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Abstract. A "system of coordinates" on a set A of selfdual lattices in a two-
dimensional p-adic symplectic space (ί^Jg?) is suggested. A unitary irreducible
representation of the Heisenberg group of the space (Ψ\ J9) depending on a lattice
5% <E A (an analogue of the Carrier representation) is constructed and its properties
are investigated. By the use of such representations for three different lattices
^ , ^ 2 , ^ 3 € A one defines the Maslov index μ — μ{Sx,5§2,5§^) °f a triple of
lattices. Properties of the index μ are investigated and values of μ in coordinates for
different triples of lattices are calculated.

1. Introduction

As it is known one of the profitable methods to study a quantization procedure is to
construct and to investigate topological characteristics associated with this procedure.
An example of such a characteristic is the Maslov index [Ma]. Let us discuss generally
one way to obtain such characteristics. Let G be a group and (H^ ί/J, i = 1,2,3 be
its unitary irreducible representations in the Hubert spaces H^ i = 1,2,3 respectively.
Let us assume that these representations are unitary equivalent and F2l, F32 and Fl3

be unitary intertwining operators. That is, say for F 2 1 , F2ι:Hι —> H2 and for all
g E G the relation

holds (and similarly for operators F32 and F 1 3 ). By the last formula the operator
F — Fl3F32F21 \HX —> H{ commutes with all operators U{(g), g e G. In view of
irreducibility of (HX,UX) the operator F is proportional to the identity operator, that is
F = μ Id for some μ € T (T denotes a unit circle in the field C of complex numbers).
Hence we obtain a numerical characteristic μ of a group G and a triple of its unitary
irreducible representations.
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Let us take an example, see [LV]. Let (9^, J?) be a two-dimensional symplectic
vector space over the field R of real numbers and 9̂ * be the Heisenberg group
of the space (Ψ*,JB) (that is ^* is the three-dimensional Heisenberg group). Let
also L be a lagrangian (that is one-dimensional for d i m ^ = 2) subspace of
^ provided with the natural Haar measure dm(L). As it is known there is a
unitary irreducible representation (H(L), UL) of the group 9^ in the Hubert space
H(L) — L2(L, dm(L)). For two different lagrangian subspaces Lι and L2 these
representations are unitary equivalent. Let now Lλ, L2 and L3 be different lagrangian
subspaces in Ψ°. By applying the procedure discussed above for the group ffi
and for the representations UL , ULi and UL we obtain a numerical characteristic
μ(Lj, L2, L3) of these representations. It turns out that in this case μ = exp(zπτ/4),
where τ = τ(Lu L2, L3) G Z is the Maslov index of lagrangian subspaces Ll9 L2

and L3, see [LV].

As a different example we consider the Carrier representation [C] of the Heisenberg
group (V. This representation is unitary, irreducible and depends on a selfdual
Z-lattice SZ in the space Ψ*. By using the procedure discussed above for the Carrier
representations associated with lattices SZX, S2 and S§3 we obtain an index of a triple
( J ^ , ^ , ^ ) of selfdual Z-lattices, see [LV].

As p-adic numbers find expanding applications in mathematical physics (the active
advancement began from the paper [V]) it is interesting to extend the construction
discussed above for the field Qp of p-adic numbers. Let now (9^, J?) be a two-
dimensional symplectic vector space over Qp and Ψ* be the Heisenberg group of this
space (for the definition of the group 9^ see Sect. 3 of this paper). As for the field R
there is a unitary irreducible representation of 9^ in the space L2(L, dm{L)), where
L is a lagrangian subspace of the space Ψ* and dm(L) is the Haar measure on L, as
to the corresponding index see [LV] and bibliography there.

There exist also a unitary irreducible representation of the p-adic Heisenberg group
depending on a selfdual Zp-lattice in the space Ψ*. (Z p denotes a ring of p-adic
integers.) This representation is an analogue of the Carrier representation mentioned
above. By applying the procedure discussed above for the p-adic Heisenberg group
and a triple of its representations associated with lattices J ^ , J^2 and SS3 we obtain
a complex number μ = μ(Jgχ,3?2,323) G T. This number μ we call the Maslov
index of a triple (S§λ, i ξ , i ζ ) of selfdual Zp-lattices. This index is the subject of our
investigation. It is not improbable that this index will be useful for p-adic quantum
mechanics constructed in [VV] (see also [Me, R]).

The structure of this paper is the following. In Sect. 2 one considers Zp-lattices
and their properties. In particular one constructs a "system of coordinates" on a
set A of selfdual Zp-lattices in a two-dimensional symplectic space (9^, Jθ) over Qp

(Proposition 1). In Sect. 3 we define the Heisenberg group ^ of the space ( ^ , 38) and
construct a unitary irreducible representation {H(SZ), W%) of this group depending
on a lattice 5$ G A. We prove also some properties of this representation (Proposition
2). In Sect. 4 an intertwining operator of two such representation is constructed and
its properties are investigated (Proposition 3). In Sect. 5 we construct the Maslov
index of a triple of selfdual Zp-lattices. We also obtain an explicit formula for this
index (Proposition 4) and prove some natural properties of the index (Proposition 5).
Section 6 is devoted to calculations of the Maslov index in coordinates defined in
Sect. 2.
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2. Lattices

Let (ί^, J?) be a two dimensional symplectic space over Qp and 53 be a toftc*? in

(ί?*,.^) ( t π a t is ciί is a finitely generated Zp-submodule of the space 9^ containing

a basis of 9^). A dual lattice ,S?* is defined as follows:

jr* = {x G 9r:Mχ,y) ezpyye &}.

If 5f = if*, then i f is a self dual lattice. Let vl = Λ(9^, J9) denote the set of all
selfdual lattices in (2^, J?). Note that if % G A(9r,.$9), then (iί,.i?) is a space with
symplectic inner product.

As Z p is a local ring, then there exists a symplectic basis {e, /} of the space

{ψ\Jθ) (symplectic means that .i?(e,/) = 1) wherein (see [MH])

Moreover for any S\, if2 G A there is a symplectic basis {e, /} wherein these lattices
have the form

5§x = Zpe Θ Z p / , if2 = p m Z p e θ p~mZpf

for some nonnegative integer m. For the proof of existence of such basis (but is not
of necessity symplectic) see for example [Wl], reduction to symplectic case is rather
obvious.

Now we define a "system of coordinates" on the set A. Let Sp{%r) denote the
group of all linear automorphisms of 9>r preserving the form JS (symplectic group)
and Sp{5ζ) be a stabilizer of a selfdual lattice i f in Sp(W). Sp{9^) acts on A
in a standard manner, this action is transitive. Thus A can be identified with the
homogeneous space

Propos i t ion 1. Let { e , / } be a symplectic basis in (;W,J$). Then the map φ : Z x

Z x Q p / Z p 9 (m, μ) & Zpp
me ® Zp(μpme + p~mf) G A

defines a one-to-one correspondence between Z x Qp/Zp and A. (In the right-hand
part of the last formula μ denotes an arbitrary element of a coset μ.)

Proof Let J?o denote the following lattice:

In the basis {e,/} Sp(7^) and Sp{SQ) have the matrix realizations: Sp(W) =
5L(2, Qp), Spi^o) ^ SX(2, Z p ). Let ,5? be an arbitrary lattice from A Then there is
an element g G SX(2, Qp) such that i ? = ^ ^ 0 . By the Iwasawa decomposition (see
[PR]) g can be represented in the form:

pm 0 \ (\ μ

0 p~m) \0 1

for some m G Z, μ G Q p and #0 G 5L(2, Z p). Thus 3! has the form
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and the map φ is surjective. As for ra, m! G Z and /x, μ1 G Qp we have

?m' 0 \ / I μ ' M " 1 / ^ m 0 ^ / Ί μ

0 p"™'/ V° 1

pm-m' p™-m/μ-v™-™μf\
m'-m ) bL\λ^ίLv)

if and only if m = m1 and μ — μ! G Z , then the definition of the map (̂  is correct
(that is it doesn't depend on a choice of μ in a cosetμ). This finishes the proof.

Corollary. For any J^ l 5 J^?25=^3 £ Λ fΛere w α symplectic basis {e, /} wherein

^ 3 = Z p p n e φ Zp(ι/p"e + p " " / )

some m G Z > 0 , n G Z, v G
p .

3. p-Adic Heisenberg Group

Let χ p be an additive character of Qp of rank 0 (that is χp(x) = 1 if and only if

x G Z p), T be a unit circle in the field C of complex numbers. Heisenberg group Ψ*

of a space (9^, J?) is the set of pairs

with the composition law

(α, x) (/?, 2/) = {aβχp(\/2JB(x, y)\ x + y).

We assume that p ψΊ below. Now we construct some representation of 3^. This
representation depends on a lattice S§ G A and therefore we call it ^-representation.
Let H(cS?) denote the space of finite complex valued functions on 9^ satisfying the
relation

for all x G ^ and u G 5£. Note that if f,g G £Γ(J^) then |/ | and /^ are constant
on every coset in S^/J? and nonzero only on a finite number of such cosets. For
/, g G H(&) the formula

defines a nonnegative hermitian form on H(3?) and thus H(S%) is provided by
a prehilbertian structure. The space H{S§) of S"-representation is defined as the
completion of ΐl(S%) with respect to the norm || | |2 = ( , •). As ΦΊSZ is a countable
set, then H{2?) is a separable Hubert space.

On the space ϊl{Sf) we define the following set of operators, x , ί / G f :

(W%(x)f) (y) = χp(l/Z&(x, y))f(y - x).
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These operators satisfy the co-called Weyl relation

It is easy to see that W%(x), x G 9^ are isometric operators on H{5?) and therefore
are uniquely extended to unitary operators on H(£g) (for these operators we retain
the same notation W^(x)). ^-representation of 9^ is defined as a pair (iί(J2ί), W^),
where W^-(α,χ) — OLW,A(X). From the Weyl relation we see that this pair is in fact
a unitary representation of Ψ', For the sake of convenience we use the term "J^-
representation" for a pair (H(J&), W3(x)). A similar representation was considered
in [W2]. Note that ^-representation is a p-adic analogue of the Cartier representation
[C] of the Heisenberg group over real numbers.

Let φ^ denote the following element of H(S§y

1 , u G J ^ ,

We call it a vacuum vector of (ίf(J^), W%-(x)). It is easy to see that this vector
satisfies the property

= Φv (1)

for all x G J&.
Let ηc£: 9^ —>• T be a function satisfying the property

for all x G ̂  and u G =Sf. It is quite easy to prove that the map Ψ'

9^ 3 x i—> η5/ζ(x)Wc/ζ(x)φ%

is constant on every coset in ^/Jg and thus one defines a map ^

by the same formula. The range of values of the map ^ we call a set of coherent
states of ^-representation.

Proposition 2. 77ze representation (H(J&), W%(x)) has the properties:
(i) (^W^,y = ^W;

(ii) /̂ẑ  5"̂ / of coherent states forms an orthonormal basis in H{2§);
(iii) ί/ẑ  representation (H(££), W%(x)) is irreducible.

4. Intertwining Operator

Let for 5SX^2 G A ρ~2{^λ,^2) denotes the number of elements of the group

Proposition 3. Let (H{J&X), WM ) and (H(^2), W^) be J£r and ^-representations.

Then the operator F%2 % \H(SSX) —̂  H(<S?2) defined by the formula

p ( u + a) (2)

is a unitary operator. It satisfies the property

FxU=F^2 (3)
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and it is an intertwining operator for the 5§x- and S^2~
rePresenta^onsy t n a t is for all

x G f the following relation holds:

F^Ws^F^Ά = W^ix). (4)

Proof At first we check that the definition (1) is correct, that is the right-hand part of
the formula (2) doesn't depend on a choice of an element in coset a G J
In fact taking into account that / G H{5§{) for a! G ̂  Π J^2 we have

χp(l/2JP(a + α', u))f(u + a + a1)

+ α;, u) + \/2JS{u + α, α 7 ))/^ + a)

Σ λPd/2^(α, α/))Xp(l/2Jg>(α, ̂ ))/(w + α)

Σ

It is easy to check that for / G H(J£X) the condition F ^ ^ / G H{2§2) holds.
Let us prove unitarity of FS£i %χ. From the definition of the operator F%1 ^ we

get

From the definition of ^-representation, orthogonality of coherent states, Parseval-
Stokes relation and the last formula we have

Σ
2/(-̂ l

Now we prove the formula (3). Taking into account the condition / G Έί{3§{) we

get

, u))

α, w + /3))/(tx + α + /?)

, u) + l/2J&(a, u + β) + l/2JB(u + α, /?))/(w + α)
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and (3) follows from the formula

For o; G S?γ Π .5^ (6) obviously follows from the definition of Q(SZX , if 2) F°Γ

α ^ I 2 n i^j let us choose /?' G ^ satisfying the condition χ p ( .^(α, /?')) T4 1
(by virtue of self duality of S6\ such β' always exists). Then

Σ
, β')) ρ\%x, ̂ 2 ) 22 χp(Ma, β))

and therefore (6) is valid. The property (4) of the operator F% ^ can be proved by
analogy to that of (3).

The operator F<% % we call a canonical intertwining operator.

In particular from the last proposition it follows that =S Γ̂ and ^ 2 ~ r e P r e s e n t a t i ° n s

are unitary equivalent.

5. Maslov Index

Let 3SX, J&2, ̂ 3 ^ A. Then the corresponding representations (l/(,^i), W ^ ) ,

W ^ ) and (jff(^3), W ^ ) are unitary equivalent. Let us consider the unitary operator

•^ = ^^,^3^3,^2^2,%! o n t n e s P a c e HίJgΊ). By using the formula (4) for

intertwining operators F% % , F% % and i^^^ i 'xt ^s e a s ^ t 0 s e e t n a t t n e ° P e r a t o r

. ^ commutes with all operators W% (x), x G 5^ and by virtue of irreducibility of the

^-representation (ijΓ(i^), W^ ) it is proportional to the identity operator on

Thus we have

The number ^ ( ^ , 5 ^ , J?3) G T we call the Maslov index of a triple of self dual
lattices.

Let us take an explicit formula for the Maslov index.

Proposition 4. Let i^j, i^2, ^ G A 77zett the following formula holds:

^ Σ χp(l/2Ma,β)).
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Proof leans upon the formula (2) for a canonical intertwining operator. Let
/ e H(^{), then we have

+ \/US{β, iz + 7) + l/2Jg>(α, w + /? + Ί))f(u + α + β + 7)

x χ p ( l/2#(α, /?) + .^(α + )S, 7))/(^ + α + β).

By using the last formula for / = φ^ we get the needed formula:

Proposition 4 shows that the Maslov index of a triple of selfdual lattices does
depend on only the "relative positions" of lattices, although in its definition one uses
a representation of the Heisenberg group.

Proposition 5. Let SS^^^SZ^SS^ E A. The following statements are valid.
(i) μ{&x, J2?2, J2?3) = μ{g3Sγ, 9%»9%i> for all 9 G Sp(^);

(ii) μ(J^1? J ^ , = ^ ) = 1 if at least two lattices in the triple coincide;
(iii) μ(o2f1? J2 ,̂«3%) remains the same under an even permutation of lattices in the
triple and transfers to a conjugate expression under an odd one;
(iv) the following cocycle relation holds:

Proof (i) follows directly from the explicit formula for μ (Proposition 4). The
statement (ii)-(iv) one proves in a similar manner immediately from the definition of
μ. Let us prove the statement (iv). From the definition of the Maslow index we have:

6. Calculations of the Maslov Index

Let us remind that any x £ Q* can be uniquely represented in the following form:

x = p°rάP{x)ε(x),
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w h e r e o r d p : Q * - > Z a n d \x\p = p ~ o r ά p { x ) ; ε : Q * - > Z * a n d ε(x) = x o + x λ p + . . . ,
Xj — 0,1, . . . , p — 1, x 0 ^ 0. Fractional part {x}p equals 0 if x G Z p and for x φ Z p

is defined by the formula

Let XP:QV -• T be a function defined by the formula (see [VV]):

1.

' 1, ordJx) = 2fc, k G Z ,

λp(0) = 1.

λ p W = <i

il - ^ I, ordΏ(x) = 2k + 1, /c G Z,p = 3 (mod4),
\ P J

ί ε(x)\
where f ] is the Legendre symbol of a ϋ-adic unit ε{x) G Z*. This function has

V P ) v

the following properties.

Lemma 1. Function λp has the properties:

(i) λp(-x) = \Jx);
(ii) Xp(a2x) = λp(x\ αGQ*;

(iii) Ap(x)Ap(2/) = \ p ( ° ~ ) \ ( x + 2/);

(iv) λp(x) Ap(?/) = (x, y)\p{xy), where (x, y) is the Hubert symbol.

Proof. For the proof of the properties (i)-(iii) see [VV]. Taking into account that
Xp(x) — 1 for x G Z*, statement (ii) and the symmetry of (iv) it is sufficient to check

η
( i v ) f o r t h e c a s e s x = y — p , x — y — ηp, x = p , y = ηp, w h e r e η G Z * I - 1 = — 1

\pj
that can be done by direct calculations.

From the definition of λp it is easy to make out the connection of this function
with the Gauss sum

p ) p (7)

where a G Z, n G Z > 0 and α is not divisible by p.

Let ra, n G Z, μ, i/ G Q p and {e, /} be a symplectic basis of (^*, 3B). We consider

now the following triple of selfdual lattices in (9^, J?):

^ = Zpe Θ Zpf ,

^ 2 = Z ^ m e 0

As it is evident from the foregoing the Maslov index of these triples can be represented
as function of ra, n, μ and v, that is μ{S%λ, =2^, =S?3) = M(ra, μ; n, z/) for some function
M:(Z x Qp) x (Z x Qp) —• T. The explicit formulas for the function M in simplest
cases is given by the following theorem.
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Theorem. The following formulas are valid:

(i) M(ra,0;n,0) = 1 for all m.neZ;

1, m > 0 or v G Z p ,

(ii) M(ra, 0; 0, ι/) = <{ λ p (-ι/), m < 0,1 < \v\p < p~2m ,

>V — I \p >

(iii) M(0,μ;0,ϊ/)= i ' μ, p ™'. v v o r ^ v v>
^ ' λ (μu(μ — v)) in other cases.

Proof. Since |/i(J^1? J^,«J^)| = 1, then all calculations can be carried out up to some
real positive factor and instead of the equality sign we shall write the sign ~. By
virtue of Proposition 4 and the last remark we have

M{m,μ,n,v)~ V" χ (l/2J?(α,/?)).

(i) Taking into account Proposition 5 (ii) it is sufficient to consider the case m Φ 0,
77ϊ, φ n, n φ 0. Besides that we can reduce the general case to the case of m > n,
m > 0 by means of changes of order of lattices in the triple and transformation of
basis e —•> /, / —> — e if it is necessary. Since a G J^2 and /? G =̂ 3 they can be
represented in the following form:

where aua2iβ\,βι £ ^ p As prnaι G Z p if m > 0 and α t G Z p then the condition
α + β G c^i has the form:

pn/3ieZp, p - ^ + p - ^ e ^ . (8)

Since χp is of rank 0 and taking into account the condition m — n > 0 and the formula
(8) we get:

and therefore M(m, 0; n, 0) = 1 for all m, n G Z.
(ii) Taking into account Proposition 1 and 5 (ii) it is sufficient to consider the

case m Φ 0, v <£ Z p . Let a G 5§2 and /? G =^3. Then we have

where aι,a2,βιiβ2 ^ Z p . The condition α + /? G 2ΐx has the form:

p m α ! + vβ2 e Zp , p-ma2 G Z p . (9)
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Since of χp is a character of rank 0 and taking into account the formula (9) we get:

= Xp(Pm^β2 - p-^a^a, + vβ2 - pmax))

= Xp(pm<*& - ί >- m α 2 (p m α 1 + uβ2) + axa2) = χp(pmaxβ2). (10)

If m > 0 then as it follows from (10) χp(J}(a,β)) = 1 and M(m, 0;0,z/) = 1. Let
now m < 0 and |ι/|p > p ~ 2 m , that is ordp(z^) < 2m. By virtue of (9) and (10) we
hhave

and M(m, O O, z/) = 1. In the last case m < 0 and 1 < |z/|p < p ~ 2 m the proof
is given below for the case 1 < \v\p < p ~ m (the case p ~ m < |i/| < p-2rn one
considers analogously). Let a and 6 denote aγ and /32 respectively, n denotes oτάv(y)
and ε denotes ε(v). As any x eZp can be represented in the form

x = £ 0 + Xjp + a:2p
2 + . , Xj = 0,1, . . . , p - 1,

then the condition (9) takes the form

p m ( α 0 + alP + . . . ) + p n (6 0 + ^ + . . . ) ε e Z p .

From the last formula we get that the formula (9) is equivalent to the set of equations:

α0 = aλ = . . . = α n _ m _ 1 = 0 ,

thus from (10) we have

, β)) = Xp(pn(an_m + an_m+ιp + ...) (60 + bxp + ...)

= XP(-Pn(Ψε)0 + Φε)iP +••• i

= Xp(-Pn(bo + bιP+... + b_n_ιP-
n-ι)2η), (11)

where η = εQ + ε{p + ... + ε_n_ιP~
n~ι. It is easy to see that the set 3?3 Π S£x has

the form:

5f3 n2?ι = {βιe + β2(ve + / ) , /?! ε Z p ) i/& G Z p } ,

and from the last formula and (11) we have

p-\

M(m, 0;0,i/)~ ^ XP(-pn??(ί>o + + δ - n - i P " " " 1 ) 2 ) ,
60,6 l5 . . . ,6_ n _i=0
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whence it follows that

^ ( k
M(ra, 0; 0, v) ~ } exp ( — 2πiη —^

k=0 V μ

(Here we use the explicit form for the character χp(ξ) = Qxp(2πi{ξ}p). Taking into

account the formula (7) we get the needed formula M(ra, 0; 0, v) — XΛ—p~nη) =

λp(-I/).
(iii) Taking into account Propositions 1 and 5 (ii) it is sufficient to consider the case
μ φ Zp, μ — v <£ Zp, v φ Zp. We present here the proof only for the case of
\lAP Φ l^lp' otherwise (iii) can be proved analogously. By the symmetry we can
suppose that \v\p < \μ\p. Let a G 2§2, β £ J^3, then

a = aλe + a2(μe + f),

where aua2,β{Jβ2 G Zp. The condition a + β e S?x takes the form:

μa2 + vβ2 e Zp .

Since the rank of χp equals 0 we have:

Xp(M<x, β)) = Xp(μa2β2 - ua2β2) = χp((μ - v)a2β2). (12)

Let ordp(μ) - m, ordp(i^) = — n, a2 = a, β2 = b. As for the proof of the statement
(ii) from the formula (12) we get:

p-mε(μ) (o0 + o,p + ...) + P~nε{v) (b0 + bιP + ...) e Zp .

In the case of rn > n > 1 from the last formula we have:

)o = (ε(μ)α), = (ε(μ)α) m _ n _ 1 = 0 ,

: (13)

_!+(£(!/)&)„_, = 0 .

As for the proof of (ii) from (12) and (13) we have:

p ( a , β)) = χp ^ - (μ - v) ^ pm~n(b0 + bιP+...

Since oτάp{μ — v) = oτάp(μ) from the last formula we obtain:

/?)) = Xp(β-nη(b0 + blP + . . . + 6n_1p

where

The set i ζ Π = Ί̂ has the form

Z p ) IZ/SJ €
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and as for the proof of (ii) we have:
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Taking into account the properties of the function λp and the relation ordp(z^ — μ) —
ordp(μ) we derive from the last formula:

M(0, μ\ 0, v) = λp (pnε(u - μ) ^p- J

= \pijp
nε(v)prnε(μ)pπιε(v - μ)) = \p(y{y - μ)).

The proved theorem makes possible to calculate the Maslov index in the general
case. By Proposition 1 for an arbitrary triple ( J ^ i ζ , Jzί3) of self dual lattices there
is a symplectic basis {e, /} wherein

= Zpp
ne θ p~nf), (14)

where m G Z > 0 , n € Z, v € Qp. Therefore the Maslov index of this triple is given
by the relation"

\, ,§?2, JS?3) = M(m, 0; n, v).

Let 5§A = 1>vp
ne φ Zpp~nf. In the symplectic basis {e = pne, f — p~nf} we have

J ί f 1 = Z p p - n e θ Z p p n / )

3 = Z pe

Taking into account Proposition 5(i), (iii), (iv) we have

= M(-m, 0; 0, v) M(m - n, 0; 0, v) M(-n, 0; m - n, 0).

By virtue of the theorem and the last formula the following corollary is valid.

Corollary. For the lattices 5§x,5ξ2,5^z of the form (14) we have

\p{y), 0 < n < m, 1 < \v\p < p2n ,

0 < n < m,p2n <

I, m < n,p2n < \v\p.
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