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Abstract. We show that, up to one exception and as a consequence of first order
perturbation theory only, it is impossible that a large portion of the well-known family
of breather solutions to the sine Gordon equation could persist under any nontrivial
perturbation of the form

utt ~ uχχ + sinw = εΔ(u) -f O(ε2),

where Δ is an analytic function in an arbitrarily small neighbourhood of u = 0.
Improving known results, we analyze and overcome the particular difficulties that arise
when one allows the domain of analyticity of Δ to be small. The single exception is
a one-dimensional linear space of perturbation functions under which the full family
of breathers does persist up to first order in ε.

1. Introduction

1.1. The Problem

Nontrivial solutions to a wave equation are called breathers if they decay as x\ —•>• oc
(x the space variable) and are periodic in time t. A wave equation known to admit
such solutions is the sine Gordon equation

utt ~ uxx ~+~ snl u — 0. (1.1)

As it can be viewed as a completely integrable Hamίltonian system, explicit solutions
are known, in particular the family of breathers

u*(x,t) — u*(x,t;m) = 4arctan , m,ω > 0, m2 + ω2 = 1. (1.2)
ω coshmx

We are concerned with the question whether this type of solution exists for other
nonlinear Klein Gordon equations

utt -
 uχx + 9(u) = 0, (0(0) - 0, </(0) ± 0) (1.3)
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nearby, i.e. where the nonlinearity g(u) is close to sin u. There are reasons (explained
in Sect. 1.3) for suspecting that existence of breathers is a very rare and singular
phenomenon, and in fact our result roughly says that the family of breathers does not
persist under any nontrivial perturbation of the specified kind. The next section gives
the precise statement of this result, and discusses its limitations.

A nonexistence result for breathers has already been explained by Segur and
Kruskal in [23], but no proof in full mathematical rigor is given there. Our
nonpersistence result is based on a similar result by Birnir, McKean, and Weinstein
[5], and we begin by following closely their approach. However, additional analysis
permits us to get the same result under considerably weaker hypotheses. Our result
has been presented on a conference on dynamical systems in Sankt Petersburg, and
an announcement is to appear [10].

There are trivial perturbations of the sine Gordon equation which arise merely by
a scaling of (x, t) and u in the unperturbed equation. A non-persistence result has to
cope with the fact that breathers do persist under scalings.

We now formulate the theorem in all details.

1.2. The Result

Theorem 1. Consider the perturbed sine Gordon equation

uti - uxx + sin u = εΔ(u, ε) = εΔ(u) + O(ε2). (1.4)ε

Let Δ(u,0) = :Δ(u) and Δ(Q,ε) = 0 for all ε. Suppose that Z\( , ) is Cl in both
variables and analytic in the first variable in a neighbourhood <9/(0,0), say

u
tan-

4
ρ< l, |ε | <ε

(i) Then it is possible to re scale (x, t) and u in such a way that in the re scaled variables
(called x, t, u again), εΔ(u, ε) does not contain terms of order u1 or u3 (but possibly
such of order u2). The scaling normalizes only the odd part of the function Zi( , ε), but
does not change the even part.

(ii) Assume in addition this scaling to be performed, i.e. that εA(u, ε) does not contain
u1 or u3 terms.

Suppose that for infinitely many values of m satisfying 0 < — < ρ' < ρ there
ω
2π

exists a breather solution ιtm(x,t,ε) of time period Tm(ε) = to (1.4)e for
ωm(ε)

0 < ε < εmax(m) which depends Cl on ε as a function from [0, εmax(m)[ to X, such that
the periods Tm(ε) depend continuously on ε, and such that itm(x, ί, 0) = ιt*(x, ί; m).
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Here, X is the normal space of time-periodic and spatially decaying functions that
is defined in the beginning of Sect. 2.1. Then, the first order of the perturbation can
(up to a constant factor) only be the even function

j / n. 7/\ 9
2 4Δ(u) = - 1 -4cos- 4-3cosi£ + 4cosnlncos- = -— u2 + O(u4) . (1.5)

(iii) If there persist infinitely many breathers as before and if Δ( , •) and um(', , •) are
also analytic with respect to ε and if moreover Δ(u,ε) does not contain a quadratic
term in u, then εΔ(u,ε) is a scaling of the sine Gordon equation.

In fact, we can show nonperistence for the exceptional perturbation (1.5), too [11].
This result, however, needs second order perturbation theory. Its proof is deferred to
a forthcoming paper.

Several remarks help to explore the merits and the limitations of the theorem:
(1) Our result contains the parameter 0 < ρ < 1, which determines the domain
in which analyticity of the perturbation function needs to be assumed. At the same
time, it determines the amplitudes m for which persistence of the breather u*(-> •; ra)
is a well-defined notion: the range of um(-, ,ε) is close to the range of w*( , ;ra)
and must be contained in the domain of Δ( ,ε). The result by Birnir, McKean, and
Weinstein mentioned before, concerns the case ρ = 1. On the other hand, Theorem 1
deals with nonlinearities that are analytic only in an arbitrarily small neighbourhood
of 0, i.e. ρ can be any small positive number. This seemingly innocent improvement
is not a mere technicality, but requires new ideas. Together with the elimination of
(1.5) given in [11], it is our basic improvement compared to Birnir, McKean, and
Weinstein [5]. It should however be clear that this further progress was possible only
on the base laid by these authors.
(2) We need not assume persistence in the sense that u(x,t,ε) exists for all ε E
[0, εmax[; a sequence ε — » 0 is enough.
(3) We have not assumed εmax(m) to be uniform in m. Neither is any uniformity in
m for ||wm||χ needed.
(4) The theorem implies in particular that except for scalings and the specified
perturbation (1.5) that is left over, there exists some mmax such that no breather
with m < mmax persists.
(5) The proof of Theorem 1 relies entirely on the first order equations in ε. In other
words, simultaneous persistence of infinitely many breathers can be excluded by
linearization arguments alone.

Theorem 1 can be complemented by further results: For instance, persistence of a
single breather cannot be excluded by linearization arguments. More precisely, we can

771
show [11] that for any fixed 0 < — < 1, there exists an infinite dimensional linear

ω
space of first order perturbation functions Δ( ) for which the sine Gordon breather
persists up to first order in ε. We are not able to decide persistence of a single breather
by means of higher orders of the perturbation, nor do we know whether first order
perturbation theory is sufficient to rule out simultaneous persistence of some finite
number of breathers.

We have not touched at all the global (in ε) problem, i.e. the general nonlinear Klein
Gordon equation. However, the proof of Theorem 1 will lead to a few illuminating,
though speculative, glimpses on this equation (see Sect. 4.2).

We have stressed our point that Theorem 1 can deal with arbitrarily small domains
of analyticity of the perturbation, i.e. with arbitrarily small ρ. However, the assumption
ρ < 1 is artificial, and there is the opportunity for an improvement in the other
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direction, too. One may wish to exclude the persistence of infinitely many large

amplitude breathers I — > 1 J for any nontrivial entire perturbation function.
\ω J

Theorem 1 cannot handle this case because of the condition ρ < 1. This kind of
restriction will be removed in Sect. 4.1, where we prove the following theorem as a
corollary to Theorem 10.

Theorem 2. Suppose the analyticity requirement for Z\( , •) in the beginning of Theo-
rem 1 is relaxed such that A need be analytic in the first variable only in some complex

1J

neighbourhood of the real segment —ρ'< tan — < ρ' < oo. Then, if infinitely many
ΐϊl

breathers persist in the interval 0 < — < ρf, the conclusions of Theorem 1 hold
ω

without change.

TΠ
The technical point is that discussions in the neighbourhood of — =0 involve a

ω

series expansion argument that does not reach beyond
ra

< 1 even for entire Δ( ).
ω

For Theorem 2, one has to replace the series by an integral representation, which is
TΠ

however not appropriate near — =0. Both together produce the full information.

1.3. Background

Physicists consider breathers as particle-like solutions of some (classical) field theory.
Non-existence of breathers for utt — uxx +u — υ? = 0 has been claimed and discussed
in a physical context by Segur and Kruskal [23], but not proved rigorously. There is
a large number of other contexts in which nonlinear Klein Gordon equations arise in
physics. Some of them can be found in [3], where further references are given. Let
us mention a heuristic common sense argument against the existence of breathers.
Asking for a breather solution means posing a boundary value problem to a wave
equation. Such problems are typically ill-posed.

One can view the nonlinear Klein Gordon equation (1.3) as a dynamical system

U (1.6)

on some space of periodic functions (of the variable £). Then, the dynamical variable
is x. Here,

The linearization of this equation about its trivial solution U = 0 has the matrix

A = 2 . Considered as an operator on L2(R/TZ,R2), A has pure

point spectrum

spec Λ j ^_ ^ y v~7 .
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In this setting, a breather solution is a homoclinic orbit to the fixed point U — 0.
This point of view has been stressed by [27,12]. If a breather exists, this means
that miraculously the finite dimensional stable and unstable manifolds coincide or at
least have a one dimensional orbit in common in an infinite dimensional space. These
manifolds may split under perturbation of the equation. A non-persistence result means
that they do actually split. We shall consider some obstructions whose vanishing is
a necessary condition for the persistence of breathers under the perturbation. These
obstructions should therefore be related somehow to some geometrical object like
splitting distance or splitting angle. No such connection is established by now. But one
fact is remarkable: The obstructions to be considered will turn out to be exponentially
small with respect to the amplitude of the unperturbed breather. This situation reminds
one of the results on exponentially small splitting of separatrices established recently
[9, 14, 18, 22]. Probably the analogy is not too close, because the problems with the
exponentially small terms (which are notoriously difficult) turn out to be comparatively
easy in our setting.

If the stable and unstable manifold picture is more than only heuristics, it means
in particular that for g'(O) < (2π/T)2, these manifolds are one dimensional, so any
T-periodic solution that decays either as x -* oo or x -* — oc corresponds to the
n = 0 Fourier component, i.e. is independent of t. Exactly this has been proved by
Coron [6] in 1982. His proof does not even mention invariant manifolds, but is quite
an elementary calculation. However, the idea of invariant manifolds is still in the
background behind his calculation. Recently, Kichenassamy [16, Theorem 5] proved
a stable manifold theorem directly for this situation.

Let us now consider the same equation, but with t as the dynamical variable,
as a dynamical system on some space of decaying functions (of the variable x).
Then a breather is simply a periodic solution. We want to compare the situation with
Lyapunov's center theorem. It says: Let ύ = Au + O(u2) be an ordinary differential
equation having an integral of motion, and let ±ίλ be a pair of simple imaginary
eigenvalues of A. (It gives therefore rise to a 2 dimensional linear space Σ fibred by
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periodic solutions to the linear equation ύ — Au.) Now, if ±inλ (n = 2,3,. . .) are
not contained in the spectrum of A, then locally a 2 dimensional manifold S fibred
by periodic solutions to the nonlinear equation exists, and it is tangential to Σ in 0.
Without the last nonresonance condition, 5 might not exist.

Even if we have no PDE version of Lyapunov's center theorem at hand, let us
look at the linearization about 0 and see whether the nonresonance conditions are
satisfied.

spec A

This is what (1.1) now looks like:

0

The linearization about 0 has the matrix A =
0

with continuous spectrum
_ _

all on the imaginary axis: spec A = ±i - [l,oo[. We have no eigenvalues (and no
periodic solution that could correspond to a pair of eigenvalues), only continuous
spectrum. This naive model does therefore not display an analogy with Lyapunov's
center theorem.

The reason is that the breather (1.2) is a genuinely nonlinear phenomenon, not
visible in the linearization about 0. u* spreads out on the real axis as m — » 0, and
the shape ceases to decay for x\ — > oo in the limit m — > 0. This degeneracy near
u = 0 is the culprit for the exponential smallness of the obstructions mentioned above.
When proving Theorem 1 for a perturbation function Δ that is analytic only in some
arbitrarily small neighbourhood of 0, one is forced to work near this degeneracy. This
is one way to explain, why our theorem needs new ingredients beyond the theorem
by Birnir, McKean, and Weinstein.

Nevertheless, there is an analogy with Lyapunov's center theorem, which we are
going to pursue now. It will justify that the continuous spectrum in the above picture is
indeed responsible for resonances with the unperturbed breather, and these resonances
are obstructions to the persistence of the breather. The right way to talk about spectra
for a nonlinear equation like sine Gordon is to talk about the spectral parameter in
the (linear) scattering problem associated to it: The sine Gordon equation (like other
soliton equations) can be studied by associating with it a linear equation that contains
an eigenvalue parameter λ. In this linear equation (called the associated scattering
problem), the sine Gordon wave u( ,tQ) for fixed tQ plays the role of a potential, and
λ plays the role of the energy of wave functions ψ that are scattered by this potential.
The important connection between the two problems is that the scattering data (a term
that can be given a precise meaning, but we need not do so for the purposes of this
exposition) do not depend on ί0, provided ?/(•,•) solves the sine Gordon equation,
even though the scattering problem does depend on t0 through the potential ιt( ,t0).
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In other words, time evolution of the nonlinear wave u( , t ) according to the sine
Gordon equation describes an isospectral deformation of the potential u( , t ) in the
associated scattering problem with deformation parameter t.

Resuming our comparison with Lyapunov's center theorem, let us describe the
resonances that occur and are responsible for the nonpersistence. For first order
perturbation theory, we shall have to consider the linearized operator

about the sine Gordon breather w*, and the functions in the kernel of 3§ are asymptotic
to free Klein Gordon waves e

ϊkx+'lΩt (where k2 + 1 = j?2). The continuous spectral
parameter λ from the associated scattering problem determines the wave number
k = fe(λ) and the frequency Ω = Ω(X) of these free Klein Gordon waves. It is a good
idea to associate the above picture of the continuous spectrum with the possible values
of iΩ(\). The breather potential also admits bound states of the scattering problem,
which correspond to certain complex values of λ, and the associated frequencies are
±ω. Now, ±ίω plays the role that would be played by the simple pair of eigenvalues
in Lyapunov's center theorem. There is a resonant interaction of the breather with the
continuous spectrum similar to the resonances that have to be excluded in Lyapunov's
center theorem, when integer multiples ±inω of ±iω fall into the continuous spectrum
{iΩ(X)\X G M} = :B[l,oo[. In fact, we have such a resonance for every integer

n Φ 0, ±1, provided α; > -, i.e. m < >/3/2. This gives infinitely many necessary
conditions (one for each n) for the persistence.

Generically, one cannot expect these conditions to be satisfied. Genericity results
have been obtained by Sigal [25]. He includes potential terms and allows any space
dimension, and discusses the problem in general spectral theoretic terms. Our results
are more detailed, but hold only for a very special situation.

The responsibility of these conditions for the nonpersistence result can also be
illustrated as follows: When one modifies the problem and looks for time periodic
solutions to the perturbed sine Gordon equation on a finite x-interval, say with
Dirichlet boundary conditions, then the continuous spectrum is replaced by a point
spectrum. In this case, there is a fair chance to avoid the resonances, but it is very
delicate: with infinitely many eigenvalues ±iΩk, one has to expect "near miss"
encounters where nω — Ωk \ becomes arbitrarily small. So one gets persistence results
for a Cantor set of periods, but one has to cope with small denominator problems;
see [7, 8, 17].

2. Proof of the Theorem

2.1. First Order Perturbation Theory and Outline of Proof

In order to be definite about the periodicity and decay assumptions, let

X - \u(x,t)\ + \ux(x,t)\ + \ut(x,t)\ < γ
1

The smallest possible c can be taken as a norm, making X a (dense) subspace of
a Banach space (of weighted C1 -functions). The particular choice of the function
space is not really important for the following arguments, however. We say sloppily
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that a T-periodic (in the second argument) function u is in X, if the function
( T\

(x, t) ι-> u { x, t — is in X.

The basic argument by which one begins is contained in the next lemma; it is a
necessary condition for the persistence of a breather:

Lemma 3 (First order perturbation theory). Consider the perturbed sine Gordon
equation (1.4)ε. Suppose that (u,έ) t-> εΔ(u>έ) is Cl with respect to both variables

( u }
in a neighbourhood of (0,0), say in < (u,ε) tan- < ρ < 1, |ε| < ε0 >. Also

consider the family of breathers (1.2) that solve the unperturbed sine Gordon equation

(1.4)0. Suppose that one (for m = ra0, such that ra0/\/l — πί^ < ρ) of these

breathers persists under the perturbation, in other words, that for 0 < ε < εmax,
there exists a T(ε)-periodic (in t) classical solution w(x,t,ε) to (1.4)ε satisfying
!/(#,/;, 0) — t£*(x, ί;m0), such that ε ι—> u(-, ,ε), [0, εmax[—» X is a C1-function and
T( ) is continuous.

Then v(x, t) := dε\ε=G(u(x, t,ε) — u*(x, t', m(ε))) solves the equation

:= (d2

t -d2

x+ cos u*)υ = Δ(u*) , (2.1)

where u* denotes the function i£*( , •; m0).

Proof. We can write

u(x, t, ε) = w*(x, £; ra(ε)) + εv(x, r) -f o(ε) , (2.2a)

where

r = tT(0)/T(ε) and m(ε) = l - (2π/T(ε))2 , (2.2b)

and v is Γ(0)-periodic in the second variable. Inserting (2.2a) in (1.4)ε gives

utt ~ ulx + sin w* +εS§v -f o(ε) = εA(u* + O(ε), ε) .

Taking the leading order in ε gives the claimed result., D

Remark. Note that ί, not r has entered in it*. This has the effect that the 0th order
approximation w*(x, t, m(ε)) is an exact solution to the unperturbed equation, but that
ra varies with ε. If one chose to adapt the period by writing -u*(x,r, m) instead of
w*(α;,ί,ra(ε)), one would get an equivalent ansatz (with a different v) all right, but
one that messes up the different orders of the perturbation.

A necessary condition for the breather at m to persist is that the equation

^ - Δ(u*) can be solved for v, i.e. that Δ(u*) e im^^^ίkerJ^)^. Now,
a sequence of functions χn G kerjg? can be given, so we have infinitely many
conditions for each m, namely ^?n : = / χnΔ(u*)dx dt — 0. We have also infinitely
many degrees of freedom: the perturbation function Δ( ).

TΪΊ TΓL
It turns out that ^L is a function of — that is exponentially small in — .Onn ω ω

the other hand, to prove the theorem means to show that 3%>n does not vanish in a
777-

neighbourhood of — =0. This difficulty is resolved by the fact that an exponentially
(jj

small factor that is given explicitly can be split off from j^>n, leaving a term Mn
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777

that is an analytic function of — near 0. This is done in Sect. 2.3 and is borrowed

from [5].
A further reduction kills the scalings, for which persistence is known a priori.

In this step, the role of the exceptional perturbation (1.5) becomes clearer: it sneaks
in like the shadow of one of the scalings. As the even and the odd parts of the
perturbation are treated separately (but in full analogy) in all of the proof, the roles
played by the scalings affect only the odd part, whereas (1.5) lies in the even part
and plays the very same role there. A side effect of this further reduction is a radical
simplification of the formulas, without which the key to the result for arbitrarily small
analyticity domain could hardly have been discovered.

This key is one more surprising explicit formula. We argue that nothing short
of this formula could have provided the qualitative information that is needed to
conclude the proof, because extracting this information from the available data is

TΠ
ill-conditioned, which reflects the degeneracy of the problem near — =0 again.

LU
We now complete the proof by filling in the details.

2.2. Normalizations

oo

Suppose that εA(u,έ) = ^a^(ε)u^. Transforming (1.4)ε by the scalings (x,t) =
(μx, μ£), ύ = Xu, we get l

• v Λ ' V .UH — u££ 4- sin u = εΔ ( - , ε + sin u -- ~ sin — .
\λ / μ A

Therefore, we see that in order to get rid of the u1- and v? -terms, we need a{ = 1 — μ2

and α3 = -(1 — μ2λ2)/6. Here, a{ and α3 are of order ε, and the equations can be
solved for λ, μ = 1 +O(ε). The claim on the parity is also obvious from this formula.
So we have proved (i), and we may assume from now on that the normalization by
scalings has already been performed. However, this normalization will be exploited
only at the end of the proof.

Let us note in passing that the scaling with λ(ε) = 1 + λ'ε -f . . . and μ(ε) =
1 -f μ'ε -f . . . adds (2μf — A') sin u -f X'u cos u to the first order Δ(u) of the perturbation
function.

Next take care of the translation invariance (in x and t) of (1.4)ε: If the perturbed
equation has breathers, then their translates in time and space are also breather
solutions. The unperturbed breather (1.2) can be distinguished from its translates

in time and space by the normalization condition tt*(0, 0; m) — u* ( 0, — ra 1 = 0.
\ 2ω J

By means of the implicit function theorem one can impose the analogous condition
on um, thus breaking the translation invariance. When we write

um(x, t, ε) = u*(x, t; ra(ε)) + εvm(x, r) + o(ε) ,

according to Lemma 3, this normalization has the consequence that

with analogous equations for all higher order terms (in ε) v[2\ . . . , if we can expand
further.
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In the formulas that follow, we write atn for the arc tangent and ch, sh, th for the
hyperbolic functions.

23. Calculating the Obstructions

We have seen in the outline of the proof that necessary conditions for persistence
TΠ

of the breather at — is the solvability of the equation ^υ = Δ(u*). We exhibit
ω

appropriate test functions for this equation:

Lemma 4. For every integer n and either sign of ^/n2ω2 — 1 —:

n cosωtsinωt
th mx + —ί *n

X{^
. Γ / f c λ 2 1 1

-'[M -4]-
2 ch mx

+ l sin2
_

4 ch2rax

z' s α In I ω -periodic solution to the linearized sine Gordon equation <2?χ = 0. Provided

ω > 2> the χn are bounded for |n| > 2. On the other hand, χ0 grows exponentially as
±CXD. ΓΛ^ solutions for n = ±1,

I / m2sin2cϋt\ * Γ ieτωt sincjte~mx

χ l ί m(x,t) = - 1 + —-—= x<- + 9' o \ , . 2 ^ u ^ _ ^ , / [chmx ch mx

\d correspond to the time and space derivatives of the sine Gordon breather:

dtu* — —4im(χ1;im + X-i^m) = ~4zm(χ1;_im + χ_l^_ίrn),

X-i

Proof. These functions χn fe (x, t) are special cases of the solutions φ£(x, t, Λ)
to =2ίχ = 0 exhibited in the appendix, λ is chosen such that β(λ) = ncj, i.e. that
χn fcn have the time periodicity of the breather. The equation β(λ) = nω clearly
displays the resonance of the breather with the continuous spectrum.

The calculations of dtu* and dxu* are immediate. D

Remark!. For x —> ±00, χn fcn is asymptotic to a constant times e

ϊ/Cn:E+mα;ί, a free
wave solution to the Klein Gordon equation. This is no surprise, because under this
limit, ΐ/* — > 0, so 32 tends to the Klein Gordon operator d\ — <92 + 1. All the
other factors in the formula for χn k are "Nature's camouflage" in the sense that all
qualitative features in the formulas that will follow and their physical interpretation
depend only on the exponential term. In particular, the relation A:2 = (no;)2 — 1 is the
dispersion relation for Klein Gordon waves.

Multiplying ^v = Δ(u*) with χn kn and integrating by parts yields

oo 2ττ/ω
Γ Γ

= / / Xn,±kn(x,t)Δ(u*(x,f))dtdx = 0. (2.3)
J J

-oo 0
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Note that M^ *s independent of the sign in fcn, because Xn ?_ f c n(x, t) = Xn^n(~x > *)

and w* is even in x. We shall simplify notation by writing χn for χn kn and Mn for

M^i when no confusion can arise.
777 777

At present, 0 < — < 1, and we consider z — — as the independent variable.
_ ω_ _ ω

Then, ra = z/^/l + z2, and ω — l/\/l + z2. Later, we shall consider z as a complex
variable.

even
Let sgnΔ be ±1 if Z\( ) is an t function and undefined if neither is the case.

odd
Obviously, JBn is linear in Z\, so up to a linear decomposition we may assume Δ is
either even or odd. A glance at the ^-harmonics involved shows that Jffin vanishes if
n and Λ have opposite parity. Moreover,

vanishes identically for all Δ: For even ones due to the ^-integration, for odd
ones due to the x-integration, because the odd (in t) part of χl ±irn is also odd in x.

The definition of the 3$n leads us to the basic splitting lemma

Lemma 5. Let Δ( ) be analytic about 0; define the sequence (Δ ) by the Taylor
expansion

oo
2θ(z) := Δ(4 atn z ) / ( l + z2) - Δpz

p , z\ < ρ < 1 (2.4)
p=l

and formally let Δ_l := Δ0 := 0. Γ/z^λi w^ cα« decompose

?77, ~ Λ ra m
— . ̂  — for 0 < — < ρ < 1 ,
ω y n V ^ y ^ ^ - '

where En does not vanish, and ^&n(z) can be continued to an analytic function for
\z\ < ρ. In detail,

ch(πkn/2m)

for n >2 even

for n > 3

( ^ Γ Γ ^ j K n + ̂ -l)!]-'''1

V ίι)z I \ n I
g=0

9-1 r

[(n-h2g-l)!]~1 J] \r(n + r) +
τ=n L

2 2

(2.6)
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~ fm\
Consequently, the equation <2?v = Δ(u*) has a solution v, only if 1 M^ I — J = 0
for all integers n>2. \ω /

Proof of the Lemma. For the straightforward calculation of 3Bn, one has to insert the
series for θ and the formula for χn (Lemma 4) into the integral (2.3). Depending on
whether n is even or odd, only the even or odd component of Δ enters. So, one can
write p = n + 2q for the summation index (or p = n -f 2q — 2 for two terms, for
which one shifts the index). In the course of the calculation, the following integrals
appear:

2π/ω

. . 9.7Γ . 1 / n -J- 7/7 λ
(n > 0),/ sinn+29ωte"

0

00 ι

/

etkx j

chp mx m

*"Λ 2π( iγ
ω

' 2p~l π

^- 1 ) !ch —
2m

2p~l πk/2π

(p— 1)! , TΓ/c

τ+q l (n^
(2ϊ)n+2q \^

5=1/2 V 4m2

lPTl ίi2 i *" fi 1J + ̂

for p odd, m > 0

-p—r ) for p even, m > 0

2m

(The terms containing thmx or cosα t can be reduced to the above integrals, too, by
integration by parts.) The detailed calculation has been done in [5].

With the explicit formula at hand, we can cancel E ^ 0 from ^&£ ( — ) = 0
~ (m\ \ω /

now and are left with the persistence condition M^ I — 1 = 0 as claimed. D
\ ω I

The calculation automatically yields that the series (2.6) converges for
m

< Q
ω

(after the obvious cancellation of m2ςf has been executed in the first line). Therefore,\
TΠ \
— 1 is analytic in this disc. Since the theorem assumes persistence of infinitely
ω J m

many breathers, the corresponding values of — must accumulate somewhere; it must

be in the interior of the domain of analyticity of ^, because we have explicitly
771

ruled out the boundary by the condition — < ρ' < ρ. Therefore, we can conclude,
ω

following [5], that ^ vanishes identically, and we may exploit this by inserting

complex values of — .
ω

All the rest of the proof relies on this analytic continuation argument. The condition
that all M^ vanish identically in a neighbourhood of 0 will determine a four
dimensional space of coefficient sequences (Δp). These four dimensions correspond to
the two scalings, the perturbation (1.5) not accounted for geometrically, and the shift
of u that is ruled out by the condition Δ(Q) — 0.

m
In particular, if — takes certain purely imaginary values, determined by the zeros

UJ / \

of the product in (2.6), then ^^ ( — ) reduces to a finite sum, and the condition
_ \ω J
1 The condition is also sufficient according to the completeness result described in the appendix:
see Theorem 12



Nonpersistence of Breather Families 409

)
'

= 0 becomes a recursion for the coefficients Δ For any positive integerP
m

7, select — according to
ω

„,„ x 2= — q(q + n) <£> m —

, i 'α;2 (n -f 2<?)2 — 1

for integers n > 2 and q > 1. Then the only non-vanishing terms of the sum (2.6)
are those with q — 0, 1, . . . , q, and hence the sum involves Δn_2, Δn, . . . , Δn+2~,
altogether q + 2 coefficients. We let

_

R (n' ?) :" 2α;2(l-n2)

777

and this does not depend on which one of the two values of — defined by (2.7)
ω

we denote as z(n, q) and which one as —z(n,q). We postpone writing out formulas

for /2(n, #) until after the further reduction of 3%n in the following section. Then the
strange normalization factor just introduced will cancel.

~ TΓl
Remark 2. As promised earlier, Mn is exponentially small with respect to — as

LU

— — » 0. This happens, because in (2.3), an exponential factor elknX is integrated
ω
against an analytic function Δ(u*) that decays like 1/chrax. On the natural length
scale 1/ra for x, the exponential is highly oscillatory.

Remark3. The resonances of the basic frequency ω of the breather with frequencies
of the continuous spectrum of Klein Gordon waves lead to poles of 3%n (or En) on

771
the imaginary axis in the complex — plane. These poles are exactly at the points

UJ

z(n, q) defined by (2.7), as can be seen easily. They accumulate at 0 for every fixed

n. So, if RΔ(n, q) — 0 for infinitely many g, then ̂ ^ = 0 by analytic continuation.

2.4. Further Reducing the Obstructions

The coefficients Δp introduced in (2.4) may be viewed as coordinates on the space
of perturbations.

We already know that there must be a two dimensional space of perturbations,
generated by the scaling solutions

Δ(u) = sinu& Δ2n+l = 4(-l)n(n + I)2 ,

;2(n - fc) + I)2 (2.8)

2k + I '
Δ(u) = ucosu^Δ2n+l=4(-lΓ

for which all 3%n vanish identically, because breathers trivially persist under scalings.
(One can insert these sequences into the recursions as a sensitive check against
calculational errors.)
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This makes it desirable to have coordinates on the quotient space of all perturbation
functions modulo the scalings. The coordinates Ap described below come close
to being such coordinates. Introducing them divides out the scalings, but also the
additional perturbation (1.5). The latter will therefore be recovered in the very end,
when the perturbations are reconstructed from the Ap -coordinates.

We postpone a more detailed discussion and the necessary proofs into Sect. 3 and
simply state the result here:

Lemma 6. Given a sequence (Δp)p>Q that does not grow faster than coefficients of
a convergent power series can, define its sequence of weighted second differences,

Bp:=p(Γp-Γp_2), A p:=B p + 2-B p. (2.9)

Tϊϊ
Then, 3%^ ( — 1, given by (2.6), can be expressed in terms of A^ as follows:

\ 1,1 I V

_ ι V A l V - ι
(2-10)

[ 4 J

with C = 2(-l)Ln/2V(l - n2).

Remark 4. We do not write down the general formula for R(n,q) in the Δp-
coordinates. There is no more need to do so, once the Ap -coordinates are available.
However, the formula R(n, 1) = 0 played an important role in discovering (2.9). It
reads

2(n-1)2 (n+1)2 (n + 3)2

The reduction formulas were constructed in such a way as to make the conditions
R(n, 1) = 0 trivial. Then it is quite natural to try how other obstructions simplify in
the new coordinates. This project leads to Lemma 6.

The proof of this lemma consists of two partial summations; it will be given in

detail in Sect. 3.1. We intend to argue that M^ = 0 for all n implies Ap = 0 for all
p. Then, going back from Ap to Δp will select the scaling solutions for odd p and
(1.5) for even p. No further solution is selected for even p because of the condition
Δ(Q) — 0, i.e. ΔQ = 0. This will then complete the proof of part (ii) of the theorem.

Let us explicitly write down the recursions R(n, q). Inserting (2.7) into (2.6), we
find that

(We feel free to specify either Δ or A as a superscript to R, when the perturbation
function should be expressed, or to specify nothing. This should not lead to confusion.)

In order to determine Ap, we can use all those conditions R(n, q) — 0 for which

\z(n, q)\ < Q, because the conclusion 3%^ = 0 is valid only in a disc of radius ρ. For
ρ = 1, this is no restriction: \z(n, q)\ < 1 for all integers n > 2 and q > 1. In this
case,

) = (n+l)A n /n!
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small p = small slope
below line => |̂ | < P

* (recursion feasible)

* *•»••> (2)

3 4 5 6 7 8 9 10 11 12 13 14 q

Jϊ(n,q) involves: Δ n _2, Δn, . . . , Δn +2(q-ι)> Δn+2q

or equivalently: An, ..., An+2(g-ι)

Fig. 1. The finite recursions.
(1) Recursive calculation of coefficients selects scaling solutions (feasible only for ρ — 1),

(2) recursive calculation of coefficients selects solutions to ,^n = 0 for
conditioned; no problem due to surprising explicit formula).

< ρ (any ρ\ ill-

The equation of the separating straight line is
if is^lightly stronger than z(n,q)\<ρ

— = ρ1/2. The condition that (n, q) lies below

immediately proves the desired result. This is the situation considered by Birnir,
McKean, and Weinstein [5]. The argument works just as easily in the Z\-coordinates.
Z\1 and Zl3 are initial conditions (giving the scalings), and then R(n, q) = 0 determines
^3+2<? recursively for q = 1, 2, 3, . . . .

For ρ < 1, there are severe restrictions, because z(n,q) — » iH for <? fixed and
n —> oo, so the only way to get information on all power series coefficients An+2~
is to let q — >• oo, i.e. to work with conditions involving more and more terms. See
Fig. 1 for the situation (in case n is odd).

Remark 5. Since An = n!J?(n, l)/(n + 1), one can read (2.11) in the following
way: All conditions R(n,q) — 0 are consequences of the conditions R(n, 1) = 0,
the shortest recursions. Translated back into the Λp -coordinates, this means that all
higher (q + 2)-term-recursions are consequences (linear combinations) of the 3-term-
recursions. Therefore, the latter contain already all information that is contained in

Remark 6. One can attribute a geometric (physical) meaning to the different condi-
tions. To fix n means to fix a test function χn 6 ker J^, in other words, to look at the
nth Fourier component in time. We shall do this immediately.

TΠ ~ ί TΠ \
To fix — , considering 3%n I — ] for varying n (no recursion, but an infinite series),

ϋJ \ UJ J

means to study first order persistence of one specific breather.
But to fix q means to look at a different breather for every Fourier component,

and to consider the first resonance belonging to each Fourier component.
The condition R(n, q) = 0 is a vanishing pole condition: It is equivalent to the

condition that the possible pole of ^n(z) at z — z(n, q) does not occur.
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2.5. Explicit Solution for the Recursion

For every n, we have conditions R(n, q) — 0 to determine (Ap), where q > <?min(n, ρ),
and gmin is large if ρ is small. So, we have a (<?min - l)-dimensional space of
solutions determined by arbitrary initial conditions A ^ . . . . . A7Λ Λ and the available

"mm
recursions #(n, g) = 0.

We want to show that the intersection of these finite dimensional spaces for
all different n is {0}. In this procedure, the key step is that an explicit formula for
this solution space can be found. All we need from this formula will be the asymptotic
behaviour of a solution sequence (Ap). These asymptotic expansions will turn out
to be linearly independent for a collection of different n, leaving only the zero
solution in the intersection. We give the lemmas here and postpone their proofs until
Sect. 3.

<?-* Δ

_ q\(n -j- q)\ \ (n -

Lemma 7. Let n be fixed and consider the recursions R(n, q) — Ofor variable q. For

any nonnegative integer Q, the following sequence A^_2g ^
 tne "Greens function" at

Q for these recursions, i.e. RA (n, q) = Ofor q ̂  Q + I, but is ̂  Ofor q = Q + 1,

(Q) _ T n 2<? 2 _ (n + 2Q + 1) (n -f 2Q -h 3)

For Q — 0, the term q(q - 1) . . . (q — Q + 1) is to be interpreted as the empty product,
I.

In particular, for n fixed, it follows A^2 ~ (4a~n)an+2q as q —> oo.

For n fixed and 0 < Q < qmin(n, ρ) — 2, the α = α(n, Q) are all different, therefore
any solution (Ap) to R(n, q) = 0, q > qm[n is asymptotic to cap for some c and some
α among the finitely many values determined by the lemma. This argument holds for
all n. But according to the following lemma, no real number a2 is of the form given
in Lemma 7 for every n at once. So the constant c must vanish, hence Ap — 0.

Lemma 8. Suppose that a number a > 0 has the property that either for every large
enough even n or for every large enough odd n, there exists N = N(n) such that a

is of the form a = 9 ~ . Then N — n and a = 1 .
j j nz — 1

We have just proved that Ap = 0 for all p > 2. In part (ii) of the theorem, we
have assumed that Aλ = Δ3 = 0 (i.e. that the scalings are normalized). We also have
assumed ΔQ = 0. Together with (2.9), this implies that Δp = 0 for all odd p, and

P/2 j

D2^2/
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for p even. We have to show that this sequence leads to (1.5). With no loss of
generality, we set the constant = 1. Then,

Δ(4 atn z) γ~^ p _ d d ^ ( /2 (^ *
pZ ~ dz Z dz Z ̂  \ \2 4

p x x

_ d d J 1 Λ.2 1 4 ,

d d ( 1 1

dz dz 1 + z2- 2

Letting z — tan(w/4) proves (1.5) after some calculation.
This concludes the proof of part (ii) of the theorem; part (iii) is easy now:

2.6. Completion of Proof

By assumption, A(u,έ) does not contain a u2 term. Up to scaling, we may again
assume that A(u, ε) does not contain ul and u3 terms either. Then, by (ii), A(u) = 0.
So, one has 5§v = 0. At this point, the completeness of the eigenfunctions enters. (We
have postponed all this, in order not to interrupt the discussion.) As a consequence of
Theorem 12 below, the solution is a linear combination of dtu* and dxu* . Of course,
this is to be expected: translates of breathers in space and time are breathers again, the
equation is not explicitly dependent on either x or t. The important point is however
that there are no further solutions to 5%v — 0. Our normalizations from the very

beginning have killed the translations and imply υ = 0 because dxv 0,
2ω I

=

and υ(0, 0) = 0 . Write (using analyticity in ε)

jv[j](x,τ). (2.12)

We have already seen that v = v^ = 0. The next condition (O(ε2)) is
Z\[2](w*), i.e. the very same equation again. The argument can be repeated inductively.

This ends the proof of the theorem modulo the lemmas. D

3. Proof of the Lemmas

3.1 . Proof of Lemma 6

We make use of the following lemma on partial summation; it is standard, so no proof
need be given.

Lemma 9.

N N / Q-l \ N

Σ αA = - Σ K - v-i) Σ bj )+ aN Σ bj -
q=-l q=Q \ j=-l / j = -l
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Provided aq 3 f 0 as q -+ oo, therefore

Σ
ςr=-l

q—\

qr=0

For better reference, we repeat (2.9):

ΓP:=(-1>LP/2J^%ϊ' Bp:=p(Γp-Γp_2), A p:=B p + 2-B p.

The sequence (Δp) was defined in (2.4), and from there, one has the estimate
\Δp\ < c(ε)/(ρ — έ)p for any small ε > 0; the same estimates [with other c(ε)]
hold for Γp, Bp, and Ap. Write (2.6) in terms of Γp:

Γn+2q
2 -

π
r=0

<?=-!

n2- 1

(m

r(n
(n + 2q -h I)2

( - (n + 2g - 1) + (1 - m2)

4

^ 2 + l

q(n

(n + 2q) - n

We identify aq with Γn+2q and let 6g be the rest under the sum. At least for n odd, we
oo

know that Σ ^j — 0, because Γ = 1 (p odd) corresponds to the scaling solution
j=-ι

= sin ii. Indeed, one can immediately prove by induction on q that:

6, = (m2 - JJ
r=0

r(n + r)m

We skip the straightforward (though lengthy) calculation that is needed for this

induction argument. For fixed n and using that ω is bounded away from 0 by

we now see, by explicit estimate of the right-hand side, that

<

q-l

r=l

c2(n)
r(n + r)

m

m

ω2
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q
so the boundary term aq Σ 6J is dominated by

C'(n,ε)
1 ω

and this tends to 0 for < Q and ε sufficiently small. This justifies the partial
summation.

The previous induction, on which the partial summation is founded, is a purely
algebraic argument, irrespective of whether n is even or odd. The geometrically well-
explained scaling solution Γ{ = Γ3 = Γ5 = . . . = 1 has therefore an algebraic

"shadow" Γ0 — Γ2 = Γ4 = . . . = 1, for which one also gets ^^ = 0. It is excluded
from the theorem by the condition ΔQ = 0.

The formula for Mn has already significantly simplified:

<j=υ

2

We now identify aq with Bn+2q and calculate ]Γ ̂ , again proving by induction that

Γ, — ^ 2
(m —" -

- g - 1)!
ϊ"=υ ~

With this, it follows

This completes the proof of the lemma. D

The solution B3 = B5 = . . . = 1 contains the second scaling Δ(u) — u cos u. It
also has an algebraic "shadow" B2 = B4 = . . . = 1. This shadow is responsible for

(1.5).

Remark 7. Although we have insisted that Δ(0) — 0, it is interesting to calculate the
first "shadow" ΓQ — Γ2 = Γ^ — . . . = 1. It corresponds to Δ(u) — cosu. This has a
geometric meaning: under the shift u ι— » u - ε, the sine Gordon equation goes into

Remarks. This and the following proof use extremely elementary techniques to prove
rather messy formulas that come in like some deus ex machina. We do not know of
a more intuitive proof that really explains these formulas, although the complete
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integrability of the sine Gordon equation is certainly behind them. The formulas that
are proved by induction have first been looked for and guessed by playing around
with Mathematica, a symbolic manipulation software [28].

3.2. Proof of Lemma 7

Note that the term under the product sign in (2.11) can be rewritten as q(n + q) —
r(n + r) = (q — r)(q + n + r). Every term in the sum (2.11) differs from the preceding
one by a factor; therefore it is convenient to write the formula in a way similar to the
Horner scheme. Here it is:

R(n, q) = — q(n + q) < Ann. {

1 -(n2-!) _

l(n+l) (n + 2g)2- 1

1 -(n2 - 1)

1 -(n2 -

(q — 2) (n + q — 2) (n + 2q)2

Obviously, A^_2q

 as giγen *n me lemma vanishes for q — 0, 1 , . . . , Q — 1 and is
different from 0 for q = Q. So the claim of the lemma is non-trivial only for
q > Q -f 1, and the sum (2.11) really starts only at q = Q. The proof in this
case is by induction along the Horner scheme (3.1). Start at the innermost level of
parentheses with X0 : = An+2(g+i) and define for / = 1, 2, . . . , q - Q - 1 the result

of the /th step in the scheme to be

l(n + 2q-l) -(n2 - 1) (Q)1 '~ /-1

(q -l)(n +

We now claim that

'(n + 2Q + l)(n + 2Q + 3) N9"'"1

χ (g - I - 1) . . . (q ~ Q)' (q ~ Q ~ 2).. . (q - Q - I - I)

(q + n - / ) . . . (q -f n + Q - /) - (q + n + Q + 1)

x (n + 2q- l)(π + 2£+ 1),

where the product (g - Q — 2). . . (£ — Q — I - 1) is to be interpreted as the empty
product, 1, for / = 0. Using the formulas for A^2q9 it is straightforward to check
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this latter claim by induction on /: For the induction step from / — 1 to /, we have to
show (after common factors have been cancelled) that

(q ~ Q ~ 1) (n + 2q - 21 - 1) (n + 2q - 21 + 1) (n + q + Q + 1)

- (n + 2Q + 1) (n + 2Q + 3)l(n + 2q-l)

From the formula for Xl9 it is obvious that X^_Q_I = 0, which proves the
lemma. D

3.3. Proof of Lemma 8

N2 - 1
Suppose we can write a = — for integers n and TV. Then,

_ TV\ / r- N\ N2-l N2 a-I
/a VOL H J = —- 2" = —2~~

n J \ n J nz — 1 nz n2

As n —> oo, TV/n —> ^/5, so we find

_ TV A r v _ 1
α ~ —r with A =

77 77

Unless A = 0, i.e. α = 1, this implies that >/ά is irrational. On the other hand, take
the difference of n^/a- N ~ A/n and (n + 2)^~ά-Nr ~ A/(n + 2), and let n — > oo.
We find that 2^/a is an integer, hence rational. So, A must be 0, proving the lemma.

4. Ramifications

4.1. Analyticity Domain of ^%n

In order to prove Theorem 2, it is sufficient to show that Mn is analytic in as large a
domain as Θ (and not only in as large a disc as β, which we have already seen in
Lemma 5). We first state this analyticity result and show why it implies Theorem 2,
then we prove it.

We are going to consider two functions in the complex z-plane. The first is Θ,
which contains the information on the perturbation function Δ( ) and is defined in
(2.4). The second is J%n. The connection between the arguments of Jβn and Θ

TΠ
comes from the integral (4. la) below: The argument of Mn, namely — enters into

ϋϋ

^/msinA msint
θ{ - under the integral. The function (x,t) ι-» - has the critical values

\ ω ch x J ωchx
m

it — , which will play an important role in the subsequent discussion. This makes it
ϋJ

quite natural to consider the functions ^n and Θ as functions in the same complex
plane.

We prove the following

Theorem 10. Let n >2 be fixed and G be a simply connected domain which contains
the origin and is point symmetric with respect to it. Let θ(z) = Δ(4 atn z ) / ( l + z2) —
Σ Λpz

p be an even or odd function analytic in G (the series being valid only
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in the largest disc D C G of course). Then the function &n ( — 1 defined by
\ω J

(2.3) can be continued analytically into all of G\{0} with at most simple poles at

m/ω = z(n, q) = ±i Λ/(n2 - l)/((n + 2q)2 - 1), (q = 1, 2, 3, . . J. The possible pole
at z(n, q) fails to appear, if and only if the recursion R(n, q) — 0 holds.

In particular, if 3%n vanishes identically in G, then R(n, q) — Ofor all q such that
z(n,q) G G. See (2.11) for the formula for R(n, q).

The parity assumption is no loss of generality, since JBn depends only on the

part of (9, if n is . Neither is the assumption that G should be simply
even even
connected: If it is multiply connected, we may apply the theorem to any simply
connected subdomain. But then, ^&n may be defined only on the universal cover of
G, even if θ is single-valued on G.

This theorem immediately implies Theorem 2. The persistence assumptions of the
latter force 3%n to vanish identically for every n, and from this moment, the proof is
the same as for Theorem 1.

Proof of Theorem 10. First rewrite (2.3):

0

oo 2τr

mω j j ωchx ω
-oo 0

where

m ι— - 1
m\ \ωj .'" \ω J ~ n s'mtcost . n2 + 1 sin21

ΞΛx,t\—\ = ^^ 7 ύix-i—^—r h - 5 i Λ 9n 4 2 ch2x 4 Ch2x
(4-lb)

and
Vn2 - 1 - z1 Z\(4tanz)

^(2;) = and θ(z) = ^— . (4.1c)
z I + zz

In the second line of (4.la), we have replaced the integration with respect to t and
x by integration with respect to ωt and rax, and the new variables of integration are
again called x and t. In all the rest of this section, the variables x and t will denote
these scaled space and time variables.

The term under the intgegral (4.la) is a function of the three variables

in
z = — G G\{0} , t G C/2πZ, x G Cx := C\{±m/2, ±3iπ/2, ±5ΐπ/2,...}

CJ

and is analytic in these three variables as long as the argument of θ is contained in G.
γγ^i

However, it is not globally uniquely valued, but has branch points at — = ±\fn2 — 1
ω

because of the term κ(m/ω).
0

We shall define JBn by integrating the same integrand as for JBn over a different
domain of integration: the product of two closed loops, hence a compact manifold.
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ra
This domain of integration can be deformed homotopically depending on — that

ω
o

will do the analytic continuation. Afterwards, it will become clear that Mn is (except

for a regular, nonvanishing factor) the same as ^?n.

Given z0, define GZQ := <^ (t,x) G C/2πZ x Cx ZQ ^- G G I. Moreover, we
0 I chx J

denote G/zQ := {Z/ZQ\Z G G} and similarly for G multiplied with other numbers.
By a cycle J5 in Gz , we understand (in a narrower sense than usual) a

diffeomorphism from a 2-torus Sl x Sl 3 ( τ , ξ ) into G (t,x). It can be identified
with a 2-cycle in the usual sense of homology theory by means of a triangulation of
the 2-torus. With our narrower definition, homotopy of cycles is well-defined (and
homotopic implies homologous).

We construct cycles for our purposes as follows: First we define ^ to be the
product of a rectangular path C = d([—x, x] x i [0, π]) in the complex x-plane, and
[0,2π] considered as a loop c in the t-cylinder C/2πZ. If 20| is sufficiently small,
this cycle will lie in GZQ.

With this definition, {sinί t G c} = [-1,1], and {1/chx | x G C} C [-1,1] U
Bδ(0) for some small ball Bδ(0). Both of these sets are contained in G/20, provided
20| is sufficiently small.

We deform c a little, say into c' — [—iε,2π — ίε] such that the curve 7 :=
{s int | t G c'} (which now goes around ±1 positively) still lies in G/20. (Actually,
7 is an ellipse.) We assume that the width of C has been chosen large enough that
the closure of Bδ(0) lies inside 7. Then, there is still some space for deforming C
into C1 such that 7 := {\/chx\x G C'} still lies inside 7, but surrounds ±1 and
0 in negative orientation and is symmetric with respect to the origin. See Fig. 2. We
define the cycle £&' to be d x C",

t € C/2πZ

c' = [-t'ε, 2π-iε]

Fig. 2. The cycle M'

Generalizing &', we shall construct a cycle Jέ* in GZQ for any 20 G G\{0}. The

map (z,t,x) i—> ^^ is continuous, (t,x) varies over a compact set, and G is

open. Therefore, if Jδ* is any cycle in G2Q, it is also a cycle in Gz for 2 in some
neighbourhood of z0.

We now give the construction of J5*: Let s be a symmetric curve that connects -1
to 1 G/20, and let 7* :Sl —> G/20, ξ ι-> 7*(0 surround s with negative orientation.
7* is homotopic to 7' in C\{0, ±1}, and by lifting the homotopy 7* ~ 7', we define

Next, we want to construct 7* homotopic to 7 and define c* from it. We do not
care to preserve the property that 7 lies inside 7 for 7* and 7*. We also allow that
7* = 7| depends on ξ.
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Fig. 3. The cycle <££*. All loops lie in a simply connected neighbourhood of the segment s in G/z0

To this end, for given £, we construct a loop in a tubular neighbourhood of s that
goes around ±7*(ξ) in positive direction, and we define this loop to be 7*(ξ) times
the loop 7| (see Fig.3). This latter loop therefore goes around ±1 in positive direction

and is homotopic to 7 in C\{±1}. So we define, by lifting the homotopy,

c|: S1 -> C/2ττZ, r »-> arcsin 7ξ*(τ),

and from it the cycle

&^=£*:Sl xSl - » C / 2 π Z x C x , (r,0 ̂  (ef (τ),C*(0)

This is a cycle in GZQ, because sinc|(r)/chC*(ξ) = 7|(r)7*(0 e G/z0 by
construction. Consequently, it is also a cycle in Gz, for z sufficiently close to z0;
and it is homotopic to the cycle £5* constructed in the same way for such a z instead
of ZQ. For those z0 for which £2 was defined, &*, is homotopic to &.

of
Having constructed the cycle &* — JS*o, we can define for z in a neighbourhood

Vn2 - 1 - z2 \ . for n even
κ(z) = , fn(z) := < V^2-ι-^2

z I 1 forn odd

(4.2)

These definitions coincide in the overlap of different neighbourhoods due to the
o

homotopy properties established above. So, 3%n is well-defined in G\{0}.
Now, all terms under the integral are analytic functions of z G G [and the integrand

o

has quadratic branch points z — ±\Λ^2 — 1 due to the term κ(z)]. Therefore, 3Bn(z)

is an analytic function of z on the universal cover of G\{0, ±\/^2 — 1}. As of now,
it might e.g. have an essential singularity at 0. The exponential in front of the integral

m
is included in the definition to avoid this, as we shall see in a moment. For z — —,

ω
it holds z/(\ + z2) = πiω. This factor and fn are also included for the purpose of
regularization.

Our method of analytic continuation is appropriate for studying the global
behaviour, but not for studying the behaviour near z — 0. For this purpose, Lemma 5
is available.
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For z small enough, we may take & instead of $S* and let the width of the
rectangle C in the x -plane tend to infinity. One finds that

. (4.3)

Comparison of this formula with the splitting result of Lemma 5 shows after a short
calculation that

(4-4)

In particular, J^n is regular near 2 = 0.
From the fact that 3%n does not depend on the sign of ±kn [see (2.3)], it follows

o

that 3%n has no branch points at m — ±fcn. Therefore, by (4.3), Mn has no branch
_ o

points at z — ±\/n2 — I either. Hence, ^?n is analytic in all of G, except for possible
simple poles at ±i [introduced by the coefficient in (4.2)].

o

The analytic continuation property for Mn implies the one for J&n immediately:
The possible poles of &n at z(n,q) arise when one solves (4.3) for ^?n. We have

already seen that they are compensated by zeros of ^%n (inside the disc of convergence
of the series Σ Δpz

p) if and only if the recursions are satisfied. On the other hand,
o

simple poles of 3%n at ϋ do not give rise to poles of ^?n; this follows again from
(4.3). This proves the analyticity properties claimed for 3%u.

However, it is not completely trivial that the recursion R(n, q) = 0 is necessary
and sufficient everywhere in G for the possible pole of JBn at 2(71, q) to vanish,
because the recursions were originally defined through a series that will not converge
everywhere in G. Here is the argument:

Consider z* — z(n,q) and decompose θ = θl -f- <92, where θλ is the truncated
Taylor series (hence trivially convergent everywhere) and Θ2 is the rest. The truncation
is chosen to be at such high an order that all Taylor coefficients that enter into
R(n,q) are already included in θγ. Then Mn is regular at 2*, if and only if

0 = ̂ f(2*) - ^'(2*)+^f2(2*). NOW, Θ2(z) = O(zn+2*+l) asz->Q. Therefore,

the integral in (4.la) converges whereever
m

< n + 2q+ 1. For — =
ω

this condition is satisfied: | Im«(z*)| = n + 2q. Therefore, ^§^2 is analytic near z*,
o o

i.e. ^f2(z*) = 0. So, ̂ n is regular at z*, if and only if 38%ι(z*) = 0, hence

0 = 3%i(z*) = Rθl(n,φ = Rθ(n,q).

This concludes the proof of Theorem 10 and hence of Theorem 2, too. D

A different construction of the cycles has been used in [11]. The one given here
is simpler.



422 J. Denzler

42. More on the Recursion

An instructive result on the recursions is hidden in Remark 3: if for fixed n, infinitely
many of the recursions R(n, q) = 0 are satisfied, then all but finitely many of them are

satisfied, because 3%n = 0 in a neighbourhood of z — 0. On the other hand, it is easy
to construct recursively sequences that satisfy infinitely many recursions R(n, q) = 0,
but at the same time fail to satisfy another infinitely many of them. The only way
for this not to be a contradiction is that all those sequences are not sequences of
Taylor coefficients of an analytic function, i.e. grow faster than ak for any a. This
phenomenon has to arise regardless by how much the sequence fails the recursions,
whereas by Lemma?, sequences that satisfy all but finitely many recursion exactly
grow only geometrically. This proves

Theorem 11. The recursive calculation of a sequence (An+2q)from initial conditions
and the recursions R(n, q) = Qfor q > qmin is ill-conditioned.

Next, there is a remarkable connection between the poles at z(n, q) encountered
here and poles encountered by Kichenassamy [16]. He considers the global problem
utt—uxx+g(u) = 0 and constructs formal breather solutions that are series expansions

, cosnωt τ . . ,. f Λ ,Γ , .
in mκ —j . In his divergence proof, he argues that if this series converges, then

ch mx
the coefficient functions u^ωt'.m) of a different series ^t^(cjt;m)e~Zm:r, which
normally have poles in the complex m-plane, cannot have these poles. (This second
series represents a stable manfiold expansion.) These poles are exactly at the points
m
— = z(n, q), too.
ω

Their vanishing determines nonlinear recursions for the Taylor coefficients gk of
g(u). One can linearize these conditions about the coefficients of g(u) = sin u. We
have observed, but not proved, the following phenomena:

The linearization of Kichenassamy's condition from the nth Fourier component of
ul is a multiple of R(n, q), where n + 2q = I. If "accidentally" z(n, q) = z(n'', q') for
some n' > n, then Kichenassamy's condition at (n1', I') contains the one at (n, ϊ) as a
factor, and its linearization about g(u) = sinu vanishes.

The true connection between both types of vanishing pole conditions is not
yet understood. Understanding it should be a useful step towards obtaining global
nonexistence results for breather families to nonlinear Klein Gordon equations. It
would also be desirable to have a lemma for Kichenassamy's recursions that reduces
to Lemma 7 in the linearization about g(u) = sin u. If it exists, it will most probably be
the key for strengthening his result that the formal series cannot converge in a certain

domain (\m\ < l/Λ/2-f Q)> A strengthened theorem should exclude convergence even
in a small domain (|ra < ρ for any ρ) by coping with the same difficulty encountered
in the present work for small ρ and overcome by Lemma?.

5. Appendix: On the Unperturbed Sine Gordon Equation

In this appendix, we collect formulas for the unperturbed sine Gordon equation. They
are obtained by means of soliton theory. The essential idea in this theory is to associate
with the sine Gordon equation for u a linear problem (interpreted as a scattering
problem) in which u plays the role of a potential. Spectral properties of a particular
solution u to the sine Gordon equation are encoded in the "scattering data" of the
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scattering problem with this potential u, similarly as the properties of a function are
encoded in its Fourier transform, and u can be retrieved from the scattering data
[1,19]. References for the sine Gordon equation in particular are [2, 20, 13, 26].

The reader need not understand how the formulas are obtained; for our purposes,
it is sufficient that these formulas, once given, can be checked by straightforward
elementary calculations, which are however very lengthy and tedious. Limitations of
space do not permit a detailed account of the techniques that produce the formulas.
The reader who desires such an account can obtain a copy of the author's thesis [11],
which contains a detailed one.

5.7. Formulas

We need bounded solutions to the linearized sine Gordon equation, and here they are:

>Γ
For every λ, one has functions Φ(x, t, λ) = such that

Φ2\

(5.1)
t dw - cos u 0

where

Ω = Ω(X) = 2X + -ί- , k = fc(λ) = 2λ - -ί-, ί2(λ)2 - /e(λ)2 - 1. (5.2)
8Λ 8Λ

They are given by the formulas

*,(*, ί, A)e-^^ = ̂  e-.fe(λ)«-.β(λ)t ̂  + ̂ gy 'm2

s fc(Λ)
(5.3)

Φ2(x, t, X)e~lΩ(X}t = d^Φ^x, t,

where
C — ch rnx , 5 = sh rax , c = cos ωt s — sin α t

and

f\\ λ / / / \ Λ i Λ / \ \ n(~λ) k(X)-imn(λ) - - (fc(λ) + zm) , α(λ) =, . .
2 n(λ) fc(λ) H- ^ra

The interpretation of k(X) and ί2(λ) as wave number and frequency is immediate;
α(Λ) is the important entry in the /5-matrix of the associated scattering problem; for
informal purposes, it may be considered as the encoding of the breather u* in spectral
data. n(λ) is merely a comfortable abbreviation.

For real λ, Φ( , , λ) is bounded. Φ{ is asymptotic to the free Klein Gordon waves
-i/χe-ik(λ)χ^Ω(λ)t as x _, _oc and -i/Aa2(A)e~z/c(A)Mi2(A)i as x -> +00. For

non-real λ, Φ( , , λ) grows exponentially for either x — * - f o o o r x - ^ — oo, with the
important exception of those λ for which α(λ) vanishes, i.e.

X±= ω + im , fe(λ±) = im, β(λ±) = ±α;, α(λ±) = 0.
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These exceptional values are characteristic for the breather; they correspond to the
bound states of the associated scattering problem. One has

*>* - emx\ . (5.4)

There are adjoint solutions ΦA, which obey similar formulas:

for ΦA(x, t, λ) = Φ2(-x, -t, λ) and ΦA(x, t, λ) - Φ^-x, -ί, λ).
The (bi)-orthogonality and completeness relations for these functions are of basic

importance. They are stated by McLaughlin and Scott in [20]:
For t fixed (and suppressed in the notation), either of the following families of

functions forms a basis of L2(R — > R2):

Φ( ,λ) for λ real ΦA( ,λ),

(ΦA) is the adjoint basis to (Φ); more precisely:

= ̂  a2(λ)6(\ - μ),

2

= -—ά2(λj)^ fc>
(ΦA(.,λ?)|Φ( ,λ fc)) '

ά(λ )β
= -2

all other (•

where λ,μ are real, and λ f c,λ j are either λ+ or λ_, the zeros of α( ) A minor
misprint in Table 1 of [20] has been corrected in the second of the above formulas.

oo τ

We use Dirac's bra and ket notation; (ΦA | Φ) simply means / ΦΛ (x)Φ(x)dx, and
— oo

|Φ( ,Λ))(ΦA( ,λ)| is the projection operator onto Φ( ,λ) (for real A the derivative of
the spectral family with respect to λ).

Moreover, the following completeness relation holds:

, λ ) | λ = Identity,

i.e. (5.8)

δ(x - y).

Here the integration over Γ is a shorthand notation. Γ1 is a path coming from real
-oo and going to real +00, but passing through the upper λ half plane above λ±.
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It can then be deformed into the real axis leaving contributions from the residues of
the poles of λ/α2(λ). The functions Φ and ΦA are analytic in the upper half plane,
thus no other contributions arise. Tacitly assuming this deformation to be performed,
the integral really involves exactly those λ that contribute to the claimed bases. In
the case where a has only simple zeros (as here λ±) in the upper half plane, the
completeness relation reads therefore:

α (A)

δ(x-y). (5.9)

The orthogonality relations are consequences of Wronskian identities for the solutions
of the associated scattering problem, so their proof (for any u) is comparatively
elementary, though lengthy. A sample of these calculations is worked out in [20]. Or
else check them explicitly in the way described below for the completeness relations.

If one assumes that any function can be expanded in terms of the functions claimed
to be a basis (i.e. completeness), then the coefficients follow from the orthogonality
relations (as in ordinary Fourier series); in other words, the/orm of the completeness
relation is also elementary, provided one has completeness. The hard problem is to
prove completeness. The proof is not carried out in [20].

In fact, for the sine Gordon equation in characteristic coordinates, uxτ = sinu,
Kaup has given a completeness proof for the squared eigenfunctions together with
their λ-derivatives at zeros of α(λ) in [15]. (Our Φ are squared eigenfunctions.) Alas,
it is not obvious how this result should imply completeness for the sine Gordon
equation in laboratory coordinates. The squared eigenfunctions are equivalent in both
cases, but the dual pairing is quite different; it involves integration over x (t fixed)
in one case, but integration over X (T fixed) in the other. To the knowledge of the
author, no formal proof for the completeness relation in laboratory coordinates has
been written down in the literature in the case where x varies over the real line,
although no reasonable doubt has been cast on its validity either. Completeness in
laboratory coordinates when x varies over a finite interval with periodic boundary
and parity conditions is implicitly proved in [4]. Their proof does not make use of the
squared eigenfunction formalism, but uses the Hamiltonian structure of the equations:
skew-orthogonality with respect to the symplectic structure and the families of n-
dimensional invariant tori in the phase space.

We do not give a general proof for completeness either, but we have checked
(5.9) by explicit calculation in the case of the breather. This is sufficient to ensure
that our results are founded on full mathematical rigor. In fact, it suffices to check
(5.9) for some fixed ΐ, say t = 0. It then automatically holds for all t due to the
time evolution equations (5.1) and (5.5). The next section gives an outline of the
calculations involved.
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5.2. Outline of a Direct Completeness Proof for the Breather Case

Equation (5.9) is a matrix equation with four entries. With no loss of generality, we
discuss the 1-1 entry for t — 0. Let us first consider the contribution coming from
the integrals over real λ: we have a factor

\3 1Λ - * e i k ( X ) ( y - x ]

16n(λ)2n(-λ)2 λ[fc(λ) + im]2[k(λ) - ίm]2

Since it is k(X) that appears in the exponential, we want to introduce k — k(X) as
the variable of integration. The mapping Λ \—> k(X) is 2-to-l, so we work with the
variables k and Ω = Ω(X) simultaneously, subject to the condition Ω2 — k2 + 1 [cf.
(5.2)]. Then,

oo 0 oo

J . . . d\ splits into two halves J . . . dλ -f / . . . dλ, each of which is transformed
— oo °° —oo 0
into J . . . dx.

— oo

Multiplying out the terms in the braces in the formulas for ΦA(x,0, λ), we get

oo

- / —~ r-r l\K + TΠ ) — 4lK TΠ
4π^ J (k2- -f mzγ [

— oo

7 2 / 2im2

-h (fe — m ) I 2mk(ih mx — th ?πy) H «
V ch my,

+ 4im2k2 th mx th my + 4m3k — -̂ . (5.10)
ch my J

The first term in the above integral gives the desired δ(y — x) contribution because
oo

of the standard formula / elk(y~x">dk = 2πδ(y — x). The remaining integrals are
— oo

evaluated separately for y > x and y < x by the calculus of residues. For example,

oo

/
In the end, one gets the same result for both signs of y — x, namely that the regular
contribution to (5.10) is

m

ch rnx ch my ch mx ch my

Calculating the residual contributions in (5.9) is mere algebra, though quite lengthy.
The symbolic manipulation software Mathematica has been used for this calculation.
The term with ΦΦA gives

2m th my
chmxchmy(m2 —
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whereas the term with ΦΦA + ΦΦA gives

2m(l — m2) (1 + m th my(x — y)) — 2m th my

chmxchmy(m2 — 1)

Thus — - times the sum of both indeed cancels the regular contributions from the
integral, and the 1-1 matrix entry is as claimed. The other entries are obtained in the
same way.

5.3. General Solution of the First Order Equation

In this section, we use the completeness relation for the functions Φ and ΦA to deduce
that the necessary conditions for the solvability of S?v = Δ(u*) that were given in
Lemma 5 are also sufficient. This implies that we have done as good as one can with
first order perturbation theory in the case of the exceptional perturbatrion (1.5): One
really has persistence up to first order for it.

Furthermore, the discussion yields that the time and space derivatives of the sine
Gordon breather are the only time periodic solutions to J^χ = 0 that decay as
x — » ±00. We have used this in Sect. 2.6.

Theorem 12. Let u* — 4 atn - be the sine Gordon breather, let ω < - and
ω ch mx 2

T \— 2π/ω, and consider the equation

^v = (<92 - dl + cosu*)v - f(x,f) (5.11)

and assume that f is T -periodic in t, decays exponentially as x — > d=oo and is real
analytic. This is to be solved for v subject to the boundary conditions υ —> 0 as
x — > ±00 and v is T -periodic in t. Also assume that the compatibility conditions

oo

I f

-oo 0

are satisfied for all integers n ^ 0 with the functions χn given in Lemma 4. Then,
(5.11) plus boundary conditions has a 2- dimensional space v$ -f kerJSί of solutions,
where ker^ is spanned by the time- and space derivatives of u* .

Remark. We have already noted earlier that for the interesting case, where /(x, t) =
Δ(u*(x,i)), all compatibility conditions are satisfied if they are satisfied for n > 2.

We need the formulas (5.6)-(5.9). As before, it is a good strategy for understanding
the formulas for Φ to look first at the exponentials and to consider everything else as
Nature's camouflage.

Proof of the Theorem. Write the equation 2?v — /(x, t) in the form

Λ I v I °3 U
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For fixed ί, any sufficiently2 regular and sufficiently decaying (as x — > ±00) function
' vλ

can be expanded in squared eigenfunctions of the scattering problem for the

sine Gordon equation. So we write
oo

[ Ί Γ
V (z,ί) = \
vt\ J

, t) . (5.13)

[Φ±(x,t) stands for Φ(x,£, λ±), and a similar notation is used for other functions].
We abbreviate the first component of (5.13) as

υ(x, t) = vcont(x, t) + vάisc(x, t) ,

treating separately the contributions from the continuous and discrete spectrum.
According to the formulas (5.7) and (5.8), it holds

00

\

Λ 2,^4πzo2(λ)

\

Γ Γ Ί

/ eiΩ(χ)tΦA\x, t, λ) Γ (x, ί) dx , (5.41a)
J [υtj

— OO

00

, , , (5.146)
2α±

-2άi /-2ά

λ± "±- V λ± 4

[x,t)dx. (5.14c)

First translate the differential equation for v into equations for the Fourier coefficients
ϋ. From (5.14a) and the differential equations (5.12) and (5.1) for v and e

lΩtΦ^, we
get that

Λ /) J
— 00

(5-15)

On the other hand, we want υ(x,i) — .υ(x,t + 2π/ω). Therefore, we must have
v(x,t + 2π/ω) = e2πiΩ(XVωv(x,t). These two conditions together imply

.,-ι A
' 4πm2(λ)

t+2π/ω

X

t

Γ-6VI I U/ OO

ί ί eiΩ(λ}tΦ$(x,t,λ)f(x,t)dxdt. (5.16)

2 Sufficiently means the same as in ordinary Fourier transforms: if you want classical integrals (L1-
integrands), assume v G C2 n L1, or else make Z/2 theory, or Schwartz-space theory, or tempered
distributions. All other terms that enter into the formulas besides the exponentials are analytic in a
strip and tend to 1 rapidly as x —> ±00, so all desired results can immediately be reduced to the
identical results for classical Fourier analysis
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Here, the necessary conditions re-appear. For values of λ, where Ω(X) £ ωZ, v will
have a pole, unless a zero of the integral compensates it. But when ϋ has a pole on
the real axis, the integral (5.13) calculating v is not defined, so no solution υ can be
found. Or else, one may consider v as a tempered distribution (defined by its Cauchy
principal value), then the integral (5.13) has a meaning, but produces a tempered
distribution υ again. This υ will in fact be a function, but will not decay as x — >• ±00.
The compatibility conditions guarantee that this dilemma does not appear and v exists
as a decaying function.

The integral on the right-hand side of (5.15) is real analytic for λ ^ 0, because the
integrand is ezk^x times a function that decays exponentially. The integral decays
exponentially as k — » dboo, because the integrand is analytic in x. The same holds for
the derivative with respect to λ of this integral. From the fact that the compatibility
conditions hold, we conclude, that all poles of (e2πιΩ/ω — I)"1 are compensated and
v is analytic, and that v decays exponentially (as |fe(λ)| — * oo).

We get an equation completely analogous to (5.15) for dtv±, together with

the periodicity condition υ±(t -f 2π/ω) = v±(t). This gives another compatibility

condition (which is however automatically satisfied in the case /(#,£) = Δ(u*(x,t))
we are really interested in, as we noted immediately before Lemma 5. Therefore

t 00

/ I
J J

etΦ(x,t,X±)f(x,t)dxdt, (5.17)
2ά_j_

where the indefinite integral over t introduces a constant of integration, c
For v±(t), we get the differential equation

oo

dtϋ±(t) = -iί>(λ±)υ±(t) - ^Γ /
— oo

together with the periodicity condition v(t + 2π/ω) = v±(t). We can (and must) use
the previous constant of integration c± to ensure this periodicity condition.

New constants of integration, c±, arise this time, and they cannot be determined
from the differential equation, because Φ(λ±) are in ker^. (They span all of ker J2?,
because no more free constants have appeared in the calculation.)

This proves the theorem. D
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