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Abstract. We study a three-particle Schrόdinger operator H for which none of the
two-particle subsystems has negative bound states and at least two of them have
zero energy resonances. We prove that under this condition the number N(z) of
bound states of H below z < 0 has the asymptotics N(z) ~ 9I0 |log|z|| as z -> — 0,
where the coefficient 9I0 depends only on the ratio of masses of the particles.

1. Introduction

We are going to discuss the following remarkable phenomenon of the spectral
theory of the three-body Schrόdinger operators, known as the Efimov effect. Let /ια,
α = 1, 2, 3, be Hamiltonians describing two-particle subsystems of a three-particle
system with the internal short-range potentials VΛ(X), x e R3. Suppose that none of
ha has negative eigenvalues and at least two of the hamiltonians /ια have zero energy
resonances. Then the three-particle operator H will have infinitely many negative
eigenvalues accumulating at zero. Below we denote by N(z), z < 0, the number of
eigenvalues of H lying on the left from the point z. For the first time the Efimov
effect has been discussed in [4]. An independent proof on a physical level of rigor
has been also given in [2]. The first rigorous proof has been presented in paper
[12]. An alternative approach for spherically symmetric potentials υΛ has been put
forward in [10]. The growth of N(z) as z -> — 0 has been studied in paper [1] for
the symmetric case. Namely, the authors of [1] have found the exponential
asymptotics of eigenvalues corresponding to spherically symmetric bound states.
This result is consistent with the lower bound

l iminf | log |z |Γ 1 JV(z)>0, (1.1)
z-»-0

established in [11] without any symmetry assumptions.
The aim of the present paper is to study the asymptotics of N(z) as z -» — 0. We

do not assume that the pair potentials t;α are symmetric but suppose that VΛ ^ 0.
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Our main result is the asymptotics (see Theorem 3.1)

lim inf lloglzlΓ^ίz) = 9I0 , (1-2)

where the coefficient 9I0 does not depend on the pair potentials v Λ and is a positive
function of the ratios m1/m2, w2/w3 of the masses of three particles under consid-
eration. The explicit formula for 9I0 is given in Sect. 3. Note that (1.2) confirms the
sharpness of the bound (1.1).

Let us give a sketch of the main ideas of the proof of (1.2). As in [12], we reduce
the problem to the study of the compact selfadjoint operator A(z) acting in L(

2

3)(ϊl)
(91 is the configuration space of the three-particle system) which is a symmetrized
analog of the operator entering the Faddeev equations (see [6] and also [7]). We
rely upon the relation (see Theorem 4.1)

N(z, H) = n(l, A(z)) , (1.3)

where n(μ, B) denotes the number of eigenvalues of the compact selfadjoint oper-
ator B lying on the right from the point μ > 0. To study the behaviour of A(z) for
small z we establish the asymptotics of the resolvent rα(z) of the two-particle
operator /ια as z -» — 0 under the condition that hΛ has the zero energy resonance
(see Lemma 2.2). To that end we use a simplified version of the technique developed
in [9]. Lemma 2.2 enables us to single out the leading term of the operator A(z) as
z -> — 0. It proves to be unitarily equivalent to a compact integral operator SR,
R = l/2|log|z||, with a Toeplitz type kernel, acting in L2((0, R), L(

2

3)(§2)). This
allows to find the asymptotics of n(l, SR) as R -> oo by employing a standard
argument known as the calculation of the canonical distribution of a Toeplitz
operator (see [8]). As the result we get (see Theorem 4.5):

lim (2RΓ ^(1,8^ = 310,
JR-»oo

which in combination with (1.3) yields (1.2). The plan of the paper is as follows. In
Sect. 2 we obtain the asymptotics as z -> — 0 of the two-particle resolvent assum-
ing the presence of the zero energy resonance. The precise formulation of the main
result (Theorem 3.1) and its discussion are given in Sect. 3. In Sect. 4 we establish
the relation (1.3), study the operator A(z) as z -> — 0 and prove Theorem 3.1. Some
technical material is collected in Appendix.

Throughout the paper we adopt the following conventions. We say that an
operator valued function is continuous if it is continuous in the norm sense. The
scalar products in L2( * ) and R3 are denoted by ( , ) and < , > respectively. The
integrals with no indication of the limits imply the integration over the whole
space. By C and c we denote various positive constants whose exact values are of
no importance.

2. Two-Particle Schrόdinger Operator

In this section we study a two-particle system. Let h0 = — (2m)~lA, h = h0 + v in
ξ> = L2(R3). Here m > 0 is the reduced mass of the system, v is a real-valued
potential, satisfying the condition

|)Λ fc>3. (2.1)



The Efimov Effect. Discrete Spectrum Asymptotics 103

By r0(z), r(z) we denote the resolvents of h0 and h respectively. Note the identity

r = r0 — r0vr = r0 — rvr0 . (2.2)

Denote v^ = v\υ\~*9

w(z) = I - \v\*r(z)υ* . (2.3)

Then (2.2) immediately yields

w(z) = (I + \v\*ro(z)υ*Γ1. (2.4)

Recall the explicit expressions for the kernel of r0(z):

In what follows we need an asymptotic resolution of the operator
z = — k2, k > 0, near k = 0. Denote by G0, G± the operators with the kernels

m
G0(X, X') = -

2π |x — x'|

We have the following

Lemma 2.1. Let υ satisfy (2.1). Then for any positive δ < min{l, (b — 3)/2} the
relation holds

M*r0( - k2)v- = GO - kG, + /c1+<5Gf (fc), (2.7)

where G(£\k) is continuous in k ̂  0.

Proo/ Set/(ί; s) := (4πί)-1 (e~st - 1 + si), ί > 0, and introduce the operator G2(k)
with the kernel

2m\v\^(x)f(x-x' i

In view of (2.5) we have formally

Since/(ί; s) ̂  Cδs
1+Λt* for any (5 e (0, 1], the kernel of G2(k) does not exceed

Cόk
1+'\Ό\*(x)\Ό\*(x')(\X\' + \x").

Choosing δ < (b — 3)/2, we see that G2(k) is Hubert-Schmidt and the operator
:= k~l~δG2(k) is continuous in k ̂  0. D

From now on we suppose that υ ̂  0, so that v* = — \v\*. All our arguments in
this section go through for arbitrary υ as well but in the next sections we look at
nonpositive potentials only.

Now we are going to describe the behaviour of the operator w( — /c 2 )as/c->0.
Note that under the condition (2.1) the operator h has finite discrete spectrum, so
that the resolvent r( — k2) and, consequently, w( — fc2), is well defined for small k.
We deal with one of the two following situations.
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(1) The point — 1 is a simple eigenvalue of the operator G0 and the corres-
ponding eigenfunction φ satisfies the condition J|t;|*(x)φ(x) dx φ 0. To be
definite we normalize φ so that

(φ,|t>|*) = 2*π*m-*. (2.8)

In this situation we say that zero is a resonance ofhorh has a zero energy
resonance. One can prove (see [9]) that the function

is a unique solution (up to a factor) of the Schrόdinger equation hu + vu = 0
in ZΛspace with the weight (1 + x2)~s/2, Vs > 1/2, and u φ §.
Note an important property of φ. Set

(2.9)

This function obeys the estimate

(2.10)

Indeed, since \e~ikx - 1| ^ \k\*\x\*9 we have

The r.h.s. is finite for δ<(b- 3)/2.
(2) The point — 1 is not the eigenvalue of the operator G0. Then one can prove

that λ = 0 is neither resonance nor eigenvalue of h. So it is natural to say
that zero is a regular point of h.

We do not discuss here the other possible cases: zero is the eigenvalue of h or the
eigenvalue and the resonance at the same time.

Lemma 2.2. Let v obeys (2.1) and k > 0 be small enough, so the operator w( — k2) is
defined.

(1) If zero is a regular point ofh then w( — k2) is continuous in k ̂  0.
(2) If zero is a resonance o f h then for any positive δ < 1/2 min {1, b — 3} the

representation

w( _ fc

2) = l + fc-1+W>(fc) (2.11)
k

is valid, where the operator w(<5)(/c) is continuous in k ^ 0. //, in addition, h^O
then w( - k2) ^ 0 and

k-^^(k\ a = \\φ\\, (2.12)

where the operator w(<5)(/c) is continuous in k ̂  0.

Proof. (1) Let zero be a regular point. Then according to (2.4) and (2.7),

w( - k2) = (I + Go + o(l))-1 = (/ + Go)'1 + o(l), k -> 0 ,

which gives the desired result.
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(2) Let zero be a resonance. Denote by P0 the one-dimensional projector onto
the subspace associated with φ and by P± the projector onto its orthogonal
complement, so that P0 θ PI = I. Let us write the operator A = A(k) =
I — \v\*rQ( — k2)\v\^ in the matrix form:

where Ajk = PjAPk : Pkξ> -> P7§, k, j = 0, 1. It is more convenient instead of A to
consider the operator

0 Pj'

By (2.7) its entries are

EOO = - PoGiPo + fc^PoGf (fc)Po ,

^01 = — <

with δ < min{l, (b - 3)/2}. Therefore B = £(0) + K, where

o P!(/ + GO)J
and K = O(ky\ y = min{l/2, δ}. By the definition of Pt the operator
F = (Pι(/ + GO)PI)~ 1 exists in PI§. Furthermore, taking into account the equali-
ties (2.8) and P0 = a~2( 9 φ)φ, one can obtain from (2.6) that

- PoGiPo = PO 5-(φ, M*)2α~2 = fl-2P0 .

Thus ( - PoGiPo)"1 - α2P0 = (', φ)φ. Now since B = (I + K(B(0)Γl)B(0) and
K = 0(kγ) as /c -» 0, we have

Taking into account that w( — fe2) = (^4(/c))-1 = PB~1P, we complete the proof of
(2.11).

Let us prove (2.12). Since r( - fc2) ̂  0 for Λ ^ 0 we have w( - k2) ^ / ̂  0.
Further, note that

k J ak>

and recall the well known inequality for arbitrary positive operators A, B (see [3]):
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In combination with (2.11) it yields

l-δ
< Ck~~^~ .

ak*

This gives (2.12). D

We point out that a decomposition of the type (2.11) was proven for the first
time in [13] (see also [12]). The idea of our proof of Lemma 2.2 is borrowed from
the more recent paper [9], where an asymptotic expansion similar to (2.11) was
obtained (see Lemma 4.3 in [9]). However the formula from [9] provides the
asymptotic expansion with further terms up to the order o(k) which calls for the
condition b > 5 in (2.1). It is sufficient for us to have much more rough result (2.11)
which is valid for b > 3.

In Sect. 4 it will be convenient to write down the operator (w( — /c2))1/2 in the
form (2.12) not only for small k but for all k ̂  0. Namely, let ζ e C°°(R + ) be
a function such that ζ(t) > 0 for all t > 0, ζ(t) = t, t ^ 1 and ζ(t) = 1, t ^ 2. Then for
all k ̂  0 we have

(2.13)

where the operator w(<5)(/c) is uniformly bounded and continuous in k ̂  0.

3. The Main Result and its Discussion

1. We consider a system of three particles with the masses m t , w2, w3, one of them
may be infinite. We always work in the system with the removed center of mass
motion, so the configuration space is a six-dimensional subspace 91 of 1R9. In
contrast to the two-particle case we use as a rule the momentum representation,
that is we use one of the three pairs of coordinates (fcα, pα) conjugate to the
conventional Jacoby coordinates (xα, yα). The subscript α is equal either to 1 or 2 or
3. Sometimes instead of (/cα, pα) we use one of the pairs (pα, pβ). Various coordinates
in $1 are related as follows:

Pi + P2 + Pi = 0, + fc« = mβ(mβ + my)~ίpΛ + pβ . (3.1)

Here and below we always assume that α Φ β, β φ y, α Φ y. The sign " + " (or
" — ") corresponds to the case β < α (or α < β). For brevity we often use the
notation /cα = dα/3pα + eaβpβ, where the coefficients d^ and eaβ can be expressed
explicitly via mα, mβ, mγ by means of (3.1). In certain cases it is convenient to use the
"mixed" coordinates (xα, pα). The transition to (/cα, pa) is performed by the "partial"
Fourier transform:

(*./)(*., P.) = (2πΓ*J «-'*•*/(*., P.) dx. . (3.2)

The three-particle Schrόdinger operator has the form
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where

HQf(kΛ9 p.) = H°(kΛ9 pΛ)f(kΛ9 pΛ\ H0(k9 p) = ̂ - + f- .
z/α zτtα

Here 1Λ9 na are the reduced masses:

/α = mβmy(mβ + Wy)" 1 , nα = mα(m^ + w^M"1, M = m: + m2 + ra3 . (3.3)

The interactions Fα are given by the operators:

V = Φ v Φ*" α — ^α ^α ^*α ?

where ι?α, α = 1, 2, 3, are multiplications by bounded real valued functions VΛ(XΛ)
(pair potentials in the spatial representation). For example, υ3 describes the interac-
tion of the first and second particles. We suppose that the functions VΛ satisfy (2.1).
Note that the function H°(k(X, pΛ) in fact does not depend on the particular choice
of α. We denote by H®β the function H° expressed in terms of pΛ9 pβ, i.e.
H?β(p, q) = H° (dχβp + eaβq9 q). By means of (3.1) one can easily prove that

"•><«>= fr +^+fr <"'ziβ my z/α

By virtue of (3.3) it follows from here that

H2p(p,q)^ £- + /-. (3.5)
2mα 2mβ

Two-particle subsystems are described by Hamiltonians ha= — (2/α)~ 1zlX α

+ υΛ in L2(1R3). For the other two-particle objects we use the notations introduced
in Sect. 2 but endue them with the subscript α. For example, wα means the operator
(2.3) for the two-particle subsystem α. If the subsystem has a zero energy resonance
we normalize the corresponding function φα in agreement with (2.8):

(2π)V«(0) = (<pΛ9 VΛ\*) = 2*π*/-* , (3.6)

and denote <zα = | |φα | | .
For z < 0 lying below the bottom of the spectrum of Λα we define the following

operator in L2(?l):

Since wα(z') is bounded in L2(1R3) uniformly in z' ^ z, the operator WΛ(z) is
bounded in L20^) One can verify that similarly to (2.3)

FFβ(z) = /-|Kβ |^β(z)K|,

where Ra(z) is the resolvent of the operator HΛ = H0 + VΛ. Furthermore, analog-
ously to (2.4) we obtain from (3.7) that

^α(z)^(/ + |Kα |- JR0(z)F|)-1. (3.8)

In what follows we deal with the operators in various spaces of vector-valued
functions L(

2

3) ( ). They will be denoted by bold letters and will be written in the
matrix form. We denote by diag{7\, T2, T^} diagonal matrix-operators with the
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entries Γ1,Γ2,Γ3 on the diagonal, where Γα are the operators in L 2(*) For
example the notation W(z) = diagl^F^z), W2(z\ W$(z)} implies that

fWι(z) 0 0

W(z) = | 0 W2(z) 0

0 0 W3(z)f

For a selfadjoint operator B acting in a Hubert space I) denote by ί)β(Λ,) c D(B\
λ e R, a subspace such that (B/,/) > A| |/ | | 2 for any/e I)β(Λ) and set

n(λ, B) = sup dim ί)B(λ) .
I) a (A)

Certainly, for an operator JB not having any essential spectrum on the right from
the point A, the value n(λ, B) coincides with the number of eigenvalues of B bigger
than λ. Note the so-called Weyl inequality (see [3]):

n(λ, + λ29Bi + B2) ^ n(λι9BJ + n(λ2,B2) . (3.9)

For the operator H we use the following notation: N(z) = n( — z, - H\ z < 0. If
inf σess(H) = 0 then N(z) denotes the number of eigenvalues of H on the left from z.

The coefficient in the asymptotics of N(z) will be expressed by means of the
selfadjoint integral operator §(A), /leR, in the space <5(3), © = L2(§2) whose
kernel depends on the scalar product t = <£, τ/> of the arguments ξ, η e §2 and has
the form

where

K^β being the number such that κaβ = 1 if both subsystems α and β have
zero energy resonances, otherwise κΛβ = 0. Because of (3.3) saβ < 1 so that
arccossα/jί < π. Consequently, ||S(λ)|| ->0 as \λ\ -> oo . Therefore the integral

:= (4π)^ n(μ96(λ))dλ9 μ > 0 , (3.12)
— CXD

is finite. Denote 2I0 = 3I(1) Now we are able to formulate the main result:

Theorem 3.1. Let the pair potentials VΛ satisfy (2.1) and VΛ 5Ξ 0. Suppose that Ha^Q
for all α and that one of the two following conditions is fulfilled:

(1) Zero is the resonance for all two-particle subsystems',
(2) Zero is the resonance for two-particle subsystems α, β and is the regular point

for the system y; mγ < oo .
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Then the operator H has an infinite negative discrete spectrum and the function N(z)
obeys the relation

lim |log|z|Γ1N(z) = 9ϊ0, (3.13)
z->-0

the r.h.s. o/(3.13) being positive.

Clearly, the infinitude of the negative discrete spectrum of H follows automati-
cally from the positivity of 2I0 Note that the asymptotics (3.13) does not depend on
the potentials va. Furthermore, substituting (3.3) into (3.10) one can check that the
operator S(λ) and, consequently, the coefficient 2ί0j depends on the ratios mjmβ

and mβ/my only (for any choice of α, β and γ) if mα < oo for all α, and on the ratio
mΛ/mβ if rny = oo .

Recall that according to our definition given in Sect. 2 the assumption that the
value λ = 0 is the resonance for ha suggests that λ = 0 is not an eigenvalue of ha. As
was pointed out to the author by H. Tamura, the latter condition is automatically
fulfilled, if ha has no negative spectrum! In particular, under condition (1) of
Theorem 3.1 none of the three two-particle subsystems has eigenvalue λ = 0. Note
also that for spherically symmetric pair potentials VΛ this fact was observed in [13].

The rest of this section is devoted to the detailed discussion of Theorem 3.1,
while its proof is postponed until Sect. 4.
2. It is convenient to calculate the coefficient 9I0 by means of decomposition of the
operator S(λ) into the orthogonal sum over its invariant subspaces. To that end we
present (5(3) as C3 (x) ©. Denote by ©j c ©, / = 0, the subspace of surface har-
monics of degree /, ΣΓ=o Θ ©/ = ©/, dim©; = 21+1. Let ^,:© -> ©z be the
orthogonal projector onto ©^. The kernel of 0>

l is expressed via the Legendre
polynomials PI( ):

The kernel of S(/l) depends on the scalar product <£, τy> only, so that the subspaces
(C3 (x) ©z are invariant for S(λ) and

00

sμ)= £ ®(s<"μ)®^;), (3.14)
1 = 0

where S(l\λ) are the 3 x 3-matrices with the entries

= 2π Pt(t) SΛβ(t; λ) dt . (3.15)
-i

Therefore

n(μ, §(!)) = Σ (21 + ί)n(μ, §<'»(!)), μ > 0 . (3.16)
1 = 0

Now, relying on this equality we establish a lower bound for 2ί0 .

Lemma 3.2. If the condition (1) of Theorem 3.1 is fulfilled then the lower bound

-lo
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holds. If the condition (2) of Theorem 3.1 is fulfilled then the lower bound

π22I0^logι^ (3.17")

holds. In particular, $Ϊ0 > 0.

Proof. By (3.16) it suffices to prove (3.17') and (3.17") for the integral

Let us first calculate the entries (3.15):

u^e<r"λ sinh[A(arccoss.,f)]
~ s n φ )

The integral here equals

1 π-arccos^ 3 ^ Γ /π \ Π

— J smh λxdx = — - smh — smh A I - — arccos sΛβ I .
S<*β arccos saβ

 Szβλ 2 [_ \2 /J

Taking into account the identities sinh(π/l) = 2sinh(π/l/2)cosh(π/l/2) and

- — arccos x = arcsinx, x e [0, 1], we obtain from (3.18):

Suppose first that the condition (1) of Theorem 3.1 is fulfilled. In this case we use the
following simple argument.

Let S be a Hermitian 3 x 3 -matrix such that det S > 0 and tr S = 0. Then S has
an eigenvalue ^ (4 det S)1/3.

Since

sinh(/larcsinsα/3)

we have

detS<°>(A) =
cosh

Therefore, the operator S(0)(A) has at least one eigenvalue not less than

Thus

-!^1> 1}

This gives (3.17'). The positivity of 2I0 follows from the fact that uaβ ^ 1, which is
a simple consequence of (3.3) and (3.11).
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Suppose now that the condition (2) of Theorem 3.1 is fulfilled. The matrix

S(0)(A) has only two non-trivial entries: S$(λ) and S$(λ) = S(^(λ), so the only
positive eigenvalue of S(0)(Λ,) equals |5^}(/l)|. Therefore it has the lower bound

_ π U I

uΛβe
 2 .

This yields (3.17"). Note that 9I0 > 0 since u«β > 1 under the condition my < oo .
The proof is completed. D

3. It should be mentioned that the cases (1) and (2) in Theorem 3.1 are qualitatively
different. Namely, according to (3.17') in case (1) the coefficient 9I0 is always
separated away from zero for any choice of m 1 ? w2, w3;

On the contrary, the r.h.s. of (3.17") is positive only for my < oo . We shall show
that in the case when only subsystems α and β have zero resonances and mγ = oo ,
the coefficient 2ί0 equals zero (so that we can not even say that the negative discrete
spectrum of H is infinite). Indeed, as in the proof of Lemma 3.2 all the entries of S(λ)
equal zero except for Saβ(λ) and Sβa(λ) = Sfβ(λ). Evidently

u«β = l raβ = -log-J-, sΛβ = 0.
2 mα

Thus the kernel ofSΛβ(λ) does not depend on ί, so that S(l}(λ) = 0, / ̂  1. According
to (3.19) the only positive eigenvalue of S(/l) is (cosh πλ/2)'1. It is less than 1 for all
λ φ 0, so 2ί0 - 0.
4. Now we are going to obtain an upper bound for 9I0. Since ||Sω(Λ,)|| ->0 as
/ -> oo or \λ\ -+ oo , in view of (3.16) we have for any μ > 0:

W(μ) = (4πΓ* Σ (2' + 1) f n(μ, &*>(λ))dλ
1 = 0 -R

for L = L(μ) < oo , R = R(μ) < oo large enough. Together with the inequality
n(μ, 8 ( l } ( λ ) ) < 3 this immediately yields:

<Ά(μ)^^-R(μ)(L(μ)+l)2 . (3.20)
2π

Thus to estimate 9I0 from above it suffices to obtain upper bounds for R(ί) and
L(l) . From now on we assume μ = 1 and omit μ from the notations.

First we estimate L. Applying the equality

, 0 < e < π , (3.21).
sin θ smh πλ 2π _ ̂  cosh x + cos

established in Appendix I, we see that

Recall that (see [5])

} (z-ί)-1P/(ί)dί
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where Qt(z) is the Legendre function of the second kind. Taking into account that
Qt( - z) = ( - l)/ + 1β/(z), z > 1, we obtain from (3.15) that

Since (see Appendix II)

we have

i c ί Π / Ί M ^ Λ -1 - I f I2*(saj3 Z)IS™ (A) I g 2π ̂ V J , _" ^ί tf - D*

Since z > 1 we find that

Furthermore, using the inequality

00 _ — (l + ϊ) 1 00 7 ~ ( 2 + 4)

r J; jz _ £ r ^ —j dz ̂

we arrive at the bound

Ifiu-oΓsIΌ1 -\- (sΓo2 — i^π~( / + i ) I6ι

A y / υ «̂  ^^<» i J. y

(3.23)

Now, it follows from here and from the obvious inequality

α β

that

I^Γe- 1 _l_ ^c-2 _ nil-'11

]wβ / ϊ, 5:= max{sα^} .
7Γ

Thus ||S(ί)(A)|| ^ 1 if ί^L where

low
log

TΓ * Λ *

(3.25)
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Now we estimate the number .R in (3.20). To that end we obtain an upper bound
for the norm of the operator S(l):

||Sμ)|| ^ 2π max £ |Sβ/?(ί; λ)\ dt = max £ \S$(λ)\ .
« β -1 « /?

According to (3.19)

e (0) _ u*v sinh (̂  arcsin ̂  ) ̂  arcsin sα/? cosh (λ arcsin sα/?- —π/ί
sαjίAcosh-—

π/t
cosh— -

COShy

^ ,λ,(βrC8inβM.f) ^

In view of (3.26) this yields

Therefore ||S(A)|| ^ 1 if |λ| ^ R, where

*= 10gM .
71
- — arcsin 5

Putting together (3.20), (3.25) and (3.27) we obtain the upper bound

2

3 log(πκ)

2π π
- — arcsin s

I6u

(3.26)

(3.27)

u := max s := max

5. Let us consider the important particular case: m± = m2 = rn$. Now we can
calculate the coefficient Sί0 explicitly. Let λk be the unique positive solution of the
equation

πλ
smh— -

- -

COShy

Then we have

Theorem 3.3. Let m^ = m2 = w3 and one of the conditions (1) or (2) of Theorem 3.1
be fulfilled. Then 2ί0 = 4/(2π), w/iere k=lfor the condition (1) am/ k = 2for the
condition (2).

Note first that w(l, = 0 for / ̂  1. Indeed, since
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using the first inequality (3.23), we see that |S$(λ)| < 1/2 for / ̂  1. Thus (3.24)
yields ||S(Z)(A)|| < 1, •/ ^ 1. Consequently, it remains to study the matrix §(0)(/l).

Suppose first that all two-particle subsystems have zero resonances. Then in
view of (3.19),

where

. πλ
sinh —

6

3 V,λ cosh —

The eigenvalues of Ji are 2, — 1, — 1, so the only positive eigenvalue of S(0)(A) is
2a(λ). Hence

,
4π J

Now suppose that only the subsystems 2 and 3 have zero resonances. Then

The eigenvalues of J2 are — 1, 0,1, so the only positive eigenvalue of S(0)(l) is a(λ).
Hence

9In - — f dλ- —v4-0 I t/t/l .

4π α(A)> ! 2π

The theorem is proven. D

Note that the case of identical masses was considered in [7] as well.
6. In conclusion we prove the continuity of 21 (μ) in μ which will be necessary when
proving Theorem 3.1.

Lemma 3.4. The function $I(μ) is continuous in μ > 0.

Proof. We need only to prove the continuity of the integral

f n(μ9&
w(λ))dλ

— oo

for fixed /. The matrix §(/)(A) is analytic in a neighbourhood of the real axis, so we
can numerate its eigenvalue branches μk(λ\ k — 1, 2, 3, in such a way that they are
analytic as well. In combination with the fact that ||S(/)(/l)|| ->0, |Λ |-» oo, this
implies that the number of points λί9 λ2, ..., A r, where at least one of the eigen-
values μk(λ) coincides with μ, is finite. Clearly, outside of λk, k = 1, ... ,r, we have
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limμ>.+μ n(μ', S(l](λ)) = n(μ, S(/)(/l)). Now the desired continuity follows from the
dominated convergence theorem. D

4. Proof of Theorem 3.1

1. In our analysis of the spectrum of H the crucial role is played by the compact
integral operator

A - A(z) = (W(z))1/2K(z)(W(z))1/2 (4.1)

in the space L(

2

3)(9ΐ), where K = K(z) has the entries*.-*, , (4.2)
The following statement relates the spectra of H and A(z).

Theorem 4.1. Let Fα ^ 0 and HΆ ^ 0. Then for z < 0 the operator A(z) is compact
and continuous in z and

N(z) = n ( l , A ( z ) ) . (4.3)

We start the proof of Theorem 4.1 with two elementary lemmas.

Lemma 4.2. For any bounded operator B

Proof. Let us show first that

n(λ,B*B)^n(λ,BB*). (4.4)

To that end we present B in the polar form B = U\B\9 where \B\2 = B*B and U is
the operator such that UU* = P, U*U = β, P and Q being the orthogonal

projectors onto R(B) and R(B*) respectively. Suppose that

( \ B \ 2 f , f ) > λ \ \ f \ \ 2 . (4.5)

Since \B\2 = Q\B\2Q one may take/= Qf. Therefore/- U*Uf= U*g, g = Pg.
Consequently (4.5) yields

(U\B\2U*g,g)>λ\\U*g\\2 = λ\\g\\2 .

Taking into account that BB* = U\B\2U* we obtain (4.4). To get the opposite
inequality it remains to switch B and 5*. D

Let ZJ9 j = 1, 2, ..., v, v < oo , be a set of bounded operators acting from g to I).
Let M:=£;=1z;zy:g-* gaud

/Z Z* Z Z* Z Z* \

Z y^* 7^ V* 7 7*
2^ 1 ^-'2 ^/2 ^-'2^-'v

\Z vZf ZVZ2* . . . Z V Z * /

be the operator in Σ" φ I).
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Lemma 4.3. For any λ > 0

n(λ, M) = n(λ, M).

Proof. Denote by I the v x v-matrix

/ I 1 . . . 1\

1 1 . . . 1

(4.6)

\ 1 1
1

and consider the operator M := Ml acting in χv

= 1

non-trivial eigenvalue (which equals v), we have
9 - Since I has a unique

n(λ,M) = n(vλ,M) . _ (4.7)

Direct calculation shows that M and M have the form M = Z*Z and
M = v - 1ZZ* respectively, where

/ Zί Zι . . . Z]

Z2 Z2 ... Z,
z =

V z,/
Applying Lemma 4.2 to Z*Z and ZZ*, we get (4.6) from (4.7). D

Proof of the Equality (4.3). First we verify the identity

) . (4.8)

Suppose that u e b-H( — z), i.e. (Hu, u) < z(u, u). Then ((H0 — z)u, u) < (| V\u, u)
and consequently,

(y, y) = (H0-

Thus N(z)^n(l9Ro(z)\V\RQ(z)). Reversing the argument we get the opposite
inequality, which proves (4.8).

Since V = V^ + V2 + 3̂ the operator in the r.h.s. of (4.8) has the form
£ l= 1 Zα*Zα, where Zα = | VΛ \* R%(z). Thus by Lemma 4.3 it follows from (4.8) that

N(z) = n(l M) ,

where M = M0 + K, K being defined by (4.2) and M0 = diag{Z1 Zf, Z2Z|, Z3Z3*}.
In view of (3.8) the operator / — M0 is invertible and (/ — Mo)"1 = W. Direct
calculation shows that

The operator in the r.h.s. coincides with A(z). D

To check the compactness and continuity of A(z) for z < 0 we first look at
a more general operator, whose properties will be useful in what follows.
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Let ζ e C°°(R + ) be the same function as in (2.13). Let Γα(z) be the multiplica-

tion by C( ̂  - z ) and let Γ(z) = diagfr^z), Γ2(z), Γ3(z)}. Set
\2wα /

κ<μ.v)(z) = (Γ(z)Γ«K(z)(Γ(z)Π . (4.9)

Lemma 4.4. Let υΛ9 α = 1, 2, 3, sαίis/}; (2.1). Then the operator K ( μ ' v ) ( z ) f o r z < 0 is
continuous in z and compact for all v ̂  0 and μ ̂  0. If v ̂  1/4, μ g 1/4 am/
μ + v < 1/2 then K(μ'v)(z) is continuous up to z = 0.

Proof. Set Φ = diag{$! , Φ2, Φ3}, where Φα is the Fourier transform defined in
(3.2). It suffices to study the operator

K(z) = K(μ'v)(z)

The kernel of KΛβ(z) equals

(2")S

where x = xα, x' = xβ, p = pα, pr = pp. Denote by ξκ the multiplication by the
characteristic function of the ball {p e R3 | |p| ^ R}. Then, clearly,

Kα/?(z) = Z«(z) + 7Λ(z) ,

where

ZR(z) = {ΛKβ/,(z)ίΛ + (/ - ^)Xα/?(z)^ + f *X.,(z)(/ - ίΛ) , (4.10)

YR(z) = (I-ξ*)Kaβ(z)(I-ξR). (4.11)

We shall show that the kernel of the operator (4.10) is square-integrable over its
arguments, so that ZR(z) e S2 I

n combination with the continuity of the kernel in
z < 0 this will give the continuity of ZR(z) in z < 0. Let us consider the first
operator in (4.10). For z < 0 its inclusion in the Hubert-Schmidt class is obvious.
Suppose that μ + v < 1/2, μ ^ 1/4, v ̂  1/4 and z ̂  0. In view of (3.5) we have

HSp(p9 P') ^ cp2κ(p')2κ\ κ + κ'=l. (4.12)

Thus the kernel of ZR(z) does not exceed

It remains to choose K and K' in such a way that μ -h K < 3/4, v + κr < 3/4. Using
the same argument one can prove that the second and the third operators in (4.10)
belong to the Hubert-Schmidt class and are continuous in z :g 0 if μ ^ 1/4, v ̂  1/4
and μ + v < 1/2. For example, the second operator is Hubert-Schmidt since its
kernel is bounded by

The norm of the operator (4.11) is bounded by CR~2 for all z ̂  0 since
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by (3.5). Therefore \\ZR(z) - Kaβ(z)\\-+Q as #-> oo . Hence the continuity and
compactness ofKΛβ(z) (and consequently, Kfy v)(z)) follow from those of ZR(z). D

The end of the proof of Theorem 4.1. Comparing (4.1) and (4.9) we see that
A(z) = W*K ( 0 > 0 )(z)W*. The desired compactness and continuity follow from
Lemma 4.4. D

2. As we shall see later, the discrete asymptotics of the operator A(z) as z -> — 0 is
determined by the integral operator SΛ in L2((0, R\ (5(3)), (5 = L2(§2), with the
kernel S^(x - x'; < ξ, */», η, ξ e §2, where

5αα(x; ί) = 0,

(4.13)
,c o s x + rα0) + sαjβί

and Mαjϊ, rαjϊ, sαjϊ are defined in (3.11).

Let the function 9ί( ) be defined by (3.12). First of all we establish the following

Theorem 4.5. Let SR be the operator defined in (4.13). Then for any μ > 0,

lim R-1n(μ,SR) = 2<Ά(μ). (4.14)

The proof of Theorem 4.5 is based on a simple Toeplitz type argument. Namely,
let us consider the selfadjoint integral operator ΎR in the space L2

d)(0, R), d ̂  1,
with the kernel T^(x - x'\

T«β(x) = TPΛ(- x), TΛβ 6 Li (R) n L^ (R) .

Let T(l) = {Γα/3(>l}) be the matrix with the entries

Let μk(λ) be the eigenvalues of the matrix Ύ(λ) numerated in non-increasing order
counting multiplicity. Clearly, they are continuous in λ. Denote SPl(μ) = 9W(μ; T)
= \Jk{λ:μk(λ) = μ}.

Lemma 4.6. Let ΎR be as defined above and μ > 0 be fixed. Suppose that
mes SPt(μ) = 0. Then we have

00

2π lim R-1n(μ,ΊR)= J n(μ, ί (/I)) Λl . (4.15)
R-* oo — oo

This lemma is a trivial generalization of a corresponding result for the case
d = 1, which can be found in [8]. In the language of Toeplitz operators it provides
the so-called canonical distribution for the kernel TΛβ(x). Below we denote by ||K||2
the Hubert-Schmidt norm of the operator K.

Proof of Lemma 4.6. By Riemann-Lebesgue Theorem n(μ, T(A)) = 0 for \λ\ ̂  M
with M > 0 large enough, so that the equality (4.15) is equivalent to

M

2π lim R-ln(μ,τR)= f n ( μ , Ύ ( λ ) ) d λ . (4.16)
K-»oo -M
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Let us define in Z/2

d)(0, R) the operator ΎA,R with the kernel

TΛβ(x; A) = TΛβ(x)χ(x/A)9 A ^ R/2 ,

where χ means the characteristic function of the interval [ — 1, 1]. Then, obviously,

J \TΛβ(x)\2dx.

Further, let

(4.17)

(4.18)

be a periodic extension of the kernel Tβ(x; A) with period R. Denote by Tj}>Λ the
operator in L(

2

d)(0, R) with the kernel (4.18) and estimate the Hubert-Schmidt norm

αfl 0 0

TΛβ (x - x1 + Rn; A)
n φ 0

In fact, the r.h.s. contains only summands with n= — 1, n = — 1. All the others
equal zero for x, x' e [0, K]. Therefore

f d x ' ί
<*β 0 0

/ +R)\2

ί dx' \

— x'

<' ί
0 -R-x'

Combining this estimate with (4.17) we obtain

lira κ(A) = 0 .
A-*ao

Now it follows from the inequality n (s, A) ^ s ~ 2 1 1 A \ \ I , s > 0, and the Weyl inequal-
ity (3.9) that

n(μ, ΎR) g n(μ - δ, Ίϋ,R) + n(δ, ΎR - Ύl,R)

g n(μ - δ, IS,*) + δ~ 2(Λfc(X) + CA),

n(μ, Tβ) ̂  n(μ + δ, T5.Λ) - δ-2(Rκ(X)
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for any μ > 0, δ > 0. Consequently,

lim sup ̂ "^(μ, ΎR) ^ lim supJ^~1n(μ — δ, TJJ j j R),

liminfβ"1^, TR) ̂  lim infβ"1^ + δ,Ί%>R),
V<5 > 0 , (4.19)

where limits in the r.h.s. are taken as .R -> oo, A -> oo, ,4/# -» 0.
We shall prove that for any ε > 0 and some δ = δ(ε), the relation holds:

M

2π lim sup jR~ 1 n(v, TJJ, Λ) ̂  J n(μ, f (λ)) dλ + Cε, v = μ - δ . (4.20)
-M

The eigenvalues of the operator T£Λ can be calculated by means of the Fourier
series:

where Ύ(Λ is the matrix with entries

f

(4.21)

(4.22)

By condition of lemma for any ε > 0 one can find an open set SPlε(μ) (which is
a union of a finite number of open intervals) such that

9M(μ) cz 9Wβ(μ), mes 9Wε(μ) < ε .

Let us define the number δ = δ(ε) in (4.20) by the requirement

We split the sum in (4.21) into two parts:

y n (v τ ( m )) = y nίv f ( m ) ) + yZ_j V > -4,K/ ĵ V > -ι4,κ/ ĵ

(4.23)

(4.24)

Since the first term in the r.h.s. is bounded by Rd(2π) 1 mes 9Ke(μ), its contribution
to the asymptotics (4.20) does not exceed Cε. Further, according to (4.22) we have

rίSί \ rίS/ Lm

TU-Tl-π oo.

Since v = μ — (5, in combination with (4.23) this tells us that n(v, T^) =
n(μ, T(2mπ/JR)) for large ^4 iί2mπ/R φ 9Wε(μ). Therefore the second sum in the r.h.s.
of (4.24) equals

2n ( Λm \\
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where M is the same as in (4.16). Since the function n(μ, Ύ(λ)) is continuous in
λ φ 9Jiε(μ) the sum (4.25) considered as the integral sum, converges to the integral

J n(μ,ΐ(λ))dλ.
[-M,M]\Wε(μ)

To obtain the relation (4.20) it remains to recall once again that mes 9Mε(μ) < ε.
Since ε > 0 is an arbitrary number, the inequalities (4.19) and (4.20) yield:

M

2πlimsupR~1n(μ,ΎR)^ J n(μ, f (λ)) dλ .
-M

~lIn the same way one can establish a similar lower bound for lim inf R~l n(μ, ΎR).
Together they prove (4.16). D

Proof of the Equality (4.14). Similarly to (3.14) we have

s*= Σ θ(s<p® <?>,),
1 = 0

where Sjf are the operators in L(

2

3) (0, R) with the kernels

S<$(x - xf) = 2π } Pt(t)SΛβ(x - xf; t) dt . (4.26)
-i

Consequently,

n(μ,SR)= Σ (2/+l)n(μ,S<[>). (4.27)

Now, comparing the definitions (3.10), (4.13) and applying the equality (3.21), we
see that

S«β(t;λ)= J e-iλxSΛβ(x;t)dx.

By (3.15) and (4.26) this yields

— oo

As it was mentioned in the proof of Lemma 3.4, the matrix S(l)(λ) is analytic in λ in
a neighbourhood of the real axes, so that mesϊRΐμ; S(Z)) = 0 for any μ > 0.
Applying Lemma 4.6 we find that

00

2π lim R-1 n(μ, Sjf) = J n(μ, §(0(/l)) dλ .
R-> oo — oo

It remains to take into account (4.27) and (3.16). D

3. Let us proceed to the study of the operator A(z). Below we always assume z ^ 0.
Our aim is to prove

Theorem 4.7. Let the conditions of Theorem 3.1 be fulfilled. Then for any μ > 0 we
have

lim | log|z |Γ 1Fi(μ,A(z)) = a(μ). (4.28)
z->-0

When proving this theorem we rely upon the following two lemmas.
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Lemma 4.8. Let 7\ , T2 be bounded operators. Ifλ φ 0 is an eigenvalue ofTγ T2 then
λ is an eigenvalue for T2 7\ as well of the same algebraic and geometric multiplicities.

This lemma is well known and its proof is omitted.

Lemma 4.9. Let T(z) = Γ0(z) + 7\(z), where T0 (7\) is compact and continuous in
z < 0 (z ̂  0). Assume that for some function f( *)>/(z) -» 0, z -> — 0 f/zere exists the
limit

continuous in λ > 0. J7i£7t ί/ie same /ΐraiί exists for T(z) and

\imf(z)n(λ,T(z)) =

/ According to the Weyl inequality (3.9) for any ε e (0, 1) we have

n(λ, Γ(z)) ̂  n(λ(l - ε), Γ0(z)) + n(λε, 7\(z)) ,

n(λ, Γ(z)) ̂  n(λ(l + ε), Γ0(z)) - n(λ^ - T,(z)) .

Since 7\(z) is continuous up to z = 0, we have

ε)) ̂  lim Mf(z)n(λ, T(z)) ^ lim sup/(z)n(/ί, Γ(z)) ̂  /(A(l - ε)) .
z-"-0 z-»-0

Now the desired result follows from the continuity of /(•). D

Proof of Theorem 4.7. Since 2X( ) is continuous in μ (see Lemma 3.4), according to
Lemma 4.9 the perturbations of the operator A(z) which are compact and continu-
ous up to z = 0, do not contribute to the asymptotics (4.28). We shall use this fact
throughout the proof without further comments.

First we prove the theorem under the condition that all two particle subsystems
have zero energy resonances.

Let Γα(z) be the multiplication by ζ ( — ̂ - - z and 77 α be the operator such that

^PαMΦαΦα)

It follows from (2.13) and from the definition of WΛ(z) that

(WΛ(z))* = (ΓΛ(z)Γ*ΠΛ + (ΓΛ(z)\

= Πα(Γα(z))~* 4- ^(zHΓ^z))-" , (4.25)

where

is bounded and continuous in z ̂  0. Thus

)* = (Γ(z)Γ*JI +
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where Γ(z\ W(<5)(z), Π are diagonal matrices with the entries Γα(z), W^δ\z\ 77α. It
follows from here that A(z) = A° (z) + Y(z), where

Y(z) - 77K (X'v)(z) W(<5)(z) + W^K^'^z);! + W (<5)(z)K (v'v)(z) w(<5)(z) .

Here μ = 1/4, v = (1 - <5)/4. By Lemma 4.4 the operators K(μ'v)(z), K(v'μ)(z),
K(v'v)(z) are compact and continuous in z ^ 0. Thus, by virtue of Lemma 4.9 Y(z)
does not contribute to the asymptotics (4.28).

Let us look at the operator A°(z). Let ξ( ) be a characteristic function of the
ball {p| |p| ^ 1}, and ξa be a multiplication by the function ξ(pα). Set Ξ :=
diag{£1? ξ2, £3}. Using Lemma 3.6 one can easily prove that A°(z) — ΞA°(z)Ξ is
compact and continuous in z up to z = 0.

The following step consists in a reduction of the problem to an operator acting
in the space L(

2

3)(R3). Let F - diag{F1? F2, F3} :L(

2

3)(R3) -> L2

3)(5R) be the oper-
ator with the entries

Then obviously

( F * f ) ( p Λ ) = J ( Φ * φ Λ ) ( k Λ ) f ( k Λ 9 p Λ ) d k Λ .

The nontrivial eigenvalues of ΞA°(z)Ξ coincide with those of the operator

S(z):= F*SK(* * )(z)SF.

Indeed, by Lemma 4.8 the discrete spectrum of ΞA°(z)Ξ coincides with that of

Since Π« = (% Φαφα)Φαφ« = ^α^<? it remains to apply Lemma 4.8 once again.
One may think that the operator S(z) acts in L(

2

3)(£ι), Br = {\p\ g r}, r > 0. Its
kernel equals

where ψa(k) = (Φa\va\*φa)(k). First we replace the functions φa(k) by
^α(0) = 2-5 / 4π~1C3 / 4 (see (3.6)). Then by (2.10) and (4.12) the kernel of the
difference will be bounded by

Γ _ I P l + ' ^ 1 _ < / - / j n | 5 - 2 κ - i | t-2κ'- i

- ϋ | / 7 1 l g l

for arbitrary K, κf, K + κf = 1. Choosing K e (1/2, (1 + <5)/2), we see that this
operator is Hubert-Schmidt up to z = 0. For the same reason we can replace the
functions ((p2/2nα — z), ζ(q2/2nβ — z) by p2/2n(X — z, q2/2nβ — z respectively. Thus
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we arrive at the operator with the following kernel:

One can trivially verify that this operator is unitarily equivalent to that with the
kernel

2-*π-2(lulβΓ*(]£-+l) Y^ +
V/Hα / \^ιβ

acting in L^(Br)9 r = |z |~ 1 / 2 . The equivalence is performed by the unitary
dilation U, = diag{t/r, 17, , 17,}: L^^L^B,), (l7,/)(p) = ̂ /(r^p).
Further, we may replace (p2/2nα + 1) S (q2/2np + 1) * and Hα°^(p, g) + 1 by
2nΛp~2(l — ξ (/?)), 2nβq~2(l — ξ(q)) and H%β(p, q) respectively, since the error will
be a Hubert-Schmidt operator continuous up to z = 0. Then we get the operator in
L(

2

3) (Br\Bl ) with the kernel

Here we used the formula (3.4) for H£β (p, q). Finally, this operator is unitarily
equivalent to the operator SΛ, R = 1/2 |log|z|| defined in (4.13). The equivalence
is performed by the unitary operator M = diag{M, M, M}:L(2\Br\Bι) ->
L2((0, jR), ®(3)), where (M/) (x, ω) = β3x/2/(^ω), x 6 (0, #), ω e §2. Now the
relation (4.28) follows from (4.14).

Now suppose that condition (2) of Theorem 3.1. is fulfilled. To be definite we
assume that zero is the regular point for the Hamiltonian /ι3 and the resonance for
hl9h2. Then by Lemma 2.2 the operator W3(z) ^ 0 is continuous in z ̂  0. Thus
setting φ3 = 0 we see that W^(z) satisfies the relation (4.25) where

After this remark the proof goes as before. D

Now the equality (3.13) follows from Theorem 4.7 and the relation (4.3). This
completes the proof of Theorem 3.1.

Appendix

/. Here we prove the identity (3.21). Denote

,θ):=±- f e-"*f(x90)dx, 0< θ < π ., . - 5, , -
cosh x + cos θ 2π _

Since /(x, θ) =f(x + 2πί, θ\ we have

) := ̂  " +Γ e~ίλxf(*> θ) dx = e2«λJί(λ9 θ) . (Al)
^π -oo + 2πi
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Further, the function /(x, θ) has two poles in the strip Im x e (0, 2π), namely
x1 = i(π — θ) and x2 = *(π + θ). Thus,

jf(λ,θ) = jfs(λ,θ) + ±- Σ Je"'A x/(*,0)^, (A2)
Z π f c = l , 2 Jk

where /fc, fc = 1, 2, means a circle of a small radius centered at the point xfc, the
integral over lk being taken in the counter-clockwise direction. Combining (Al) and
(A2), we see that

'&0) = ϊ—U* Σ ^-le-"*f(x,θ)dx. (A3)
1 ~~ e fc=l,2 Zπ Zk

Taking into account the following expansion at the point xfc,

cosh x = — cos 0 + (x — xfc) sinh xk + , fc = 1, 2 ,

we obtain by the Cauchy theorem:
ι g-iλxk

-

Thus, using the equalities — i sinh ίz = sinz and sin(π ± θ) = + sin θ, we derive
from (A3) that

λ(π-0) _ pλ(π + θ)

Now it is easy to show that the r.h.s. of this equality equals the l.h.s. of (3.21).

//. Let us prove now the bound (3.22). To that end we use the following representa-
tion (see [5]) of the function Qι\

00

Ql(coshy) = 2-ϊ J (cosh t - cosh y)~* e~(l+^dt, y ̂  0 .
y

Since
r

cosh t — cosh y ^ J sinh tf at' ^ (t — y) sinh y ,
y

it follows from here that
oo g - ( Z + i)f

βz(cosh};) ̂  (2 sinh);)-- f A

= (sinhy)-*(2/ + 1)~* β-< I +*>y J ̂  Λ .
o ^ 2

Using the identity

o

we obtain the inequality

Q^coshy) ^ π-(si

To get (3.22) it remains to substitute z = cosh 3; and take into account that
arccoshz = log[z + (z2 — 1)1/2] .
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