)0,(5; p) - 4.3)
Here, we set
0,0, 0) = 05,5 0)* [ Oi4omtom Om 2" D) (4.4)
m=2, n
where
S =215, 4.5)

and the sum (1 + o,, + 6,-)is computed mod 2 and has values in {0, 1}. With this
definition of 6,, we have

Lemma 4.1. For all fixed n 2 1 and all 6€(0, 2! ~"n), we have

0,(6; — p) = 0,(5; p) (4.6
and

suppb,(8;-)n[r—8,2n+d]=n+ Y 6,27 "n+[—62""n+5]. (47)

m=1

Proof. Equation (4.6) is obvious. If n = 1, then (4.7) follows from (3.1) and (3.5).
Otherwise, if n = 2, (4.7) can be proved by induction in n. In fact, let us suppose (4.7)
holds for all 6es,_; and let us fix a (0,27 "n) and a os,. We have

0,(; ) = 0,5, P) 01 46 40,025 2" ) , (4.8)
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where ¢’ = (64 ...0,-1)€S,—1. We also have
SUPP 01 46,44, 1 (0n3 2"~ ' p)
=R2"r -6, 327"t +6]+(1 +0,4+0,-1)2"" "1 +2*""1Z
=[2""20,+3)n—6,27"2o, + )t + 6] + 6,-1-2" " + 22" "1Z
=[2""20,— )n— 08,2720, + )n+ 6]+ =

n—1
+ Y 0p2" "+ 22" . (4.9)
m=1

Hence

supp 0,(6;+) N [w — 6,2n + 5]

n—1
=<1t+ 0',,,2“"‘7t+[—5,2"‘+17r+5}>
=1

m=

n—1
m<n+ Z om2 "+ [27"(20, — ) — 6,

m=1
27"20, + D+ 6] + 22'”nl>
n—1

=1+ Y 0,2""n+[27"0,n — 5,270, + )1 + 5]

m=1

=1+ Y 0p,2""n+[—06,2""n+5]. (4.10)
1

Q.ED.

One can now construct 2"-voices LPM wavelets. The fathers ¢, and the
mothers ,, o €s,, are defined as the functions such that

é+(p) = 0,(5;p) $(p), (4.11)
Uo(p) = 0,05 p) ¥(p) (4.12)

where 6¢€(0,27"n), é(p) is a function satisfying (2.1)—(2.4), and, according to
Lemma 2.1, ¥(p) is given by

- i /1 \? “ 12
V(p) = e'7”<¢ <§p> - ¢(p)2) . (4.13)
If we set
Gonol) = 22° 6, (2 — &) , (4.14)
Voseal&) = 22° Y, (€ — &0)) , (4.15)

then thanks to the preceding lemma, we have
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Lemma 4.2. For alln = 1,6€(0,27"n) and o €s,, there exist functions Y4(&), (&)
such that

(i)
VolP) = V(= D), o(P) = bo(— D) ; (4.16)
(i)
supp Y, "Ry =7 + Z om2 "+ [— 8,27 "1+ 6] @.17)
m=1
and
supp §o "R, = < S (1= 02 ™n 4+ [= 5,2 "n + 5]>n]R+ . (4.18)
m=1
(iii)
<¢as§o‘¢a’s§b> = 500’ 6§o.§(’) (419)
and
<'l/a-s€o|‘//a’s’€b> = 5a'cr’ 5ss’ 5{0{6 (420)

for all o,0'€s,, 5,5 €L, &g €2" L, Ee2" 7 Z;

(iv) The spaces

V, = span{@qssy, 0E Sy, Eo€2" L}, 4.21)

seZ, give a multiscale decomposition of L*(R);
(v) If seZ and

W, = span{Y,s,» 0E Sy, E0€2" L}, 4.22)

then
Vii1=W, @ V. (4.23)

(Remark. These spaces are the same ones defined in Sect. 2.) In particular, we have

L*R) = D W, (4.24)

seZ

and Yose {0 €Sy, SEZ, Eg€2" L}, is an orthonormal basis of L*(R);

(vi) For all integers me[1, N] and all 6€(0,27"n) we have

sup
p

d—m é,,(p)l <co ™, (4.25)
dp

sup <™, (4.26)

p

a" -
d_p—m 'ﬁa(l’)

where c is a constant independent of both & and n.
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Proof. Equation (4.19) follows from (2.8) and (3.13), while (4.20) can be derived
from Lemma 2.1 (ii) and from (2.2), (2.27) and (3.13). Only the last statement
requires a proof. Let us consider the following function:

0 fp=0
pu(p) = {uof‘a dp pNTHp =8N f0<p=sis, (4.27)
12 ifp>16

where uq is the following normalization constant:
F)
1/2 -1
Uo = 5<fdp’ PN iy — 6)”“) < const. 2N+l (4.28)
0

If m is an integer in [1, N] and pe[0, % 6], we have

m dm—l
" ©(p) = o Fra p" " H(p—6)" 7! < const. 67" (4.29)
and
dm
— /1 — u(p)* < const. 6™ . (4.30)

dp™

Let us define ¢(p)e L(IR) to be the function satisfying (2.1-4) with 8, =  and such
that

Sp)=pp+n+d) if —n—06<p< —m,

dp)=J/1—pp+n? if —n<ps—n+4. (4.31)

We clearly have

i &(p)} < const. ™" (4.32)
dp

for all 1 £m < N. Similarly, if 6(5; p) is a function satisfying (3.1)—(3.4) and such
that

7\? b n
. = —_— _—— 1 _— < < —
6o3p) = 1 u(p 2) 5<pss+9, (433)
we have
dm
- . < -m
" 00(5; p) < const. 6 (4.34)

for all 1 < m < N. Thanks to (4.4), we also have

m

d
. < -m
d—_p'” 0,(3; p) < const. § (4.35)

for all n = 1 and all oes,. Hence, (4.25) and (4.26) are also valid. Q.E.D.
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Once one knows a family of fathers ¢,(¢) and mothers (&), o€s,, of one
dimensional, 2"-voices LPM wavelets, one can construct similar wavelet bases in
any dimension d = 2 by the method of tensor products. In fact, let us consider the
subspaces ¥, and ¥;, se Z, of L*(R“) such that

Vo= ® Voo Vo1 =7 @Y. (4.36)
ji=1, d
We have
= ® @ Fu. (437)
cesp, tetg j=1, d
where

to={t=(t,...7):1;€{0, 1}, j=1...dand (t, ... 7)) % (0,...0)} (4.38)

and

F = span{¢s,, Eo€2"°Z} ,
Flo = span{Y,g,, Co€2" 2} . (4.39)

If & = (0, T) €35, X t4, let us introduce the functions

@ = T 3¢, (4.40)

j=1 d

where ¢ = (¢ ... ¢;)eR? and

o) = 0., fa(&)=u(&))- (4.41)
Let Q, be the set in (1.5), i.e.
Q, = {(a(x), 5(x), E(x)), a(x) €, X tg, S(X)EZ, E(x)€2"Z%} . (4.42)
If xeQ,, let Y, be the function such that
¥:(&) = 2% Ya (2°F (€ = E(x))) - (4.43)
Then, for all x;, x, €, we have
¥y D = 0y x, (4.44)

and {Y, }xcq, is an orthonormal basis of L*(RY).

It is easy to see that if the functions ¢, and Y, are chosen so that they have all
the properties in Lemma 4.2 for § = 27"~ ' 7, then the basis {{, }rcq, has all the
properties required in the theorem of Sect. 1. In fact, supp Y, is invariant under all
reflections with respect to one of the coordinate planes of R%. Moreover, we have

supp Y, nR% = Q(x) n R4, (4.45)

where Q(x) is a cube in R? whose side has length 2!7" " *® 7z The center
p(x) = (p1(x), . . . pa(x))eR? of Q(x) is such that, for all j = 1, . .. d, we have

pi(x) = 21 [2—"—1 £Y - a,,,)z—'"] (4.46)
m=1
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in case 7;(x) = 0 and

pj(x) = 2°n [1 +27" Zn: 0',,,2"”:| (4.47)

m=1

if 7;(x) = 1. In particular, for all xeQ, there are no more than (2¢ + 2d — 2)
wavelets ye Q, with £(x) = £(y) such that

0X)n Q) *0, (4.48)

up to irrelevant boundaries of zero Lebesgue measure. Finally, let us pass to the
proof of the corollary in the introduction. Let e€ **!(IR?) be a function which is
symmetric under all reflections with respect to the coordinate planes and such that
for all multiindices m = (m; ... my) with |m| <d + 1 we have

[m]

" ==, &(p)

< ce(p) (4.49)
ap™

for some constant ¢ > 0. We have to prove that if n = 0 and {{, } ..o, is the wavelet
basis constructed above and satisfying all the conditions in the theorem in Sect. 1
with N = d + 1, then we have

Y le(xi]xz)] £ €279 Vg(xy|x) (4.50)

X2 F X1

for all x, €Q,.
Let x;€Q, and let us introduce the shorthand notations

o = alx;), s =5(x;), Coi=E¢(x;), pi=px), Q= Q(x;) (4.51)

and

g = max |g(p)| . 4.52)

peQ:

We have
£(x112) 2m) ™% [ dp &(p) Ve, (P) Yy (D)
= @027 [ dp e(p) Y (27 1) Y2
~exp(i(¢o2 — €01) D)
= (zn)—d 8([)1) 5x1x2
+@n) 27T [ dp Le(p) — e(p1)] Y @ D) Y2 52)
-exp(i(&o2 — Co1):p) . (4.53)
Let
B(x11%2) = (x11X2) — 21) 4 &(p1) Oy s - 4.54)



14 C. Albanese

If Q;nQ, =0, then we have e(x;|x,) =0. Moreover, for all multiindices
m = (m, ...my) such that |m| = d + 1, we have

d
H |foz,j - fo1,j [™ 18(x1]x2)]
j=1

m

" Le(p) — &(P1)] ¥a, (227! p) Y, (27°2p)

<27 [ dp
Q1

<27 [ dp { sup [Ve(p/)]251 ="+ 2mn=s0
Q1 p'eQi

amn
+ X sup e e(p) 2'"'2”"‘8“}
1+tm2= '
mmn;zo m p'eQy
< o2 dst, |£1 )R+ (n=sy)  )—d(n=s)

ST gy, (4.55)

where the constants ¢ do not depend on n. Hence, we have
[E0xq |x2)] < 274D (1 4 [Eop — &ou[)TUHY . (4.56)

Since there are at most (2¢ + 2d — 2) possible values for a(x,)es, x t, such that
&(x1]x,) *+ 0, we have
Y 1By ]xp)| £ 27@HNOD g, (4.57)
x2 &2 % &y

Finally, if £, = &,, we have

18(x11%2)] < €279 [ dple(p) — e(p1)| Y, (2754 D) Yoy (2752 )
Q1

<2 <sup |Ve(p)|)2<“““*-">

pPeQ,

< clg 2”@+ bn (4.58)
The proof of the corollary in Sect. 1 is thus completed. Q.E.D.
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