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Abstract. Two series of ^'-algebras with two generators are constructed from chiral
vertex operators of a free field representation. If c = 1 — 24k, there exists a W(2,3k)
algebra for k G Z + /2 and a W(2,%k) algebra for fe e Z+/4. All possible lowest-
weight representations, their characters and fusion rules are calculated proving that
these theories are rational. It is shown, that these non-unitary theories complete the
classification of all rational theories with effective central charge ceff = 1. The results
are generalized to the case of extended supersymmetric conformal algebras.

1. Introduction

Since the fundamental work of Belavin, Polyakov and Zamolodchikov [3] one of
the most exciting problems in theoretical physics is the classification of all possible
conformal field theories (CFT). As is well known this outstanding question plays a
central role in statistical physics as well as string theory and even in the mathematics
of 3-manifolds due to its connection with topological quantum field theory [39, 32].

In the last years two, in some sense dual, concepts of classification were
developped. One of them is the study of extended conformal symmetry algebras,
the so-called S^-algebras, as introduced by Zamolodchikov [40]. In this approach
one first explicitly constructs an algebra of local chiral fields and then gets insight
into the CFT by the study of its irreducible representations. The other one deals with
abstract properties of representations of conformally invariant operator algebras only,
leaving the latter more or less unspecified. Here one tries to construct abstract fusion
algebras [36]. The second approach is more restrictive since it only considers rational
conformal theories (RCFT). In this case modular in variance of partition functions
might be seen as a link between these two methods, since on the one hand they can
be constructed from the characters of the irreducible representations of the symmetry
algebras, on the other hand they assure the existence of a unitary and symmetric
^-matrix yielding the fusion algebra via the famous Verlinde formula [38, 34].

^-algebras describe the operator product expansion (OPE) of conformally invari-
ant local chiral fields. The singular part of such an OPE yields a Lie bracket structure
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for the Fourier modes of the fields, the regular part an operation of forming normal
ordered products. In the following we define a ^'-algebra as generated by a finite set
of primary fields 0O, 0 1 ? . . . , φn including the identity, whose modes yield an associa-
tive algebra closed under derivation d and quasi-primary normal ordering A/"( , •) (see
[5]). In addition the fields φt are assumed to be simple, i.e. not composed from others
by the operation A^\ With the conformal dimensions hiφ^ = di we denote such an
algebra by 31^(2, d l 7 . . . , dn), where all structure constants are left unspecified and
d0 = 2 stands for the Virasoro field instead of the identity.

Some of these ^"-algebras were constructed in the last few years by different
groups implementing the conformal bootstrap [23, 41, 18, 6]. Recently many new
examples could be investigated using the Lie bracket approach [5, 27], which has
beside others the great advantage of directly leading to a Lie algebra structure thus
admitting the definition of lowest-weight representations [13, 37].

In this paper we establish a new class of RCFTs using both pictures. In the
second chapter, starting from some explicitly constructed examples of ^-algebras, a
whole series is extracted founded on general arguments from the theory of degenerate
models. The structure constants of these ^"-algebras are calculated in chapter three.
In the fourth chapter we explain the explicit calculated irreducible representations of
these examples by deriving general character formulae, the modular invariant partition
function and finally the 5-matrix and the fusion algebra, where details are shifted to
two appendices. This leads to a new class of RCFTs for which the whole characterizing
data is presented. It turns out that, while all these RCFTs are non-unitary, they fit in
the frame of the classification of all theories with central charge c = 1. The completion
of this classification towards the non-unitary case is the subject of chapter five. The
sixth chapter gives the obvious generalization of the models to the supersymmetric
case.

2. ^-Algebras and Degenerate Non-Minimal Models

This chapter mainly intends to explain the existence of series of P (2, <5)-algebras at
the central charge values c = 1 - 8<5 and c = 1 - 3<5, which has been conjectured
in [5]. Here the notation means a local chiral algebra with one simple generator in
addition to the Virasoro field, whose Lie-algebra of modes is algebraically closed
under commutators and normal ordered products in the closure of the envelopping
algebra. For exact definitions and details we refer the reader to this paper and [35]. We
just sketch the results obtained there, which motivated our work. The following table
lists the explicitly constructed ^-algebras, which are conjectured to be members of
two general series.

The c-values in brackets are extensions of the obtained results to the cases of
generically, i.e. for all c-values up to finitely many exceptions, existing ^"-algebras.
Some explicit calculations concerning the representation theory of these generically
existing algebras at the particular c-values of Table 2.1 may be found in [13],
confirming the extensions of our list. The explicit result for Wζl,9) has been obtained
by [30]. In the last column of the table we list the squares of the self-coupling structure
constant C^w of the additional primary field W with dimension δ. The value for
the W(2,2)-algebra has been put in brackets, because this algebra exists for every
central charge and every self-coupling independently, since it always can be linearly
transformed into a copy of two commuting Virasoro-algebras. The particular given
value will be justified later. Of course, the self-coupling vanishes necessarily for δ
not even.
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Table 2.1. Two sets of S^-algebras to rational c-values not contained in the minimal series
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The generically existing ^-algebras can be identified in the following way:

W(2, | ) is nothing else than the Super-Virasoro-algebra, and W(2,2) is the direct

sum of two Virasoro-algebras. The latter and W\2, 3), W{2,4), and W(2,6) can be
viewed as the "Casimir-algebras" of the afflne Kac-Moody-algebras, or actually as the
affinization of the Casimir-algebras, related to the semi-simple Lie-algebras Aι θAl9

A2, B2 or C2, and G2 respective.
In order to explain the existence of the series of ^"'-algebras of Table 2.1 we start

to review very shortly the theory of the so-called Dotsenko-Fateev degenerate models
and free-field construction [12]. The irreducible Virasoro lowest-weight modules of
degenerate models are not identical with the Verma modules due to null states. In
this case the operator algebra of the model is generated by primary fields which
correspond to the lowest-weight states of dimensions

(2.1)

where we parametrized the central charge as c = 1 - 24α§ and defined a± = a0 ±

J\ + OQ. In these references the Virasoro algebra and their irreducible representation

modules are constructed from Fock space representations of the Heisenberg algebra
(the free field)

[jmiJn] =nδn+m,0i ( 2 2 a )

built on the lowest-weight state |α ,α 0 )

Jn

These Fock spaces
field is defined by

α, α 0) = 0 Vn < 0, j o | α , α 0) = V2a\a, a0). (2.2b)

obtain the structure of Virasoro modules if the Virasoro

L(z) = yΓ V2a0dzj(z), (2.3a)
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which has central charge c = 1 — 24QQ. Here yV\-, ) stands for the quasiprimary
projection of a standard normal-ordered product. The Heisenberg lowest-weight states
become Virasoro lowest-weight states with weights h(a) — a2 — 2aa0, i.e.

Ln\a, a0) = 0 Vn < 0, L 0 |α, α 0) = h(a)\a, α 0 ) . (2.3b)

One also can construct chiral primary conformal fields of weight h(a), so-called
vertex operators, which map Fock spaces of different charges into each other,
Ψa --^β a0 — > -^a+β a They are given by the normal ordered expression

φa(z) = exp ( - Σ V2ajn-) exp ( - ]Γ V2ajn—)c{a)z~^°, (2.4)
V >b J V it I
v n>0 y v n<0 y

where c(a) commutes with the j n , n ^ 0, and maps groundstates to groundstates.

If α = ars = ι-(l - r)a+ + \{\ - s)α+, then h(a) = hrs(c) of (2.1). The so-

called screening operators Q^ — § dzx ... dznψa (z{)... ψaAzn) have particular

importance with appropriately chosen integration paths. Since h(a±) = 1, they have

conformal dimension zero but do change the charge of the Fock-space states to which

they are applied. With the help of these operators both non-trivial n-point functions

and conformal blocks can be constructed.
Products of para-fields of the form (2.4) only can be well-defined for radial ordered

points, i.e. /Ψa(zι)φβ(z2) is only defined for \zλ\ > \z2\. One gets the other half by
analytic continuation, and the chiral conformal blocks in general become multivalued
functions Ψa(zι)ψβ(z2) = εaβφβ(z2)ψa(zι), where εaβ = exp{2πiaβ). Two fields
φ, ψ are said to be local relative to each other, if their phase ε ^ = ±1 and their
conformal dimensions differ by integers or half integers. Thus, chiral local fields
necessarily must have integer or half integer weights.

Much work has been done to resolve the embedding structure of the Virasoro and
Fock space Verma modules to irreducible lowest-weight modules, see e.g. [15, 16].
In fact, Felder showed that only on the Fock spaces ,^r with charges ars screening
operators can act well-defined, and can be considered as the non-trivial coboundary
operators (or so-called BRST operators) on the cohomology complex of the Fock
spaces whose elements just are the irreducible Virasoro modules 3$r s. Indeed the
screened vertex operators

where I — m + n — 2r — 1, V = m' + n7 — 2r7 - 1, are invariant (up to a phase) under
the action of the screening charges (BRST-invariant), i.e. they map the cohomology
spaces into each other.

In principle these facts contain all the information about the CFT such as fusion
rules, braid matrices or OPE structure coefficients, see e.g. [17] for the case of
symmetric theories. Let W denote the maximal extended symmetry algebra of the
CFT (making the partition function diagonal). If the theory is rational, the symmetry
algebra is a finitely generated W{ά^ d 1 ? . . . , <in)-algebra, where d0 = 2 denotes the
always present Virasoro field. If we denote with , ^ ( Λ ) an irreducible lowest-weight
representation space of the 5^-algebra, then this space can be decomposed with
respect to the Virasoro-algebra. Thus the whole Hubert space can be written as

(n/n)GiVλ (n'n)eNλ
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where A denotes the set of all irreducible ^-lowest-weight representations and Nλ

the set of all irreducible Virasoro lowest-weight representations contained in ,^χ\
Then the local fields of dimensions Δ = hn,n + hnfn are glued together from the
screened vertex operators,

(ri'n)(m''my(ri'n)(m>'myZ'
l

Ψλι'l) V{l>ϊ) (z) (2 1)

where the coefficients ^fl, \, , Λ are fixed up to normalization by the requirements
\TL TL)\TίL Tfί) A x

of locality of the OPE and crossing-symmetry of the four-point-function. They are
non-zero only, if |n — ra| + 1 < I < m + n— 1, Z = m-\-n — 1 mod 2, and similarily for
V. The situation simplifies drastically, if a chiral theory is considered, since then the
locality condition is extremely restrictive. The OPE of two local chiral fields again
only can contain local chiral fields on the right-hand side. Moreover, the chiral blocks
have to be local for themselves. For a review on local chiral fields, their OPE and
normal ordered products, see e.g. [21]. The consequences of these strong requirements
will be worked out in the following.

Rational conformal field theories (RCFT) can be characterized by the fact that
they have only a finite set of ^-pr imary fields or equivalently having only finitely
many irreducible ^-lowest-weight representations, where W denotes the maximal
extended symmetry algebra of the CFT. But this in return means the following: Firstly
both the central charge as well as the conformal dimensions of all fields, which belong
to the operator algebra, have to be rational numbers [2]. And secondly, infinitely
many Virasoro primaries with rational dimensions are needed, because otherwise the
characters will never be (finite linear combinations of elementary) modular functions.

For the degenerate models this means the following. If (2.1) is expressed in k — aft,
thus hrs = -k + \((2k + l)(r 2 + s2) + 2^/k(k + l)(r 2 - s2) - 2rs), then we can

distinguish three cases:
(p - q)2

(i) k, Jk(k + 1) G Q. In this case necessarily k is of the form — with p, q G N
Apq

coprime, thus c belongs to the minimal series (including the case c = 1). Moreover
hrs G Q Vr, s G Z.
(ii) fcζQ, y/k(k + 1) G C — Q. This yields all rational c-values not contained in

the minimal series. In this case exactly the weights h ±r G Q Vr G Z only,
(iii) k G C — Q. In this case neither c nor the /ι-values are rational (the latter up to
the exception hι ι = 0).

The proof of this statement is simple. First note, that the polynomials in r, s
which have coefficients k or y/k(k -f 1) respectively are linearly independent. Thus
case (i) is obtained by the requirement that all dimensions should be rational, i.e.

77,

the coefficients have to be rational. Put \/k(k + 1) = — G Q. Solving this for k
m

and requiring rationality yields the diophantic equation (2n)2 -j- m2 = Z2 with the
Pythagorian triples as their solutions. Parametrizing the coprime solutions yields c
in the minimal series. Case (ii) simply comes out, if one looks for the zeros of the
polynomials. Only (r 2 — «s2) admits infinitely many solutions allowing rational h-
values, while its coefficient is non-rational. The last case just covers the remaining
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possibilities. Note, that k and \/k2 + k are algebraically independent numbers over
Q for all irrational k.

Of particular interest is case (ii). If one chooses k to be integer or half-integer,
one finds that all weights

hrr = (r2 - l)fc , hr_r = (r2 - l)fc + r 2 (2.8)

are integer or half-integer. Moreover the phases εOίr rOi all equal ± 1. If r is odd, then

even /c G Z + /4 is possible. This shows that the "diagonal" set {V^'^)(m m ) | n, ra, / G
Z + , I = n+m-1 mod 2} of BRST-invariant screened vertex operators is a local set,
i.e. all operators are local to each other since the phases appearing by reordering the
screening charges cancel as long as the number of reordered Q+ charges equals the

number of reordered Q_ charges, Q^Q^ψ^Jz) = e4πiran^ψan Jz^Q^

and 4α α 0 = 4(1 - n)a^ G Z for OQ = k G Z + /4. From now on we consider

this special case of "diagonal" operators, i.e. n' = n in θίnnι. In the following we

use the shorter notation V^m(z) = V^ι^m m ) (z) for the "diagonal" BRST-invariant

screened vertex operators (2.5) and ^ m = ̂ nn^m m ) for their coefficients in the

chiral blocks W{n) ΞΞ Φ n n l l according to (2.7).
Indeed, the chiral blocks must be glued together from the operators of the local

set above. Otherwise they cannot represent chiral local fields. Locality also restricts
the fusion rules for the chiral algebra, since chiral local operators map the spaces into
each other such that the lowest weights differ by integers or half-integers [21]. Thus,
the OPE of two of these fields acting on a lowest-weight module again only yields
local fields acting on lowest-weight modules. This implies that the set of local chiral
blocks,

ίw<n\z)= Σ Σ ®n,ΛmW nezΛ (2.9a)
I mGZ+ leZ/(n+m)Z J

l+n+m = 1 mod 2

is a closed algebra with fusion rules

[W{U)] X [W{m)] = Σ Nίn,mίW(l)] , (2.9b)
|n —m| + l < I < m+n+l

l+m+n+l = Imod2

where the fusion numbers N^ m are non negative integers. Moreover, the subset with
n odd is a closed subalgebra, and will be called the odd sector of the algebra in the
following.

It is important to notice that only (half-) integer k (or quarter-integer for the odd
sector subalgebra) will lead to non-trivial RCFTs. One could think to take for k other
rational numbers than these and to look for the subset of chiral vertex operators that
are still local. But in this case it can happen that e.g. two operators VF(n) and W{πι)

having (half-) integer dimensions are local with respect to each other, while one of
them, say W^n\ being not local to itself. Then it might happen that the conformal
family of such an operator W^n) contributes to the right-hand side of the OPE of
the other local field with itself. In this case, the simple field does not appear on the
right-hand side but its normal ordered products, e.g. yf^iW^, W{n)) which has to
be understood as the chiral projection of the normal ordered product of the left-right
symmetric field W^n\z) 0 W^n\z) with itself. As a consequence, no algebraically
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closed local algebra larger than the Virasoro algebra can be defined. Indeed, we will
see later that the values k e Z+/4 are the only possibilities to obtain non-minimal
RCFTs from Dotsenko-Fateev models.

It remains to show that these local algebras are indeed SF'-algebras, i.e. completely
generated by the normal ordered products of (derivatives of) finitely many simple
primary fields. From the fusion rules we learn that applying a field twice to a lowest-
weight state will lead us to other lowest-weight states corresponding to other local
primary fields. Indeed, the complete local system can be generated by application of
W^2\ the odd sector by using W^3\ On the other hand we can consider the commutator
of modes of two operators and use the truncation of the terms on the right-hand side
by the conformal dimension rather than by the label of the Fock space charge. Writing
the right-hand side symbolically in conformal families we find e.g.

[W%\ W^} = [W^+n] + [W%\n], (2.10)

where W^ of course is the identity operator. For the dimensions we have h3 3 = Sk >
2h22 - 1 = 2(3fe) - 1 with k = (1 - c)/24. Thus no field of the conformal family
[W{3)] will appear in the commutator of W{2) with itself showing that the modes
of the latter field together with the Virasoro modes generate a Lie-algebra structure
which closes in (the closure of) its envelopping algebra, actually they generate a
3F"(2,3k) algebra. The same argumentation applies to the odd sector algebras, where
one can eliminate W^ from the right-hand side of the commutator of W^ with
itself, yielding a W(2,8/c) algebra.

The associativity of the OPE is equivalent with the fact that the Jacobi identities
are fulfilled. As was pointed out in [5] only the identities involving three simple fields
have to be checked and there only the coefficients for the primary fields appearing
on the right-hand side. This leaves us with one non-trivial condition in our case. If
the simple field has dimension δ, then fields up to dimension 3(5 — 2 will appear on
the right-hand side of the Jacobi identity. Comparing again with the fusion rules we
see for the odd sector algebras that 3/ι33 — 2 = 24k — 2 < h5 5 = 24 k, showing
that no further primary field can contribute to the identity. In the other case we have
3h22 - 2 = 9k - 2 > h33 = Sk for k > 2 indicating that the field W{3) could
contribute to the identity. But its coefficient must be zero because the self-coupling
of W^ vanishes due to the fusion rules. In fact, vanishing self-coupling means that
no field can appear on the right-hand side, whose mode expansion has monomials
involving more than one mode of W^. But the composite primary field W^\ which
is nothing more than the primary projection of ^//'(Wr(2),92fcWr(2)), will have terms
quadratic in W^ in its mode expansion. Thus, if one weakens the assumptions in
the definition of ^-algebras such that the generators need not be simple, then also a
W(2,3k, Sk) can be constructed, where W{3) is given as above. Note, that if h2 2 is
half-integer, so is k such that the statement above remains valid, since 2k is odd as
it must be. This explains the existence of the ^-algebras listed in Table 2.1.

A ^"-algebra is completely determined by the set of dimensions of the generators
and a consistent choice of all free parameters. The dimension of the additional primary
field and the central charge c are already fixed in our cases, the only free parameter
left is the self-coupling structure constant of the primary field. In the case of the
W(2,3/c)-algebras it must vanish by symmetry, but for the case of S§^*(2,8A:)-algebras
one might be interested in a formula expressing it by the only real input, the number
k, which also paramterizes the central charge c — 1 - 24/c and the dimension δ = 8/c.
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This and the still remaining determination of the coefficients in the chiral conformal
blocks is done in the next chapter.

3. Structure Constants

We now come to the calculation of the structure constants. In particular, we show that
the self-coupling structure constants C^w of the W(2,8A:)-algebras can be derived
from the structure constants of the Dotsenko-Fateev models. This will make our
proof rigorous that these algebras can be represented by a free-field construction. In
the following we use the notation as in [17].

As was pointed out in [5, 35], the commutators in a ^"-algebra are fixed by
SU(l,l)-invariance up to some structure constants. Furthermore, all structure constants
for quasiprimary fields can be reduced by SU(l,l)-invariance to expressions involving
only the central charge c and the structure constants connecting three simple primary
fields. In the case of a W(2, <5)-algebra with only one additional primary field W,
there is only one up to now free structure constant beside the central charge, the
self-coupling constant C^w. Its square is usually fixed by the validity of the Jacobi
identity involving three times the field W, which in this case is the only identity one
has to check.

Since every chiral local theory can be tensored with itself to yield a symmetric
theory, we learn from (2.7) that the coefficients of the symmetric Dotsenko-Fateev
models, as given in [17] and denoted there as D^M, have to equal the squares
of our ^ m with N = (n,ri),M = (m,m) and L = (1,1) (up to normalization).
Felder, Frδhlich and Keller obtained the following result from the calculation of the
braid matrices of the BRST-invariant vertex operators, which are proportional to the
(quantum) 6j-symbols of the quantum group Ug(SU(2)), and the crossing symmetry
of the latter:

Δι {

hι,ι

"yn,n"/m,m -*

n-l

π

LL ΛI / \ ,
ίl I) (I I) n m\ '
NN MM

Λ)([n]x[m]x[l]xγ

V [i]χ )

n-\

ϋix Π t
/2 j=(m+n-/+l)/2

(Z+m+n-1)/2 χ

[?1
j=(Z+m_n+l)/2 U x

where the brackets are given by [j]x = xJ//2 — x~^2 with x — exp(2τriα:^) and
x' — Qxp(2πia2_). A prefactor c ht ιh~ι

nh^ has been included to take care of our
normalization of the two-point functions used in [5, 35], which is defined for chiral,
simple, primary fields to take the value

™ < ) |0) = - r ^ - « n m . (3.2)

The general normalization constants A Γ

( S ) ( m , m ) = (Λ I/JV r

(β ) ( m / m )(l) |ftm,m) have
been expressed by Felder in terms of Dotsenko-Fateev integrals [12] and are given
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here for completeness:

N(ϊi)
{n'ή)(m'm) ' Π π

Γ(j'a2_)Γ{m

Γ(a2_)Γ(m -\- n — 2r + {rf — m' — n' + J')OL2_)

ia2

+ — rf)Γ(mr — r' -f (J • - r1

Γ(a\)Γ(m' -r' + ri + (r-m-n

(3.3)

where Z = n -h ra - 2r - 1 and similar for V. The structure constants of the OPE or
equivalently of the Lie-algebra of the Fourier modes of the chiral local fields are then
given by

Cι = ̂  NbM. (3.4)

Thus, in the case of our W{2,8/c)-algebras we find that the square of the self-coupling
of the additional simple primary field W — W^ with dimension δ — $k reads

w
(3.5)

Note that only the square of the structure constant can be determined by (3.1). Since

N(2 2x2 2) ~ 0 d u e t 0 t n e f u s i° n rules, the self-coupling of W^ vanishes as expected.

If one expresses the brackets as [j]x = 2isin(jπa2

h) and [j]x, — 2isin(jπa2_), and

reduces the Gamma-functions to terms of the form Γ(z)Γ(l — z) =

finally arrives at the closed expressions

8/r 2/r

sin(π^) one

Ί Π
8A:

if /cGZ+/2,
3=1

2/c+l/2

(3.6)

8k /

Π
3=1if k e Z + + \ .

This result agrees with the examples of Table 2.1. The value for the W(2,2) given
there has been obtained from (3.6). While this algebra exists for every central charge
and self-coupling independently, it is related to a Dotsenko-Fateev model for c = — 5
only for this particular value of the structure constant. Other values could be obtained,
if the Virasoro field (2.3) would be deformed.
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One remark is necessary here. The screened vertex operators V, , \, , Λz) in
yTh TLjyΊΎL lit)

(2.5) carry a representation of the braid group, namely the braid matrices given by
[17] and defined by the relation

Σ ) (3.7)

valid for \w\ > \z\. The ordering of the integration variables of the screening
charges and the choice of their contours are of great importance for the calculation
of the braid matrices. In our case, where n' = n etc., one always has the same
number of positive and negative screening charges. Thus, one can introduce similar
vertex operators 9T\m = Ψn,n(Q)(r) : ^ , m -> ^ n with Q = Q_Q+, i.e. with
a rearrangement of the ordering of the screening charges and a change of their
contours: Applied to a vertex operator located at z, the new screening operator

u

is given by Q = §du Jdu'ψCί_(u/)ψCί+(u), where the inner integration over v!
z z

follows the same contour as the outer one over u which encircles zero and starts
at z. Then these operators look like fields of a thermal theory, i.e. a theory with
N = (l,n), M = (l,ra) etc., but with a double integration for every effective
screening with Q. Since the braid matrices are almost factorized in a left and right
thermal part, their components connecting only "diagonal" operators are independent
from the non-diagonal ones. Moreover, with the modified operators, the (thermal)
braid matrices r(j,k,n,m \ x) in [17] simplify drastically by taking the limit
x —• 1, since the effective phase of moving contours of the effective screening
charge Q is a\ + a2_ = 2k + 1 G Z + /2 for our particular models. In this limit
[m]x/[n]x —• ra/n, thus leaving us with simple rational numbers for the matrix
elements and the i ^ m coefficients. On the other hand the behaviour of the analytic
continuation of the normalization integrals also changes, actually simplifies, if they
are defined in the modified vertex operators, since the latter have trivial monodromy
properties. Of course both effects cancel out in formula (3.4) leaving the structure
constants unchanged as it should be. But this remark shows the special role of the
values k G Z + /4 of the background charge: For these values the modified screened
vertex operators form a very simple representation of the braid group.

In the next chapter the explicit calculation of all allowed lowest-weight represen-
tations together with a modular invariant partition function completes the description
of these new CFTs and proves that they are indeed rational.

4. Representation Theory

In this chapter we discuss the representation theory of the ^-algebras established
in the last chapter. The answering of this question yields the complete field content
of ^"-primary fields of the theory analogous to the case of the Virasoro algebra.
Starting from the character of the vacuum representation of the ^-algebra we find
all lowest-weight-representations by considering the behaviour of this character under
modular transformations.

The case of the bosonic ^"-algebras in the 1 - 8<i series is treated in detail, for
the other series only a brief discussion and the results are given.

In the previous chapter we have shown that for c G Q but c not an ele-
ment of the minimal series, only the degenerate conformal families with weights
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\ — C 1 — C

hnn = (n2 — 1) and hn_n — (n2 - 1)—zr—h Ή 2 have rational conformal
weights. In particular for c — 1 - 24/c, k G N/2 all these fields have integer or half-
integer dimension, which is necessary for building chiral local symmetry algebras.

From now on let c = I —24k with k G N/2 fixed. Since the Si^-algebra which is
infinitely generated by the primary fields belonging to the weights h for c = 1-24A:
contains the ^ ( 2 , 3/c)-algebra as finitely generated subalgebra, all primary fields with
higher spin have to be composite. This follows using the isomorphism between the
Hubert space of the vacuum representation of the W(2,3&;)-algebra, generated by
the modes of the two simple fields, and the space of all quasiprimary fields, which
can be generated by normal ordered products of (derivatives of) the simple fields.
As deduced in the last chapter, the other primary fields then appear as primary
projections of normal ordered products according to the fusion rules. For example
the field W = W^ obeys the fusion rule

[W(2)] x [W(2)] = [I] + [W(3)], (4.1)

where the weights are h2 2 — 3fc and h33 = 8/c. This means that the conformal family
[W{3)] does not occur in the commutator (or equivalently the singular part of the
OPE) of W with itself, while the primary projection oί yV(W^ d2kW) is proportional
to W^3).

Thus, remembering that all these primary fields belong to degenerate conformal
families created by singular vectors, the ^-algebra character of the vacuum represen-
tation is given by summing up all the Virasoro characters of the lowest-weight repre-
sentations \hnn). Following the work of Feigin and Fuks [15], every Virasoro lowest-
weight module at level hn n has exactly one null vector at level hn _n = hn n -f- n2.
Therefore, if χhnn(r) denotes the character of such a lowest-weight representation
of the Virasoro algebra, it is given by

πd-c)/24

~ (4.2)

where q — e as usual, r being the modular parameter of the torus, and the
00

Dedekind ^-function is η(τ) = g1/24 [ j (1 - qn). This implies that the ^-algebra

character can be written in the form

?k ri2(fc+lΛ

(4.3)

where we have introduced the elliptic functions (modular functions of weight one-half)

Θ\,k(τ) = Σ q{2kn+X)2/4h , λ G Z/2, k β N/2 . (4.4a)

We call λ the index and k the modulus of the function. Surprisingly, we can express
our ^-algebra character by functions with well known properties under modular
transformations, actually they will form a finite dimensional representation space of
the modular group. Indeed we will show that these 3F*-algebras belong to a RCFT.
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Note that in contrast to the known cases (e.g. minimal models, WZW models) elliptic
functions of different moduli are involved.

Let us additionally introduce the alternating elliptic functions

x fcvτ) = / ^(~1) Q J ^ ^ ^1 ^ i k ^ ™/^ (4.4b)

Then the modular properties are given by

l—iτ ^ ^ Θχ/k(r) i f Λ G Z

2k ^ \ β v + I , f c W i f λ G Z + I ,

: π ^ ί θ λ > J b ( r ) i f λ - A G Z ( 4 5 )

2fc I ^λ^W ifλ-fcGZ+i,
2

i π λl θ λ , (r) if λ - k G Z

β ^ + υ = « » β " ( τ ) tfA_teZ+.

Thus, the functions Λλ fc(τ) = θXk(τ)/η(τ) are modular forms of weight zero to
some Γ(N) C PSL(2, Z), e.g. TV is the lowest common multiple of 4fc and 24, if
λ - fc G Z. As was argued by Kiritsis [28] the Serre-Stark theorem assures the
completeness of the set {Λλ k \ k G N/2, 0 < λ G Z/2 < k} as a generating set for
1-singular modular forms as characters of RCFTs with ceff < 1 are supposed to be
(the effective central charge ceff will be defined later).

We now have to identify the characters of the other representations, which are
labelled by the pairs (λ, Jb), 0 < λ < k and (λ, k + 1), 0 < λ < k + 1. Obviously
one can write

q(i-c)/24

( }

2/C+2

Here we have expressed the contributing lowest-weight values by formula (2.1) for
numerating the degenerate weights by pairs of integers, but used rational non-integral
numbers for the labeling except for the case λ = 0, which corresponds to the vacuum
representation. Therefore, for λ φ 0 there will be no null states in the corresponding
Virasoro lowest-weight modules. Consequently, we identify the characters for the W-
algebra lowest-weight representations \h λ λ ) and \h λ λ ) just to equal (see

2fc'2fc 2fc+2'~2fc+2

Table 4.1) χf\r) = Λλ^(τ), 1 < λ < k, χw

x(τ) = Λλ | i b + 1(r), 1 < λ < k + 1 and

χf(r) = \Akk(τ), χ9fk_λ{τ) = \Λk+hk+ι(r), where the factor 1/2 in the last two

characters removes an unphysical double-counting of all states. Of course we still need
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one character which can be identified to be χζ+γ{τ) = ^(Λok(τ) + Λok+ι(r)). This
can be seen as follows: It is clear that there must be one other linear combination of
ΛQk and ΛQk+ι except the one for the vacuum character. Other yl-functions cannot be
combined, because their </-powers will never differ by integers. Since the character is
supposed not to involve degenerate multiplicities of the corresponding representation,
its g-expansion has to start with the leading coefficient 1. This restricts the possibilities
to the ansatz χf^i = μΛ0 k ± (1 — μ)Λ0 k+ι. The requirement of integer coefficients

further restricts μ to the set {0, | , 1}. But the solutions μ = 0 or μ = 1 again yield

an unphysical double-counting of all states with weights greater than zero, μ = -
is left as the only possibility. This means physically that the vacuum representation
lives on the invariant subspaces left after dividing out the modules generated by the
null states (see [16]), while the other representation (which has the lowest-weight
hmin = — k < 0 = hyac demonstrating the non-unitarity of the theory) lives on the
direct sum of the whole Verma modules together with the modules generated by the
singular vectors.

If one now expresses the modular properties in the basis of the characters found
so far, one finds a 5-matrix which is neither symmetric nor unitary. This comes from
a hidden degeneracy of the representations on the lowest-weight states \hγ i), as
can be seen from the modular invariant partition function 2' 2

2k-l
1 X ^ i A 2

Lλ,k f,k+l\

λ=0

k-\

Σ
λ=0

xT

λ'=0

X-y
λ'=0

+ 2 Xk + 2 A-fc-1 (4.7)

which directly shows up the multiplicities. The reason for these degeneracies lies in
the extended Cartan subalgebra. Indeed, in the explicitly computed examples [5, 13]
of ^-algebras we found that exactly for these representations the WQ-eigenvalue is
non-zero. Actually, since the selfcoupling of the VF-field with itself is zero in all cases,
only the value w2 given by W0W0\h,w) = w2\h,w) can be computed by expressing
yV\W, W) in terms of (normal ordered products of) the Virasoro field yielding w2 as
a function in h and c if its zero mode is applied to the lowest-weight state. Of course,
w2 φ 0 will give two representations |/ι, ±Vw2}.

In order to calculate the fusion algebra, one now either has to use the Verlinde
formula [38, 34] in the modified form

n,

) m k

J0m

for a generalized diagonal modular invariant partition function

(4.8)

(4.9)

or one has to extend the 5-matrix and the number of characters removing the
degeneracies (see [33]). This second method means in our case, where we have
two representations with multiplicities 2, that there is a doubling of the characters

f f Γ ? T h u s > one has to extend
= X
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the ^-matrix by two rows and columns. The requirements symmetry, unitarity and S
being at most of order 4, i.e.

where C is the conjugation matrix, already fix S up to three free constants which
can be uniquely determined from the N^, which should be non-negative integers.
This leads to the S- and T-matrix given in Appendix A. The fusion algebra and a
calculation of the three free parameters of the 5-matrix are given in Appendix B. Here
and in the sequel we use the following notation for the characters and representations

Table 4.1. Representations and their characters for the bosonic W(2,3/c)-algebras

h

h ! !
2fc'2fc

2fe ' "

Λ I I

2 ' 2

^0,0
h j

2fe+2'

2fc+2'

Λ , ,
2 ' 2

2k

!

2fc+2

fc
2/e+2

9

0

0

0

0

0

0

7^0 χ _ / c _ i ) + —

xf

X* =

χf-,=

χί =

έ(A,.t-A,.*+1)

2̂ fc,/c

2^0,/c + ^0,fc+l)

^l,fc+l

Λk,k+\

Remark

vacuum rep.

degenerate rep.

rep. to ^ m i n

degenerate rep.

which completely explains the representations of the W(2,3/c)-algebras for c =
1 — 24k, k G N found in [13]. Note the change in the labelling of the representations
due to the multiplicities. These characters diagonalize the modular invariant partition
functions, while it is maximal non-diagonal expressed in terms of Virasoro characters.
Thus these W(2, 3/c)-algebras are very good examples that extending the symmetry
algebra does make the modular invariant partition function more diagonal and can
yield new RCFTs not related to minimal models or any coset construction. Moreover,
these non-diagonal partition functions are not contained in the ADE-classification of
Cappelli, Itzykson and Zuber [8] and probably not related to any other non-diagonal
invariant coming from affine Lie algebras.

From (4.5) we learn that for fc, λ G Z the functions A x and A x

λ+2,& λ+-,/c+l

built a space invariant under T 2 and S2. These functions are the characters of the
irreducible lowest-weight representations of the so-called twisted bosonic S§F(2,3fc)-
algebra which is obtained by using half-integer fourier-modes, hence introducing
antiperiodic boundary conditions. In the twisted sector of the bosonic W(2,3k)-
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algebras no linear combinations of these functions are necessary nor possible.
Consequently the characters of the lowest-weight representations \h2χ+ι 2λ+i) are

4fc ' 4/c

simply χ # (r) = A x (r), 0 < λ < k, and the ones of the lowest-weight

representations \h2\+i 2\+\) read χ^ {(r) = A λ (r), 0 < λ < k + 1.

T~ ~ λ~2 λ+-,fe+lIndeed, for some ^-algebras as examples these representations could be found
by explicit calculations in [13].

Let us emphasize one point here. We show these theories to be RCFTs by
constructing the 5-Matrix and calculating the fusion rules. If one introduces the
effective value of the central charge

ceff = c-24/ι m i n , (4.10)

one can compare non-unitary theories with unitary ones. Actually, the central charge
c is nothing else than the mean expectation value of the Casimir effect contribution of
the free energy due to the boundary conditions. As is well known, from the modular
invariant partition function

Z(r,f = r) = T r e 2 ^ - ^ 2 ^ 0 - ^ , (4.11)

one easily derives the following expression for the central charge in dependency from
the energy Lo + Lo (the latter being defined up to an arbitrary additive constant)

c = 12 j (4.12)

T

which simplifies for the fixed point of the ^-transformation, r = i. Now we obtain

with Δn = hn + hn

< 4 1 3 )

where the sum extends over the weights of all states, both the conformal dimensions
of the primary fields and the weights of all their descendents.

This formula shows that positive exponents will appear in non-unitary theories,
since the state of lowest energy is not identical with the vacuum, thus violating the
conservation of probability. Therefore it does make sense to redefine the energy by
subtracting the energy of the ground state, (Lo + L0) e f f = Lo + Lo - 12Z\min, which
in return forces to redefine the central charge

-Δmin)exp(-2τr(Δn-Δmia))

Σexp(-2π(4 n-4m i n ))
n

such that the characters will keep unchanged. This effective central charge measures
the mean expectation value of the Casimir effect contribution of the free energy
relative to the state of lowest energy. This is a physical observable which does
conserve probability and can be used for both unitary and non-unitary theories
as well. Consequentely ceff > 0. Usually one considers symmetric theories with
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h = h corresponding to diagonal modular invariant partition functions. In this case

^min = 2 / W

In particular our theories have ceff = 1 and thus complete the classification of all
rational theories with c = 1, given in [28, 20, 9], including the non-unitary case, since
these theories exactly represent the only possible additional case found in [28] but
rejected there due to the unnecessary restrictive assumption, the state of lowest energy
would always be the vacuum. Note that most of the theorems used in the references
given above are valid for the non-unitary case as well, one only has to distinguish
carefully between the vacuum representation and the minimal representation. Quantum
dimensions for example have to be defined with respect to the conformal ^-family
to the Virasoro lowest weight ή,min rather than to the identity family, if the theory is
non-unitary. The next chapter is devoted to the proof of the statement concerning the
ceff = 1 models.

Now we will briefly discuss the case of the fermionic S^(2,3&)-algebras. Here
k

c— 1 — 24-, again k G N. The vacuum representation belongs to the Neveu-Schwarz

sector. For this sector we find that all the characters can be expressed in terms of the
functions A k (r) and A k (r) with λ G Z. Conversely, for the Ramond sector we

λ,- λ,-+i

have Λ G Z -+- -. Using the modular properties given in (4.5), it is easy to see that

the Neveu-Schwarz sector is invariant under the transformations S and T 2 , while the
Ramond sector is under T and ST2S, and that the transformation TST intertwines
the two sectors. In particular, we obtain for the NS-sector

^Σe2^Aχfk(τ). (4.15a)
k^ λ

Therefore we just can take the S'-matrix for the bosonic case, as given in Appendix
k

A, change every occurrence of k to - and remove both the (k, -h)th and (fc, —) t h row

and column as well as the (-k - 1, H-)th and (—k — 1, - ) t h ones. Note that degenerate
representations do not appear in the NS-sector.

For the R-sector the situation is not as simple, because the appropriate transfor-
mation matrix is S = ST2S. Using again (4.5) and eliminating one summation by a
Gauss-sum results in

λ ' + i l ( ) - ( }

Now one might go through the same procedure as for the bosonic case with this
matrix S and remove the degeneracies of two of the representations, but we will not
go into further detail here, since it is not clear whether ST2S can be used instead of
S for calculating the fusion rules via the Verlinde formula, nor what should replace
the identity representation.

Here we also briefly mention the W(2,8/c)-algebra series, which exists for all
k G N/4. As has been explained in chapter 2 these algebras just represent the odd
sector of the W(2,3/c)-algebras (note that there is no algebra built from the odd and
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even sector together for k G N + ̂  due to violation of locality). The vacuum character

for the odd sector reads

(l-c)/24

% *

rΞlmod2

2η(τ)
(4.16)

The modular transformations involve the other functions 6)λ+4/c+4ε,4fc+4ε w n e r e ε = 0
or 1. For 0 < λ < 4fc -f 4ε this is a complete set of linear independent Theta-
functions. Rewriting the summations as sums over odd integers only, the label has to
be multiplied by two, i.e. the lowest-weights are parametrized as h 2χ i\ »
S m c e 2(4fc+4ε)'(~1)ε2(4/e+4ε)

[2(4fe+4ε)n+(Λ+4/c+4ε)]2

Some of the characters are linear combinations of elliptic functions to different moduli
like in the bosonic case discussed in detail above. In particular we have

Table

h

4.2. Representations

w

and their characters for the bosonic "(2, 8 k)- algebras

Remark

vacuum rep.

4k' 4k

h4k~\ i

4k '

^2,2

^0,0

K\
h ,

4A;+4'

tfe-1

4fc

1

" 4k+4

4fc+3

7^ 0

7 ^ 0

7 ^ 0

/o

7^0

7^0

V

W

ψ

X?i

X?4fc-3

rep. on |W ( 2 ))

rep. to /ιmm

|/i = 0, K; ^ 0) rep.

4/c+4
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Note that there is no need for degenerate representations. Indeed, all representations
have multiplicity one. The reason is that the Wo eigenvalue is uniquely expressable
as a function in h,c, and the non-vanishing self-coupling C^w. Again one considers
the zero-modes of Jί^{W, dnW), n = 0,2, applied to the vacuum and solves the
resulting quadratic equations for w. These patterns also explain the existence of two
representations with h = 0, only one of them being the vacuum representation, in
[13]. Finally we note that the general addition law of the Jacobi-Riemann (9-functions
to moduli containing a square factor,

n-l

Σ Λnλ+^fcO") = ΛXtk(τ), k e Z + / 2 , (4.18)

shows that the whole W'(2,3/c)-algebra can be regarded as built from their odd
sector algebra W{1,8k). In fact, the representation on a lowest weight \h(X)) of
the whole algebra is obtained by applying the odd sector to both, the lowest-
weight state and the state (Φ2,2)o IM^)) since for the characters we have the relation

5. Classification of ceff = 1 Theories

Now we come to the completion of the classification of all RCFTs with c = 1 by
considering non-unitary models. As has been explained in the last chapter, one has
to use ceff = c — 24/ιmin instead of the central charge for non-unitary theories. In the
works of [28, 9, 20] all unitary models with c = 1 have been identified. But the proofs
of the statements of these works are not affected by the assumption of unitarity as
long as one keeps in mind that the vacuum representation is not necessarily the one
with the minimal lowest weight. Since there are strong indications that modular forms
to non-congruence subgroups of the modular group will have infinite denominators
in their Fourier expansions, we assume that non-congruence subgroups do not lead to
RCFTs. Thus, there is only one additional candidate for a c = 1 model (see [28]). It
has the partition function

Z = ±(Z(Rι) + Z(R2)) , (5.1)

where Z(R) denotes the partition function of an U(l)-theory of mappings of the unit
sphere Sι -> Sι with radius R, given by

^(n+2mR2)2^(n-2mR2)2) (5-2)

If 2R2 e N, then this partition function can be expressed in the elliptic functions
given by Eqs. (4.4), namely

y κ . 2 R 2i 2 , (5.3)

where the Theta-functions satisfy θ 1Ri — θ_n2R2 — Θn+4R22R2 and Θ2R22R2 has
P

only even integer coefficients, considered as power series in q. If now 2R2 = — e Q
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with P, Q coprime, then we can write

1
Z(R) =

η(τ)η(τ)
(5.4)

n mod 2PQ

with n! given by n' = QN + PM mod 2PQ, if n = QN - P M mod 2PQ for
some integers AT, M. Note that the integer case Q = 1 is correctly obtained from the
general one.
It is now necessary for obtaining a RCFT from the partition function (5.1) to have

2R2 = —-, i — 1,2. This yields the following two possibilities:

θ

n=\ m = l

Λ-2
θ

P2Q2ΛQ2

θ PίQι,PιQι

(5.5)

It is clear that only both linear combinations with a minus sign could be Virasoro
vacuum characters, since the latter must have the form (ηή)~ιqh~c/2A(l — q +
• )qh~Cj/24(l - q H ). Thus we can distinguish two cases:

(i)

(ϋ)

~ θ 0,P2Q2

(5.6)

I

In case (i) we obtain the condition P2Q2 = P{Q{ + 1 and hence c = 1 - 24P1Q1,
in case (ii) one has to satisfy P2ζ?2

 = ^\Q\ + ^ an<^ n e n c e c = 1 — 6PιQι. These
are exactly our series of c-values for the bosonic W(2,3/c)-algebras with k = P\Q\
and for the odd-sector algebras W(2,8k) with k = PιQι/4. In fact, we have seen
that under special assumptions on the radii Ri9 i — 1,2, Virasoro characters can be
found in the partition function (5.1). The modular invariance of the latter and their
well known decomposition shows that the theory is rational. Even more the extended
symmetry algebra for this theory is known and can be identified with a certain W-
algebra.

Let us remark that there can be a lot of decompositions of the modulus in (5.4)
into two coprime numbers P, Q. These different decompositions yield the non trivial
automorphisms of the fusion numbers or equivalently the set of theories, which have
related partition functions (5.5) with n' and m! given as described above. For details
see Appendix B.

Finally we conjecture that the set of these theories lies dense in the set of all
theories with partition function (5.1) to arbitrary radii RX,R2 e R+ . This conjecture is
equivalent to the following problem: For every positive real numbers Rx, R2 and every
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p.
ε > 0 find pairs of coprime integers P l 5 Qλ and P 2 , Q2 such that
i = 1,2, and P 2 Q 2 - P 1 Q 1 = 1 holds.

< ε,

6. Generalization to the Supersymmetric Case

The theme of this chapter is a brief sketch of the rather straightforward generalization

of the new RCFTs to the supersymmetric case. To fix the notation we set c = ^ —24ft =

| (1 — 16ft) = |cΓ and again consider the case ft e N/4, which will lead to theories

with ceff = -. With a± = Vft ± Wft + - we have the lowest-weight levels

hrtS(c) = i ( r α + + sα_) 2 + -L(c - 1) + £ ( 1 - ( - l ) r - s ) , (6.1)

where for the NS-sector Γ - S Ξ O mod 2 and = 1 mod 2 for the R-sector respective.
As for the ordinary case, we first list the up to now known results, which have
been obtained by explicit calculations [25, 31, 24, 19, 4, 14]. Here we used the
common notation where the smaller dimension of the super-partners are denoted only,
namely S^W(\,δ) — W(2, | , <5, δ + | ) . This is a supersymmetric conformal algebra
extended by one additional covariant supersymmetric field Φ(z,θ) = 0(2;) + θψ(z)
with dimension (<5,5 + ^), where (9 denotes a Grassman variable. In analogy to (2.9)

we denote the super conformal blocks by Φ ( n ) . The ^^( | ,3ft)-algebras are then

formed by the field Φ ( 2 ), the J^^/*(|,8ft)-algebras by Φ ( 3 ), where we use similar

arguments as those of the second chapter.

Table 6.1. Two sets of .^^ '-algebras to rational c-values not contained in the supersymmetric
minimal series

The series yW{\,6) with c = | - 86:

The series ^W(\,δ) with c = \ - 36:

c =

c =

c ==

I C =

c =

c =

c =

45
2

69
2

93
2

= 3 _

- D
21
2

34
2

: = 0)

: = 0

{C%ΦΫ

(Γφ Ϋ

(C%φf

(C$φ)
2

yy^ΦΦ)

= 0

= 0

-

242
13

508369
2499

6309688448
3137409

The c-value of some of the algebras has been put in brackets: The 5 ^ i F ( | , | ) -
algebra does exist genetically and for independently chosen self-coupling. It is the
supersymmetric analogon to the W(2,2), and thus nothing else than a direct sum
of two supersymmetric Virasoro algebras. But only for vanishing self-coupling it is
related to a supersymmetric free field construction due to the fusion rules of the latter.
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i^, 2)-algebra exists for generic central charge. This seems natural since the

classical counterpart of this algebra is the symmetry algebra of the Super-Toda theory

corresponding to the Super-Lie-algebra osp(3 | 2). These, and SfW(^, \) (Super-

Kac-Moody algebra) and yW{^, 1) (TV = 2 Super-Virasoro algebra) are the only

known super-W"-algebras with two generators, which exist for generically chosen
central charge.

Motivated by the analogy of these series to the conformal case we consider again

the "diagonal" fields with weights hrr = (r2 — \)k and hr _r = (r2 — l)k + -r2

in the NS-sector. In the R-sector these weights have to be shifted, h = hr±r -f ̂ .

Checking the locality conditions for chiral theories yields exactly the same pattern as

in the non-supersymmetric case, r = 2, k G N/2 gives the analogon of the 3^(2,3fc)-

algebras, the J^W(^^ 3k)-algebras, and r = 2, k G N/4 the analogon to the so-called

odd sector subalgebras, ^

Let us first consider the 9^W(2,3£;)-theories. Again we start from the vacuum

representation and get all other irreducible lowest-weight representations by modular

transformations. The vacuum character is given by

= TT ~T^ Q16 Y^ (Ά' r - qhr^r)

η(ψ) _«
»lθo,k(τ)-θOMΛτ) . (6.2)

The NS-sector turns out to be again invariant under 5 and T 2 , using the θ ε-

functions with λ G Z. The R-sector is a little bit more complicated. Here the
combinatorial prefactor making the character a modular form of weight zero is

TT = η(2r)/η2(τ). From (4.5) we learn, that invariance under Γ enforces
A J - 1 — qn

λ — k + - G Z. Thus, the index λ is integer or half-integer, if the modulus k is integer

or half-integer respective. Then the R-sector is invariant under T and ST2S.
Note that we only consider the characters without fermion number counting

( - ) F since these are enough to classify the possible representations. Of course, in
the modular invariant partition function the characters of the NS-sector, given by
t r | ^ ( - ) F ( / L o ~ c / 2 4 , have to be added to get invariance under the full modular group.
But the latter are easy to obtain from the characters of the ordinary NS-sector without
fermion number by applying the T-transformation to them, χ ̂ ~ ( τ ) = χζ^{τ +1).

They involve the θ-functions (4.4b) instead of the ordinary (9-functions (4.4a) and get
_ i

the prefactor TT = exp ( πi)η( -τ)η~2(τ). Thus, they are essentially
•*~^ 1 — q n V 16 / \2 /

given by the functions

/iNS ?_p~li6~(9 (τ\ (6Vi
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but not considered further in the following. Since these two sectors are interchanged
by T, the modular invariant partition function is forced to take the form

Z = α(Z N S + Z^ + ZR) + bZ* , (6.4)

where ZA denotes the diagonal partition function of the characters of the A-sector,

i.e. ZA = Σ X'XA ( r ) Here α, b are free constants up to normalization, and ZR is
λ

nothing else than t r ( - ) F . This particular ansatz cancels out the fermionic contributions
in the NS-sector leaving us with the bosonic characters tr.̂ v (1 + (—)F)gLo~c/24. Thus,
partition function and characters are divided in the same sectors (of (anti-) periodic
boundary conditions) as in the case of the ADE-classification of the minimal theories
of the supersymmetric Virasoro-algebra by Cappelli [7, 8]. Note also that in the R-
sector one has a non-trivial algebra of the zero modes of the fields, which can involve
2n-dimensional additional representations of the Clifford algebra as for example the
representation (—)F = ±1 for the fermion number F.

Without loss of generality let us assume k G N (this case we call the bosonic one
in analogy to the W(2,3/c)-algebras). In this case the characters are generically - up
to the appropriate linear combinations of the theta-functions to different moduli, if
the g-powers differ by integers - given by the functions

3 2 4 Θ ε (r) NS-sector,
λ > * + * (6.5)

ε ε ( r) R-sector,

where λ G Z and again ε = 0 or 1. Note that TST intertwines both sectors. All
weights in the R-sector have to be shifted by ^ . Last but not least one again has to
deal with representations with multiplicities greater one, too, if the eigenvalue of the
second element of the Cartan subalgebra does not vanish. The Table 6.2 sums up our
results.

In the case of the fermionic ^W-algebras, i.e. k G Z + -f- | , the role of k and

k + « interchanges since k is now half-integer.

As in the ordinary case there exist the so-called odd sector algebras S^W^ 8/c).

The characters of the NS-sector are built up from the functions

e 2 4

η\τ)
(6-6)

where several linear combinations occur analogous to the characters of the 5^"(2, 8/c)-
algebras. In the R-sector we have to use the functions

' ηHr)

where no linear combinations are possible due to the different parity of hr r and hr _ r

with respect to the (-)F-operator representation appearing in the Ramond sector.

But the lowest-weight representations to hλ 1? h00 and h{ _{ are now each twofold
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Table 6.2. Representations and their characters for the bosonic ,5

201

( | , 3fc)-algebras

Remark

NS:

_L J_
2k '2fc

J,fe - Λ0JU1/2) vacuum re]

- l fc-l
2fc ' 2fc

1_ \_
2 ' 2

'0,0

2fc+l ' 2fc

X'fc-1,NS — Λk-\,k

• % C , - , N S = l

2Λ
N

k%

X f c + l . N S ~~ 2 ^ 0,k

X-ί,NS = A.fc + l

degenerate

) rep. to hmh

R:

2fc + l ' 2fc+l

^0,0 + 16

J_ J_ T6
2fc'2fc

X-fc,NS — 7 lfc,fc+l/2

YW — l />R

Xθ-R — 2 7 0,/e

X^R 7 = A*,k

fc-l fc-l + 16
2fc ' 2fc

. . + ^
2 ' 2

1
4fc+2'

3
4fc+2'

2fc-l
4fc+2 '

1 +

3 +
4fc+2

2fc-l +
4fc+2

1
16

1
16

1
16

0

7^0

0

0

0

2' 2
Φ 0 xίfifc-l,

Xfc-1,R — 71fc-l,fc

: Xfc,-,R = 2 fc,fc

X-ί^R = ^l/2,fc+l/2

X-/e,R — y ifc-l/2,fc+l/2

; X-fe-l,-,R — 2^fc+l/2,fc+l/2

degenerate

degenerate

degenerate, there are two values for the eigenvalue w of Φo = Φ^. In our case we
have two representations at the ground level hmin. Some higher level representations
can now be built up on either of these ground state representations by applying the
mode φψ for k G Z + + ^ o r m e mode φψ for k E Z + on these ground states. (Note

2

that for A; G Z + + - this cannot be understood in the frame of chiral J^ίi^-algebras,

since this field is not local to itself, but to the other local fields of the J/'W-algebra, 1,
Φ(3\ etc. Therefore the action of the field Φ ( 2 ) does not cause a real problem, as long
as only one mode (symbolically notation!) φψ is allowed to appear in the monomials
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of the mode expansion of the resulting state.) The following table lists all irreducible
lowest-weight representations:

Table 6.3. Representations and their characters for the odd sector S^WtX, 8/c)-algebras

h w X\?AA Remark

NS: h 1,1

± JL
4fc '4fc

<SW_ ΛNS
\,NS— Λ\+4k,4k

vacuum rep.

M f c - l 4/c-l
4k ' 4k

0,0

X4fc-1,NS~~ = ^4,4,

_J _
4/c+2' 4/c+2

= i(ΛNSfc +

= ^\+4k+2,4k+2

rep. on |Φ ( 2 ))

rep. to hmm

\h = 0,w ^ 0 ) rep.

n4k+l 4fc+l
4k+2' 4/e+2

h ι i + ίls

ΦO

Φ W2

t N S - / l N S

i8fc+3,4fc+2 ~~ y i - l , 4 f c + 2

θ, + ,R~ 2 4fe,4 degenerate rep.

M f c - l 4fc-l

16

L 1 1
4fc+2'~4fc+2

~ y i l

λR
/il+4fc+2,4fc+2

first rep. to hmm

degenerate rep.

ι4kΛΛ_ 4/c+l
4fc+2'

Φ

_ λR
R— yi8A;+3,4A;+2

^1-2,R= 714,4/0+2
S e C O n d Γ e P t 0

In complete analogy to chapter 3 the structure constants and decomposition
coefficients into chiral BRST-invariant vertex operators can be calculated. In the
papers [1, 29] the supersymmetric versions of the normalization integrals of Dotsenko-
Fateev type are calculated. There it is shown that the monodromy coefficients are
given by the same formulae as in the conformal case, only α̂ _ has to be substituted

a2 - 1
by —— . But this means that the same is true for the braid matrices of [17] and

consequently for the /^-coefficients in (3.2). Using this and the normalization constants

/ / 2 \ //c o\

/ (cy, ex i Gί GLit (y, ) l o . o )
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taken from [1], where p = k + l — 2r — 1 and similar for p', we finally obtain in our
case (r = r', thus in particular r + r' even) for the self-coupling structure constants
(actually their square)

8/c 2k

2 f 2

Π 0'2 - 36(fc2 + f)) Π 0'2 - W + f ))4

if / C G Z + / 2 ,

< § -
ί

if

•24fc)

Ik

keϊ

Π0'2-64(A:2

i=i

6 f cfί / 2((i - \)2

2fc+l/2

+ | ) ) 2 Π
(6.9)

Needless to say that these results explain all explicit calculations of these algebras
obtained so far. The supersymmetric case shows a structure, which is closely related
to the conformal case, the only surprise coming from the Ramond sector. Hence we
do not want to be more detailed here.

7. Summary and Conclusion

With this paper we established a whole class of new RCFTs which are not related to
minimal models or any coset constructions.

First, starting from some explicitly calculated examples [5] we constructed a class
of extended chiral symmetry algebras related to the non-minimal Dotsenko-Fateev
models [12]. In these models for the special values c = 1 - 24fc, k G N/4 for the
central charge the requirement of locality for the chiral symmetry algebra enables one
to determine the field content of the latter, which turns out to be a finitely generated
Si^-algebra, and to give abstract fusion rules.

Secondly, we were able to calculate the non-trivial structure constants of these
^-algebras, namely the self-coupling of the additional primary field, and, as a
byproduct, the decomposition coefficients of this field into its chiral BRST-invariant
vertex operators. The results are strongly related to the expressions obtained by Felder,
Frδhlich and Keller [17] from the braiding properties of the chiral vertex operators. By
a redefinition of the chiral vertex operators and of the screening charges the algebra
gets a thermal structure simplifying the braid group representation and the analytical
behaviour of the Dotsenko-Fateev integrals.

Thirdly, we calculated the characters of the vacuum representations of these
chiral algebras and then, via modular transformations, the indeed finite set of all
representations yielding the complete CFT which turns out to be rational. Thus,
the chiral algebra already is maximally extended since it diagonalizes the modular
invariant partition function. In particular, we worked out the explicit form of the 5-
matrix and the structure constants of the fusion algebra for the subclass of bosonic



204 M. Flohr

^-algebras. The fermionic case and the case of the odd sector subalgebras were
briefly discussed. All results are in complete agreement with the explicitly calculated
examples in [13].

Next, we completed the proof of the classification of all RCFTs with central charge
c = 1, given by Kiritsis [28], towards the non-unitary case. For this we used the
effective central charge ceff = c — 24hmϊn. It turned out that the models described
in this work are the only possible non-unitary ones, who have ceff = 1. They fit in
the only case of a modular invariant partition function, which had been rejected by
Kiritsis due to his restriction to unitary theories.

In the last part of the paper we outlined a generalization of our results to the
supersymmetric case where also some examples of 5^^-algebras are now available,
see [4] and [14] for their representations. The structure of the results is very similar
to the non supersymmetric case.

Our arguments cover the complete set of possible chiral extended symmetry
algebras and thus RCFTs coming from degenerate models, since these are either
minimal models and coset constructions or the models discussed in this work. In
particular, the classification of all RCFTs with ceff = 1 is completed including the
non-unitary case.

Still, a lot of questions remain open. The most exciting one in the frame of this work
might be, what the other possible combinations of theta-functions with moduli say k
and k + k\ k' g {0, | , 1,2,4} physically could mean. In our case the combinations
were necessary due to the embedding structure of the Virasoro Verma-modules coming
from null states. Let us again stress the point of c rational but not contained in the
minimal series nor in the set c = 1 - 24k, k e N/4. From Eq. (4.18) one might think

V
that there should be at least RCFTs for k = —?. With this ansatz one obtains (again

ar
ε = 0 or 1)

η(r) Z ^ ,
r£αZ+ ?

aλ

2aι(k+ε)

which yields a condition on r or equivalently on λ in order to get integer or half-

integer weights

^ r . ί - ^ r = ([an+ „_,„_ , ^ - 1 — = P n + n λ + — - - r . (7.2)

Therefore we must put λ = p = a2(k + ε) resulting in the condition r G Z
4 a1

which can only be fulfilled for a = 2 corresponding to our odd sector subalgebras.
Thus, these algebras are the only ones which can be extracted out of a larger set of
not necessarily chiral local operators. This is the case for k e N/4, where the even
operators are not local to themselves and hence cannot be added to the chiral algebra.

Another question might be whether the labeling of the lowest-weight levels h with
rational indices has some physical meaning in the frame of ^-gravity, where e.g.
rational powers of screening charges are used [22, 11].



^-Algebras, New Rational Models and c= \ Classification 205

Finally, the classification of all RCFTs, in particular for c > 1, is still far away
from being completed. But a big step towards the classification of all ^"-algebras
with one additional generator could be achieved. The situation is now the following:
Several classes of such W(2^ <5)-algebras have been established.

(i) The generically existing algebras W(2, δ) with δ e {\, 1, \, 2,3,4,6}. All these

algebras have well known classical counterparts as the algebra of Casimir operators

of a Lie-algebra.
(ii) The algebras, which exist for c an element of the minimal series c = 1 —
( \ϊ-

6 , p, q G N coprime. These algebras are related to the ADE-classification of
pq

modular invariant partition functions of Virasoro minimal models [8], as has been
worked out in [37] for the fermionic case.

(iii) W(2,2q — l)-algebras to c = 1 — 6 , q G N, (minimal series with

p = 1). These algebras have been studied in [26]. They are not extended symmetry
algebras of a RCFT.

(iv) The W(2,3k) and W(2,8fc) algebras with central charge c = 1 - 24k,
k G N/4 as discussed in this paper. These are the only algebras related to non-
minimal degenerate Virasoro models.

(v) ^"-algebras to isolated irrational c-values. Following [2], these algebras cannot
belong to RCFTs.

(vi) Some exceptional 5^-algebras, mainly the W(2, 8) for all the values of the
central charge not covered by (i) to (v), have been found. Probably they are related
to other finite groups which can be represented by the modular group, see [13]. In all
these cases the self-coupling is non zero.

A very similar pattern is valid for the ^W(^,δ)-dlgtbτ?LS (but without solutions
of type (v), i.e. without isolated irrational solutions). Since all known examples of
set (vi) have non-vanishing self-coupling, we conjecture that the classification of the
W(2, <5/2)-algebras to rational central charge, δ G N, is complete.

We want to conclude with one very speculative remark. We have found RCFTs
for the central charges of the form c = 1 — x with x having divisor 24 (bosonic case)
or 12 (fermionic case). There is an interesting work by Goddard [10] in which nice
RCFTs, related to self dual even lattices, with central charges c = x, x having divisor
24 (bosonic case) or 12 (fermionic case) are found. Is there a relation between these
theories or even in general between theories with c and 1 — c?

Appendix A. The S and T matrix for W(2, 3k)

This Appendix presents the general form of the S-matrix for the case of bosonic

W(2,3k) theories, i.e. k G N. For the Neveu-Schwarz sector of the fermionic

case (k G N + ^) the ^-matrix is exactly the same, if one removes the rows

and columns belonging to the characters χζ± and χ? j t c_ 1 ± , i.e. to the degenerate

representations, and if one substitutes k by —. So, let k e N. Define the functions
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1 / x \
W (x) = —7= cos (π— ). Then S is given by

V 2a V OLJ

2Wk{k-Y) •-• 2Wk({k-lf) Wk{k(k-\)) %{k{k - 1))
£P (ΊcΛ . . . 5? (h(h \X\ A W (h^\ — A

Wk{k) Wk{k{k - 1)) %{k2) -A A

0 ••• 0 0 0

0 ••• 0
0 ••• 0
0 ••• 0

0

c
-c

0
-C

c

0
0

0

0
0

0

0

c
-c

0

— c
c

(A.I)

Here the three free parameters are determined by the requirement that the fusion
algebra structure constants are non-negative integers. This is carried out in Appendix
B. The result is

β H ) l ώ ± σ | 1 (A 2)

B = (-\)k+λ' l

2V2F+2

- l ) f c - A, = (—1) ( — 7 = T C — A-r and similarly for B.

Thus the two solutions for A and 5 just mean an interchange or a reordering of the
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degenerate representations. The T-matrix is much simpler and given by

e x P \m\ WT~^) -exp 7TZ - — ,exp [m
1 1

5 5

2k 1 2 / 7 ' r \ I 1 2 / 7 ' V Λ 2 A + 2 1 2 , ,

(A.3)

The 5 and T matrices for the odd sector algebras are easy to obtain from Eqs. (4.5)
and Table 4.2, which shows how the characters can be expressed in yl-functions.
Therefore we do not go into further details here.

Appendix B. The Fusion Algebra for W{2, 3k)

Finally, in this appendix we calculate the fusion algebra for the bosonic ^ ( 2 , 3k)
and show explicitly that all structure constants are indeed non-negative integers. This
also determines the free parameters of the extended ^-matrix uniquely completing
the proof of rationality of the theories.

One starts with A, 5 , C G C as arbitrary free complex numbers. With the Verlinde
formula one calculates some particular structure constants AζL. For example

N~i^_ = 1 + (-IY4C2 ,

1 ( B 1 )

5 Nk

k;~_3 = - + (~ιy4\c\2,

where —k < -j < — 1. Since all these numbers should be non-negative integral ones,
the only solutions are either 0 or 1. Hence we get \C\2 = ± C 2 , i.e. C purely real

or purely imaginary. Furthermore, the absolute value is fixed to be \C\ = -y=. This

leaves us with the ansatz

C = (iyc-L. (β.2a)
Λ/o

Next we look at the structure constants

N^k\^ = iV-^Γ = I + (-lf+ι2C2. (B.3)

With Eq. (B.2a) we see that 0 is the only allowed solution and therefore we need
ac = k mod 2. In the following we put without loss of generality

C = (i)k^=. (B.2b)
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Thirdly, we can consider the following structure constants:

"-7 — - — (—
-fc-l,+;-fc-l,+ — 9 V

where 1 < j < fc — 1 and —A; < - j ' < 1. These pairs of equations again have as
only allowed solutions that one equation of a pair is 1 and the other 0. With this
information one can solve the quadratic equations and gets as ansatz

In order to determine the free powers aΛ and aB one looks at the constants

N*±_k_lt_ =l-+ (-l) f c2 ((A - A*)C - \C\2) ,

^ (B.6)

^ ΐ Γ - ^ i , - = 4 + (-D f c + 1 2 ((B - B*)C + |C| 2 ) ,

^ ! : Λ - i , _ = \ - (-D f c + 1 2 ((5 - 5*)C - \C\2) .

With Eqs. (B.2) and (B.5) one now sees that if C is real then Im A = Im B = 0, or if

C is imaginary then 1mA = - I m B = —τ=. Therefore we can choose α A = α β = A:
V8

obtaining Eq. (A.2).
Finally we want to list the whole set of the fusion coefficients to show that indeed

they all are non-negative integers. To save space we only list the not obviously
related constants. The others can be obtained by one of the following formulae: Let
ε = k mod 2. Then we have 5 2 ( 1 + ε ) = Cι+ε = 1. Thus, the charge conjugation,
denoted by C : φa \—> φά is trivial for k even. Nonetheless we denote by

E : φa i—> φa the exchange of the degenerate representations, i.e. (/c, ±) = (fc, =f),
analogously for (~k — 1, ±) and a = a else. Then we have, using the conjugation
matrix to raise or lower indices,

τΊ _

( B 7 )
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With these relations and the following set of fusion numbers it is straightforward to
calculate all the Λζ^. All sums of indices in the Kronecker symbols are understood
to be taken modulo 2k for positive indices or modulo 2k + 2 for negative ones. Here
always j , f, j " e {1, . . . , k - 1} and - j , - / , -j" e {-1,. . . , -fc}. Also note that
we only distinguish the degenerate representations by the usage of E. Thus, normally
the choice of one of the degenerate representations is arbitrary, only if two or three
indices belong to degenerate representations the hat O indicates, where the relatively
other choice has to be made. Finally, we write iV(α, β\ 7) instead of N^β for better
readability.

W(α,/3;0) =δa+βfi = Caβ

N(j,k+l\j") = 2 + ̂ _^/ ' o

-j'\j") —2

• + !;/) =1

JV(fc,-fe- l;j7 /) = i (

i V ί f e + l ^ + l ;/ ' ) = 2

iV(A:+ 1,-A;- 1;/') = 1

N(-j,-f;j") =2

N(-j,-k- l,+;j/7) = 1

W(-fc-l,-fc-l;j") =I(

iV(-A:- l,-fc^l;/) =I(

N(k,k;k) = i(

N(k,k\k) = 0

i\Γ(ifc,ifc+l;fc) = 1

N{k,-jf\k) =i(

N(k,-k- l fe) = i(

Nik.-lΓ^l k) =0

N(k,k;k) = \{

iV(fc,ik+l;fc) = 1

N(k,-jf;k) =i(

N{k,-k-\\k) = |(

Ĉ  rC 1 , rυj — vj
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iV(ft +

N(k +
7V(ft +

7V(ft +

N(-j,
N(-j,

N(-j,
N(-k
N(-k
N{-k
N(k +
JV(ft +

JV(ft +

N(-j,
7V(-j,
N(-k
N(-k
N(-j,

N{-j,

l,ft -j- l ft)
1,-j' fc)

1,-ft- l ft)

1,-ft^ l ft)

- / ; k)

- f t - 1,+ fc)

- f t ^ l ft)

- 1 , - f t - l ft)

- 1,-JP l ft)
- 1,-ft^ l ft)

l,fc+ l ft+1)
l,-/;fc+l)
1,-ft- l;fc+ 1)
- / ft+1)
-ft- l fc + 1)
- 1,-ft- l ft+1)
_ ι^-fl i;/c+ l)

h 1 i"Λ

= 0
= 1

— ! π
— ι(\

1

= |( i

= \{l

= 0
= 1
= 2

r\

1

= 2 -

= 1

= 0

= 0
_ 2 _

+ (-Γ)fc)

-(-i)*)

+ (-D i 4

-(-iy+

δj-j'fi

+f+j",0

(-fe - 1, -fc - 1; -j") = \(\ - (-l

N(—k—λ b — λ' —h Λ\—i(λΛ.( λ\k\

1 V ^ A/ 1 , Ay 1 , — ΓV — 1 J — \J

i V ^ Γ\j 1 , IV 1 , IV 1 J ~Z \^ 1 \̂  L J J

(B.8)

The automoφhisms of the fusion rules can be read off from the decompositions of
k into two coprime factors and similarily for fc + 1. Without loss of generality let
us assume that k — pq with p, q coprime. Then we have an automoφhism of the
fusion algebra, namely j ι-> pj mod 2q, j G {0,1,..., k} and all other labels are left
unchanged (in particular the label k -\- \ has to be considered as zero). In particular

Nζj ., = N3' , where all indices are taken modulo 2q and j,jr,jμ G {1,..., k — 1},
as can be seen directly from the explicit form (B.8) of these fusion numbers. If ft -h 1
has such a decomposition, ft +1 = pq, then there is an automoφhism —j ι-* —pj mod
2q, —j G {0, — 1,..., —k — 1} and again all other labels have to be left unchanged.

The one-one correspondence of theories and automoφhisms, together with our
arguments of Sect. 5, assure that there are no other non-trivial automoφhisms. In

P P
fact, a theory with 2B\ — ~ - and 2R^ = —γ- in partition function (5.1) such that
P2<22 — PXQX — 1 yields an automoφhism, as described above, and the set of these
theories is complete.
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