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Abstract. A “system of coordinates” on a set A of selfdual lattices in a two-
dimensional p-adic symplectic space (7,.%) is suggested. A unitary irreducible
representation of the Heisenberg group of the space (77,.%) depending on a lattice
% € A (an analogue of the Cartier representation) is constructed and its properties
are investigated. By the use of such representations for three different lattices
b, %,, %3 € A one defines the Maslov index u = u(%), %,,.%4;) of a triple of
lattices. Properties of the index u are investigated and values of 4 in coordinates for
different triples of lattices are calculated.

1. Introduction

As it is known one of the profitable methods to study a quantization procedure is to
construct and to investigate topological characteristics associated with this procedure.
An example of such a characteristic is the Maslov index [Ma]. Let us discuss generally
one way to obtain such characteristics. Let G be a group and (H,,U,), 1 = 1,2,3 be
its unitary irreducible representations in the Hilbert spaces H,, i = 1,2, 3 respectively.
Let us assume that these representations are unitary equivalent and F);, F3, and Fj;
be unitary intertwining operators. That is, say for F,,, F, :H;, — H, and for all
g € G the relation

F51'Uy(9) Fyy = Uy(g)

holds (and similarly for operators F3, and F);). By the last formula the operator
F = F\3F,F, :H — H; commutes with all operators U,(g), g € G. In view of
irreducibility of (H,,U,) the operator F' is proportional to the identity operator, that is
F = p1d for some i € T (T denotes a unit circle in the field C of complex numbers).
Hence we obtain a numerical characteristic p of a group G and a triple of its unitary
irreducible representations.
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Let us take an example, see [LV]. Let (77,.%) be a two-dimensional symplectic
vector space over the field R of real numbers and 7 be the Heisenberg group
of the space (77,.%) (that is 7 is the three-dimensional Heisenberg group). Let
also L be a lagrangian (that is one-dimensional for dim %" = 2) subspace of
7" provided with the natural Haar measure dm(L). As it is known there is a
unitary irreducible representation (H(L),U;) of the group 7" in the Hilbert space
H(L) = L*(L,dm(L)). For two different lagrangian subspaces L, and L, these
representations are unitary equivalent. Let now L, L, and L, be different lagrangian
subspaces in Z°. By applying the procedure discussed above for the group 7
and for the representations U, Ly U, ) and U L, We obtain a numerical characteristic
w(Ly, L,, Ls) of these representations. It turns out that in this case p = exp(in7/4),
where 7 = 7(Ly, Ly, L) € Z is the Maslov index of lagrangian subspaces L;, L,
and L,, see [LV].

As a different example we consider the Cartier representation [C] of the Heisenberg
group 7. This representation is unitary, irreducible and depends on a selfdual
Z-lattice % in the space 7. By using the procedure discussed above for the Cartier
representations associated with lattices %], %, and %, we obtain an index of a triple
(£, %,,-%;) of selfdual Z-lattices, see [LV].

As p-adic numbers find expanding applications in mathematical physics (the active
advancement began from the paper [V]) it is interesting to extend the construction
discussed above for the field Q, of p-adic numbers. Let now (7, %) be a two-

dimensional symplectic vector space over Q,, and 7 be the Heisenberg group of this

space (for the definition of the group 7 see Sect. 3 of this paper). As for the field R
there is a unitary irreducible representation of 7 in the space L?(L,dm(L)), where
L is a lagrangian subspace of the space 7" and dm(L) is the Haar measure on L, as
to the corresponding index see [LV] and bibliography there.

There exist also a unitary irreducible representation of the p-adic Heisenberg group
depending on a selfdual Z-lattice in the space 2 (Z,, denotes a ring of p-adic
integers.) This representation is an analogue of the Cartier representation mentioned
above. By applying the procedure discussed above for the p-adic Heisenberg group
and a triple of its representations associated with lattices %], %, and %; we obtain
a complex number p = u(%;,%,,%;) € T. This number p we call the Maslov
index of a triple (£}, 55;, ;) of selfdual Z,-lattices. This index is the subject of our
investigation. It is not improbable that this index will be useful for p-adic quantum
mechanics constructed in [VV] (see also [Me, R]).

The structure of this paper is the following. In Sect.2 one considers Z _-lattices
and their properties. In particular one constructs a “system of coordinates” on a
set A of selfdual Z,,-lattices in a two-dimensional symplectic space (7, %) over Q,

(Proposition 1). In Sect. 3 we define the Heisenberg group % of the space (7", .%) and
construct a unitary irreducible representation (H(%), W) of this group depending
on a lattice 4 € A. We prove also some properties of this representation (Proposition
2). In Sect. 4 an intertwining operator of two such representation is constructed and
its properties are investigated (Proposition 3). In Sect.5 we construct the Maslov
index of a triple of selfdual Z_-lattices. We also obtain an explicit formula for this
index (Proposition 4) and prove some natural properties of the index (Proposition 5).
Section 6 is devoted to calculations of the Maslov index in coordinates defined in
Sect. 2.
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2. Lattices

Let (77,.%9) be a two dimensional symplectic space over Q, and £ be a lattice in
(77,.77) (that is 7 is a finitely generated Z,-submodule of the space 7 containing
a basis of 7). A dual lattice .£™ is defined as follows:

S ={z e 7 B(x,y) € Z,vy e ~£}.

If & = %%*, then ¥ is a selfdual lattice. Let A = A(7", %) denote the set of all
selfdual lattices in (77,.%). Note that if £ € A(Z",.%), then (¥,.%) is a space with
symplectic inner product.

As Z, is a local ring, then there exists a symplectic basis {e, f} of the space

(7, %) (symplectic means that .%(e, f) = 1) wherein (see [MH])
L =L,eDL,f.

Moreover for any .%,, %, € A there is a symplectic basis {e, f} wherein these lattices
have the form

L =Le®L,f, SLH=p"Le®p "L,f

for some nonnegative integer m. For the proof of existence of such basis (but is not
of necessity symplectic) see for example [W1], reduction to symplectic case is rather
obvious.

Now we define a “system of coordinates” on the set A. Let Sp(#7") denote the
group of all linear automorphisms of 7 preserving the form .% (symplectic group)
and Sp(¥) be a stabilizer of a selfdual lattice .4 in Sp(Z"). Sp(¥”) acts on A
in a standard manner, this action is transitive. Thus A can be identified with the
homogeneous space Sp(7)/Sp(%).

Proposition 1. Let {e, f} be a symplectic basis in (7°,.%5). Then the map ¢:7Z X
Q,/Z, — A,
Z % Q,/Z, 3 (m, i) Lyp™e © Z(up™e +p ™ f) € A

defines a one-to-one correspondence between 7 x Q, / Z, and A. (In the right-hand
part of the last formula . denotes an arbitrary element of a coset [i.)

Proof. Let % denote the following lattice:
Py =1Lye+ZL,f .

In the basis {e, f} Sp(7") and Sp(%;) have the matrix realizations: Sp(7") =
SL(2,Q,), Sp(“y) = SL(2, Z,). Let % be an arbitrary lattice from A. Then there is
an element g € SL(2,Q,) such that ¥ = g.%,. By the Iwasawa decomposition (see
[PR]) g can be represented in the form:

(" 0\ (1 u
o= (" 0 ) (o 1)
for some m € Z, p € Q, and 9o € SLQ2,Z,). Thus . has the form

L =L,p"e®L,(up™e+p " f)
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and the map ¢ is surjective. As for m,m’ € Z and u, ' € Qp we have

0 1\ e 0 1 p
o pm/)\0 1 o p™)\0 1
m—m/ m—m', _ . m/—m,
Z(p P = p ”)eSL(z,ZP)
O pm —m

if and only if m = m’ and p — u’ € Z,, then the definition of the map ¢ is correct
(that is it doesn’t depend on a choice of p in a coset iz). This finishes the proof.

Corollary. For any #4,,%,, %, € A there is a symplectic basis {e, f} wherein
F =Le®L,f,
9%2 = mepe S3) p_mpr )
Ly =L,p"e®L,vp"e+p "f)

for some m € Zsg, n € Z, v € Q,,.

3. p-Adic Heisenberg Group

Let x,, be an additive character of Q,, of rank O (that is x,(z) = 1 if and only if
z € Z,), T be a unit circle in the field C of complex numbers. Heisenberg group 7
of a space (77, .%) is the set of pairs

7 ={(a,z),a €T,z € 77}
with the composition law

(o, 2) (B, y) = (aBx,(1/28(z,y)), z + y) .

We assume that p # 2 below. Now we construct some representation of 7. This
representation depends on a lattice %" € A and therefore we call it £ -representation.
Let H(%) denote the space of finite complex valued functions on 7 satisfying the
relation

fl@+w = x,(1/28(z,w) f(z)

for all z € 7 and u € %. Note that if f, g € H(%) then |f| and f§ are constant
on every coset in /% and nonzero only on a finite number of such cosets. For
f,9 € H(Z) the formula

f,9= >, f@ij@

07| %

defines a nonnegative hermitian form on H(%) and thus H(%) is provided by
a prehilbertian structure. The space H(%) of % -representation is defined as the
completion of A (%) with respect to the norm || - ||? = (-, -). As Z°/.% is a countable
set, then H(%) is a separable Hilbert space.

On the space H(%) we define the following set of operators, =,y € 7

Wy (2) /) (W) = x,(1/28(x,y) fy — @)
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These operators satisfy the co-called Weyl relation
Wy (@)W (y) = x,(1/28@, y) Wy (@ + y) .

It is easy to see that W (z), x € 7 are isometric operators on H(%) and therefore
are uniquely extended to unitary operators on H (%) (for these operators we retain
the same notation W, (x)). % -representation of 7 is defined as a pair (H (%), WZ,),
where W, (o, z) = oW, (x). From the Weyl relation we see that this pair is in fact

a unitary representation of 7. For the sake of convenience we use the term “%-
representation” for a pair (H(%), W (z)). A similar representation was considered
in [W2]. Note that .%-representation is a p-adic analogue of the Cartier representation
[C] of the Heisenberg group over real numbers.

Let ¢, denote the following element of H(%):

1, we %,
¢%(u)_{o, u¢.%.

We call it a vacuum vector of (H(%), W (x)). It is easy to see that this vector
satisfies the property

Wx(x)ﬁbz :¢% (1)

for all x € %
Let n,,: 2" — T be a function satisfying the property

Ny (@ +u) = x,(1/2.8(, w)n,, (@)
for all x € 77 and u € .%. It is quite easy to prove that the map 7" — H(%):
7' sz —n,@)Wy(x)d,

is constant on every coset in 7°/.% and thus one defines a map ¢: 7" /% — H(%)
by the same formula. The range of values of the map 1 we call a set of coherent
states of % -representation.

Proposition 2. The representation (H (%), W o, (x)) has the properties:
() (Wz(x)ﬁb(/,, ¢y) = ¢x(37){

(i) the set of coherent states forms an orthonormal basis in H(.%),
(iii) the representation (H(%), W (x)) is irreducible.

4. Intertwining Operator

Let for %), %, € A 07%(%,,-%,) denotes the number of elements of the group
F/(F N L.
Proposition 3. Let (H(%)), W) and (H (%), Wy,) be £,- and %, -representations.
Then the operator F'y, . :H(%,) — H(Z,) defined by the formula
Fy ,f)=o%,%) > x,(1/28(,u) fu+ ) 2)
€% [(L1N%)

is a unitary operator. It satisfies the property

—1 .
F—‘lz,%l - F%’%z 3
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and it is an intertwining operator for the £,- and %,-representations, that is for all
x € 7 the following relation holds:

F f/:’zl,%/l WZZ (z) F%’z,—%l = Wzl (z). 4

Proof. At first we check that the definition (1) is correct, that is the right-hand part of
the formula (2) doesn’t depend on a choice of an element in coset a € %, /(£ N.%)).
In fact taking into account that f € H(%)) for o/ € £} N.%, we have

Y x,(1/2B0+d \w) futa+a)
a€% [(F1N%)
= Yo x(1/280+d u) + 1/28w+ o,0))) fu+ o)
Q€% [(£1NH)

= Z Xp(l/z.%)(Ch a’))Xp(l/Zﬂ(a, w) fu + a)
a€% /(% n,%z)

= Y 0280w fu+a).

€% [(£1NSE)

It is easy to check that for f € H(Z£)) the condition F, .. f € H(%) holds.
Let us prove unitarity of F', o . From the definition of ‘the operator Fy, . we
get

Foy o fW)=0%,%) > xp(Blo,u)Wy () f@). ()

a€% [(£1NH)

From the definition of .%-representation, orthogonality of coherent states, Parseval-
Stokes relation and the last formula we have

”F,%z,r%lf||%l(zz) = 0%, %) Z “st,(—a)f”zH(,%’l) = ”f”%{(,%]) :
a€% [(AN%)

Now we prove the formula (3). Taking into account the condition f € H(%)) we
get

Fo 0V s,0 W

=A%) Y, x,(1/25(8,u)
BEA [(£1N%)

XY x,(1/2Bnu+ B) fu+ a+ )

a€% [(F1NF)

=%, %) Y.
Q€S [(F1N%)
BEF [(H1NH%)

x x,(1/28(B,u) + 1/2.8(a,u+ B) + 1/2.8u + o, ) f(u + a)
=(Z, %) >, xpU2Bu)futa) Y x,(Be,B)

A€ % /(ANL) BEL1 /(11N %))
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and (3) follows from the formula

1, ae %N,

AR Xpu‘ﬂ’(aﬂ)):{o a¢ 5HNZ,.

BEL/(£1N%)

Q)

For o € %, N %, (6) obviously follows from the definition of o(%4,.%,). For
a ¢ %, N7 let us choose ' € 7 satisfying the condition x,(#(c, ) # 1

Z

(by virtue of selfduality of 4] such /' always exists). Then

P L) DY X B, B)
BES1/(£1N%y)
=045 Y, X B, B+ 6))
BEL /(41N %)

=X, (B, BN XL, %) > xp (B, B)
BEL [(£1N%)

and therefore (6) is valid. The property (4) of the operator F', ., can be proved by
analogy to that of (3).
The operator F', o, we call a canonical intertwining operator.

In particular from the last proposition it follows that %,- and .%,-representations
are unitary equivalent.

5. Maslov Index

Let £,,%,, %, € A. Then the corresponding representations (H (%)), Wy ), (H (%),
W,,) and (H(%), W) are unitary equivalent. Let us consider the unitary operator
7 =Fy 4 F, o Fy o on the space H(Z,). By using the formula (4) for
intertwining operators F'y, ., Fy . and F'y . itis easy to see that the operator
7 commutes with all operators W, (z), z € 77 and by virtue of irreducibility of the
%, -representation (H (%)), W%l) it is proportional to the identity operator on H(%)).
Thus we have

T =%, Ly F)1d .

The number p(%4,, %,, %;) € T we call the Maslov index of a triple of selfdual
lattices.

Let us take an explicit formula for the Maslov index.

Proposition 4. Let £,.%,, %5 € A. Then the following formula holds:

£, 5 0( Ly, Z
WA, B ) = SO S 256,
o732 Q€L (%N D3)

BE %3 /(%3N L)
a+B€ZI
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Proof leans upon the formula (2) for a canonical intertwining operator. Let
f € H(%)), then we have

T fw) = o, %) oG, )0 F, B D X,(1/25(y,0)
YEL /(%3N 4)
BE L3 [(FN%3)
Q€S [(FNE)

+1/280B,u+ )+ 1 /2B, u+ B+ 7)) flu+a+B+7)
= o(%, B0, ) 0o(Fy F) D
YEL /(Z3N 1)

BEL /(LN %3)
€% [(£1N%)

X Xp(1/28(c, ) + Bla+ B, ) flu+a+P).

By using the last formula for f = ¢, we get the needed formula:
M(@gjﬂ],”(gz,%) = ('?qﬁjf;’laqj,%l)H(‘%l)

_oh Do %) 5

Xp(1/25(ax, B)) O

oLy 2) a€% [($oNL3)
BEA [(£3N57)
cx+,@€,‘/;l

Proposition 4 shows that the Maslov index of a triple of selfdual lattices does
depend on only the “relative positions™ of lattices, although in its definition one uses
a representation of the Heisenberg group.

Proposition 5. Let £, %,, %3, %, € A. The following statements are valid.
() (2,5, 53) = 194, 955, 9-%3) for all g € SN(7);
(i) (A, %, %) =1 if at least two lattices in the triple coincide;
(iil) p(#,, %, %;) remains the same under an even permutation of lattices in the
triple and transfers to a conjugate expression under an odd one;
(iv) the following cocycle relation holds:

ﬂ(%v%»%)ﬂ(’%}%,%) = /‘(%w%)%)ﬂ(%w%ﬁ%) .

Proof. (i) follows directly from the explicit formula for y (Proposition 4). The
statement (ii)—(iv) one proves in a similar manner immediately from the definition of
. Let us prove the statement (iv). From the definition of the Maslow index we have:

M(glav%aﬁ)u(a%7%7@%4) Id

_ _ -l
- EZI ,%4FZ4,%3 F,%'3,5/;2 FZ%% - E%’z,ﬂl (F%2»$1 FZl r%F%dr%z)
X (Fy, 0. Fq, 0 Fa ) Fy, o = MLy, L3, L)L, 24, 2)) 1A

6. Calculations of the Maslov Index

Let us remind that any z € Q:: can be uniquely represented in the following form:

z = p" " Pe(a),
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where ord,, :Q;'j — Z and |z|, = p~ ordp(z), s:Q;’; — Z;'; and e(z) =zy+zp+...,
z;=0,1,...,p—1, z, # 0. Fractional part {z},, equals 0 if z € Z, and for z ¢ Z,
is defined by the formula

d. — —
{z}, =p PDzg+zp+...+ T_ ord ()17 ordp(@)—1y

Let )\p :Qp — T be a function defined by the formula (see [VV]):

Ap0)=1.
1, ord,(z) =2k,k € Z,
e(x)
— ), ord(x)=2k+1,k€Z,p=1(mod4),
A @) = (p) L, (2) p=1( )
z(%), ord,(z) =2k + 1,k € Z,p = 3(mod4),
e(x)

where —p— is the Legendre symbol of a p-adic unit £(z) € Z;';. This function has
the following properties.

Lemma 1. Function A, has the properties:
@ Ap(—z) = A (x);
(i) A (a*z) = A, (x), a € QF;
x +
(ii) A, @A) = A, (Tyy> A (@ + v
@iv) /\p(:c) /\p(y) = (z,y) )\p(:cy), where (z,y) is the Hilbert symbol.
Proof. For the proof of the properties (i)—(iii) see [VV]. Taking into account that
)\p(x) =1forz € Z:’ statement (ii) and the symmetry of (iv) it is sufficient to check

(iv) forthe casesz =y =p,x = y = np, T = p, y = np, where n € Z.*, (ﬂ) =-1
p

that can be done by direct calculations.
From the definition of A, it is easy to make out the connection of this function
with the Gauss sum

p"—1 k2
D exp (2m'a —) = p"/2\, (ap™), ©)
pn p
k=0
where a € Z, n € Z, and a is not divisible by p.
Letm,n € Z, p,v € Q, and {e, f} be a symplectic basis of (7, %). We consider
now the following triple of selfdual lattices in (7, .%):
Z1=Lye®Ly,f,
Fy =L,p"e® L, (upTe+p " f),
Fy=Lp e ®L,(wp e +p " f).
As it is evident from the foregoing the Maslov index of these triples can be represented
as function of m, n, p and v, that is (%4, %,, %43) = M(m, u; n, v) for some function

M:(Z x Qp) X (Z % Qp) — T. The explicit formulas for the function M in simplest
cases is given by the following theorem.
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Theorem. The following formulas are valid.:

@) M(@m,0;n,0)=1 forall m,n€Z;

1, m>0 or veEZ,,
()  M@m,0;0,v)={ A\(—»), m<0,1<[v|, <p™>™,
1, m < 0,p~*™ < |y, ;

1, pez, or veZ, or p—velw,,

(iii) MO, p:0,v) = { )\p(/,u/(p, —v)) in other cases.

Proof. Since |(%,,.%,, %;)| = 1, then all calculations can be carried out up to some
real positive factor and instead of the equality sign we shall write the sign ~. By
virtue of Proposition 4 and the last remark we have

M@m,pn,v)~ Y x(1/28(, B).

Q€% [(HNE)
BEZ [(£3NEY)
a+ﬂ€,%1

(i) Taking into account Proposition 5 (ii) it is sufficient to consider the case m # 0,
m # n, n # 0. Besides that we can reduce the general case to the case of m > n,
m > 0 by means of changes of order of lattices in the triple and transformation of
basis e — f, f — —e if it is necessary. Since o € %, and § € %; they can be
represented in the following form:

a=ap"e+ap "f,
B=pp"et+ B "f,

where ay,a,, 0,0, € Z,. As p™a, € Z, if m > 0 and o € Z, then the condition
o+ B € £ has the form:

P €L,, p Toa+p "BEL,. 8)

Since x,, is of rank 0 and taking into account the condition m —n > 0 and the formula
(8) we get:

Xp(jf?(ay B3) = Xp(pm_na1ﬁz - pn_mazﬁl) = Xp(_pn“mazﬂﬂ
= Xp(—pnﬂ1(p_n/32 +p_m0‘2 - p—nﬁz))
= Xp(‘Pn51(P_nB2 +p "y) + 6,6 =1

and therefore M(m,0;n,0) = 1 for all m,n € Z.
(i) Taking into account Proposition 1 and 5 (ii) it is sufficient to consider the
case m # 0, v ¢ Z,,. Let a € %, and 8 € Z;. Then we have

a=aoptet+ap ™f,

B = pie+ Bve+ f),

where o, @y, By, 3, € Z,. The condition o + 8 € %] has the form:

p"oy+vB, €Z,, p Ty €L,. 9
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Since of x,, is a character of rank O and taking into account the formula (9) we get:

Xp(ﬁ(a,,@)) = Xp(pmalﬂZ —p "vayf,)
= Xp(pmalﬂz —p MMy +vB, —pTay))
= Xp(PmChﬁz —p Mooy + VB + ) = Xp(pmalﬂz)~ (10
If m > 0 then as it follows from (10) x,(#(c, ) = 1 and M(m,0;0,v) = 1. Let

now m < 0 and |1/|p > p~2™, that is ord,(v) < 2m. By virtue of (9) and (10) we
have

Xp(Bla, B) = x, @™ Ve W)y Py + 1B, — pTeyy))
— Xp(pm—ordp(ll)g—l(’/)al(pmal + VQDZ) _ p2m—ordp(u)€—l(y) a%)
— Xp(—p2m_ordp(l/)€_l(’/)a%) — 1

and M(m,0;0,v) = 1. In the last case m < 0 and 1 < |v|, < p~>™ the proof

is given below for the case 1 < |v|, < p™™ (the case p~™ < ||, < p~>™ one
considers analogously). Let a and b denote ¢, and 3, respectively, n denotes ord,(v)
and ¢ denotes (v). As any z € Z,, can be represented in the form

x=x0+x1p+x2p2+..., z;=0,1,...,p—1,
then the condition (9) takes the form
p™agtap+..)+p by tbp+..)e€ZL,.
From the last formula we get that the formula (9) is equivalent to the set of equations:

ag=a;,=...=a,_ ., =0,
Ay + (be)y =0,

Ayt +e)_,_; =0,

thus from (10) we have

Xp( B, B)) = X0 @y + Gy 1D+ - ) (g +byp +..)
= X, (=P ((be)y + (be),p+ ... + (be)_,,_ 1 p ")
X(bg+bp+...+b_,_ p "N
=X, (—p by + byp+ ... +b_,_1p ")), (11)
where n = ¢y +ep+...+e_,_p " . It is easy to see that the set %, N %, has

the form:
’Zgngl = {ﬁle+62(ye+f)aﬁ1 S Zp,l/ﬂz € Zp}?

and from the last formula and (11) we have

p—1
M(m,0;0,v) ~ S Xty b, ),
b0,615 o b1 =0
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whence it follows that

p "1 2
M(@m,0;0,v) ~ Z exp (— 2min F) .
k=0

(Here we use the explicit form for the character x,,(§) = exp(2mi{¢ }p). Taking into
account the formula (7) we get the needed formula M (m,0;0,v) = Ap(—p"nn) =
A (—v).

D
(i1i) Taking into account Propositions 1 and 5 (ii) it is sufficient to consider the case
t ¢ Zy p—v ¢ Z, v ¢ Z, We present here the proof only for the case of

lul, # |v|,, otherwise (iii) can be proved analogously. By the symmetry we can
suppose that [v], < |ul,. Let a € %, B € Z;, then

a=ae+ ayue+ f),
B =Bie+ Bve+ ),
where oy, a, B, 5, € Z,. The condition o + 8 € £ takes the form:
poy +vp, € Zy, .
Since the rank of x,, equals 0 we have:
Xp( B, B)) = Xp (1B, — vay8y) = X, (1 — )y 8,) - (12)

Let ord, (1) — m, ord,(v) = —n, a, = a, B, = b. As for the proof of the statement
(ii) from the formula (12) we get:

p~"e(u)(ag+ap+..)+p ") (by +bp+...) € Z, .
In the case of m > n > 1 from the last formula we have:
(e(u(a)y = (e(Wa), = (e(wa),, ,_, =0,
(EW @)y, + (€@))y =0,
: (13)
(ewa),,_ +€)b),_, =0.
As for the proof of (ii) from (12) and (13) we have:

Xp(Bla, B)) = x,,( —(p—v) % Py +byp+ .+ bnqp"")z) :

Since ordp(p —v) = ord, (1) from the last formula we obtain:

Xp(ﬁ(a,ﬂ)) = Xp(p-nn(bo + b]p + e + bn—lpn_1)2)7

where

0 1 n

The set %, N %] has the form
g3ngl ={516+ﬂ2(1/€+f),ﬂ1 EZP,Vﬂz GZP}’
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and as for the proof of (ii) we have:
MO, p1;0,v) = A, (p"n) .

Taking into account the properties of the function A, and the relation ord, (v — p) =
ordp(,u) we derive from the last formula:

e(w)

MO, 1;0,v) = A, (p”s(z/ — 1) ?“))

= A, @"eW)p"e(u)pTe(w — ) = A, (v — ).
The proved theorem makes possible to calculate the Maslov index in the general

case. By Proposition 1 for an arbitrary triple (4, %,, %;) of selfdual lattices there
is a symplectic basis {e, f} wherein

S =T, ®L,f,
Ly = Lyp"e ®Lyp™ " [
Ly =Lyp"e® L,(wp e +p " f), (14)

where m € ZZO, nez,ve Qp. Therefore the Maslov index of this triple is given

by the relation
u(%a%7°%/3) = M(mao;n,l/)'

Let £, = Z,p"e ® Z,p~" f. In the symplectic basis {€=p"e, f =p~™f} we have
% =L e 0 Ly
Ly =L ED L ],
Py =L ® Ly VE+ [),
Sy =L €D L,f .

Taking into account Proposition 5(i), (iii), (iv) we have

W, Sy L) = Uy, Sy, S Fey, gy LYWLy Loy £)
= M(—m,0;0,v) M(m — n,0,0,v) M(—n,0; m — n,0).
By virtue of the theorem and the last formula the following corollary is valid.

Corollary. For the lattices %, %,, %5 of the form (14) we have

1, m=0 or veZ, of n<O0,
A, W), 0<n§m,1<|v[p<p2",
’ 1, O<n§m,p2"S|V1pa
W5y, Fy F3) = 1, m<n,l< |1/]p<p2("_m),
AWy, m<n,pmm <yl < p™,
1, m < n,p*™ < |vl,.
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