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Abstract: We extend Griffith's theorem on symmetry breaking in quantum spin
systems to the situation where the order operator and the Hamiltonian do not commute
with each other. The theorem establishes that the existence of a long range order in
a symmetric (non-pure) infinite-volume state implies the existence of a symmetry
breaking in the state obtained by applying an infinitesimal symmetry-breaking field.
The theorem is most meaningful when applied to a class of quantum antiferromagnets
where the existence of a long range order has been proved by the Dyson-Lieb-Simon
method. We also present a related theorem for the ground states. It is an improvement
of the theorem by Kaplan, Horsch and von der Linden. Our lower bounds on the
spontaneous staggered magnetization in terms of the long range order parameter take
into account the symmetry of the system properly, and are likely to be saturated in
general models.

1. Introduction

Among the most important issues in rigorous statistical mechanics is to establish the
existence of phase transitions in various idealized models of physical systems. When
a transition is accompanied by a breakdown of a discrete symmetry, the Peierls'
argument and its variants [1] can be applied to produce strong rigorous results. When
a transition is accompanied by a breakdown of a continuous symmetry, on the other
hand, the PeierΓs method does not work in general. Frohlich, Simon and Spencer [2]
developed a method based on reflection positivity [3], which enabled them to prove
the existence of phase transitions in various classical spin systems with continuous
symmetry. The method was extended to quantum spin systems by Dyson, Lieb and
Simon [4]. Their result is outstanding in that it rigorously establishes the existence of
phase transitions in physically realistic models, such as the three-dimensional quantum
Heisenberg antiferromagnets.

In order to motivate the theorem of the present paper, we shall describe the main
result of Dyson, Lieb and Simon in the context of Heisenberg antiferromagnets. Take
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a d-dimensional L x x L hypercubic lattice A with periodic boundary conditions,
where L is an even integer. With each site x — (x l 5 . . . ,x d ) £ Λ, we associate
three component quantum mechanical spin operators 8X = (S(

x\ S(

x\ S^) with
(Sχ)

2 = S(S + 1), where S = 1/2, 1,3/2, . . . . The Hamiltonian for the isotropic
Heisenberg antiferromagnet is

HΛ:=

Throughout the present paper, the symbol :— signifies a definition.
Dyson, Lieb and Simon [4] proved that the long range order parameter σ satisfies

at sufficiently low temperature if S > I in d > 3. Here the order operators are

~~~ ^"S*0, (1-3)

fori = 1,2,3, and

Tr[ e~(3HΛ]
< "^:= Ύr[e-βHΛ] ' <L4)

with the inverse temperature β. The relation (1.2) establishes that the system
develops a Neel-type long range order at sufficiently low temperatures. By using
the improvement due to Kennedy, Lieb and Shastry [5], this result was extended [6]
to the model in d = 3 with S = 1/2. (There are also various extensions to ground
states [7], to anisotropic models [6,8], and to models with certain frustrations [9].)

To investigate physical consequences of the result of Dyson, Lieb and Simon,
consider the infinite volume equilibrium state ωQ( - •) constructed as

ω0( •) := lim {• )Λ . (1.5)
L— > oo

Since ω0( •) inherits the SU(2) invariance of the Hamiltonian HΛ, we see that it
does not break the SU(2) symmetry. In particular, we observe that

= 0. (1.6)

The relation (1.2), on the other hand, implies that

^cAc Sy) ~h 0 as x- y\ ̂  oc . (1.7)

The relations (1.6) and (1.7) indicate that the truncated correlation function
ωQ(Sx Sy) — ωQ(Sx) ωQ(Sy) does not decay to zero at large distances, and hence
α;0( •) is not a pure state. It is believed that a physically realizable equilibrium state
in a sufficiently large system is well approximated by a pure state. From a physical
point of view, a non-pure state may be regarded as an "unnatural" state. One must be
careful about what is the physical implication of the relation (1.2). (But see Remarks
1 and 2 at the end of the present section.)
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In physics literature, a standard way to get an infinite volume state with explicit
symmetry breaking is to apply an infinitesimally small symmetry breaking field to the
system. In the case of the Heisenberg antiferromagnet, this can be implemented as

α>( - -) - lim lim —±- " 7 yi r^-^ . (1.8)
Bio LTOO Tr [ exp[-β(HΛ - BO%)]]

It is likely that the state ώ( •) is pure, but there is no proof. It is natural to expect that
the existence of a long range order in the SU(2) invariant state ωQ( •) [as in (1.2)]
implies a symmetry breaking in the state ώ( - •)• The latter is usually characterized
by observing that the spontaneous staggered magnetization

i l Ί

τnc ι= lim lim —-j - —
BIO LTOO Ld Tr [ exp[-β(HΛ -

(1.9)

takes a nonvanishing value. (The equality in (1.9) follows from the translation
invariance.) Mathematically speaking, however, the implication of nonvanishing σ
on nonvanishing ms is not as trivial as it appears.

The method of Dyson, Lieb and Simon can deal only with the SU(2) invariant state
ω0( •)» and not with the state ώ(- - •) obtained by applying an infinitesimal symmetry
breaking field. In models where the order operators and the Hamiltonian commute
with each other (such as the Heisenberg ferromagnets), Griffiths [10] developed a
general theory which relates a symmetry breaking in states like ώ(- - •) with a long
range order in the symmetric states like ω0( •)• This result was reformulated and
refined by Dyson, Lieb and Simon [4]. Unfortunately, the reflection-positivity method
to prove a long range order works only in the antiferromagnetic models, where the
order operators and the Hamiltonian do not commute with each other. Therefore the
existence of a symmetry breaking in the state ώ( - •) in the Heisenberg antiferromagnet
has been left as an open problem.

The main purpose of the present paper is to prove a theorem which fills this gap.
More precisely, we extend Griffith's theorem mentioned above to models where the
order operator and the Hamiltonian do not commute with each other. When applied
to the Heisenberg antiferromagnet, Corollary 2.2 in Sect. 2 reads as the following.

Corollary 1.1. In the isotropic Heisenberg antiferromagnet (1.1), the long range
order parameter (1.2) and the spontaneous staggered magnetization (1.9) satisfy

m s > \ / 3 σ , (1.10)

for any inverse temperature β.

When the Dyson-Lieb-Simon method works, one knows that σ is nonvanishing.
When combined with such information, our theorem concludes that the state ώ( - •)
exhibits the spontaneous symmetry breaking in the sense that ms > 0. We note that
the first rigorous result concerning the existence of such a symmetry breaking in the
Heisenberg antiferromagnet was due to Kaplan, Horsch and von der Linden, who
proved the bound ras > σ for the ground state [11]. We believe that the above bound
(1.10) is saturated in the Heisenberg antiferromagnet. See Remarks 3 and 4 below
for discussions on the factor \/3. When the system has a different symmetry group
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than SU(2), the factor is replaced with a proper one. See the Remark at the end of
Sect. 6.

Since the bound (1.10) is valid for any temperature, it applies to the ground state
obtained by letting β —> oo after the infinite volume limit. (This is the physically
natural ground state.) We also directly treat the ground states in a finite volume, and
prove a bound corresponding to (1.10). It is an improvement of a bound by Kaplan,
Horsch and von der Linden [11].

Underlying most of our proofs in the present paper is the fact that, in a large
quantum system, intensive quantities should behave almost as "classical" quantities.
We shall make this claim rigorous in various different ways to prove our results.
One of the most interesting techniques in the present work is the "coarse graining"
procedure used in Sect. 3 to get a pair of commuting operators from non-commuting
ones. This allows us to apply the original idea of Griffiths [10] in order to get the
desired relation between long range order and symmetry breaking.

The organization of the present paper is as follows. In Sect. 2, we describe our
theorems for finite temperatures in the most general setting. In Sect. 3, we construct
a pair of commuting operators by using a kind of coarse graining procedure in the
energy space. In Sect. 4, we generalize Griffith's argument, and discuss the probability
distribution of the approximate magnetization. We complete the proof of the main
theorem for an equilibrium state in Sect. 5. In Sect. 6, we prove general results which
characterize a state with continuous symmetry. Section 7 is an independent section
which is devoted to the study of ground states.

Remarks. 1. Abstract theories of quantum mechanical states [12] tell us that a non-
pure state is always decomposed into a sum of pure states. In the Heisenberg
antiferromagnet, it is likely (but not proved) that the state ω0( •) of (1.5) is
decomposed as

(...), (1.11)

where Ω is the solid angle, and the integration is over the whole sphere. Each state
ωft ( •) is pure and exhibits explicit symmetry breaking as

ωa(Sχ ) = (-irι+" +XdmsSl, (1.12)

with the spontaneous staggered magnetization ras.
2. Given the fact that there is a non-pure state ω0( •) with a long range order,
general arguments guarantee that there is a pure state with explicit symmetry breaking.
Therefore one should not understand our contribution as the "first demonstration that
there is symmetry breaking." The most important point of our work is that we have
established the property of the specific state ώ(- •), which is considered as a physically
"natural" state to look at.
3. One should not be surprised by the factor \/3 in the bound (1.10). Once we assume
the pure state decomposition (1.11), we immediately see that (1.10) should be satisfied
as an equality. By using the translation invariance, one finds that

σ2 = lim (-l)a»+"+*«'ω0(S$1)S<:

1)) = | lim (-l)xi+/"+x<H(S0 Sx), (1.13)
|x|too J |x|Too
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where S0 denotes the spin at the origin, and we have used the SU(2) invariance. By
using the decomposition (1.11) and (1.12), we find that

(-l)*i+-+°*Wo(S0 . Sz) = ~ y dίlί-D* ̂ "+**ωa (S0 - Sa)

= (ms)
2, (1.14)

as x\ — » oo, where we have used that u;^ is pure. This explains (but does not
prove!) that we should have ras = \^3σ in a "natural" system. Although some authors

discussed [11] the possibility of ras = rσ with r ^ \/3, the above discussion shows
that a state must violate the pure state decomposition (1.11) in order to get such
a situation, which is rather unlikely. To assume (pure) states with "large quantum
fluctuation" is certainly not enough to get r ^ \/3.
4. Is is easy to construct examples which violate the r = Λ/3 rule. Take two
independent identical Heisenberg antiferromagnets, and define OΛ as the sum of
corresponding order operators of each model. Then one immediately finds that
the corresponding spontaneous staggered magnetization and the long range order
parameter satisfy ms > \/6σ. This observation implies that one cannot prove the
equality corresponding to (1.10) without making detailed assumptions on the system.

2. Notation and Main Results

In the present section, we shall describe our theorems for finite temperature equilib-
rium states. The results for ground states are discussed separately in Sect. 7. Although
theorems would be most interesting when applied to a class of Heisenberg antifer-
romagnets where the existence of long range order is known, we shall describe the
theorems in their most general forms. We stress that the theorems can deal with a
large class of models and various types of long range order. An interesting example is
the electron pair condensation problem (superconductivity) in lattice electron systems,
but there are no rigorous results on long range orders in fermion systems so far.

We consider a quantum system on a finite lattice A C TLά with TV sites. With each
site x G A, we associate a finite-dimensional Hubert space Hx. The full Hubert space
of the model is

X. (2.1)

For a fixed Λ, we take the Hamiltonian

HΛ := £ hx (2.2)

with self-adjoint operators hx. Assume that there is a unitary operator UΛ such that

ΛHΛU* = HΛ

We introduce an "order operator"

UΛHΛU* = HΛ . (2.3)
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with self-adjoint operators ox to measure a possible spontaneous breakdown of the
symmetry generated by the above UΛ. Thus we require

UΛ0ΛU*Λ = -0Λ . (2.5)

We define the Hamiltonian for the system under a "magnetic field" B e R (or a
"staggered magnetic field" in the case of antiferromagnet) as

HΛ(B) := HΛ - BOA , (2.6)

and the corresponding partition function and free energy as

(2.7)

and
ZΛ(B):=Ύτe-βHΛ(B\ (2.8)

respectively. Here Tr denotes the trace on HΛ and β > 0 is the inverse temperature.
As usual we define the thermal expectation as

(2.9)

We consider a sequence of finite lattices A C Zd which tends to the infinite d-
dimensional hypercubic lattice Zd in the sense of Van Hove [13]. For each A, we
consider a quantum system on A with the Hamiltonian HA and the order operator
OΛ. We assume that the sequence of models satisfies the following. (Note that we do
not assume that hx and ox are common for different Λ. This allows one to include
various boundary conditions for finite systems.)

i) There exists a thermodynamic limit of the free energy

/(£):= lim/Λ(£), (2.10)

for fixed values of β > 0 , B e R.
ii) There are finite constants h and o which are independent of A. For each A, we

have \\hx\\ < h and \\ox\\ < o for any x G Λ.
iiϊ) [hx,oy] = 0 holds unless y G S(x). The number of sites in the support set
S(x) C Λ is bounded from above by a constant r > 2 which is independent of Λ.

We define the spontaneous (staggered) magnetization as

m s : = l i m l i m 1{0Λ)Λ(S). (2.11)

The existence of the limit is guaranteed by the concavity [14] of the free energy f ( B )
in (2.10). We also define the long range order parameter as

σ := Jim ((OΛf)Λ(Q). (2.12)

The limit may not exist in general, but one can always take a subsequence so that it
exists.
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Then our main result is the following.

Theorem 2.1. For an arbitrary sequence of models satisfying the assumptions i), ii)
and iii), we have the inequality

ms> Jim 1{ ((0Λ)
2k}Λ(0)} ά > σ , (2.13)

for any inverse temperature β and for any positive integer k.

Note that the above theorem is a strict extension of Griffith's theorem [10] or
Theorem 1.2 of Dyson, Lieb and Simon [4], which are proved assuming that the
order operator OΛ and the Hamiltonian HΛ commute with each other.

The first bound in (2.13) will be proved in Sects. 3, 4 and 5. The second bound is
an immediate consequence of the Holder inequality.

When the system has higher symmetry (as in the Heisenberg antiferromagnets), we
can prove bounds stronger than ras > σ. Although we can treat an almost arbitrary
continuous symmetry group, we focus on the most typical case of an 5/7(2) symmetry.

We now suppose that the order operators form a three component vector

with
«, (2.14)

where each o$ is self-adjoint, and the above ii) and iii) are valid for each ί = 1 , 2 or
3. We also assume that
iv) [o<p, 0^] = 0 for any x ^ y <E Λ and any ij = 1,2, 3.

Finally we require the system to have global 5/7(2) invariance in the following

sense. There are su(2) generators XA\X®\XA\ which satisfy the commutation
relations

rv^) v^)i — <; V Jk yW n Λ^\
LA/1 > A /1 J — l Z_^ ε 1ΛΛ •> U Ij)

£=1,2,3

where ε12

3 = £2\ = ε31

2 = -ε32

1 = -ε21

3 = -ε13

2 = 1 and εjk

l = 0 for other
j,k,e.
v) Under the SU(2) transformation, the order operators behave as the tree compo-

nents of a vector. In other words, the commutation relations

£=1,2,3

hold for any j, k = 1,2,3.
vi) The Hamiltonian is invariant under the 5/7(2) transformation. In terms of the
commutation relations,

[HΛ,X%>]=0 (2.17)

holds for any j — 1,2, 3.
Then the improved result is the following.

Corollary 2.2. For an arbitrary sequence of models satisfying the assumptions i) -
vi), we have the inequality

m s > \ / 3 σ , (2.18)

for any inverse temperature β.
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Note that this is an extension of Theorem 1.3 of Dyson, Lieb and Simon [4]. The
above Corollary follows from Theorem 2.1 and Theorem 6.1.

3. Construction of Commuting Operators

This is the first of the succeeding three sections devoted to the proof of Theorem 2.1.

In the present section, we will construct a pair of commuting operators HA and OΛ

which approximate the Hamiltonian HΛ and the order operator OΛ, respectively. As
will be seen in Sect. 4, use of these commuting operators is essential in generalizing
the technique developed by Griffiths [10]. The construction of commuting operators
can be regarded as a kind of "coarse graining" procedure in the energy space. An
important feature of the present construction is that the precision of the coarse graining
becomes finer and finer as the system size increases (see Proposition 3.2 below).

Throughout the proof in Sects. 3, 4 and 5, the inverse temperature β is fixed. In
the present section, we also fix a finite lattice A with N sites, and consider a system
with vanishing magnetic field B. (To make the following proof simpler, we assume
that TV = (4/Q4, where K is a positive integer. But this technical assumption is by
no means essential.) Thus the expectation ( }Λ always stand for ( •}A(B — 0). We
denote by {Φn}n the orthonormal basis formed by eigenstates of HΛ. The eigenvalue
corresponding to the state Φn is denoted as En.

Note that any eigenvalue of HA is contained in the interval

from the definition of the Hamiltonian (2.2) and the assumption ii) in Sect. 2. For an
arbitrary subset J C /, we denote by P(J) the projection operator defined by

P(J)= ]Γ Pn, (3.2)
n:EneJ

where Pn denotes the orthogonal projection onto the eigenstate Φn.
Before defining the commuting operators, we have to state one lemma. Let the

decomposition number be

M - 4JV1/2 + 1. (3.3)

For 1 = 2,3, ,M we set

hN1/2 hNl/2\
-hN + (l- 2) , -hN + (ί- 1) . (3.4)

Lemma 3.1. One can find a set {E£} with I = 2, 3 , . . . , M such that E£ e J£,

A 7 • — IF — 7?/V1 / / 4 F -4- /?/V 1 / / 4 Ί (~ 1 Π 5")/_it7Λ , \_LJn / t / I V , ί-Jp Π^ f t / l Y J ^ Up \*J**J)

and
M

V (P(ΔJ£))Λ < 47V-1/4 . (3.6)/ j •**•
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Proof. We divide each interval J£ into identical small intervals of length 2/ιJV1/4 as

J£ = ΔJ^U. . .UΔJ(

£

K} with K = TV1/4/4- Now assume the converse of the desired
bond (3.6). Then we must have

M

V min (P(Δ Jf })} λ > 4AΓ-1/4 . (3.7)
*-^ fc=ι,...,κ x * / y l

£-2

On the other hand, the left-hand side of (3.7) is bounded as

M M K 1

Σ fe_r « <ίwf '̂  ^ Σ jc Σ <*w? })>, = Jt= 4N~ιμ ' (3 8>
^=2 ''"' 1=2 k=l

which is a contradiction. D

Take and fix E^...,EM as those guaranteed by Lemma 3.1. We also set

El — —hN and EM+l — hN. We decompose the interval / as

/ = / t U / 2 U . . . U / M , (3.9)

where I£ = [E^EM) for ί = 1, . . . , M. Note that the length of each interval lt

does not exceed /iTV1/2.
We define new operators as

M

(3.10)

and

The main result of the present section is the following.

Proposition 3.2. The operators HΛ and OΛ satisfy the following:

(HΛ,0Λ]=0, (3.12)

HΛ<HΛ, (3.13)

i%lM<JV-ι/2. (3.14)
/l7V

For any eigenstate Ψ of 77Λ,

(!P,0Λ!P) = (!P)Oyι^). (3.15)

For any positive integer k

(oN)2k

Before proving the proposition, we state the following lemma.

<2rk4kN'l/4. (3.16)
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Lemma 3.3. For a fixed eigenstate index n, take an arbitrary J C / such that any
E E J satisfies \E - En\ > D > 0. Then we have

:*n,o,
2fc-l

Π <W . (3.17)

for arbitrary integers m < 2k and arbitrary projection operators P 1 ? . . . , Pm_1?

. . . , P2/c_ι which commute with the Hamiltonian ίfΛ.

This lemma implies that the above matrix elements can be made small by choosing
sufficiently large D. We shall use the lemma with D = O(N1/4) in the proof of
Proposition 3.2.

Proof. Let us write
m—1

P,0/ι) (3-18)

and
2fc-l

B:=0Λ Π (P30Λ).
j=m+l

(3.19)

By using the Schwarz inequality we get

(Φn, B*P(J)BΦn) . (3.20)

We decompose the set J asj J+ U J_ , where E > En for any E G J+ and E < En

for any E £ J_. Then we find that

(Φn, A*P(J)AΦn) = (Φn) n) + (Φn,A*P(J_)AΦn)

HΛ-En

+
HA-En

D
(3.21)

On the other hand, we have

\(Φn,A*P(J±)(HΛ - EJP(J±)AΦJ\ = \(Φn,A*P(J±)[HΛ,A]Φn)\

< \ \ A \ \ \ \ [ H Λ , A ] \ \

< 2rmh(oN)2m, (3.22)

where, to get the final bound, we used the identity

[HΛ,A]^yίOΛPl...OΛPt_l[HΛ,0Λ]PtOΛPt+l...OΛ, (3.23)
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and the bound

\\(HΛ,0Λ]\\ <2rhoN, (3.24)

which follows from the assumptions ii) and iii) of Sect. 2. By combining the bounds
(3.21) and (3.22), we immediately see that

,3.25,

Similarly, one can prove the same inequality (with m replaced with 2k — m) for
(Φn,B*P(J)BΦn). Then the desired inequality (3.17) follows from the inequality
(3.20). D

Proof of Proposition 3.2. The properties (3. 12) -(3. 15) are trivial consequences of
the construction. We shall prove (3.16). Let us write

Ie := [Ee + WV 1 / 4, Ee+1 - WV 1/ 4) cle = [Ee, Ee+l) (I = 2, 3, . . . , M - 1) ,

IM := [EM + WV 1/*, EM+l) CIM = [EM, EM+l) . (3.26)

Since the projection operators P(I^) and P(ϊ^) commute with the Boltzmann factor
Λ^ we have

M~ _
((0Λ?

k}Λ - ((0Λ)
2k)Λ = Σ (Pde){(0Λf

k - (0Λf
k}P(Ie))Λ

M

M

Σ (P(W^{(0Λf
k - (0A)

2k}PdA^)A - (3-27)

The second term in the right-hand side of (3.27) can be bounded as

M

Σ(P(Ie\ΐe){(0Λ)
2k -

1=1

~
<\\(θΛ)

2h- (QΛ)
~ Mh- 2k

1=1

M

<2(oN)2k x4A^- ! / 4 , (3.28)

where we have used the assumption ii) and the bound (3.6).
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Now we rewrite the first term in the right hand side of (3.27) as

M

(P(It){(0A)
2k - (0Λ)

2k}P(ϊe))Λ

M

P(ϊ£)) . . . 0ΛP(Ϊ£))A

- (P(I£)0ΛP(I£)0ΛP(I£) .
M

= Σ Σ'
^ #>=/, or I,

ϋ=ι,...,2fc-D (329)

where / := J\/^, and the second sum ]Γ' in the right-hand side is taken over all

the assignments ϊ^ = I£ or ϊ£ for j = 1, 2, . . . , 2k — 1, except for one assignment

/(J) = /^ for all j. Thus the sum ranges over 22k~l - 1 different assignments.
Note that, in each term in the right-hand side of (3.29), there is at least one

j(= 1, . . . ,2/c - 1) such that /^ is ΐ£. Thus we can make use of Lemma 3.3 by

letting the index n be such that En e ϊ^ J = J£, and D = /iTV1/4, to get

. . . P(ϊ
k-l

Σ

4rkh(oN) 2k

= 4rk(oNfk x N~l/4
(3.30)

Substituting (3.30) into (3.29), we get

M

- (0Λ)
2k}P(ϊl))Λ

M

- 1) x 4rk(oN)2 x

< (22k~l - 1) x 4rk(oN)2k x N~i/4 (3.31)

By substituting the bounds (3.28) and (3.31) into the decomposition (3.27), and using
rk > 2, we get the desired inequality (3.16). D

It is crucial that we have defined the decomposition of the interval / = Iλ U. . .U/
M

not by simply dividing / into subintervals of equal length, but by carefully choosing

the boundaries {E^} according to Lemma 3.1. Without this extra care, one might
encounter a situation where the energy eigenvalues have bulk degeneracy exactly at
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a boundary value Et. Then the contribution of the boundary term treated in (3.28) is
no longer small.

The present definitions of the commuting operators HA and OA depend explicitly
on the value of /?, or more precisely, on the probability distribution of energy. The
discussion in the previous paragraph suggests, however, that one might be able to
find a decomposition of / which depends only on the spectrum of HA, and not on
the inverse temperature β. Unfortunately, we still do not know how to define such a
decomposition.

4. Probability Distribution of the Approximate Magnetization in Zero-Field

In the present section, we derive a bound on the probability distribution of the
approximate (staggered) magnetization, i.e., the eigenvalue of the approximate order

operator OΛ constructed in the previous section. The bound plays a crucial role in
the proof of the main Theorem 2.1. The argument here is a modification of Griffith's
[10]. Recall that the inverse temperatur β and the lattice A are still fixed.

Since the operators HA and OA commute with each other [see (3.12) in Propo-
sition 3.2], one can take an orthonormal basis {\Pn l}nl in which both of them are
diagonal. We write their eigenvalues as

0ΛΦn,ι = Mn<lΦn>l (4.1)

and _ _

HΛΦn,ι = En*n,ι (4-2)

Let us define
-W )

which is the probability density for the approximate (staggered) magnetization Mnl,
with respect to the Boltzmann weight determined by the "true" Hamiltonion HΛ. We
also define

>Nm):= ρn , (4.4)

which is the probability to find Mnl with \Mn t\ > Nm.
We now define

* ,. f ( B ) - /(O)
™s := ~ l™ - 5 - , (4-5)

Blo Jb>

which exists since the free energy f ( B ) is concave [14]. The concavity of f ( B ) also
implies

fΛ(Q)<-fΛ(B} = (0Λ}Λ(B). (4.6)

By letting first A\rLά and then B [ 0, the bound (4.6) reduces to

m* < ms .

Then the main result of the present section is the following.

m* < ms . (4.7)
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Proposition 4.1. For any m > m* , there exists a 6 > 0 (depending on m) such that

Prob(|Mn,zl > Nm) < 2 x e~βNδ x eβhVN , (4.8)

for sufficiently large N (i.e., the number of sites in A).

We shall prove Proposition 4.1 in the following. We first note that, for any
projection operator PΛ,

(4 9)

Ύ τ [ e - Λ ]

where

HΛ(B):=HΛ-BOΛ. (4.10)

We take

Q(V):= V Qn. (4.11)

as PΛ in (4.9), where Qn l is the projection operator into the eigenstate Φn l9 and V
is a set of indices (n, I). Then the inequality (4.9) becomes

where

fΛ(B) := — logTre"^(β) . (4.13)

By applying the Jensen inequality

(!Pnι/) e-^(β¥nι/) > exp[-/3(!Pnιί) HΛ(B)ΦnJ} , (4.14)

to the right-hand side of (4.12), we get

where we used (3.15) in Proposition 3.2, (4.1) and (4.2).
Note that we have

from (3.13) in Proposition 3.2 and (4.2). We also need the following lemma to evaluate
the right-hand side of (4.15),

Lemma 4.2.

fA(B)>fA(B)-hN^. (4.17)
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Proof. Note that

\JA(B) - fA(B)\ =

1 - ~ - ~ —- — -Xβ(HΛ-HΛ)]
βN

o

TV

1

 dΛ Tr(^ - gyi)exp[-/3g^(JB) - Λ/3(FΛ - ffΛ)]

Trexpt-^ίf.ίB) - Xβ(HA - HA)]
o

<jf\\HA-HA\\. (4.18)

Therefore, the lemma follows from (3.14) in Proposition 3.2. D

By (4.15), (4.16) and the above lemma, we obtain the inequality

> exp [βN{fA(B) - /Λ(0)}] x e-
βhVN x ]Γ eβB x Qnj , (4.19)

where ρn l is defined in (4.3). Then from the definition (4.4) and the inequality (4.19),
we have

Prob(|Mn5/| > Nm) < 2 x e-
βBNm

x exp [ - βN{fΛ(B) - /λ(0)} + βhNΐ] , (4.20)

for B > 0 and m > 0, where we used the symmetry (2.5) in Sect. 2.
To prove the desired bound (4.8), we recall the following two facts.
First, for any m > m* , there exist ra7 £ [m* , m) and B > 0 such that

f(B)-f(Q)>-m'B. (4.21)

This fact was proved by Griffiths [10] from the concavity of the free energy f(B).
Secondly, from the assumption i) in Sect. 2 on the existence of a thermodynamic
limit of the free energy, we find that, for any given δ > 0, there exists an integer NQ

such that

- ,

(4.22)

(4.23)

for any Λ with \Λ\ > NQ and for fixed B £ R.

For a given m > m*, we take δ = ^B(m — m7), where B and m' are chosen so

that the bound (4.21) holds. By combining the bounds (4.21), (4.22) and (4.23), we
get

fA(B)-fΛ(0)>-m'B-δ, (4.24)

for sufficiently large N.
The desired inequality (4.8) follows from the inequalities (4.20) and (4.24).
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5. Proof of the Main Theorem 2.1

Now we prove Theorem 2.1 stated in Sect. 2.
Take an arbitrary m > m*, where m* defined in (4.5). Then, from (4.1) and (4.3),

we have

2k.((0ΛΓ}Λ =

for any positive integer k.
By the definition (4.4) and Proposition 4.1, we get

< 2 x o2*e-^* x eβh + m2* . (5.2)

Combining the bound (5.2) with (3.16) in Proposition 3.2, we obtain

θ ) 2 k ( 0 ) < m2k + 2 x <?k

By taking the limits N ] oo and m j m*, the inequality (5.3) reduces to the desired
inequality (2.13) with the right-hand side replaced with m*. Since we have the bound
(4.7), Theorem 2.1 has been proved.

6. Consequence of the Symmetry

In the present section, we prove a theorem which characterizes a state with an SU(2)
symmetry. The theorem is quite general, and can be applied to both the equilibrium
states and the ground states. In the following {• )Λ stands for the expectation in
either the equilibrium state with vanishing external magnetic field or the symmetric
finite volume ground state ΦΛ. The similar result was proved by Dyson, Lieb and
Simon [4] for the Heisenberg ferromagnets, where they made explicit use of the
representation of angular momenta. Our extension here is based on a much more
"classical" consideration.

Theorem 6.1. Let ( )Λ be a state (i.e., a normalized linear functional) on the
operators of the quantum system on A. We assume that the state is invariant under
SU(2) transformation, in the sense that for any unitary transformation UΛ generated

by the SU(2) generators X(^\ Xf and X^ , we have

A = (A)A (6.1)

for any operator A. We also assume ii), iv) and v) in Sect. 2. Then we have

lim lim 1 ((0^)2hγk > V3 lim 1 ((O^)2γ . (6.2)
fcTcxjJVToo N \ Λ I Λ JVΐoo N \ Λ I A
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We start from lemmas. Let t,m and n be nonnegative integers, and let k —
i + ra -h n. Define

. (2fc)!

where the integration is over the unit sphere {ίl = (x, y, z) x2 + y2 + z2 — 1}.

Lemma 6.2. We /zαve

P,,m,n = ̂ ^y Gfc , (6.4)

where Gk < I and
j_

lim(G f c)
2 / c = 1. (6.5)

'Let
1 Γ

F(α, 6, c) := — / dίϊ(αz + % -f- cz)2k . (6.6)
4π ./

Then by expanding (αx + by + C2;)2/C, we observe that

1 <9£ <9m dn

(6'7)

On the other hand, from the rotation invariance, we get

F(α, b,c)=^- ί dil {(α, 6, c) - ίl}2fc

4π 7

1 / ι x-^k Γ x / O . ι Λ . Λ x - x ^ x -̂v "I 2fc

4π

- (α2 + b2 + c2)kGk , (6.8)

with

(6.9)

The relation (6.5) is trivial since the maximum value of \x\ in the support of the
integral is 1. By substituting the identity (6.8) into the representation (6.7), we
immediately get the desired identity (6.4). D

Lemma 6.3. Let i^ with j — I, ... ,2k be such that there are 2i different indices
j with i = 1,2m different j with i3 = 2, and 2n different j with ij = 3, where
k = I + m + n. Then we have

< Umn2(oN)2kN~l

< 2k\oN)2kN~l . (6.10)

Proof. We can get the second term from the first term in the left-hand side of
(6.10) by exchanging neighboring operators at most %imn times. By combining this

observation with the bound HtO^O^]!! < 2o27V, one immediately gets the desired
inequality. D
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Proof of Theorem 6.1. We first note that

ί Σ
£,ra,n>0; l+m+n=k

+ 2k3(oN)2kN~l (6.11)

where we have expanded the left-hand side, and used the bound (6.10) in each term
of the expansion.

Let (x,y,z) be a point on the unit sphere. From the SU(2) invariance, one can
find a (nonunique) unitary operator UA(x,y,z) such that

UΛ(x, y, z)0Ul(x, yΊ z} = xO + yO + zO . (6.12)

By using the SU(2) invariance of the expectation, we get

Σ

= G* Σ ^o(lΎ(o^r(o^(ofr(o^

f (O^Y + (θyγYA - 4kό(oNr*N-L (6.13)

where the sums are taken over integers I, ra, n with ί + m + n = k. We have used
(6.10), (6.7) and (6.11). The final bound follows from the Holder inequality.

Thus we find that

N~L\2k. (6.14)
/ V ^ - - , - - , ^ A J

Note that we can assume

(6.15)

since the desired inequality (6.2) is trivial when the limit is vanishing. Then, by letting
TV I (X) and then k f oo, the inequality (6.14) reduces to the desired (6.2). D

Remark. Theorem 6.1 can easily extended to systems with symmetry other than
SU(2). When a system has an SO(ri) invariance, one gets a bound similar to (6.2)
with the factor \/3 replaced with ^/ή. (In the above, we have actually made use of
the SO(3) invariance, rather than the full 5E/(2) invariance.) The most important of
these extensions are the models with an SO(2) = U(l) invariance, where we get a
factor Λ/2- Such models can be found in quantum antiferromagnets with an XY-like
anisotropy, or the electron pair condensation problems in lattice electron systems.
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7. Symmetry Breaking in Ground States

In the present section, which is somewhat independent from the rest of the paper, we
shall focus on the problem of symmetry breaking in ground states. Since our previous
theorems are valid for any finite temperatures, they also have implications on the
ground states obtaining by letting β —> oo after taking the infinite volume limit. We
stress that these are the states which have direct relevance to properties of very large
physical systems at low temperatures.

There has been, however, considerable effort to study ground states of finite
systems (i.e., the β —> oo limit taken before the infinite volume limit) and the
properties of their infinite volume limits. (See [5-9,11,15] and the references therein.)
We shall prove results similar to the previous ones for such ground states. One of the
most interesting points in the theory of the present section is the explicit construction
of the state (7.23) which exhibits explicit symmetry breaking with rather large order
parameter.

The main result of the present section is an improvement of the theorem of Kaplan,
Horsch and von der Linden [11]. The proof of our main theorem is also based on
their variational argument.

Let ΦΛ and ΦΛ(B) be ground stated of the Hamiltonians (2.2) and (2.6),
respectively. We define the long range order parameter in the ground state ΦΛ as

— (ΦΛ (O ΛΫΦ Λ} (1 ] }ro V Λ i \v-x A ' A ' Ί V ' /

where we take a subsequence if necessary. We assume

i') UΛΦΛ = ΦΛ, for UΛ used in Sect. 2. (See (2.3) and (2.5).)

Kaplan, Horsch and von der Linden [11] proved the following.

Theorem 7.1 (Kaplan, Horsch and von der Linden) [11]. Consider an arbitrary
sequence of models satisfying the abover i') and the assumptions ii), iii) in Sect. 2.
Then we have

lim inf lim inf — (ΦΛ(B), OAΦA(B)) > σ . (7.2)

An extra assumption needed in the improvement is

i") The ground state ΦΛ is SU(2) invariant, i.e., we have X(

AΦA = 0 for i = 1, 2,3.

Then we have the following.

Corollary 7.2. Assume that the conditions for Theorem 7.1 are valid, and we further
have the SU(2) invariance as in the above i") and the assumptions iv) and v) in
Sect. 2. Then we have

lim inf lim inf \- (ΦΛ(B), O(^ΦA(B}) > Vϊσ . (7.3)
BIO Λϊzd N yι

Note that the discussions in Remark 3 of Sect. 1 applies to the infinite volume
ground states as well. We thus believe that the bound (7.3) is saturated in "natural"
systems with an SU(2) invariance.

Let us first reproduce the proof of Theorem 7.1.
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Proof of Theorem 7.1 [11]. Let ΨΛ be an arbitrary normalized state on the lattice Λ.
Since ΦA(B) is the normalized ground state of the Hamiltonian HA(B), we have

(ΦA(B\ HA(B}ΦA(B}) < (ΦA, HA(B), 9A) . (7.4)

By substituting the definition (2.6) of HΛ(B)9 the inequality (7.4) reduces to the lower
bound for the (staggered) magnetization as

±(ΦΛ(B),0ΛΦΛ(B» >

{(ΦΛ(B), HΛΦΛ(B)) - (ΦΛ,HΛΦΛ)}

0- (ΦΛ, HΛΦΛ)} , (7.5)Λ, Λ Λ

where _E0 denotes the ground state energy of the Hamiltonian HA under vanishing
external field.

We choose the variational state Ψ as

T' (7.6)

We note that the symmetry requirement (2.5) and the assumption i') imply that
(ΦA, (OAYΦA) — 0 for any positive odd integer L We find that

(Φ Λ (O ΛΫΦ Λ}

(ΨΛ, OΛΨΛ) = Λ Λ Λ = σΛN, (7.7)

where we wrote
1 i

>Λ) (7 8)

The variational energy of the state ΦΛ can be evaluated as follows.

TT Φ \ F λ « f , π d> ̂,HΦ} - E = ~(Φ,HΦ) +

= , 0ΛHΛ0ΛΦΛ) - (ΦΛ, (0Λ)
2HΛΦΛ) - (ΦΛ, HΛ(0Λ)

2ΦΛ)

4(ΦΛ,(0Λ?ΦΛ)

= (ΦΛ,[0Λ[HΛ,0Λ]]ΦΛ)

4(ΦΛ,(0Λ?ΦΛ)

N->. (7.9)

We have used the assumptions ii) and iii) in Sect. 2 to evaluate the double commutator.
As far as we know, the above energy estimate was first noted explicitly by Horsch
and von der Linden [15].

By substituting (7.9) and (7.7) into the variational estimate (7.5), we get

±(ΦA(B),0ΛΦA(B)) >aΛ- . (7.10)

By first letting N | oo and then B [ 0 in the above inequality, we get the desired
inequality (7.2). D
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Our Corollary 7.2 is based on the following Theorem 7.3. The theorem can be
proved only assuming a U(\) invariance. Since this allows one to apply the theorem
to a larger class of models (including, for example, the electron pair condensation
problems in lattice electron systems), we shall make the condition explicit.

Here we only need one generator X^ and two component order operator

(O^,O^). We assume that the conditions iv), v) and vi) in Sect. 2 are satisfied

for C^}, O(% and X(^\ and we have X(^ΦA = 0.

Theorem 7.3. Assume that the conditions for Theorem 7.1 are valid, and we further
have the U(Y) invariance as discussed above. Also assume that σ defined in (7.1) is
nonvanishing. Then we have

lim inf lim inf -J- (ΦΛ(B), O(^ΦA(B)}
BIO Λ]Zd N

(7 n)

Proof of Corollary 7.2, given Theorem 7.3. Since the desired inequality (7.3) is trivial
when σ = 0, we assume σ ^ 0. Then, by combining Theorem 7.3 with Theorem 6.1,
one immediately gets Corollary 7.2. D

Before proving Theorem 7.3, we state some technical estimates needed in the
proof. Again we write

(7.12)

We also introduce
0±=0(X±iO(2}. (7.13)

These operators satisfy the commutation relations

[0±,Xf] = ±0±. (7.14)

Lemma 7.4. Under the assumptions of Theorem 7.3, we have

(σΛN)2n < (ΦΛ, (0^)2nΦΛ ) < (oN)2n , (7.15)

for any positive integer n.

Proof. We use the Schwarz inequality to get

< (ΦΛ,(0(»)2nΦΛ)(ΦΛ,(0(»)2n-4ΦΛ). (7.16)

By rearranging the inequality, we see that

The lower bound in (7.15) follows by multiplying together the inequality (7.17).
The upper bound in (7.15) is a trivial consequence of the assumption ii) of Sect. 2. D

Lemma 7.5. Under the assumptions of Theorem 7.3, we have

\(ΦΛ, (0-Λ)
n(0+

ΛTΦΛ) - bn(ΦΛ, (θf)2nΦΛ)\ < %rΐ(oN)2nN-{ , (7.18)
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for any positive integer n. The coefficient bn is

; = 4 n = (2n)Π >

(2n)! (2n-l)ϋ ~

The same inequality as (7.18) with O~\ and Ojj interchanged is also valid.

Proof. To prove (7.18), we note that (7.13) and (7.14) imply

Λ,

Λ), (7.20)

where the sum is taken over all the alignments of n copies of OA and n copies of O^ .
There are (2n)!/(n!)2 distinct alignments. Then the desired estimate (7.18) follows
from the bound

max \(ΦΛ, 0±0± . . . 0±ΦΛ) - (ΦΛ, (O-ΛT(O+

ΛTΦΛ)\ < 8n2(oJV)2nJVT ' , (7.21)

where the maximum is taken over all the allowed alignments of operators. To show
(7.21) one only has to note that one can rearrange alignments of the 2n operators by
exchanging neighboring operators at most 2n times. Since we have

,0] H < 4 o Λ Γ , (7.22)

from the assumptions ii) and iv), we get (7.21). D

Proof of Theorem 7.3. We choose our variational state as

By combining the lower bound in (7.15) with the bound (7.18), one can easely verify
that the state (7.23) is well defined for sufficiently large N, with k fixed. Since the
states in the sum of (7.23) are orthogonal to each other, the state ΨΛ is normalized.
As before the variational energy of status ΨA can be evaluated as

(ΦA,HAΦA)-E0

' ylΛ Λ' Λ' ozΓ1

3—ΓΓ^ <£&(]

n=l ^

k ' (ΦA>(θΛr[HΛ,(0+r]ΦΛ) (ΦA,(0+)n[HA,(

1 A / 2nh(oN)2n

2k + 1 ̂  1 bn(σΛN)2n - Zn2(oN)2nN
n=l

2k

<2hk(—} +O(N~l), (7.24)
σ

where we have made use of the estimates (7.18), (7.15) and assumption ii).
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Finally we calculate the (staggered) magnetization of the state tyA,

(ΦΛ,(Q-ΛT(0+

ΛTΦΛ)

213

2k

>

2k

k+ 1
(7.25)

where we bounded the arithmetic mean from below by the geometric mean. We also
used the inequalities (7.15), (7.18), and the fact that lim σ A — σ > 0. By using the

JVtoo

lower bound in (7.19), we finally get

1 2k 1
(7.26)

By substituting (7.24) and (7.26) into the basic variational estimate (7.5), and by
letting TV | oo and k t oo, one gets the desired (7.11). D

Remark, The estimate (7.24) of the energy expectation value of the variational state
ΨΛ only shows that the energy difference is smaller than a constant. This estimate is
far from being optimal. In [16], we prove a much more refined version of the estimate
(7.24), and discuss its relevance to the problem of low lying excited states in quantum
systems in a finite volume.
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