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Abstract. The structure of the automorphism group of a simple C*-algebra of real
rank zero which is an inductive limit of circle algebras is described. In particular, it
is proved that the automorphism group of the irrational rotation C*-algebra, A4,,
for any irrational number 6, is an extension of a topologically simple group by
GL,(Z).

1. Introduction

Let A be a unital C*-algebra. The automorphism group Aut(4) of A decomposes
into a series

Inng(4) < Inn(4) < Aut(4),
where Inn(A) is the group of approximately inner automorphisms, and Inny(4) is
the closure of the group of inner automorphisms determined by unitaries con-
nected to 1.

We shall prove, using an argument closely following a paper by de la Harpe and
Skandalis, [HS], that if A4 is a simple C*-algebra of real rank zero satisfying some
extra conditions, then the group Inny(4) is topologically simple (Corollary 2.4). In
particular, Inny(4) is topologically simple for all simple inductive limits of circle
algebras which have real rank zero. It seems likely that Inny(4) is topologically
simple for all simple C*-algebras.

By the classification theorem for inductive limits of circle algebras of real rank
zero, [E2], it follows that the quotient group Aut(4)/Inn(A4) is isomorphic to the
group of automorphisms of the K-theory of 4 (Theorem 2.1).

Sections 3 and 4 are concerned with computing the quotient group

E(A)/I_n_no(A) for a C*-algebra A which is a simple inductive limit of circle
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algebras of real rank zero. It is proved that Inn(A)/Inny(A) is isomorphic (as
a topological group) to the inverse limit of the discrete groups K;(4)/nK;(A4),
where n belongs to the directed set of positive integers that divide [1] in Ko(4)
(Theorem 4.5). It follows that Inn(4)/Inngy(A4) is totally disconnected (Proposition
4.9). The group need not be discrete and is not even locally compact in general
(Example 4.12).

These results are illustrated with the following two examples. The irrational
rotation algebras A4,, where 8 € R\ @, are proved in [ EE] to be inductive limits of
circle algebras. We have that Inng(4,) = Inn(A4,) (see Example 4.7), and the group
of automorphisms of the K-theory of A, is GL,(Z) (Example 2.2). Hence the
automorphism group of A4, is an extension

{1} > Inn(4,) - Aut(4,) » GL,(Z) > {1} ,

and the group of approximately inner automorphisms Inn(A4,) is topologically
simple. We do not know if this extension splits.

Let B be the Bunce—Deddens algebra. The group of automorphisms of the
K-theory of B is GL,(Z) = Z/2Z (Example 2.2). The quotient of approximately
inner automorphisms Inn(B)/Inny(B) is isomorphic to the additive group of 2-adic
integers Z, (Example 4.12). Hence Aut(B) is described by the two extensions,

(1} - Inn(B) > Aut(B) » Z/2Z — {1} ,
{1} - Inny(B) — Inn(B) - Z, — {1},

and Inng(A4) is topologically simple. The first of these extensions splits.

It is decided exactly when a simple inductive limit of circle algebras 4 of real
rank zero is asymptotically abelian, i.e. possesses a sequence (2, )= of automor-
phisms such that o,(x)y — yo,(x) = 0 for all x, ye 4 (Corollary 3.13 and Proposi-
tion 3.14). The methods behind the proof of this result are similar to those proving
the results about the quotient of approximately inner automorphisms. The second
named author thanks Nigel Higson for sharing ideas leading to these com-
putations, and for hospitality and support during a visit to Pennsylvania State
University in the fall of 1990.

2. The Automorphism Group

A circle algebra will here mean a C*-algebra of the form

& M, (cm) =

The spectrum of such an algebra is the disjoint union of r copies of the circle T. Let
A be a unital inductive limit of circle algebras, and suppose also that A has real
rank zero. Then A belongs to the class of algebras which in [E2] is classified by
a K-theory invariant. This invariant is the triple

(Ko(4) ® K (4), (Ko(4) @K1 (4)", [14]),

where (Kq(4) ® K;(4))*" consists of zero and all elements of the form ([ p], [u]),
where pe A ® K is a projection and ue p(4 ® K)p is unitary. If 4 is simple, then for
each projection pe A ® K, every element of K;(A) is of the form [u] for some

g M,,J.«E)> & C(T) .

J
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unitary u e p(A ® K)p. Hence, for simple A4, Ky(A4) ® K;(A) has the strict ordering
from K(4), and so the K-theory invariant is a quadruple,

(Ko(A4), Ko(4)™, [141, K1 (4)),

where (Ko(A4), Ko(4)*, [1,4]) is the (usual) dimension group for A.

By an automorphism of the K-theory of A, we shall mean an automorphism of
Ko(4) ® K (4) which preserves the order structure (Ko(4) ® K(4))* and the
order unit [1,]. Let Aut(K(A4)) denote the group of all such automorphisms.

As usual, Aut(A) denotes the automorphism group of A. Every automorphism
o€ Aut(A) induces an automorphism of K-theory, o, € Aut(K(4)). By the classifica-
tion theorem ([E2], Theorem 7.3 and the remarks preceding it), every automor-
phism of K-theory lifts to an automorphism of the algebra; that is, the map
o - o, € Aut(K(A4)) is surjective. The uniqueness part of the classification theorem
implies that every automorphism that acts trivially on K-theory is approximately
inner ([E2], Theorem 7.4). Let Inn(A) denote the subgroup of inner automor-
phisms of 4, and Inn(4) its closure (in the topology of pointwise convergence), so
that Inn(A) is the group of approximately inner automorphisms. The classification
results recalled above can be expressed as follows:

Theorem 2.1 ([E2]). Let A be a unital inductive limit of circle algebras, and suppose
that A has real rank zero. Then we have a short exact sequence

{1} - Inn(4) - Aut(4) > Aut(K(4)) - {1} .

2.2. Examples. (i) Let e IR\@Q and denote by A4 the corresponding irrational
rotation algebra. The K-theory of 4, is

Ko(Ag) = Z + GZ < R, Kl(Ag) = ZZ N

with order unit [1,] =1€Z + 0Z = Ky(4y). It is easily seen that all (order and
order unit preserving) automorphisms of the K-theory of 4, must fix each element
of Ko(44). Hence,

Aut(K(44)) = Aut(K(4y)) = GL,(Z) .

B. Brenken and Y. Watatani ([Bk] and [ W]) found an SL,(Z) action on 44 which
is a partial lifting of the map

Aut(4y) — GL,(Z) = Aut(K(4,)) .

It seems less clear (but not unlikely) that all of GL,(Z) should lift. If that were true,
then Aut(4,) would be the semidirect product of Inn(4y) with GL,(Z).
(ii) Let B denote the Bunce—Deddens algebra of type 2%. The K-theory of B is
KoB)=Z[3]1cR, Ki(B)=Z,

with order unit [15] = 1€Z[3] = K,(B). Again, all automorphisms of the K-
theory of B fix K(B) elementwise, and so

Aut(K(B)) = Aut(K,(B)) = Z)2Z .

This action does lift to Aut(B); that is, there is an automorphism of period two
which induces the Z/2Z-action on K(B). (The fixed point algebra of one such
automorphism was shown to be an AF-algebra by A. Kumjian in [K].)

(i) The tensor product B ® B, where B is as in (ii), is proved in [EG] to be an
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inductive limit of circle algebras. It has K-theory
Ko(B®B)=Z[3] ®Z, K,(B®B)=Z[3]1®Z[1],

where Ko(B ® B) has the strict ordering from Z[4] = R and has order unit
(1,0)e Z[$] ® Z. The automorphism group of the K-theory of B® B is

Aut(K(B ® B)) = Z/2Z ® GL,(Z[3]) .
The subgroup GL,(Z) of this group lifts to Aut(B ® B) by [EG].

We now turn to the structure of the group of approximately inner automor-

phisms E(A). Let Inng(A4) denote the subgroup of all inner automorphisms
determined by unitaries in A which are in Ug(A4), the connected component of U(4)

containing 1. Let Inny(4) denote the closure of Inny(4) (in the topology of
pointwise convergence). Each of the four groups Inng(4), Inny(4), Inn(4) and
Inn(A) is a normal subgroup of Aut(A4).

It is proved below that Inng(A) is topologically simple when A4 is simple. The
proof of this involves a variation of a theorem of de la Harpe and Skandalis, [HS],
which holds for a broader class of algebras but with a more restricted conclusion.
The proof presented below closely follows [HS], but some shortcuts are possible
since we aim for a lesser result. First, a lemma.

Lemma 2.3. Let A be an infinite dimensional simple unital C*-algebra of real rank
zero which is either purely infinite, or is finite and has the cancellation property for
projections and has Ko(A) weakly unperforated. Then

(i) for every non-zero projection pe A and for every neNN there is a unital
subalgebra of pAp isomorphic to M, ® M, 1, and

(ii) for every pair of non-zero projections p, g€ A, q is a finite sum of projections
in A each unitarily equivalent to a subprojection of p.

(The two last assumptions on A referred to in the lemma are the following: For any
pair of non-zero projections e, fe M, (A), if [e] = [f] in Ky(A4), then e and f are
unitarily equivalent in M, (4). If ng > 0 in K,(A4) for some positive integer n and
some g€ Kq(4), then g > 0.)

Proof. Both (i) and (ii) are easily proved for purely infinite simple C*-algebras using
results from [C]. Assume that A is a finite simple unital C*-algebra of real rank
zero, which has cancellation of projections and has K,(A4) weakly unperforated.
To prove (i), upon using the cancellation property, it suffices to show that for
every geKy(4)" and every neN there are hy, h,eKo(4)* such that g = nh,
+ (n + 1)h,. Since A has real rank zero, it follows from Theorem 3.2 of [E2] (see
also [Z]) that K, (A4) has the Riesz decomposition property. Hence, by Theorem 3.2
of [E1], there is a sequence G; — G, — - - - of ordered groups, each a finite direct
sum of groups Z or Z @ Z/kZ, the latter ordered by (m, n) > 0 if m > 0, such that

lim G; = G .

Note that if geZ, then g = nhy + (n + 1)h, for some strictly positive integers
hyand hyifg=n?+n+1.
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The assumptions on 4 imply that 4 has no minimal projections. Therefore,
geKo(A)* is a sum of n? + n + 1 non-zero elements in Ky(4)*. Choose j large
enough that each of these n* + n + 1 elements lies in G;. Then g has coordinate
2 n* + n + 1in each of the summands of G;. Hence g = nhy + (n + 1)h, for some
hy,h,eG™.

Let p, g € A be non-zero projections. Because 4 is simple, n[ p] > [¢] for some
neNN (cf. [Bw]). Use (i) to find [q] = nhy + (n + 1)h, for some hy, h, e Ky(4)*. It
follows that n[p] > n(h; + h;), and so, because Ky(4) is weakly unperforated,
[p] > hy + hy and [p] > h,. Thus [¢] is a sum of n + 1 elements of Ky(4)™ each
dominated by [p]. Use the cancellation property to complete the proof.

Theorem 2.4. Let A be a simple unital C*-algebra of real rank zero which is either
purely infinite, or is finite, has the cancellation property for projections and has
Ko (A4) weakly unperforated. It follows that the group

Uy(4)/T1
is topologically simple (i.e. has no non-trivial closed normal subgroups).

Proof. Let V be a closed normal subgroup of Uy(4) not contained in T1. Let us
prove that V' = U,(A). It suffices to show that ¥ contains all exponentials exp(ih)
with h = h* e A. Because A4 has real rank zero and V is closed it suffices to show
that all unitaries with finite spectrum are in ¥, and hence we need only prove that
Ap + (1 — p)e V, where pe 4 is a projection and AeT.

Let po € A be a fixed non-zero projection. From Lemma 2.3 every projection in
A is a finite sum of projections in A each of which is unitarily equivalent to
a subprojection of po. Therefore, to prove that V' = Uy(A), it will suffice to show
that Ap 4+ (1 — p) belongs to V for every projection p < p, in 4, and every AeT,
where p, is some fixed non-zero projection in A4 (to be specified later).

By assumption, V contains a non-central unitary u. Arguing as in Lemma 9.3 of
[HS], we may also assume that ||u — 1|| < 1/2. It follows that the spectrum of
u contains two distinct elements 4, and 4, with |A; — A,| < 2|jlu — 1|| < 1. Use that
each hereditary subalgebra of A4 contains a non-zero projection ([BP]) to find
non-zero orthogonal projections r; and r, in 4 such that

lur; = Airill <e (j=1,2),

where ¢ > 0 will be specified later. When also using simplicity of A, one finds
non-zero equivalent projections g; and g, in 4 with q; < r; (use for example
[R, Lemma 3.4] and [BP]). Let p, in the paragraph above be g;. Let p; < po = ¢4
be given and find p, < g, equivalent to p;. (Recall that we must prove that
Apy + (1 — py)e V for AeT.) Notice that

lup; — Z;pill <e¢ (j=1,2).
Let s€ A be a partial isometry with s*s = p; and ss* =p,. Put z=s + s*
+ (1 — p; — p2). Choose ¢ > 0 small enough that
_ - 1
[ zuz*u* — (A4 A2p1 + A241p2 + (1 — py — p2))|I < 5['11 — A2l .

Then the spectrum of zuz*u* is contained in three disjoint balls with centres
A1Aa, 424y and 1. (To see this note that |A; + A,] = 1) It follows that
zuz*u* = x; + x, + x3, where x¥x; = ¢; = x;x} for projections g; in A with sum
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1,and | p; — q;ll < 1(j =1,2)if e > 0is small enough. Hence wg;w* = p; (j = 1,2)
for some unitary we Uy(A). Put

v=wzuz*u*w* = v, + v, + V3V,
where v} v; = p; = v;v](j = 1,2) and vijvs = 1 — p; — p, = v303. Then
vzv*z* = v, 5% 03 s 4+ vys0Fs* + (1 — py — py)e V.

Moreover, the spectra of v, s*v3s and v,sv}s™ are contained in balls with centres
2323 and 1347 and radii which are small if ¢ is small. Because |4; — A,| < 1, the
imaginary part of 1713 is non-zero. We may therefore assume that Im(124%) > 0,
and it follows that if ¢ > 0 is small enough, the spectrum of v,s*v}s relative to
p1Ap; is contained in {1€T|Im4 > 0}.

We can now follow the proofs of Lemmas 9.7 and 9.8 in [HS] to find that
upy + pups + (1 — py — po)eV for some ueT, u + 4. By (i), for any noe N there is
a finite dimensional unital subalgebra B of (p; + p,)A(p; + p,) such that p; and
p, are equivalent projections in B and such that each direct summand of B is a full
matrix algebra of order = ng. Because the only proper normal subgroups of SU (n)
are the subgroups of its centre, it follows that the normal subgroup of U(B)
generated by up; + ip, contains an element within |exp(2mi/ng) — 1| of Ap; + p,.
Hence V' contains an element within |exp(2zi/ng) — 1] of Ap; + (1 — p;). Since
no€ N is arbitrary and V is closed, it follows that Ap; + (1 — p;) belongs to V.

Corollary 2.5. Under the same assumption on A as in Theorem 2.3 it follows that the
group Inng(A) is topologically simple.

Proof. Let G be a closed normal subgroup of Inno(A) different from {1}. Set
V ={ueUy(4)|AdueG} .

Then V is closed normal subgroup of Ug(4). Choose xe G different from the
identity. Then v*a(v)¢ C1 for some ve Uy(A). Since

(Adv)"'a(Adv)a~ ! = Adv*a(v)
it follows that v*a(v)e V. Hence, by Theorem 2.3, V' = Uy(4) and G = ﬂl;(,(A).

2.6. Remarks. All simple unital inductive limits of circle algebras of real rank zero
satisfy the assumptions of Theorem 2.4 and Corollary 2.5. Theorem 2.4 and
Corollary 2.5 apply more generally, for example, as noted, to all purely infinite
simple C*-algebras. o

In Sect. 4 the quotient group Inn(A4)/Inny(A4) will be described. That, together
with Theorem 2.1, describes the automorphism group Aut(4) modulo the topologi-
cally simple group Inny(4), and modulo the unsettled questions whether the
sequence

{1} - Inny(A4) - Inn(4) - Inn(4)/Inny(4) - {1}

and the sequence in Theorem 2.1 split.

It is conceivable that all unital simple infinite dimensional C*-algebras of real
rank zero satisfy the conditions (i) and (ii) considered in Lemma 2.3. Hence
Theorem 2.4 and Corollary 2.5 might be valid in that generality. It seems possible

that Inn,(A) may be a topologically simple group for every simple C*-algebra A4,
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but the authors do not know that. An argument by Thomsen [T] using the
determinant of de la Harpe and Skandalis shows that the commutator subgroup
Uy (A) is not dense in Uy(A) if 4 does not have real rank zero. Hence Uy(A)/T1 is
not topologically simple when A does not have real rank zero.

Thomsen [T ] has extended the results in [HS] and proved that Uy(4) = U(4)Y
and that this group modulo its centre is algebraically simple for 4 belonging to
a class of simple inductive limit C*-algebras which includes inductive limits of
circle algebras. Real rank zero is not assumed in [T ].

3. Asymptotically Abelian Systems

This section is concerned with constructing embeddings with prescribed K-theory
of one circle algebra into another, such that the relative commutant of the image of
the first algebra inside the second is large. One application is Theorem 3.7 which
will be an essential ingredient in computing the quotient group Inn(4)/Inny(4) in
Section 4. As another application it will be decided precisely under what conditions
a simple unital inductive limit of circle algebras of real rank zero is asymptotically
abelian (Corollary 3.13 and Proposition 3.14).
Let

N

A = (;Bl M, (C(T)) and 4, = @1 M, (C(T))

i=
be two circle algebras, and let ¢: A; - 4, be a homomorphism. Then ¢ induces
maps

Ko(@): Ko(4y) = Ko(42) ,

Ki(p) Ki(4;) = Ky(4,) .

Because Ky(4;) =Z" and K(A4,) = Z° as ordered abelian groups, with distin-
guished order units (p4, . . ., p,), respectively (g;,. . . , g;), the map Ky(¢) may be
viewed as an sxr matrix with non-negative integral coefficients which maps
(p1s--->p) to (qy,...,qs). We have K;(4;) =Z" and K;(4,) = Z° as abelian
groups, and so K (@) is an s x r matrix with (possibly negative) integral coefficients.

The embeddings of the circle algebras will be composed from familiar examples
described below.

Amplification. The embedding of amplification by a factor ne N,

.un: A - Mn ® A >
where A4 is any C*-algebra, is the map
tn(@) =1,®a (acd).

Note that Ko(p,) = K(u,) = n (multiplication by n).
n-times around embedding. Let ne Z\ {0} and consider the homomorphism

A C(T) = M, (C(TD)) .
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that maps the generator z of C(T) into
ifn>0, ifn<0.

We have Ky(4,) = |n| and K,(4,) = n/|n|.
Standard homomorphism. A homomorphism

®: M,(C(TN) — M,(C(Tr))
is called standard if it is the composition of homomorphisms

M, ® C(T) » P M,, ® M, ® M;,; ® C(T)
J

->M,®C(T),
where a;€N, b;eZ\ {0}, the first homomorphism is
@ p’aj °© (ldp ® 2’171) s
j
and the second homomorphism is 1 ® id¢ ), Where 1 is 2 homomorphism of finite

dimensional algebras that maps one-dimensional projections into one-dimensional
projections. The composed map M ,(C(T)) - M, (C(T)) will be written

Q= Z/—la,o(idp(@/lbj) .
J
If all b;eZ\{—1,0, 1}, then ¢ is called strictly winding. Note that
Ko(p) = Z aj|bj| s
j

Ki(g) = ¥ azby/lbyl -

A homomorphism

¢ @ M, (C(T)) > B M,, (C(T)
i=1 Jj=1
is called a (strictly winding) standard homomorphism if each of the partial
homomorphisms
M,,(C(Tr)) » M,,(C(T))

is either a (strictly winding) standard homomorphism or zero.
The following result is easily deduced from [BBEK].

Proposition 3.1. Let

01 92
Al_‘)AZ———‘)A:;—)' o
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be a sequence of circle algebras. If each of the connecting homomorphisms
@t A; > Aj.q is a strictly winding standard homomorphism, then the inductive limit
C*-algebra has real rank zero.

It will be necessary to single out a certain subclass of the standard homomor-
phisms, the usefulness of which will follow from 3.3 to 3.7.

3.2. Definition. A standard homomorphism ¢: 4; - A, between circle algebras is
said to have property (SK) if for each summand M,(C(T)) of 4; and M (C(T)) of
A, the partial homomorphism of M,(C(T)) into M (C(T)) is of the form

t
Y idy® e, »

k=1

where the integers (a;) =, are relatively prime.

Lemma 3.3. The composition of two standard homomorphisms with property (SK)
will also have property (SK).

Proof. This follows from the facts that the composition of two n-times around
embeddings is given as

}‘m-n = (idlnl ® )'n)o’lm 5

and that the family of integers (a; b;) is relatively prime if the families (a;) and (b;)
are relatively prime.

Lemma 3.4. Let ¢p:A; — A, be a unital standard homomorphism with property (SK)
between circle algebras A, and A,. Write Ay = M, ® By, where
B, = (P M, (C(T))
i=1
and the family of integers (p;) is relatively prime. Then the inclusion
@(A1) N A, € A, induces a map
Ki(p(A41) nAz) > Ki(42),
the image of which is nK;(A4,).
Proof. It suffices to consider the case that 4, = M,(C(T)). Then ¢ has the form

Al = @ ana ® C(F)
i=1

r t

-@® DM, ®M,,,® C(T)

i=1 j=1
-M,®C(T) = 4,,

and the commutant of 4 relative to the intermediate algebra is

r ty

@ @ 1"Pi ® llaul ® C(]T) .

i=1j=1
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Forevery k=1,...,rand [=1,...,t let uyep(A4,) n A, denote the unitary
operator which is the image in A4, of
r ti
@ @ 1npg ® 1|al-j( ®fu 5
i=1j=1

where f;=1 if (i,j)*(k ), and fu(z) =z (zeT). Then [uy] = npraycZ
= K;(4,). By the hypothesis on the integers p, and a,,, the integers np, a,; generate
the group nZ = nK, (A).

Lemma 3.5. Let Dy = («;;) and D, = (p;;) be r x s matrices with integral coefficients
satisfying

o; = max {13, 3|5;|}
for all i, j. Let py,. .., p, be positive integers, and set
q1 D1
- |=p,| :
9qs Dr
Then there is a strictly winding standard homomorphism with property (SK),

: E_Bl M,,(C(T)) - C—_B M,, (C(TD)) ,

Wlth Ko(qo) = DO and KI((p) = Dl‘
Proof. Tt suffices to consider the case r = s = 1. We must then find
@ M,(C(T)) > M, (C(T))

of the desired type, such that Ko(¢p) = o and K;(¢) = p when « = max{13,3|p]|}.
One can find integers a;,a,,...,a,€{2,3} and &,&,...,5€{—1,1} with
a; = 27 a, = 3)

t t

a= Y a, and f= ) &.
k=1 k=1
Then
t
¢ = Z 1dl¢'® )'Ekak
k=1

has the desired properties.

Lemma 3.6. Let A be a unital simple C*-algebra of real rank zero which is an
inductive limit of circle algebras. Let positive integers vy = vo(vy, C) be given for
each non-negative integer v, and each circle algebra C. Then A can be written as the
inductive limit of a sequence of circle algebras

?1 P2 P3

Ay Az A3

in which the connecting maps @;: A; — A;j. 1 are such that if vy is the maximum of the
absolute values of the entries in K, (@;), then each entry of Ko(@;) is greater than
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vo(v1, 4;). The connecting maps @; can be chosen to be strictly winding standard
homomorphisms with property (SK).

Proof. Let 4 be written as the inductive limit of a sequence of circle algebras

Vi V2
(*) B, B, B;

Replacing the given function vy = vo(vy, C) by a larger one, we may suppose that
vo(vy, C) 2 max{13,3v,} .

Let r; denote the number of summands in B;, so that K(B;) = Z"” = K, (B;).
Upon passing to a subsequence of (*) we may assume thatr; <r, <ry <---. The
image in A of each minimal projection in Bj; is full in 4 because A is simple. By
a standard argument there is an i > j such that the image in B; of each minimal
projection in B; is full in B;. By passing to a subsequence of (*) we may suppose
that i = j + 1. In that case, each entry of K((y/;) is non-zero. Note that the smallest
entry in the matrix

KoWihi—q - - ‘ﬁj) = KoW)Ko(Wi-1) -~ Ko(‘ﬁj)

tends to infinity as for each fixed j, i > j tends to infinity.

Passing to a subsequence of ( *), we may suppose that each entry in Ko(y;) is
greater than vo(vy, B;), where v, = 0if j = 1, and v, is the maximum of the absolute
values of the entries in K;(y;-()if j = 2.

By Lemma 3.5 there are strictly winding standard homomorphisms
@;:A; > Aj ., with property (SK) and with

Kol(o;) = Ko(¥;), Kile;)=D;,

where Dy = 0, and Dj;is the r;, ; X r; matrix which has the r; x r;_; matrix K((¢;_,)
in its upper left corner and zeros elsewhere when j = 2. By Proposition 3.1 the
inductive limit

?1 02 ®3

Al AZ A3 tre /I

has real rank zero. By construction, A has the same K-theory ‘invariant (for simple
algebras) as A, and so, by the classification theorem ([E2]), 4 is isomorphic to A.

Theorem 3.7. Let A be a unital simple C*-algebra of real rank zero which is an
inductive limit of circle algebras. Then A is the inductive limit of a sequence of circle
algebras

A1 "’AZ—')AE;—')" :

such that, if n; denotes the largest integer for which there is a decomposition
Aj =M, ® By, then each connecting map ¢;;: A; — A; (i > j) is such that the map

Ki(gij(4;) n4;) - Ki(4)
has image equal to n;K,(4;).
Proof. This is an immediate consequence of Lemmas 3.3, 3.4 and 3.6.

A C*-algebra 4 will be said to be asymptotically abelian, with respect to
a sequence (a,) of automorphisms, if

%,(X)y — yora(x) = 0
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for all x, ye A. We shall establish the existence of such sequences of automor-
phisms, and, moreover, inner automorphisms, for a large class of simple inductive
limits of circle algebras of real rank zero. The proof is along the same lines as the
proof of Theorem 3.7, but involves a little more arithmetic. The main step is to
prove the following proposition (an analogue of Lemmas 3.4 and 3.5).

Proposition 3.8. Let py,. . ., p, be positive integers with gcd equal to ne IN. Then for
each vieN there is voeNN (depending on vy and on py,...,p,) such that the
following holds: Let Dy and D1 be s x r matrices with integral coefficients divisible by
n, such that each entry of D has absolute value < v, and each entry of Dgis = vg.
Set
q1 P1
=D, | :
ds Dr

Then there is a strictly winding standard homomorphism

J

01 @ M,(C(T)) = 4, > @ M,, (C(T) = 4,
i=1 =1

with Ko(@) = Dy and K, (@) = D, and there is a symmetry ue A, such that
up(A)u* = p(4;) N4, .

The proof of this proposition depends on solving some Diophantine equations,
which is done in the following lemmas.

Lemma 3.9. Let py,. .., p, be positive integers with gcd equal to neIN.

(i) For each voeN there is voe N such that if o4, . . ., &, are integers divisible by
n and greater than vo, then there are integers y;; = vo (i, j=1,. .., ¥) with y;; = v;;
and
r
o= Z YijDi -
i=1

(i) For each v, €N there is v, € N such that if f is an integer divisible by n and
|Bl £ vy, then there are integers 0; (i=1,...,r) with |§;| £V} and

B= Z 0:pi -
i=1
Proof. For both (i) and (ii) it suffices to consider the case that u = 1.
() Let (ey,. . .,e,) be the standard basis for the additive group Z', and set
tij = piéj + Djé; if i + j, and t; = pié; .

It suffices to prove that the elements (¢;;); j-; generate Z’, since it follows from this
that

{ Z ?ijtijlyijgvb}

lsisj=sr

contains all elements (o, . . . , ®,)€ Z" with o; = v, for some large enough v,.
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For every pair i #+ j, note that the subgroup spanned by the elements (t;;, ¢;;, t;;)
contains

(pi»pj)es and (p;, pj)e;,

where (p;, p;) is the ged of p; and p;. The hypothesis that p,, . . ., p, are relatively
prime implies that for each j, the integers '

(p1> Pi) (P2, P3)s - - > (Prs D))
are relatively prime. It follows that each e; belongs to the group spanned by
()i j=1-
(i) This is just the definition of p4, . . . , p, being relatively prime (except for the
bounds on |J;|, which are trivial to obtain).

Lemma 3.10. For each vy e N there is vo € N such that (i) and (ii) below hold.
(i) For all integers y, 6, and 0, satisfying

[6;/=vy and y 2wy,
there are integers t > 0, by, by € {2, 3}, and &,y e€{—1,1} (k=1,...,1) such
that

t t

Y= Z bixba, 5j= z epbp (j=1,2).

k=1 k=1

(i) For all integers y and § satisfying
6| <vi and y=2vo,
there are integers t > 0, a, € {2, 3}, and ¢, € {—1, 1} such that
(e) if y = 8(mod 2), then

t

t
')’=Zaf, 5=ngak>
k=1 1

k=

(0) and if y # 6 (mod 2), then
t t
y=Zal%+12> 5=Zskak+5.
k=1 k=1

Proof. (i) Let S denote the subsemigroup of the additive semigroup N consisting of
all elements of the form

t
Z blkak s
k=1

where by, by € {2, 3}, and where

t

t
Z eibu=0= Z Exbak
k=1 k=1
for suitable choices of ej € {—1, 1}. Check that S contains the numbers 8, 12, 18
and 25 (which generate Z as a group) and hence that S contains all sufficiently large
integers. (In fact, S contains all integers = 40.)
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For each pair (J,, d,) find (as is easily done) integers ¢ > 0, by, bo€{2, 3}, and
€1k» €2k € {—1, 1} such that

t t

51 = Z slkblk and 52 = Z 82kb2k .

k=1 k=1

Now take the maximum of the numbers

t
Y bubay
k=1

arising in this way with (6., d,) such that |0,], |0,] £ v}. Add this maximum to the
number (40) found in the previous paragraph, and require that vi be greater than
this sum.

(i) It suffices to solve for the even case (e) (since the odd case (o) follows from
the even case — possibly after increasing vj). Accordingly, let us assume that y = 6.
We shall follow the same strategy as in the proof of (i) and let T denote the
subsemigroup of IN consisting of all elements of the form

t
Y ai,
k=1
where a, € {2, 3}, and where
t
Z ExQy = 0

k=1

for suitable choices of ¢, e {~— 1, 1}. Check that T contains the numbers 8 and 18
(which generate 2Z as a group). Hence T contains all sufficiently large even
numbers (in fact, T contains all even integers = 483).

For each integer d, find integers a; € {2, 3} and g€ {— 1, 1} such that

t
b= &a.

k=1

Take the maximum of the numbers
t
Y
k=1

arising this way as o takes all values in {— v{, ..., v}}, and add the number (48)
from the last paragraph to this maximum. Then (ii) (¢) holds if v, is greater than this
sum.

Proof of Proposition 3.8. Let v; e N be given, and let v, N be in Lemma 3.9 (iii).
Let next vo e N be as in Lemma 3.10 (corresponding to the given v}), and let finally
vo€ NN be as in Lemma 3.9 (i).

It suffices to consider the case that

Az = My(C(TN)) .
Then Dy = (¢4,...,%,), Dy =(B1,...,B,), and

o = Vo, 'ﬂj' Sy
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Use Lemma 3.9 to find integers y;; and 6;; (i, j = 1,...,7) with

Vij Z Vo, 1051 SV, vy =V
r

=Y yp, and f;= Z 3ypi -

Let1 < i< j < rbe fixed. Use Lemma 3.10 to find integers t(i, j ), a;j, @i, &% and
Ejik (k = 1, ey t(l, ])) with

Aijis Ajix € {2, 3}» Eijks Ejik € { —~1, 1} s
t(i, )

Yij = Z Ay Ajik (= '}’ji) s
k=1

t(i, j) t(i, j)
oy = Z Eijlijks Oji = Z &jikAjik -
k=1 k=1
Let I, denote the set of ie {1, . . ., n} with y; # J;(mod 2). From Lemma 3.10 it

follows that there are integers t(j, i), a;p€{2, 3} and gpe{—1, 1} (k= 1,. .., t(i, i))
with

t(i, i) t(i, i)

_ 2 _
= z Gk Oy = Z Eiik Aiik
k=1 k=1

ifi¢l,, and
1G.0) 1G,0)
= z afn +12, Oy = Z ik ik + 5

k=1 k=1
if ielo.
The partial homomorphism ¢;: M, ® C(T') — 4, is given by
rot, ) )
(P] = Z Z I"Px"hjk °© (ldpj ® Aeijk‘ajik)
i=1k=1

(+ Hap; O(idp, ® j'3) + H3p; O(idp, ® }-2)) P

where the summands in parenthesis are included if jel,. We have

rot(,))
KO((;DJ) - Z Z pla]lk (+ 12171) - Z yupl = OC] B
i=1k=1
r o t,))
1((01) - Z Z plal_}kgljk(+ Sp]) = Z 6ljpl = ﬂj .
i=1k=1

Let ¢: A; — A, denote the homomorphism of which the partial homomorphisms
are @i,...,¢,. Then K4(p) =Dy and K;(¢) = D;. The relative commutant
¢@(A;) N A, is contained in a subalgebra of A, isomorphic to

r r o t(i,j)

@ @ @ MP! ® Mauk ® IPJ ® lﬂﬂk ® C(T)

j=1i=1k=

@D IM,OM;®1,01,)OM,®M;®1,®1,)]®C(T) .

jelo
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The existence of a symmetry ue 4, with up (A4, )u* < ¢p(A;) N A, follows from the
symmetry between the algebra displayed above and the image of A, in A,.

Theorem 3.11. Let A be a simple unital C*-algebra of real rank zero, which is an
inductive limit of circle algebras. Suppose that if n is a positive integer that divides
[1] in Ko(A), then n divides every element of both Ko(A) and Ky (A). Then A is the
inductive limit of a sequence of circle algebras

P1 @2 @3

Al Az A3 T,

such that the connecting maps ¢;: A; — Aj4 1 are unital homomorphisms, and
u@(A)u] S @i(A;)) 0 Ajas
for some symmetry u;e A; ;.

Proof. To every circle algebra

C= (_—I—)l M, (C(T))

and every v; € N associate a positive integer vq as follows. With n being the ged of
Pis- . Dy let vo = v4(C, vy) be as in Proposition 3.8 corresponding to the given
Pis. .., Dy, but with nv; in place of v;.

Next use Lemma 3.6 to write 4 as the inductive limit of a sequence of circle
algebras

(1) A, A, 43

such that each entry of K (/;) is greater than vo(v,, 4;), where v, is the maximum
of the absolute values of the entries in K;(i/;). Let n; denote the greatest positive
integer dividing [1] in K((4;). By the hypothesis on K(4), we may assume that the
limit ( *) in the proof of Lemma 3.6, on which () is built, satisfies that if n divides
[111in K¢ (Bj), then n divides Ko () ;). By the proof of Lemma 3.6 we may therefore
assume that n; divides Ky (i/;) in the limit (1) above.

From Proposition 3.8 and the choice of vy = vo(v;, C), there are strictly
winding standard homomorphisms ¢;: A; —» 4;,, with

Ko(@j) = Ko(¥)), Kilp;) =nKi{;),

such that u;@;(4;)u} = @;(4;) N A;.+, for some symmetry u;e A;, . By the as-
sumption on K,(A4),

K (4) = Ki(A® Z[1/n;] ,

and so the inductive limit, A4, of the sequence

P1 P2 ?3

A s Ay s Ay

has the same K-theory invariant as A. Since 4 has real rank zero (Proposition 3.1),
the classification theorem ([E2]) yields that A4 is isomorphic to A. The proof is
complete.
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3.12. Remark. The K-theory condition of Theorem 3.11 is equivalent to the
following condition on the algebra: If n is a positive integer, and 4 has a unital
subalgebra isomorphic to M,,, then A is isomorphic to 4 ® M,,-, where M,,- is the
UHF-algebra of type n®.

Corollary 3.13. Let A be a C*-algebra satisfying the conditions in Theorem 3.11. It
follows that there is a sequence of inner automorphisms (u;)i=1 of A, determined by
symmetries in A, such that

e (x)y — yoy(x) =0
for all x,ye A.

Proof. Let vy, denote the image in A of the symmetry u;, € A, in Theorem 3.11, and
set o, = Adv,. Then

o (X)y = you(x)

for all x and y in the image in 4 of 4;_;.
The K-theory conditions on A to ensure the asymptotic abelianness are also
necessary, as shown below. (See also Remark 3.12).

Proposition 3.14. Let A be a unital C*-algebra, and assume that A is asymptotically
abelian with respect to a sequence of (not necessarily inner) automorphisms (o4 )i 1 of
A. Then for each n = 2, if M,, is a unital subalgebra of A, then A is isomorphic to
AR M,-.

Proof. Assume that M, is a unital subalgebra of 4, and let (e;)! ;- ; be a system of
matrix units for 4. Then
(oles))i, j=1

is a central sequence of systems of n x n matrix units for 4. It follows from [BKR,
Proposition 2.12] that A4 is isomorphic to A ® M,-.

4. Approximately Inner Automorphisms

Let A be a simple unital C*-algebra of real rank zero which is an inductive limit of
circle algebras. The four groups of automorphisms Inn(4), Inn(4), Inny(4) and
Inn,(A) are as in Section 2. Recall that Inn, (4) is a normal subgroup of Inn(A4), and

that Inny(A) is topologically simple if 4 is simple. We shall compute the quotient
group Inn(A4)/Inngy(A4).

Lemma 4.1. There is a group homomorphism K {(A4) —» H(A) /I—I‘IHO (A) which makes
the following diagram with exact rows commute:
{1} » Up(4) » U@ - K (4) - {0}
| Ad 1l Ad 1
{1} - Inne(4) - Inn(4) - Inn(4)/Inng(4) - {0}

Proof. Because A4 is an inductive limit of circle algebras the top row is exact. (It
suffices to check this for A4 =C(T)) The existence of the map

K, (4) —»I_n_H(A)/HO(A) now follows from a diagram chase.
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It follows from the diagram that I_n;(A) / frEO(A) is abelian (cf. Lemma 4.2). This
group and K,(4) will both be written additively. Let § denote the image of

geK;(4) in Inn(A4)/Inny(A) under the map given in Lemma 4.1.

Lemma 4.2. The image of K,(A) in —I—I;;(A) /EO(A) is dense. If (gy) is a sequence in
K (A), then

gAk'_’O

in E(A)/ EO(A) if and only if there is a central sequence (u,) of unitaries in A with
[u] = gu.

Proof. The first assertion follows from the diagram in Lemma 4.1. By the definition
of the quotient topology, g, — 0 if and only if the sequence lifts to a sequence in
Inn(A) that converges to the identity. Let o, be a lifting of g, such that o, — 1. Then
o = PBrAd u, with u;, a unitary in A with [, ] = g, and B, e Inngy(A). Because the
topological group Inn,(4) is first countable, there is a sequence (y,) in Inny(A4) such
that Byy; * — 1. Hence y,Ad u, — 1 and y,Ad u, is a lifting of §,. Absorbing y; into
Ad u;, we have that Ad w, lifts gy, [u,] = g, and Ad u;, — 1. Finally, Ad u, — 1 if and
only if the sequence (u,) is central in A (i.e., u,x — xu; — 0 for all xe 4). This
completes the proof.

Lemma 4.2 implies that § = 0 in E;(A) /EEO(A) if and only if there is a central
sequence (u;) of unitaries in A with [u, ] = g for all k.

4.3. The topology on the image of K (4) in Inn(4)/Inny(A4) is given by data from
the group K,(4). More specifically, the data needed from Ky (A) is the directed set
of positive integers that divide [1] in Ko(A). (This is the same as the set of positive
integers n such that M, is a unital subalgebra of A4.) It will be convenient to
represent this set by (any) sequence (n;) of positive integers satisfying

(i) m,{[1] in Ko(A),
(i) njln;4q,
(i) if n|[1] in Ko(A4), then n|n; for some j.

An appropriate choice of sequence (n;) sastisfying these conditions is the
sequence of n; from Theorem 3.7. If there is a greatest integer that divides [1] in
Ko (A), then we may take the sequence to be constant equal to that integer.

By construction of (n;) there is a sequence of surjections

K1(4)/n1K1(4) < K1 (4)/n K (A4) < K (4)/n3 K (4) - - -,

which gives an inverse limit group
lim K, (4)/n;K(4) .

Equip each of the groups K,(4)/n;K,(4) with the discrete topology, and give the
inverse limit group the natural topology from the inverse limit. Let

m;: lim K (4)/n;K{(4) - K, (4)/mK(A4)
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denote the canonical projection. Then x;, — x in the inverse limit if and only if
m;(x;) > mi(x) for all ieN, which happens if and only if for all ielN,
7;(x ) € m; K (A) + 7;(x) eventually.

Since the quotient maps K (4) = K, (4)/n;K(4) commute with the surjections
in the inverse limit, they lift to a map

K, (4) - lim K, (4)/n, K (4) .

Denote by g the image in the inverse limit of g in K, (A4). Part of the discussion
above is then summarized in the lemma below.

Lemma 4.4. The image of K,(A) in lim _ K,(4)/n;K(A4) is dense. Let (g,) be
a sequence in K (A). Then

9 —0
inlim_ K, (A4)/n;K((A4) if and only if for all ic N the sequence (gy) lies in n;K(A4)
eventually.

The theorem below, which is the main result of this paper, tells us that the
topological groups Inn(A4)/Inny(4) and lim . K, (4)/n;K,(A4) are isomorphic.

Theorem 4.5. Let A be a unital simple C*-algebra of real rank zero which is an
inductive limit of circle algebras. Then there is an isomorphism of topological groups

Inn(A4)/Inno(4) < lim _ K (4)/n;K (4)
N Ve
K, (4)

commuting with the two inclusions of K(A).

Proof. Notice first that the two topological groups Inn(4)/Inng(A) and
lim_ K;(4)/n;K(4) are complete. Hence, by Lemmas 4.2 and 4.4, they are the
completions of the respective images of K, (A). It suffices therefore to prove that
these images give the same topology on K;(A). In other words, it must be shown
that for every sequence (g;) in K;(4),

Gi =0 in Inn(A)/Inny(A)

“|)”: Assume that g, — 0. Then, by Lemma 4.2, there is a central sequence (1) of
unitaries in 4 with [u, ] = g. Let le N. By Lemma 4.4 we must show that (gy) is in
m K (4) eventually. Let

(e:)i=1
be a system of matrix units for a unital subalgebra of 4 isomorphic to M, (see 4.3

for the existence of this). If k is large, then u; approximately commutes with each of
the matrix units e;;. In that case,

eite; + (1 —ey)
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is close to a unitary v;e A. Moreover, [v;] = [v;] in K;(4), and u is close to
V10, -+ v,,. Hence, for large k,

(] = mv,1enK,(4) .

“f”: Assume that g, — 0. Let A be expressed as an inductive limit of a sequence
of circle algebras as in Theorem 3.7. By Lemma 4.2, it will suffice to prove that for
each ieN, if ke N is large enough, then g, = [, ] for some unitary u, € 4 which
commutes with the image of the algebra 4; in A.

Letie N be given. By Lemma 4.4 the sequence (g,) is in n; K, (4) eventually. Let
genK;(A4). Then g = n;h for some he K;(A4) in the image of K, (4;) = K, (4) for
some j > i. Hence, by Theorem 3.7, g is in the image of the composed map

Ki(ji(4:) nA4;) = K (4;) = K(4) .

It follows that g = [u] for some unitary u in the image of ¢;(4;) N 4;in 4, and so
u commutes with the image of 4; in A.

From here on, 4 will be assumed to satisfy the conditions of Theorem 4.5.

Corollary 4.6. The group of approximately inner automorphisms I_H—I;(A) coincides

with the group Inng(A) if and only if n divides each element of K(A) for every
positive integer n that divides [1] in Ky(A).

Proof. The inverse limit lim._K,(4)/n;K(4) is zero if and only if

Example 4.7. For the irrational rotation algebra 44 (see Example 2.2 (i)), 1 is the
only positive integer dividing [1] in Ko(4,). It follows from Corollary 4.6 that

Inn(4y) = Inng(A4,). In particular, the canonical T2-action on 4, (that multiplies
the two generators by scalars of modulus 1) can be approximated by inner
automorphisms determined by unitaries connected to 1. Combining this with

Theorem 2.4 we see that the group of approximately inner automorphisms Inn(4,)
is topologically simple.

Remark 4.8. Let A be any C*-algebra that is asymptotically abelian with respect to

a sequence (o) of inner automorphisms (see 3.13). Then Inn(4) = Inny(A). Indeed,
for every unitary u in A4, v, = ua,(u*) is in Uy(A4) and

Adv, > Adu.
Hence Inn(A4) < EO(A).

It may happen, even for inductive limits of circle algebras with real rank zero,

that the group Inn(4) /EIEO(A) vanishes without A being asymptotically abelian.
Consider for example the case that K;(4) = 0 and

Ko(A)=QZ

with strict ordering from the first coordinate and order unit (1, 0). Use Proposition
3.14 and Corollary 4.6.

The following proposition describes the topological structure of the quotient
group Inn(4)/Inng(A4).
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Proposition 4.9. The topological group In—n(A)/ﬁo(A) is

() totally disconnected,
(i) compact if and only if for every positive integer n dividing [1] in Ko(A4) the
group
K (4)/nK (4)

is finite,
(iii) locally compact if and only if there is a positive integer ng dividing [1] in
Ko(A) such that
noK(4)/nK (4)

is finite for every positive integer n that is divisible by ny and divides [1] in Ky(A4),
and

(iv) discrete if and only if there is a positive integer nq dividing [1] in Ko(A4) such
that

nK;(4) = noK,(4)

for every positive integer n that is divisible by ny and divides [1] in Ky(A).
In the last case,

Inn(A4)/Inno(4) = K4 (4)/noK 1 (4) .
If In—n(A) /EO(A) is not discrete, then it has no isolated points.

Proof. Each of these statements is easily proved for the inverse limit
lim_ K (4)/n;K(A), on using that the collection of subsets 7; *({x}), je N and
xeK;(4)/n;K(4), is a basis of clopen sets for its topology. The proposition then
follows by Theorem 4.5.

Corollary 4.10. The group EO(A) is the connected component containing the
identity of the automorphism group Aut(A) with the topology of pointwise conver-
gence.

Proof. This follows immediately from Proposition 4.9(i) and Theorem 2.1, together
with the fact that Inny(A) is connected.

From the properties of the group Uy(A) it is seen that Inng(4) is arc-connected
and locally arc-connected. It is not true in general that every element of Inn,(A4) is
the limit of a path from Inng(A). Still, it does not seem unlikely that the following
two questions have affirmative answers:

IsInny(4) locally arc-connected?
IsInny(A) arc-connected?

(Of course, an affirmative answer to the first question implies an affirmative answer
to the second.)

4.11. Remarks. The conditions in (ii) and (iii) of Proposition 4.9 are satisfied if
K (A) has finite rank, ie. if

dimgK; () ® Q < o .

z
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Proposition 4.9 also says that Inn(A4)/Inng(A) is either discrete, locally compact
with no isolated points, or not locally compact. The examples below show that all
three of these possibilities occur.

4.12. Examples.
(i) Let B denote the Bunce—Deddens algebra with

Ko(B)=Z[}], K.(B)=Z,

and order unit 1 e Z[1] (see also Example 2.4(iii)). Then Inn(B)/Inn,(B) is homeo-
morphic to the Cantor set. In fact, Inn(B)/Inny(B) is isomorphic to the 2-adic
integers Z,. This can also be seen directly, as follows.

Write B (in the standard way) as an inductive limit

C(T) > M,(C(T)) » My (C(T)) > - - > B,

with each inclusion C(T)— M,(C(T')) the standard twice around embedding.
Consider the unitary ue C(T'), u(z) = z (ze T), which is the generator of K (B) = Z.
Then (the image of) u*" is central in M,.(C(T)). It follows that the sequence (u™) is
central in A4 if (and only if) n; = 2%m; and k; — oo.

(i) Let G be a countable, torsion-free, abelian group, and let n denote a positive
integer. Choose an irrational number 6, and let A denote the inductive limit of
circle algebras of real rank zero with K-theory

Ko(A)=Z +0Z<R, K;(4) =G,
and with order unit neZ + 6Z. Then
Inn(A4)/Inne(4) = G/nG

(as a discrete group). The class of groups G/nG attainable in this way contains of
course all finite cyclic groups as well as some infinite groups. It contains the Klein
four group Z/2Z ® Z/27Z, and also Z/2Z ® Z[2Z ® Z/3Z, but not Z2Z @ Z/4Z.
(iii) Let A denote the inductive limit of circle algebras of real rank zero with
K-theory
Ko(d)=Z[3]1 <R, Ki(4)=Z3]"SZ,

and order unit 3€Z[$]. Then

K (4)/3K(4) = (Z/3Z)
is infinite, and so E(A)/EO (A) is not compact. Since

3K (A)/3:2"K(A) =Z/2"Z
for all n, it follows that E(A)/EO(A) is locally compact but has no isolated

points.
(iv) Let A be given by the K-theory

Ko(4) =Z[3]1<s R, K(4)=Z",
and order unit 1€Z[4]. Then
2K (4)/2"K 1 (A) = (2/2""™Z)™

for all integers 0 < noy < n. Hence Inn(4)/Inng(A4) is not locally compact in this
case.
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4.13. Remarks and Questions. Some of the results about the group Inn(4)/Inny(A)
proved in this section for simple inductive limits of circle algebras of real rank zero
may hold much more generally. Some of them perhaps even for all unital C*-
algebras

If A is such that the map U(4) — K, (A4) is surjective, and its kernel is contained
in the kernel of U(A) — Inn(4)/Inngy(A), then K (A) - Inn(A)/Inno(A) is defined;
cf. Lemma 4.1. In 4.3 let the condition n divides [1] in K (A) be replaced with the
condition A4 contains a unital subalgebra isomorphic to M,. Then the “|” part of
the proof of the condition Theorem 4.5 remains valid, and we get a continuous
surjective homomorphism

(%) Inn(A)/Inno(4) — lim K., (4) /0K (4) .

However, this map is not injective in general. Consider for example
A = M,(C(T'?)). For that algebra,

Inn(4)/Inng(4) = (Z2Z) ® Z ,
lim K, (4)/n, K, (4) = K, (4)/2K, (4) = (Z)2Z)* .

It is essential in this example that certain K, classes do not live in some small
corners of the algebra. That phenomenon will disappear if the algebra has stable
rank one, and possibly also if the algebra is simple. Consider, as another example,
the simple C*-algebra C}(F,), the reduced C*-algebra of the free group on two
generators. Every central sequence in CJ(F,) is trivial (see [P]). Hence, if

ue CH(F,) is unitary, then Ad u e Inng(Cf¥(F,)) only if u is in the connected compon-
ent of 1 (cf. Lemma 4.2). It follows that the group

Inn(C#(F,))/Inng (C} (F,))

is non-trivial. On the other hand, by [PV], the right side of () is zero.

When is the map (*) an isomorphism?

The inverse limit lim . K, (4)/n;K;(A4) is always totally disconnected, so if ( * ) is
injective, then Inn(4)/Inng(4) is also totally disconnected.

Is Inn(A4)/Inny(A) totally disconnected for every (separable) unital C*-algebra
A?
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