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Abstract. The Kadomtsev-Petviashvili (KP) hierarchy is considered together with
the evolutions of eigenfunctions and adjoint eigenfunctions. Constraining the KP
flows in terms of squared eigenfunctions one obtains 1 + 1-dimensional integrable
equations with scattering problems given by pseudo-differential Lax operators.
The bi-Hamiltonian nature of these systems is shown by a systematic construction
of two general Poisson brackets on the algebra of associated Lax-operators. Gauge
transformations provide Miura links to modified equations. These systems are
constrained flows of the modified KP hierarchy, for which again a general descrip-
tion of their bi-Hamiltonian nature is given. The gauge transformations are shown
to be Poisson maps relating the bi-Hamiltonian structures of the constrained KP
hierarchy and the modified KP hierarchy. The simplest realization of this scheme
yields the AKNS hierarchy and its Miura link to the Kaup-Broer hierarchy.
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1. Introduction

Many finite dimensional integrable systems arise from partial differential equations
in soliton theory. Typical reduction schemes from partial to ordinary differential
equations involve pole expansions [1, 2] or stationary flows [3] and reductions to
pure soliton submanifolds [4]. For the latter case a systematic "nonlinearization"
procedure was proposed by Cao [5]. The main idea is that squared eigenfunctions
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(i.e. the products of eigenfunctions Φt and adjoint eigenfunctions Ψt) associated
with the underlying linear scattering problems may be regarded as conserved
covariants of the nonlinear hierarchy of integrable evolution equations under
consideration. Finite dimensional invariant submanifolds for these flows are given
by the stationary points of conserved covariants, hence constraints such as
U = Yj.ΦiΨi> say, will be preserved under the dynamics, if the potential U is
a conserved covariant of the evolution under consideration.

This idea has been generalized to reduce soliton equations in 2 -1- 1 dimen-
sions to simpler integrable partial differential equations in 1 -f 1 dimensions.
In particular, for the Kadomtsev-Petviashvili hierarchy the space-derivative
(Σi^ i^Ox °f squared eigenfunctions represents a symmetry generator
([6]). Hence, using any symmetry Utli of the KP-hierarchy the constraint
UtN = (Yι.ΦiΨi)x is compatible with all 2 + 1-dimensional flows of the KP
hierarchy, thus leading to a hierarchy of commuting integrable equations in 1 + 1-
dimensions ([7-12]). In particular, the resulting system for tN = x was shown
to represent the (multi-component) AKNS hierarchy, the use of the next higher
KP symmetries lead to multicomponent versions of the hierarchies described by
Yajima-Oikawa [13] and Melnikov [14].

These reductions were found to have a simple description using Sato's con-
struction ([15-19]) of the KP hierarchy. There, the KP hierarchy is encoded in the
Lax equations

^ - L K p = [(L"Kp) + , L K P ] , rceN, (1.1)

dtn

for the pseudo-differential Lax operator

LK P = d + Ud-1 + U2d~2 + U3d'3 + . . . , (1.2)

where (LKP) + *s the projection of the power LκP to its purely differential part. Upon
elimination of the "auxiliary" fields U2,1/3,. . . from (1.1) the remaining equations
for the prime field U in (1.2) represents for KP equation and its higher flows. In this
case eigenfunctions Φ and adjoint eigenfunctions Ψ are introduced as solutions of
the linear problems

-^ Φ = (L"KP)+Φ, -£- ψ = - (Ll?)% Ψ . (1.3)

dtn dtn

It was observed ([20-22]) that the constraint

£ K P = ( £ K P ) + +Φd~ίΨ = dN + uN-2d
N~2 + . . . + uo + Φd-1Ψ=:L (1.4)

on the coefficients of the operator (1.2) coincides with the symmetry constraint
Utff = (ΦΨ)X of the nonlinearization approach. All coefficients U9 U2, . . . in (1.2)
can be expressed as differential expression of the coefficients uN-2,...,u0,Φ,Ψoϊ
LKP in (1.4), hence they may be regarded as the fields parametrizing (1.2). The
equations (1.1) thus reduce to a hierarchy of 1 4- 1-dimensional equations for the
fields uN-2,...,u0,Φ, and Ψ. In this set-up the recursion operators and bi-
Hamiltonian formulations for some of the simplest 1 + 1-dimensional reductions
of the KP-hierarchy have been identified [21, 22].

The aim of this paper is to provide a unified description of the bi-Hamiltonian
structure associated with Lax operators L of the form (1.4). The basic tools are
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the two Hamiltonian formulations given by the Lie-Poisson structure of the
Adler-Kostant-Symes scheme

: ] + , (1.5)
aι

and Gelfand and Dikii's quadratic structure

4- L = (LVH)+L - L(WHL)+ (1.6)
αί

originally associated with purely differential operators of the form L = dN +
uN-2d

N~2 + ••• + M0 ([23]). A Lie-algebraic setting for this Hamiltonian scen-
ario was given by Adler [24], a more general description in terms of classical
r-matrices was found by Semenov [25]. It will be shown that the corresponding
Poisson brackets can be properly restricted to differential operators supplemented
by a pseudo-differential part of the particular form Φd~1Ψ. Hence, the bi-Hamil-
tonian formulations for the 1 + 1-dimensional hierarchies obtained as restrictions
(1.4) of the KP hierarchy are simply given by (1.5) and (1.6).

In Sect. 2 we briefly review the essentials of pseudo-differential symbols to
be used for the description of the constrained KP hierarchy. In Sect. 3 we establish
a lifting of the Hamiltonian formulations (1.5) and (1.6) to a larger space given
by operators L together with their eigenfunctions and adjoint eigenfunctions.
In the restriction to the constrained situation (1.4), these Poisson structures
provide a convenient parametrization of the brackets (1.5) and (1.6). In Sect. 4
an analogous construction is proposed for the modified KP hierarchy. Section 5
is devoted to Miura transformations between the KP hierarchy and the modified
KP hierarchy. The Miura transformation is given by a gauge transformation
triggered by an eigenfunction of the KP hierarchy. The Hamiltonian structures
associated with the constrained KP flows are mapped to the Hamiltonian struc-
tures associated with the constrained modified KP by means of this gauge-
transformation. To illustrate the general results, the simplest 1 + 1-dimensional
constraints of the KP and modified KP hierarchies and their bi-Hamiltonian
structures are worked out in Sect. 6.

2. General Background and Basic Definitions

We consider pseudo-differential symbols of the form

Ta\ (2.1)
n = 0 n < 0 J

with coefficients an which are functions of a "space variable" x. In the following we
will always identify functions with the multiplication operator given by this
function. The space g of all operators (2.1) is endowed with an algebra structure
requiring that for positive n the symbol dn is the power of the differential operator
d = d/dx, whereas negative powers are formal integrations defined by the basic rule

d~1a = ad'1 — axd~2 + axxd~3 + . . . ,

ad'1 = d~γa + d~2ax + d'3axx + (2.2)
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We define projections of (2.1) to various differential orders by

In [24] Adler noted that the residue of the pseudo-differential symbols gives rise to
a trace formalism on this algebra

tr(L):= ίres(L)dx, res(L) = res( £ and" + £ d"«Λ= «-i (2-4)
\n^ 0 «<0 /

With tr([,4, £]) = 0 one obtains a symmetric duality bracket

<L,L> (2.5)

on #, so that - applying the Adler-Kostant-Symes scheme [24] - one can immedi-
ately construct commuting hierarchies of Hamiltonian Lax equations

^ L = [ P έ 0 ( i ί ) , i ] (2.6)

on g. Here q is an integer or fractional power of the Lax operator under considera-
tion labeling the elements of the integrable hierarchy. The choice

L = LKP = d + Ud'1 + U2d~2 + U3d~3 + . . . (2.7)

with integer powers q in (2.6) leads to the well known construction of the KP
hierarchy in Sato's theory ([15-19]). The choice

L = L G Ό = dN + uN-2d
N~2 + . . . + u±d + u0 (2.8)

with fractional powers q in (2.6) leads to Gelfand-Dikii's construction [23] of
integrable 1 + 1-dimensional systems related to the purely differential Lax oper-
ators (2.8) of arbitrary order N. These equations can be understood as reductions of
the KP hierarchy imposing the constraint

(LKp)N = LGΌ = purely differential, (2.9)

from which all fields U,U2,U3, . . . in (2.7) can be expressed as differential
expressions of the N — 1 fields uN-2,. . . , u0 in (2.8)

Here we are interested in further reductions of the KP hierarchy induced by
eigenfunctions and adjoint eigenfunctions of the Lax operators. In particular, we
want to identify reductions of the "coupled" system

(2.10)

where Leg is a, pseudo-differential operator of the general form (2.1), and Φ, Ψ are
functions. The symbol * is to denote the usual transposition

= Σ(-l)N3"απ (2.11)
/ n

of pseudo-differential symbols.
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Here we stress that in order to avoid confusion in our notation we will never
apply a differential operator to a function. Instead, we observe that the composi-
tion of a differential operator A = a0 + aγδ + . . . + aNδN with the multiplication
operator given by a function Φ, say, is of the form

AΦ = (a0 + aίδ + + aNδN)Φ = (a0Φ + aγΦx + + fl]YΦx...JC)

+ " )d+ "- + (...)<9 i V, (2.12)

so that applying the operator A to the function Φ can be described as the zero order
term P0(AΦ) of the operator AΦ. Hence, for arbitrary pseudo-differential operator
A the symbol P0(AΦ) may be understood as the function obtained from letting the
differential part P^ 0(A) act on the function Φ. The evolutions for Φ and Ψ in (2.10)
should be regarded this way. Hence, if L is a purely differential operator, the
functions Φ and Ψ in (2.10) may be understood as eigenfunctions and adjoint
eigenfunctions of L. In particular, one may impose the scattering equations

PQ{LΦ) = λΦ, P0(L*Ψ) = μΨ, (2.13)

with eigenvalues λ, μ as admissible constraints on the evolution (2.10).
At this stage it seems rather artificial to supplement the evolution for L by the

evolutions of Φ and Ψ, as the equation for L does not couple with these additional
functions. However, it will turn out that (2.10) admits a reduction to operators of
the form

L = δN + uN-2δ
N~2 + + uo + Φδ~ιΨ . (2.14)

Inserting this operator into (2.10) one finds highly non-trivial coupled integrable
systems mixing the components uΉ-2,. . . , u0 of L as well as Φ and Ψ.

Moreover, it turns out that the system (2.10) admits a rather interesting bi-
Hamiltonian formulation. These Poisson structures will admit proper restrictions
to the manifold of operators (2.14), so that the bi-Hamiltonian formulation for
these restricted systems can be obtained from the Hamiltonian formulations of the
general system (2.10). Hence, we will construct Poisson brackets for the triples
(L, Φ, Ψ\ which are regarded as elements of the space g = g © Jf © 2tf with ^f an
appropriate Hubert space from which the (adjoint) eigenfunctions Φ and Ψ are
taken. As duality bracket on g we will use

<(L, Φ, Ψ)9 (L, Φ, !P)> = tr(LL) + J(Φ(x)Φ(x) + Ψ(x)Ψ(x))dx . (2.15)

3. Constrained KP Flows and their Bi-Hamiltonian Structure

The principal aim of this section is to establish a bi-Hamiltonian formulation for
the evolution (2.10), which we then want to restrict to Lax operators of the form

(2.14). On the algebra g, i.e. just considering the Lax hierarchy — L = [P^ 0(Lq% L\

it is well known ([23-25]) that a linear Poisson bracket for these equations is given
by the Poisson tensor

Γ f\ Ί (VδH
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This is the Lie-Poisson structure of a Lie bracket on g stemming from an algebra
decomposition of g (see e.g. [25] for an explanation in terms of classical r-
matrices). In order to obtain a first Hamiltonian structure for the extended system
(2.10) we have to find a lifting of this Poisson structure to the bundle

^@J^oϊ triplets (L, Φ, Ψ). The answer is given by

Theorem 1. (The lifted linear bracket). The mapping

/™\
δL

δH_

δΦ

\δψ I
(δH

ίδH δH

3HXΨ) δH

JL)Ψ)-^Φ

(

ΛδL

\ ~

defines a Poisson tensor on g.

/S Ί-ί /S J-ί /S Ί-f
We note that -— e g is a pseudo-differential operator, whereas —-, —- e

oL oΦ oΨ
functions. The proof is very simple starting with the tensor

(3.2)

are

' δl χ

JΦ

δH

\δ~ψ I \

δH

δΨ

_δH_

~~δΦ I

(3.3)

on g © Jf © Jf using coordinates (/, Φ, Ψ). The map (3.3) clearly defines a Poisson
structure. Considering the change of coordinates

Γ.(Z,Φ,y)->(L,Φ,n L:=/ + (3.4)

as the linearization T' and its transposed Γ' 1 (w.r.t. the duality (2.15)). Here Aegis
a pseudo-differential operator, whereas α, β e^ Jf are functions. Now a straightfor-
ward calculation shows that the image T'^1T

f^ of (3.3) yields (3.2) in the new
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coordinate system given by (L, Φ, Ψ). Hence, the Poisson properties of (3.3) are
inherited to (3.2).

A systematic construction of a second Poisson bracket associated with the Lax
equations (2.6) was given by Gelfand and Dikii [23], a more general setting in
terms of classical r-matrices was found by Semenov [25]. On g this bracket is given
by the quadratic tensor

δL
(3.6)

Having in mind the coupled equations (2.10) we have to search for a lift of this
tensor to the bundle g. The extended Poisson tensor turns out to be non-local:

Theorem 2. (The lifted quadratic bracket.) The mapping

0>2(L, Φ, Ψ):

δL

m
Ί>Φ

\δψ

δH

'ΊL

Po -ΦD - 1
r-δφ]+ΦD~ι

δH_

'δΨ

\-Po — ΨΪ+ΨD-ΊΦ—j-PniL*-—-)-

defines a Poisson tensor on g.

Here, D ~ι defines the integral operation

= -( J/(ξ)^-f/(ξ)^),

(3.7)

(3.8)

acting on functions with suitable boundary conditions, which is to be distinguished
from the pseudo-differential symbol d~1 acting on a suitable space of test functions.
Unfortunately, the proof is not as simple as the proof of the Poisson properties of
the lifted linear bracket. In fact, following the proof of Theorem 1 and mapping
0*2 to a chart involving / = L — Φδ~1Ψ, one finds an image of &2 with an even
more complicated form. As we do not see a simple structural argument for the
Poisson properties of (3.7) we have checked 0>2 by a most tiring direct calculation.
The details of this cumbersome analysis are omitted.

Theorem 3. The Poisson structures given by (3.2) and (3.7) are compatible.

Fortunately, this proof is very simple using a standard argument. We consider the
shift L-* L:= L — 1 resulting in the image

, Φ, Ψ) = , Φ, Ψ) , Φ, Ψ) . (3.9)
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Hence, 0>x + &2 is again a Poisson structure. We observe that
Poisson brackets for the coupled equations (2.10):

W. Oevel and W. Strampp

,0>2 provide

= ^ Ί grad
q+ί

tr(L « + 1 )

(3.10)

2 grad - tr(Lq) .

Remark 1. One may ignore the evolution of Ψ and obtains the bi-Hamiltonian
equations

(Lq\ 1
] = #igrad -tϊ{Lq + 1) ,ά_(L

Έ\Φ

Here

\ P0(L"Φ)

<5ί/\

ΛO q+ί

, (3.12)

and

Φ):

ίδH\
δL

\SΦJ

δH

Φ — I
δφ) I

(3.13)

are the (L, Φ)-blocks of the Poisson tensors (3.2) and (3.7), respectively. As these
blocks do not depend on the variable Ψ, they may be considered as the image of
^ ! and 0>2 under the projection map (L, Φ, Ψ) -> (L, Φ). Hence, (3.12) and (3.13) are
compatible Poisson tensors on g ® Jf.

The bi-Hamiltonian equations (3.10) admit interesting reductions, which in fact
turn out to be Hamiltonian restrictions to invariant Poisson submanifolds.

Theorem 4. (Restrictions),

i) The linear bracket ^ i can be properly restricted to triplets
of the form

2 + + uxd + w 0 + ΦB λΨ, AT = 1, 2 , . . . . ( 3 . 1 4 )
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ii) The quadratic bracket £?2

 c a n be properly restricted to triplets
{L,Φ,Ψ)eg®J^®J^ of the form

L = δN + uN-1d
N~ί + •• + uίd + u0 + Φd-1Ψ, N= 1,2,.. . . (3.15)

Following the proof of Theorem 1 we observe that in the chart (/, Φ, Ψ) the tensor
(3.3) can be restricted to purely differential operators /. Observing

it is easy to see that the image of ^ 1 produces operators with highest differential
orders being two orders less than the highest order of /. Hence, if we start with
/ = uNdN + Wjv-i^" 1 + lower orders, the two highest coefficients of uN and
Wjv-i in I will have no time evolution and may be chosen arbitrarily. We have
chosen uN = 1 and uN-1 = 0. After the shift I -• L = I + Φd~lχF the image (3.2) of
the tensor (3.3) is tangent to the submanifold of operators (3.14).

With

a similar highest order analysis applies to the quadratic tensor, too. For
L = uNdN -f lower orders the highest order produced by £?2 will be N — 1. Hence
we may choose uN arbitrarily, where our choice is uN = 1. A more sophisticated
argument is needed to show that the negative differential orders of L may be
restricted to the particular form Φd~1Ψ. For an arbitrary Hamiltonian H we
consider the associated Hamiltonian system

w> (319)

(3.20)

where •— e g is a pseudo-differential operator and ^-,τ~ E ^ a r e functions,
oL oΦ oΨ

respectively. We have to show that these equations are consistent if we assume that
the negative part of L is given by P< 0(^) = Φd~1Ψ. The negative part of the
evolution of L can be rewritten as

, A
δH δH
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We note that for any differential operator B = P^ 0(B) one has

P < 0 (53" 1 ) = Po(B)d~\ P < 0 (a- 1 B) = d^PoiB*), (3.22)

so that (3.21) yields

'ίχP - Φd-χ^Φd-ιΨ + Φδ-'Ψ^δ-'Ψ . (3.23)

Using the evolutions (3.19), (3.20) for the functions Φ and Ψ one obtains

where we have used δΛ Φ = ̂ tD-1 ( g φ ) ] ipff = [*, D" * (* ff ) } °b"
iserving

= [D~ 1(α),Φfl- 1¥ r] (3.25)

for an arbitrary function α it is readily verified that (3.24) vanishes. This finishes the
calculation showing that 0>2 can be properly restricted to (3.15).

As a result the equations (3.10) can all be restricted to the submanifold of
operators (3.14), because the equations are Hamiltonian w.r.t. the extended linear
bracket ^1. The restriction of Φx yields a proper first Hamiltonian formulation for
these restricted evolutions. However, the extended quadratic bracket 0>2 can be
properly restricted only to the larger submanifolds (3.15). Hence, an additional
constraint uN_ 1 =0 has to be imposed. Using Dirac reduction, it is always possible
to perform a non-trivial reduction of 0>2 to the manifold of operators (3.14), so that
both ^ ! as well as ̂ 2 give rise to Hamiltonian formulations of the equations (3.10)
restricted to Lax operators of the form (3.14). A few simple examples will be worked
out in Sect. 6.

Theorem 5. On operators of the form (3.14) the restriction of^>

1 coincides with the
restriction of the linear bracket (3.1). On operators of the form (3.15) the restriction of
έP2 coincides with the restriction of the quadratic bracket (3.6).

Proof We first observe that both (3.1) and (3.6) can indeed be properly restricted.
Insertion of L = dN + lower orders into (3.1) and (3.6) in conjunction with (3.16)

and (3.17) shows that for any covector field -— e g the tensors (3.1) and (3.6)
oL

produce operators of highest order N — 2 and N — 1, respectively. This takes care
of the special form L = dN + uN-2d

N~2 + lower orders in (3.14) and
L = δN + uN-1d

N~1 + lower orders in (3.15), respectively. Considering the special
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form L = 1 + Φd'1Ψ with a purely differential operator / = F δ 0(/) we consider the
negative part of (3.1) and (3.6) yielding

δH

(3.26)

and

respectively. In both cases these expressions are tangent to P<0(L) = Φd~lχF for

arbitrary covector fields — e g, so that the manifold {L = I + Φd~1Ψ; I = purely

differential} is a proper Poisson submanifold for the tensors (3.1) and (3.6). We
show that the restrictions coincide with the restrictions of ̂  and ί?2 F° r this we

define a dual parametrization for L = 1 + Φd~lχF by —— = -— +A, where
oL ol

— = P<o( -77 ) ̂ a s n o differential part and A = P^ 0{A) is any differential oper-
ol \ ol)

ator satisfying

P(A*Ψ) 6^, Po(A*Ψ) = 6^ (3.28)

with given functions — and — . This parametrization will in fact convert the trace

duality (2.5) to the duality (2.15), because

dL δH\ ίίdl dΦ „ , , ,dΨ\(δH
—,—• ) = t r \τ + ~Γd~ ψ + φd~ ^r)\-TΓ +dt δL/ \\dt dt dtj\δl

dΦ. . t i \ ί , ,dΨ

t r iψA)+tiΦd "τt

(dlδH\ [ίdΦδH dΨδH\1 ,^ ^
= t Γ T ^7 + T T Ϊ + 1-iϊS ) d x • 3 2 9

\ίiί δ/ / J \dt δΦ dt δΨJ
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Inserting —— = -— + A into the linear bracket (3.1) yields
oL oi

d τ dl dΦ a t a t dΨ
ΎL = T + -Γd~ ψ + φd~ -J-dt dt dt dt

i.e.

On the other hand, in the chart given by (/, Φ, Ψ) the Hamiltonian equation w.r.t.
0>ι is given by (3.3). Observing

for l = Pk0(l) this coincides with (3.31).
A similar analysis applies to the quadratic bracket (3.6). Inserting

77- = -77 + A with —- = P < 0 ( —r ) and A = P> 0 ( —- ) satisfying (3.28) into (3.6)
oL dl dl \°LJ ~ \oLJ

dproduces

' δψ)'

(3.33)
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as the Hamiltonian equation in the chart (/, Φ, Ψ). To compare this with the
restriction of (3.7) one starts with 0>2 in the chart (L, Φ, Ψ). Considering the map
L-+1 = L — Φd~ί Ψ it is a straightforward calculation to check that the pushout of
(3.7) by this map yields (3.33) for the case, where / is a purely differential operator.
Thus it is shown that SPγ and ^ 2 reduce to the same tensors as the original brackets
(3.1) and (3.6).

We finally show that the restriction of the flows (2.10) to operators (3.14)
corresponds to a symmetry reduction of the KP hierarchy. We briefly review the
construction of the KP hierarchy in terms of the pseudo-differential operator (1.2)
(see [19] for a simple introduction). One simultaneously considers the hierarchy of
equations (1.1) for the operator (1.2). This, in terms of the fields [7, 172, C/3, . . .
parametrizing LK P yields an infinite set of coupled nonlinear evolution equations.
With ί2 = y one uses the equation with n = 2 to express all "auxiliary" fields
L72, U3, . . . in terms of the prime field U and its ̂ -derivatives. Eliminating these
fields in the equations (1.1) with n ̂  3 one obtains a hierarchy of evolution
equations for the prime field U only. For n = 3 this is the KP equation itself, for
n > 3 one obtains the higher flows commuting with the KP equation. Introducing

L = (LKPf = dN + uN-2d
N~2 + + u0 + δ " 1 ! * - ! + . • , (3.34)

one obtains an invertible map between the infinite sets of parameters
(17, U2, U3, . . .) and (ι%_2, uN-3,. . .) in terms of differential relations, e.g.

uN.j = NUj-x + Fj(U, U2,. . . , 17,-2) , (3.35)

with differential expressions Fj of the indicated arguments. Hence we may think of
the KP hierarchy (1.1) in terms of the fields (I/, U2, 173, . . . ) or equivalently in
terms of the fields (uN-2, uN-3,. . .). The underlying Lax equation in terms of L is

^ K P = fto((WUκp]-^ = ftoί^U], >2 = 1,2,3, . . . . (3.36)

Hence, the KP hierarchy is connected to the equations (2.6) with L = dN + lower
orders using fractional powers of the form q = n/N, n = 1, 2 , . . . . The previous
arguments have shown that (2.6) may be restricted to operators of the form (3.14).
Hence, we have a generalization of the well-known reduction process in Sato's
theory by imposing the constraint

(LKP)
N = purely differential + Φd~x Ψ (3.37)

on (3.34). We give an interpretation of this constraint in terms of the prime field
U of (1.2) satisfying the KP equation and its higher flows. Calculating the JV-th flow
for LK P one obtains

- ^ L K P = [ P ^ o ( α κ p ) N U K p ] = - [ P < 0 ( ( L K P ) N ) , L K P ] = ~ [ Φ δ - ^ ^ K P ] . (3.38)
ΐ

Inserting LK P = d + Ud'1 + one extracts the first negative differential order
from (3.38) leading to

^ = (ΦΨ)X . (3.39)
dt



64 W. Oevel and W. Strampp

Hence, for Lax operators of the form (3.14), the bi-Hamiltonian evolution equa-
tions (2.10) with q = n/N, n = 1, 2,. . . , may be regarded as the KP hierarchy
subject to the constraint (3.39), where Φ and Ψ are eigenfunctions and adjoint
eigenfunctions of the KP hierarchy. This type of reduction was observed before in
a series of papers ([7-11, 20-22]), our derivation yields a systematic interpretation
of the bi-Hamiltonian aspects of these flows.

4. Constrained Modified KP Flows and their Bi-Hamiltonian Structure

It was shown in [26-29] that the Lax equations (2.6) can be modified to Lax
hierarchies

jtL = ίP±ι{L%L], (4.1)

which still commute for different choices of the (integer or fractional) power
q labeling the elements of the hierarchy. In [29] it was discussed that the Poisson
tensor

on g provides the "first" Hamiltonian structure for the equations (4.1). Here (4.2) is
the Lie-Poisson structure of a Lie bracket on g, which is associated with an algebra
decomposition of g into two Lie-subalgebras g = {Σn > 1 and

n) 0 ( X π < x and
n). For

a detailed discussion in terms of classical r-matrices we refer to [29]. There also
a second bracket was proposed, from which the "second" Hamiltonian structure
for some classes of integrable equations encoded in (4.1) can be extracted using
Dirac reduction. However, this bracket did not define an abstract Poisson bracket
on g, as the underlying r-matrix is neither skew adjoint nor does its skew adjoint
part satisfy appropriate conditions ([30, 31]). It turns out that the results on the
lifted quadratic bracket (3.7) of the last section provide the answer to the proper
quadratic bracket for the Lax equations (4.1).

Theorem 6. (The modified quadratic bracket). The tensor

defines a Poisson bracket on g. The tensors Θx (given by (4.2)) and Θ2 are compatible.

The proof of the Poisson properties of Θ2 is given in the following section, where
it is pointed out that (4.3) is the image of the Poisson tensor (3.13) under a gauge
transformation. The compatibility of Θγ and Θ2 follows from the standard argu-
ment that the shift L -> L = L — 1 produces the image Θ2(L) = @ι{L) + Θ2(L).

We point out that according to [24] the residue of a commutator lies in the

image of the differential operator, so that D" 1 1 res I — , L 1 1 is well-defined.
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This is reflected by the fact that, regarding D ~1 as the inverse of D = d/dx modulo
integration constants, these integration constants drop out of the commutator
following the application of the integration operator.

The two brackets given by Θx and Θ2 provide the bi-Hamiltonian formulation
for the Lax equations (4.1):

Θλ{L)U = Θ ^ g r a d - ^
q (4.4)

Θ2(L)Lq~1 = Θ2(L)gmά-tr(Lq) .

Theorem 7. (Restrictions). Both Poisson brackets given by Θ1 and Θ2 can be
properly restricted to operators of the form

L = dN + vN-ίδ
N~1 + ••• +v1d + v0 + d~1φ, ΛΓ= 1,2,.. . . (4.5)

Replacing

(4.6)

in Θx shows that for L = dN + lower orders the linear tensor produces operators of
highest order N — 1. Using the analogue of (3.17) it is readily seen that this is also
true for Θ2. We still need to show that the negative parts of the images of
Θ12 consist only of their first negative order P_1( ), if P<0(L) — P-1(L) — d~γ\\f.
For the linear tensor Θx this is easily seen observing

) <«>

For the quadratic tensor we put α = Z)"1! resί — , L I j , so that

P_! ί — , L ) = δ " 1 ^ . Hence, the last two terms of (4.3) yield

Lα . (4.8)

The negative part of the expression is given by P<0(d~1(xdL + La)
= δ~1P0((δL)*α) + δ~ Vα. We note that all operators of the form δ " 1 "function"

are tangent to the negative part d~ 1φ of L. By similar arguments also the negative
part of the remaining first 3 terms in (4.3) are shown to be of the form δ " 1

'Junction". Thus we have proven the in variance of the space (4.5) relative to the
Poisson brackets given by Θ12.
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Remark 2. As the equations (4.1) are Hamiltonian they can be restricted to the
invariant subspace (4.5). In this situation the evolutions of the functions v0 and
φ are calculated easily. Using the abbreviation B = P^ί (Lq) one obtains the lowest
order in (4.1) as

-d^PoiB ψ). (4.9)

(4.10)

Hence φ satisfies the time evolution

for adjoint eigenfunctions associated with the Lax hierarchy (4.1) (which explains
our notation φ for the lowest order field in (4.5)). The time evolution for the field
v0 is obtained as

jtv0 = P0(ίB9L]) = P0(Bυ0) + P^Bd^φ) - Poid^φB) . (4.11)

We introduce φ = v0 + D~1(φ) with the integration D"1 given by (3.8). The
evolution for φ is calculated as

j t φ = P0(B(φ - D - ' i φ ) ) ) + P o i B d - ' φ ) - Poid' ^

= P0(Bφ) - Poid-'φB) - D-1{P0(B*ψ)), (4.12)

as one has

Po(BD-1(φ)) = Pol Σ bnd"D-ί(ψ)\= Σ bnJ^T = po{ Σ ^"δ-1

= P 0 (Bδ-V) (4.13)

for B = Σ n > j^π^". We further observe that

n ^ 1

P0(B*φ) = Σ Λ>(( - IWKψ) = Σ ( - !)" d~jΨ • (4 1 4 )
n ^ 1 n ^ 1 "X

Hence we may identify D~1(P0(B*φ)) = - P0{d~1φB\ so that (4.12) leads to

Φj t (4.15)

This is the evolution of the eigenfunctions associated with the Lax equations (4.1).
Hence the coefficient υ0 = φ — D~1(φ) in (4.5) is expressed in terms of eigenfun-
ctions and adjoint eigenfunctions.

As a consequence, the evolution equation (4.10) for the lowest order φ in (4.5) is
obtained as a linear operator acting on φ. Hence it can be restricted to the trivial
solution φ = 0. In this case the resulting equation (4.15) for v0 = φ is given by the
linear operator B acting on φ, which can be restricted to trivial solutions
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φ = l = const, as B — P^γ (Lq) has no zero order term. Hence, as already
pointed out in [29], the equations (4.1) can be further restricted to subspaces of
the form

L = dN + v N - 1 d N ~ 1 + ••• + Ό l d + υ θ 9 N = l , 2 , . . . (4.16)
and

L = dN + vN-1d
N~1+ - +υ1d + λ , i V = l , 2 , . . . , (4.17)

where λ is an arbitrary constant parameter. However, neither of these smaller
subspaces are Poisson subspaces relative to any of the brackets <91} 2 In fact, it can
be shown that for the case (4.16) no Dirac reduction of Θ1 and Θ2 subject to the
constraint φ = 0 exists, as in the Poisson tensors the corresponding matrix entry
for φ vanishes. Hence, the restriction of (4.1) to (4.16) yields equations which do not
inherit a Hamiltonian structure from Θx or Θ2. However, using the combined
constraint φ = 0, υ0 = λ for (4.17), Dirac reduction of both tensors Θ1 and Θ2 is
possible. The resulting restricted equations inherit a reduced bi-Hamiltonian
structure from Θx and Θ2. A few simple examples are worked out in Sect. 6.

We finally remark that the equations (4.1) restricted to (4.5)/(4.16)/(4.17)
are reductions of the modified KP-hierarchy. We briefly review the results of
[28]. There is shown that the. modified KP equation is connected with the Lax
operator

4nκp = d + V+ V.d-1 + V2d~2 + . (4.18)

One simultaneously considers the hierarchy of equations

j t AΠKP = [ P έ i((Anκp)n), ^ K P ] , n = 1, 2, 3,. . . , (4.19)

for the operator (4.18). In terms of the fields V, Vu V2, . . parametrizing L m K P the
flows (4.19) yield an infinite set of coupled evolution equations. With t2 — y one
uses the equation with n = 2 to express all "auxiliary" fields Vί9 V2, . . . in terms of
the prime field V and its ^-derivatives. Eliminating these fields in the equations
(4.19) with n ^ 3 one obtains a hierarchy of evolution equations for the prime field
V only. For n = 3 this is the modified KP equation

47T v* = ( κ — + β v 2 y ^ + wyy + 6VχVy + 6v**D~^vy) (4 2 0 )at3

itself, for n > 3 one obtains the higher flows commuting with the modified KP
equation.

In analogy to the discussion of the last section connecting the KP hierarchy to
the equations (2.6) restricted to (3.14), one may impose the constraint

(Anκp)N = dN + vN-xdN~' + + v0 + d~λφ (4.21)

on (4.18). We give an interpretation of this constraint in terms of the prime field
V of (4.18) satisfying the modified KP equation and its higher flows. Calculating the
JVth flow for L m K P one obtains

~TΓ~ A n K P =

dtN

(4.22)
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Inserting Lm K P = δ + V -\- V1δ~1 -\- . . . one extracts the zero differential order
dV

from (4.22) leading to — = vOx. We have seen that according to the previous
dtN

considerations the zero order coefficient v0 is connected with eigenfunctions and
adjoint eigenfunctions of the modified KP-hierarchy. Using v0 = φ — D~1(φ) one
concludes that for Lax operators of the form (4.5) the bi-Hamiltonian evolution
equations (4.4) with q = n/N, n = 1, 2,. . . , may be regarded as the modified KP
hierarchy subject to the constraint

d v
 JL i ,Λ™

— = Φx — Φ (4.23)

Here φ and φ are eigenfunctions and adjoint eigenfunctions of the modified KP
hierarchy satisfying

— φ = P0(Bnφ), — φ = - P0(B*φ), Bn = P^ i((Lm K P)w), n = 1, 2,. . , .
dtn dtn

(4.24)

5. Miura Links and Gauge Transformations as Poisson Maps

As discussed in [28, 29] gauge transformations of the underlying Lax operators
provide the Miura link between the KP hierarchy and the modified KP hierarchy
as well as their constrained flows. The new feature to be discussed here is the fact
that now Hamiltonian interpretations of the flows involving the eigenfunctions and
adjoint eigenfunctions are available. It turns out that the gauge transformations are
indeed canonical in the sense that the bi-Hamiltonian structure of the (constrained)
KP hierarchy is mapped to the bi-Hamiltonian structure of the (constrained)
modified KP hierarchy.

Theorem 8. (Gauge transformations). The gauge transformation

G: (L, Φ, Ψ) e g 0 J f ® je -+ L = Φ~γLΦ e g (5.1)

maps the Poisson brackets given by ^>

1 and &2 to the Poisson brackets given by
Θι and Θ2> respectively.

We only indicate the calculations necessary for the proof. One has to show

Θ1{L) = G'0>1{L,Φ,Ψ)G'^

Θ2(L) = Gf0>2(L,Φ,Ψ)G'ϊ , (5.2)

where

ΦBΦ'1 \
1x^{[_B,L']) (5.3)

0 /
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are the linearized map G' and its transposed G'\ i.e. one has

(5.4)

for all operators A,B e g and functions α, β e #f. Here the duality < , > is given by
(2.15). Having identified G' and G' f it now is a straightforward exercise to verify (5.2).

We remark that Θj and Θ2 may be understood as the images of the (L, Φ)-
blocks Φγ (3.12) and Φ2 (3.13), respectively, as the gauge transformation does not
involve the variable Ψ.

Observing tr(L^) = tτ(Lq) we note that the Hamiltonians of the bi-Hamiltonian
equations (3.10) are mapped to the Hamiltonians of the bi-Hamiltonian equations
(4.4) (in the variable L). Hence, the Hamiltonian equations are connected via the
gauge transformation:

(5.5)

This - among other types of gauge transformations - was discussed in [28, 29].
There it was shown that Miura links can be extracted from these transformations.
Here we have provided a Hamiltonian interpretation for the gauge transformation
of Theorem 8.

We finally remark that the restrictions (3.14) naturally lead to the restrictions
(4.5). Starting with L of the form (3.14) the gauge transformed operator L = Φ~XLΦ
has the form

L = dN + N^dN'1 + ••• +υ1d + v0 + d-ιΨΦ, N = 1, 2,. . . , (5.6)

φχ

where the highest field %_ x = N —^ is given in terms of Φ only. The other fields

vN - 2 •> - - - ,v0 are given as differential expression of Φ and the fields uN _ 2 •> , u0

parametrizing L. In particular, the zero order term is given by

(5.7)

the adjoint eigenfunction φ of (4.5) is given as the "squared eigenfunction" φ = ΨΦ.
The choice Ψ = 0 leads to the additional restriction (4.16). In this case one can even
impose the scattering equation (2.13) as a further constraint leading to v0 = λ, that
is, to the restricted case (4.17).

6. Examples

6.1. Constrained KP Flows. We now work out a few examples of restrictions of the
KP hierarchy connected with Lax operators of the form (3.14). We consider the
evolution equations
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using the fractional powers n/N9 n = 1, 2,. . . . The "basic root" L1/N = δ + a0

+ α_ 1 δ~ 1 H- is calculated by requiring (Lί/N)N = L. This leads to a straight-
forward recursive scheme for the coefficients ao,a-ί9 . . . of L1/N, from which these
coefficients can be calculated as differential expressions of uN-2,. . . ,uθ9Φ9 ^
Higher fractional powers Ln/N of L are then calculated as powers Ln/N = (L1/N)n of
this "basic root." By construction, the first equation with n = 1 in the hierarchy
(6.1) is given by dL/dt1 = [5, L] = dL/dx, so that the first time variable tγ may be
identified with the underlying space variable x. In order to compute the Poisson
structures (3.2) and (3.7) we write L = l + Φδ~lχF with

(3.7)), respectively. Regarding the functions uθ9 ul9 . . . as coordinates parametriz-
ing the operator /, the differential — of a Hamiltonian function then is conve-

rt
niently parametrized by

δl OUQ δu-i δu2

with functions — . Now the trace duality (2.5) becomes the usual duality bracket:

rir-<hc> ( 6 3 )
t OUi

N = L For L = δ + Φδ~xΨ the first nontrivial equations in (6.1) are given by

d (Φ\ (ΦXX + 2ΨΦ2\ d /Φ\ (ΦXXX + 6ΨΦΦ:

dΓ2 \ψ) = \ΨXX - 2ΦΨ2} df3 \ψ) = \ΨXXX + βΦΨΨ

which are the first equations in the AKNS-hierarchy. Hamiltonian formulations
for these equations are given by (3.10), where the first Hamiltonian functions are
given by

tr(L) =\ΦΨdx, -tv(L2) = -UΦxΨ - ΦΨx)dx, - t r (L 3 ) = [(Φ2Ψ2 - ΦxΨx)dx .
2 2 3

(6.5)

The linear bracket (3.2) is most conveniently calculated using (3.3) with
L = l + Φd~1ΨJ = d. The (/, /)-block of the Poisson tensor (3.3) vanishes, so that
the resulting Hamiltonian equation associated with a Hamiltonian function
H(Φ, Ψ) is

lδH\
d_ίΦ\J 0
it \ΨJ \ - 1 0

δΦ
(6.6)δJL

\δψj
For the quadratic Poisson bracket of the AKNS hierarchy we consider the
reduction of (3.7) to the larger Poisson subspace given by (3.15), i.e. we first
compute the quadratic bracket associated with operators of the form
L = δ + u0 + Φδ~1Ψ = / + Φδ~lιF, l = δ + u0. Inserting (6.2) into (3.33) the
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Hamiltonian equation associated with a Hamiltonian function H(Φ,Ψ,u0) is
calculated as

/6H\

δΦ
u0d

It
ΨD'^Φ

Ψ

m

δH

(6.7)

where D = — , and D x is given by (3.8). In order to obtain the second Poisson
ax

structure for the AKNS system we have to invoke Dirac reduction (see e.g. [31] for
a description of this procedure in a suitable notation) to reduce (6.7) using the
constraint u0 = 0. The resulting Hamiltonian formulation of the constrained sys-
tem is readily calculated as

d ίΦ\_ί -
Jt\ψ)"\D + -2ΨD'1Ψ

ίδ_H\
δΦ

δH
(6.8)

which provides the second Hamiltonian formulation of the AKNS hierarchy.

N = 2. For L = d2 + u0 + Φd~x Ψ the first nontrivial equations in (6.1) are given
by

6ΦXXΨ- 6ΦΨXX

3u°χφ + 6ψφ2

3u0xΨ - βΦΨ2

(6.9)

in accordance with the results of [9]. This represents the Korteweg-de Vries (KdV)
hierarchy, coupled with its eigenfunctions and adjoint eigenfunctions ([13]).
Hamiltonian formulations for these equations are given by (3.10), where the first
Hamiltonian functions are given by

2tr(L1 / 2) =

2- tr(L 3 ' 2) = f

, tr(L) = J ΦΨdx,

1-{ΦX Ψ-ΦΨx))dx. (6.10)
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The linear bracket (3.2) is calculated using (3.3) with L = / + Φd~ι Ψ91 = d2 + u0.
Inserting (6.2) into (3.3) the Hamiltonian equation associated with a Hamiltonian
function H(u0, Φ, Ψ) is computed as

/δH\

δu0

δH
0 0

0 1

0 - 1 0
δΦ

δH

(6.11)

For the quadratic Poisson bracket we consider the reduction of (3.7) to the larger
Poisson subspace given by (3.15), i.e. we first compute the quadratic bracket
associated with operators of the form L = I + Φd~ιΨ, I = d2 + uγd + u0. Insert-
ing (6.2) into (3.33) the Hamiltonian equation associated with a Hamiltonian
H(u0, Φ, Ψ, wj is calculated as

d

It

M0

Φ

Ψ

\

/

/

\

DΦ + uxΦ

DΨ + ΨD - U

D2 - Du,

i f ; - D2

*

PD-'Φ

-uo + ΨD'1*

-Φ

*
*

ί> - ΨD~

y

\

5

5

*

*

*

-ID

δH
- \

δΉ_

δΉ_

δΨ

(6.12)

where θuoUo = D3 + uxD
2 - D2^ + D(u0 - iu\) + (u0 - 2 w?)D and the remain-

ing entries are given by skew-symmetry. In order to obtain the second Poisson
structure for the equations (6.9) have to invoke Dirac reduction to reduce (6.12)
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using the constraint ux = 0. The resulting Hamiltonian formulation of the con-
strained system is readily calculated as

ΦD + ^DΦ %DΨ + ΦD

(6.13)

(m\
δu0

~δΦ

δl£

\δψ

This provides the second Hamiltonian formulation for the equations (6.9)

N = 3. For L = d3 + uxd + u0 + Φd~1Ψ the first nontrivial equations in (6.1) are
given by

\
- 2ulxx + 3uOx - u\

\

dt3

Wo

φ

\ΨX

U\Φχ + U0Φ

hΨ)χ-U0Ψ

(6.14)

This is an extension of the Boussinesq system which essentially coincides with the
system considered by Melnikov ([14]). We remark that the t2-Άow can be written
in the more compact from

(ulxx + 2ui - 12ΦΨ)XX = 0, 3Φί2 - 3ΦXX -2uxΦ = 0,

3Ψt2 + 3Ψxx + 2u1Ψ = 0 . (6.15)

Hamiltonian formulations for these equations are given by (3.10), where the first
Hamiltonian functions are given by

3tr(L1 / 3) =

3-

,

- ΦΨx))dx . (6.16)
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The linear bracket (3.2) is calculated using (3.3) with L = l + Φd'1Ψ,
I = d3 + uίd + u0. Inserting (6.2) into (3.3) the Hamiltonian equation associated
with a Hamiltonian function H(uί9 u0, Φ, Ψ) is computed as

d

It

Uγ

U0

Φ

Ψ

\

/

Ό 3D

3D 0

0 0

vO 0

0

0

0

- 1

o\
0 '

1

0 /

/ δ H \

δH

δu0

δH

~δΦ

(6.17)

\δH

δΨ

A second Poisson bracket can be computed with the restriction of (3.7) to the
Poisson subspace given by operators of the form L = d3 + u2d

2 + uγΰ + u0 +
Φd~xΨ. Proceeding as before, the restricted Poisson tensor may be computed by
a straightforward, yet lengthy, calculation. Dirac reduction for the constraint
u3 = 0 provides the second Hamiltonian operator for the equations (6.14). We shall
not display the resulting operator, as it is of a very complicated form.

We remark that according to the results of ([26]) each second of the Lax
equations (6.1) (with odd values for n) can be restricted to Lax operators which are
either symmetric or skew-symmetric. For the present case N = 3 we may impose
the constraint u2 = 0, u0 = juίx and Ψ = Φ, so that with uγ = 2u the Lax operator
L = δ 3 + ud + du + Φδ~ XΦ becomes skew-symmetric. In this case the ί3-evolution
(6.14) reduces to

3ΦΦX

2uΦx uxΦ
(6.18)

The ί5-flow in the hierarchy (6.1) associated with L = d + ud + du + Φδ Φ is
calculated as

9uί5 = - uxxxxx-l0uuxxx - 25uxuxx - 20u2ux + 30(uΦ2)x + 30ΦΦxxx •

30uΦxxx + 45uxΦxx
(35uxx + 20u2 + 30Φ2)Φx

9Φt5 = 9ΦXXXXX

+ (10uxxx + 20uux)Φ .

This represents an extension of the Kupershmidt system ([32]).

(6.19)

6.2. Constrained Modified KP Flows. We now work out a few examples of restric-
tions of the modified KP hierarchy connected with Lax operators of the form (4.5).
We consider the evolution equations

d_

dt»
(6.20)

using the fractional powers n/N9 n = 1, 2 , . . . . As in the case of the KP hierarchy,
1/Nthe "basic root" L1/N = α _ 1 < Γ 1 + is calculated by requiringy q g

(L1/N)N = L. This leads to a straightforward recursive scheme for the coefficients
α 0, α_ 1 ? . . . of L1/N, from which these coefficients can be calculated as differential
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expressions of vN-l9. . . , vθ9 φ. Higher fractional powers Ln/N of L are then cal-
culated as powers Ln/N = (L1/N)n of this "basic root." Again, the first equation with
n = 1 in the hierarchy (6.20) is given by dL/dt1 = [<3, L] = dL/dx, so that the first
time variable tί may be identified with the underlying space variable x. In order to
compute the Poisson structures (4.2) and (4.3) we parametrize the differential of
a Hamiltonian function H by

δH δH

oL oψ Λ λ

δH
?

δH δH

ov2

(6.21)

with functions —— and —-. As a result, the trace duality (2.5) becomes the usual
δvt δφ

duality bracket:

(6.22)

N = 1. For L = d + v0 + d 1\j/ the first nontrivial equations in (6.20) are given by

_£_/l>0
dt2\φ

(vOx + 2ψ + υ2

0) (vOxx + 3υovOx 6υoφ)x

(6.23)

which are the first equations in the Kaup-Broer hierarchy discussed in [26].
Hamiltonian formulations for these equations are given by (4.4), where the first
Hamiltonian functions are given by

, ± tr(L3) = - υoφx + v2

oφ)dx . (6.24)

Inserting (6.21) into (4.2) the Hamiltonian equation associated with a Hamiltonian
function H(v0, φ) is found to be

-(
dt\φ

D

D 0

I&H\
δv0

m
(6.25)

which represents the first Hamiltonian formulation for the flows (6.23). For the
quadratic Poisson bracket we insert (6.21) into (4.3). By a straightforward computa-
tion the resulting Hamiltonian equation is calculated as

d_ίv0

dt\φ

ID D2 + Dv0

-D2 + v0D Dφ + φD

/δH\
δv0

m
\»Φ/

(6.26)

which is the second Hamiltonian formulation of the Kaup-Broer hierarchy in
accordance with [26].

Following Sect. 5 one can construct the Miura transformation between the
AKNS hierarchy (6.4) and the Kaup-Broer hierarchy (6.23). One starts with the
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operator L = d + Φd~ιΨ associated with the AKNS hierarchy and performs the
gauge transformation

L->L:= ~LΦ = d + - ^ + d-1 ΨΦ . (6.27)
Φ Φ

According to (5.5) the operator L satisfies dL/dtn = [P^ i(Ln\ L\ if Φ and Ψ solve
the AKNS hierarchy. Hence, comparing L and the operator d + υo + d'1^ asso-
ciated with the Kaup-Broer hierarchy (6.23), we conclude that

(6.28)

provides the Miura-transformation between the AKNS hierarchy (6.4) and the
Kaup-Broer hierarchy (6.23). Theorem 8 guarantees that the first Hamiltonian
structure (6.6) of the AKNS hierarchy is Miura-related to the first Hamiltonian
structure (6.25) of the Kaup-Broer hierarchy. The Miura-link between the second
Hamiltonian structures (6.8) and (6.26) is less obvious, as Dirac reduction was used
to obtain (6.8) for the general quadratic bracket Θ2 given by (4.3). However, a direct
verification shows that also (6.8) and (6.26) are indeed linked via the Miura
transformation (6.28).

N = 2. For L = d2 + υλd + v0 + d~xy\ι the first nontrivial equations in (6.20) are
given by

2vlxxx - 3v\vlx + 12(i;ot>i)χ + ί2vOxx

+ 6vlxvOx + I2vlxφ + 24«!φx

\2υxφxx - 18vlxφx - 6vlxxφ + I2(voφ)

(6.29)

This represents the modified KdV hierarchy coupled with its eigenfunctions and
adjoint eigenfunctions. Hamiltonian formulations for these equations are given by
(4.4), where the first Hamiltonian functions are given by

/ i \
2tr(L1/2) =aVo--vl \dx, tr(L) = $ψdx. ( 6 . 3 0)
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Inserting (6.21) into (4.2) the Hamiltonian equation associated with a Hamiltonian
function H(υl9 v0, φ) is calculated as

0 0

2£>

-D2 +

ID

D2

δϋί

δH_

δv0

δH

\δφ j

(6.31)

This provides the first Hamiltonian formulation for the equations (6.29). For the
quadratic Poisson bracket we insert (6.21) into (4.3). The resulting Hamiltonian
equation associated with a Hamiltonian function H(vί9 v0, φ) is calculated as

6D

ID3 + 2υ1Dυ1 + DυΌ + v0D *

\2D3
 - IVQD

I&H\
δv1

δv0

δH

W /
(6.32)

with θψVo = — D4 -h D3vx -f DvίD
2 — Dv1Dvί — υ0D

2 + ι ; 0 ^ i + 2ι^D + Dt/f and
0 ^ = Dviφ + ϋ t ^ D + ^ D 2 — D2φ. The remaining entries of this Poisson tensor
are given by skew-symmetry. This provides the second Hamiltonian formulation
for the equations (6.29).

Following Sect. 5 one can construct the Miura transformation between the
extended KdV hierarchy (6.9) and the extended modified KdV hierarchy (6.29).
One starts with the operator L = d2 + u0 + Φd~1Ψ associated with the extended
KdV hierarchy and considers the gauge transformation

£:= - L Φ = d2 + 2 — d + - ( Φ x (6.33)

According to (5.5) the operator L satisfies dL/dtn = [ P ^ \(Lnl2\ L\ iϊ uo,Φ and
Ψ solve the extended KdV hierarchy (6.9). Hence, comparing L and the operator
d2 + vxd + v0 + d~ίφ associated with the extended modified KdV hierarchy
(6.29), we conclude that

, φ = ΦΨ (6.34)

provides the Miura-transformation between the extended KdV hierarchy (6.9) and
the extended modified KdV hierarchy (6.29). Theorem 8 guarantees that the first
Hamiltonian structure (6.11) of the extended KdV hierarchy is Miura-related to the
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first Hamiltonian structure (6.31) of the modified KdV hierarchy. The Miura-link
between the second Hamiltonian structures (6.13) and (6.32) is less obvious, as
Dirac reduction was used to obtain (6.32) from the general quadratic bracket
Θ2 given by (4.3). However, a direct verification shows that also (6.13) and (6.32) are
indeed linked via the Miura transformation (6.34).

7. Conclusions and Perspectives

We have given a systematic Hamiltonian interpretation of the symmetry constraint
(3.39) of the KP hierarchy as proposed in [7-12, 21, 22]. It is shown that these
constraints actually arise as proper Hamiltonian restrictions of the two Hamil-
tonian structures (3.1) and (3.6) underlying the classical results of Gelfand and
Dikii. As a consequence, bi-Hamiltonian structures and recursion operators can be
calculated algorithmically for the restricted KP flows. Further, a natural Miura
link to restricted modified KP flows is given by simple gauge transformations
involving eigenfunctions.

The systematic foundation of the constrained KP flows as restrictions of the
general KP hierarchy (1.1) via (3.37) implies natural generalizations. Thus, it is
readily seen that the flows (2.6) cannot only be restricted to submanifolds of the
form (3.14), but any number m of pairs of eigenfunctions and adjoint eigenfunctions
may be considered. In particular, these flows can be restricted to operators of the
form

m

L = dN + uN.28
N~2 + ••• + « o + Σ Φ i ^ ϊ V (7.1)

i=ί

In fact, it is easily seen that such operators again parametrize proper Poisson
submanifolds for both brackets (3.1) and (3.6). The dynamics (2.6) will automati-
cally imply that each Φf and each ψt is an eigenfunction and an adjoint eigenfunc-
tion associated with L, respectively, i.e.

(7.2)

Following the arguments of Sect. 3 the restrictions of (7.2) to Lax operators of the
form (7.1) may be understood as symmetry constraints

all m

— = £(*W)x. (7.3)
atN i=ί

where U is the prime field of the KP hierarchy.
Starting with (7.1) and choosing the first eigenfunction Φu say, to perform the

gauge transformation L = Φϊ1LΦ1, one encounters a transformed operator of the
form

(7.4)



Constrained KP Hierarchy and Bi-Hamiltonian Structures 79

with new eigenfunctions φ( = — Φ£ a n d new adjoint eigenfunction φ(= ΨtΦι

satisfying the dynamics

j t φ i = -P0((P^ΛLq))*Ψi), i = l , . . . , m . (7.5)

In particular, the original eigenfunction Φ1 is transformed into the trivial new
eigenfunction φ1 = 1. It is a straightforward exercise to lift the general brackets
(4.2) and (4.3) for the modified equations to extended Poisson structures for (7.5).

These considerations do not only lead to a systematic Hamiltonian concept for
the constrained KP/modified KP flows. In fact, the most important implication of
the results presented here seems a deeper understanding of the Hamiltonian nature
of the gauge transformations L-+ L = Φ~γLΦ. Indeed, we have shown how a gen-
eral quadratic Poisson bracket (4.3) for the modified equations is obtained as the
image of the extended Poisson structure (3.7) under this type of gauge transforma-
tions. It turned out that the quadratic bracket proposed in ([29]) for the equations
associated with the modified KP hierarchy has to be modified to the bracket (4.3)
derived here.

We point out that it should also be possible to obtain a proper quadratic
Poisson bracket for further hierarchies of Lax equations given by

— L = [P^ 2{Lq\ L]. These hierarchies are discussed in detail in ([29]), they lead to

Harry Dym type equations associated with the constrained modified KP flows via
reciprocal transformations involving the independent space variable x. Extending
the quadratic bracket (4.3) to include eigenfunctions and adjoint eigenfunctions, we
expect the reciprocal links of ([28, 29]) to produce the proper quadratic bracket for
this class of equations.

Further, it was shown in ([30, 31]) that apart from the two brackets (3.1) and
(3.6) there also exists a cubic bracket for the equations (2.6). Also this bracket
admits a restriction to operators with negative parts given in the form Φd~ίΨ (or
sums of such terms). Hence, it should be possible to construct a lifting of this
bracket to the extended space g 0 Jtf* 0 Jί?, which after gauge transformations and
reciprocal links should produce proper cubic Poisson brackets for the constrained
modified KP hierarchy and their reciprocally linked "Dym typ" counterpart.

Finally, we indicate an important line of further investigation, which should
yield deeper insight into the Hamiltonian nature of gauge transformations. In
([28, 29]) classes of gauge transformations are discussed, which describe in varian-
ces of the Lax equations. In particular, the classical Darboux transformation

1Φ-1 (7.6)

leaves the dynamics (2.6) invariant, if Φ is an eigenfunction for L, i.e.

±L -TP (mu
at

^-Φ =P0{UΦ)



80 W. Oevel and W. Strampp

As we now have the Poisson structures (3.2) and (3.7) involving the eigenfunction Φ,

the Hamiltonian character of the gauge transformation (7.6) can be investigated.

We observe that the submanifold (3.14) is invariant under this transformation, in

particular one finds

L = dN + uN-2d
N~2 + + u0 + Φd~~1Ψ

with the new eigenfunction Φ = ΨΦ2 + Φ(Φ~1PO(LΦ))X and the new adjoint

eigenfunction Ψ = Φ " 1 . This suggests to consider "lifted Darboux transforma-

tions" of the type

ΦdΦ'1 LΦd'1 Φ~x

ΨΦ2 + Φ(φ-1P0(LΦ))x I (7.9)

on the extended space g © ffl φ Jf. A detailed analysis of the Hamiltonian nature

of such transformations shall be given elsewhere.
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