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Abstract. The n-point function for the integral over unitary matrices with Itzykson-
Zuber measure is reduced to the integral over the Gelfand-Tzetlin table; the integrand
(for generic n) is given by linear exponential times the rational function. For n = 2
and in some cases for n > 2 later in fast is the polynomial and this allows to give an
explicit and simple expression for all 2-point and a set of n-point functions. For the
most general n-point function a simple linear differential equation is constructed.

1. Introduction

In this letter I'll consider the following correlation function:

gl3ι . . .g l n J n gt n l n (1.1)

Here g is the TV dimensional unitary matrix and M and N are Hermitian. The measure
of integration is Haar measure. Without lack of generality we could assume that M
and N are diagonal.

For the case of n = 0 (partition function) this integral was calculated by Harish-
Chandra [1] and Itzykson and Zuber [2] a long time ago. Here we will use the method
previously used in a similar problem in [3]; this simple algebraic method is known in
the literature on representation theory since 1950 [4]. Let me mention that the main
motivation to look on the integral (1.1) is related to investigation of the Kazakov-
Migdal model [5]; also, this kind of integrals might be interesting for string theory
related matrix models [6].

* On leave of absence from St. Petersburg Branch of Mathematical Institute (LOMI), Fontanka 27,
St. Petersburg 191011, Russia
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I'll show that the integral (1.1) can be written in the form:

Π Π <H**M
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, (1.2)

where Z\(M) is the Vandermond determinant constructed from eigenvalues of matrix
M,mι

k are Gelfand-Tzetlin coordinates defining the convex body (see Fig. 1)
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Fig. 1

mi > > mfc+l (1.3)

with m°k being the eigenvalues of matrix M (we assume that they are ordered:
m\ > 777-2 > > m°N), Nk are eigenvalues of matrix N, C is the number (see
(2.12)) and R[m] is given (in the general case) by the rational function on the GT
table. This function will be described explicitly in Sect. 3 together with the linear
differential equation for (1.2) (I'll give the corresponding algorithm).

R[m] reduces to a simple polynomial in the case of iι = i2 = ... = in = 1
and this allows to give the explicit formula (we denote by Δ(N2, . . . , N — N) the
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Vandermond determinant for eigenvalues N2,N3, . . . , NN):

x exp

Here z = 1,2, . . . , TV - 1; j = 2,3, . . . , N. All nonzero 2-point functions (gikg^i)

and a set of multi-point functions (9ijλ9knl 9ijn9kni)
 a r e obtained from (1.4) by

permutation of eigenvalues m® after integration over m 1 in (1.4) ι

2. Gelfand-Tzetlin Parametrization

Let us denote by X the combination that enters in IZ measure:

X = gMg+ .

X is the element of the coadjoint orbit of the unitary group; this orbit is labeled by
eigenvalues of M: m® > . . . > m°N. We will now introduce the coordinates on the
group and on G/H, with H being the Cartan subgroup defined by M, the so-called
Gelfand-Tzetlin coordinates (for the reason why we call this coordinates GTC see
[3]).

Let ai be the basis in N dimensional complex plane, CN, and eτ be fixed basis,
in which the matrix M is diagonal with ordered eigenvalues m°. Then we can write

N N

i=\ ι=\

at = geτ, (,) is the scalar product: (ax, y) = a*(x,y); (x, ay) = a(x, y). The Haar
measure could be parametrized by the vectors ai9 dμ(g) = dμ(a{J . . . , aN). Then

dμ(au . . . , aN) = N ' dtλ ... dtN_ιdθι ... dθNdμ(a2, ..., aN),

One can move to the new variables m\ from tτ in the following way: suppose
mι is the eigenvalue of matrix PMP, where P is the projector on the subspace,

1 The integral in (1.4) is easy to calculate, but I don't think that the integrated version looks simpler
than this
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orthogonal to the vector aλ. This means that if / is the corresponding eigenvector,
N

f — Σ frfcefc'one n a s

N

PMj — mf ^ Mf = m1f-\-bal1 f — /^Jbkek .
k=l

Taking the scalar product of Mf with fk and ek we get

bu= " ~ —
m^ — m 1 ' ^ (m°k — m 1 ) 2

From the orthogonality condition, (f,aλ) = 0, one obtains the equation, which relates
glk and eigenvalues mι

k by

(2-3)

This equation describes one-to-one correspondence of coordinate system tk and m\\
from it immediately follows that eigenvalues obey inequalities

m°τ > ml > m°i+ι, (2.4)

and these intervals are filled densely. Moreover after some simple algebra one finds
relation

Π (m\ — m°k)
^k Γ T v π n~Γ \*"5)

For to move to coordinates m 1 we also need the Jacobian for integration measure.
From the above expression it could be easily obtained and finally we have

Y[ (ml — mι

k)
τ/1 K k<τ

(2.6)

dμ(a{, . . . , aN) = ^ J(t, m 1)

x (i?72}... dmι

N_ιdθλ ... dθNdμ(a2i . . . , α ^ ) .

In addition one can show also that the following formula holds:

JV N N N-l

This completes the first step in descent procedure, which embeds the iV — 1
dimensional unitary group in the iV dimensional one. After this step we have N — 1
dimensional space spanned by orthonormal vectors α2, . . . , aN, diagonal matrix
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M 1 = PMP with eigenvalues m}, . . . , mι

N_{ and eigenvectors /. It is simple to
continue the descend further; let me give the necessary expressions after the descent
procedure is completed down to the level 0 2 (/? = ek^a°JQ = 1):

N-lN-2 N-l+l

Σ ^φ
1 1 1

1-2 rvq (fq n Λ

where by α and t we have denoted the following products:

N-q+l

Π (
( o f )2 = _ ^ z L _JV-g

π K -

f g +

Π

The variables m^ are (as it follows from the descent procedure, see (2.4)) from the
Gelfand-Tzetlin table

m > m + l > m (2 1 1 )

and θ are just angle variables, θ\ = [0,2π]. Using all this one could check by
straightforward calculation that

N N N-k+l N-k
k — \ \ ^ k ΛS- N

Z = l 1=1 2 = 1 i = l

^ N-lN-k N N-k+l

(

(2ττ)
CN = (N- l ) ! ( iV-

The meaning of symbols pk is simple; f.e. fk forms the orthonormal basis in the

space spanned by eigenvectors of matrix Mι = diag(ra^).

2 One can derive all these expressions using the procedure described above, or (after some
modifications) they could be extracted from [4], see also [3]
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3. Correlation Functions

Having at hand the expressions (2.8)-(2.10), (2.12) it is easy to prove the statements
about (1.1), announced in the introduction, i.e. derive explicit formulas for all 2-point
functions and for a set with n > 2 (1.4) and present the integral representation of
the general n-point function in terms of the GT table (1.2). Also one could give the
linear differential equation for the general n-point function. But first I will start with
the 0-point function and will give the simple derivation of the IZ formula:3

(1) = ί[dμ(g)] cxp[tv(gMg+N)]. (3.1)

The result follows immediately from the facts we have learned in the previous section
(we need just (2.12)) and from two simple observations: (i) The integrand doesn't
depend on angle variables θ, so it is the linear exponential on the GT table:

GT

N ,N-k+l

Σ( Σ
k=\ \ ι=\

N-k

mk~x -

i=\

(3.2)

(ii) The integration over the bottom coordinate MN of

leads to

and the variables m are from the second (counting from the bottom) line; i,j = 1,2.
Now, according to (3.2), we have to multiply this expression on the exponential

expfέ^-Σ^W-2

V i=\ %=\ J
and integrate over mf~ι\ once again we get the similar result:

Δ(NN,NN_UNN_2) '

with i , j = 1,2,3. Thus, using the induction method one easily proves that the
following formula holds:

ι-\

ι=\ 2=1 i=\

sN-l+l

, . . . , NN_ι+2)

h e r e p , g = 1, . . . , / ; ij = 1, . . . , ( / - 1 ) .

Δ(NN, . . . , NN_ι+ι) '

3 This is one more derivation of the well-known IZ formula [2], but I decided to include it here for
completeness of the presentation; also this kind of derivation might be itself useful, i.e. for the large
N limit
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This completes the derivation of the IZ formula in our approach, based on GT
parametrization:

cN

Δ(M)Δ(N)
det[exp(M;7V )], (3.4)

where we have denoted m® by M{.
Let us now move to a discussion of correlation functions. First about general

properties:
All nonzero correlation functions in (1.1) have j m = km and (/1? . . . , ln) —

P(i{, . . . , zn), where P is the element of permutation group; of course the "reversed"
statement, when im = lm and (/c1? . . . , kn) — P'OΊ? . . . , j n ) , is equivalent to the
above.

To demonstrate this simple fact let us multiply the right-hand side in (1.1) by

^-^JίdHjjidHJ,

where Hl9 H2 are from U(1)N. Because the IZ measure is invariant under the
transformation g1 = HxgH2 we can perform this transformation in the integrand;
thus each operator inside the correlation function will be multiplied by Hx from
left and H2 from the right (hermitian conjugates will be changed correspondingly).
Because the integration over H{, H2 is over U{\) angles we see that the integral will
always be zero, except for the cases stated above.

The expressions derived at the end of Sect. 2 and the statement (3.3) immediately
leads to the proof of (1.4). We have

CN

Δ(M)

x exp

/π

Σ(
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Δ(M)Δ(N2,

N-l
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det[exp(r (3.5)

Here i = 1,2, . . . , N - 1; j = 2, . . . , JV. As I have mentioned in the introduction
the last integral is easy to calculate; it is clear from the integral representation that
the result is the sum of quadratic exponentials of eigenvalues Mv Nτ times rational
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functions and it is regular when two eigenvalues of M coincide.4 So we could permute
the eigenvalues of M to obtain all the other correlation functions (|g^| 2), as well as
all the n-point functions with i{ = ί2 = ... = ίn (and others that are related to later
by interchanging the matrix M with the matrix N) after the last integration in (3.5).

Now we will discuss the most general n-point function, n > 2, the one that
couldn't be reduced to (3.5), and will prove (1.2). Using the general property discussed
above we will order the correlation function (1.1) by the set of indices (zl5 . . . , i n ),
ix > i2 > . . . > v According to (2.8) we will draw two copies of the Yung type
diagram: one for the set (iι, . . . , in',Jι, . , j n ) , another for (iι, . . . , in\k^ . . . , kn)
(see Fig. 2). Each line in the diagram has length iq+ι, and thus we write the numbers

32

3q

Jg+2

jn In

PU

*ί+J

Pi,-ι

PU
h

•ί+l

PU

PU *2

Fig. 2
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P'ξ-2

ig+2

P'iq-ι

P'iq-ι

h

ή

i2

(i1 ? . . . , in) in the boxes at the right end of each line in each diagram. In the first
diagram we put the numbers (jv . . . , jn) in the left most boxes (again from top to
bottom, but now the numbers aren't necessary ordered); equivalently in the second
diagram we put in the same place numbers (fc1? . . . , kn) = P(jv . . . , j n ) . So each
line in the first diagram has iq on the right and j q on the left, at the same time the
same line on the second diagram has i at the right and P(jq) at the left. Now we
will fill all other boxes in the first diagram accordmg to the following procedure:

4 We have used the coordinates tied with the matrix M but we could use in the same integral the
GT coordinates related to matrix N; the result shouldn't depend on this choice; note that in the GT
coordinates for M the eigenvalues of TV are not ordered
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pick up all lines with length in (some of the numbers from set i might be equal,
so we will have several lines with the same length) and put next to ίn the numbers

(Q\ -I? 5 Qι l-\) from top to bottom with the requirement that

Aln is the number of lines of length in. We continue this procedure before reaching
the point with in - p = in_1, where p counts the boxes from right to left on the top
line of the diagram. After this the height of each column is larger, so we will fill the

next column with numbers (ρ) _i, . . . , ρH

 n 7 ! ) , with Λ being the number of
lines of length in plus the number of lines of length in_v This procedure we will
continue to the end, when all the boxes in Yung diagram are filled. The numbers ρ
should satisfy the inequality

Let us call this diagram Yzj(ρ). We will repeat the same procedure with the second
diagram, assigning the numbers ρ' to empty boxes and defining Y%>p(j\ρ').

These diagrams are just convenient representations of the products

0PO l)M - ^ ϋ n)*n> ^

when they are viewed in terms of the sum in (2.8). For to proceed further we have
to assign to each box in the diagram the factor (except the boxes i 1 ; . . . , in)

Qq^J έ?g ' 9+1 /o Q\
a 7^T~ W 8)

(for (7+1 = I, where I + 1 is the length of given row, we have to replace (3.8)
just by (/J1 ,α q + 1 )) and then multiply over q in each line; we should do the same
with the second diagram, but assigning to the boxes the complex conjugate of (3.8).
So, for each diagram we have assigned the particular product dictated by the above
procedure and the diagram. Let us call these factors Fιj(Y) and FιP(J\Y'). Finally,
to obtain the factor R coming from insertion of (3.6) and (3.7) in the IZ integral
we have to sum over all possible diagrams the objects F(Y) and F(Yf) ((with fixed
(ix, . . . , iN)\ OΊ, . . . , j N ) ; P) and then multiply:

R= ^ F ( Y ) F ( Y ' ) . (3.9)

γγ<

The described procedure looks very complicated but the result of integration over
angle variables makes it simpler. Let us take the product of Fx and F2 with some
particular set of ρ and ρ' and integrate over angle variables with measure (2.5).
Because we already know that the dependence on angles is coming only from the
pre-exponent in (1.1) (see (2.5) and (3.2)), this is the only angle integral we have to
calculate. From the other side the angle dependence in (3.8) is due to (2.10), thus
we have the simple angle integral to calculate: fix the column (let us say Zth) in both
diagrams and denote by Θ the sum over this column of the angles θρ z; denote by
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Θ' the same sum for the second diagram. The angle integral that enters in (1.1) for
this column is just

Y[(dθ)exp(θ-θ'),
row|7]

which is zero if the set ρf on the second diagram in a given column (/th in this case)
is not related to set of ρ in this first one by the permutation

(Qi •> • •> Qι ι) — P(Qι 5 ? Q\ ι) •

Later we relate the numbers in the second diagram to numbers in the first by a
simple law: we should consider only those pair of diagrams, when numbers in the
fixed column of the second are related to numbers in the same column of the first
diagram by some element of permutation group, so for each diagram Y we have the
set of mappings τ defined by the above law: Y' — τ(Y). Thus we have for R after
integration over all angle variables:

Ro = R0[m] = (3.10)

Here the subscript 0 means that we have to put to zero all angles in (3.8); after this
R becomes the function on the GT table, R0[m]. Now it is easy to see that R0[m] is
the rational function. Simply after applying the mapping r toY there are only moduli
squares of (2.9) and (2.10) left in (3.10); this means that RQITΠ] is rational. On this
we complete the construction of R Going back to (1.1) in the parametrization (2.12)
we have (for nonzero correlators):

C N

Δ(M)

CN

Δ(M)

x exp

/ jT<irai20[ra]exp

N

GT L k=Q

N-lN-k

Y[ II dm*R0[m]
k=\ 2=1

N-k

ι=\

(3.11)

and here the indices for R[m] are arranged according for those in the right-hand side.
Thus we have derived the formula announced in the introduction.

The integrand in (3.11) still looks complicated, (even having the explicit algorithm
of its construction), except the one when ix = i2 = . . . = in\ but it seems that it could
be simplified using algebraic identities for particular rational functions that enter in
Ro

 5 . It would also be interesting to have some geometric interpretation of the above
construction. At the moment the best we could extract from (3.11) in the general case

5 This should be viewed as a conjecture based on knowledge of the n-point function (3.5); i.e. in our
basis the expression for (\gik\

2) has a similar structure as the general correlation function in (3.11)
and at the same time the answer obtained from the one with i = 1 by permutation of eigenvalues of
M is simple
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is the following: first we could extract from R0[m] two polynomials P{ and P2 by
defining

Equation (3.12) uniquely defines P i ? P 2; there is a simple formula for P2 in the case
of the general n-point function P2,

[q] iφj kφl pφt

where as set [q] and the numbers aq, bq, cq are fixed by the particular correlator under
consideration. Then consider the more general than (3.11) integral: introduce for each
point on the GT table the corresponding "dual" coordinate z\ and define / by

dmR[m] exp
N-\ N-k

Σ
L j=\ i=\

(3.14)
GT

From I(z) integral (3.11) is obtained by the requirement that all coordinates on the
"z" table in a given row k are equal to Nk - TV/c_1; from the other side I obeys the
linear differential equation

P2φχ)I = P{(dz)I0 , Io = I(R = 1), (3.15)

so that the right-hand side in (3.15) is a known function. Thus, some particular
solution of (3.15) for the values of z, that I have defined previously, should coincide
with (3.11) and therefore with (1.1).

4. Conclusion

One should note that the expressions (1.4), (1.2) are very simple. This simplicity of
course should be related to the fact that the integral (1.1) actually is not over the
unitary group G, but rather over its left/right coset. We have used only part of the
symmetries when we tied the coordinate system to the matrix M (and not to the
matrix TV). Using the fact that the result shouldn't depend on this choice, additional
identities could be obtained. It might be possible that the latter allows us to get all
nontrivial n-point functions for n > 2 from those that we have calculated (see (1.4)).

The simplicity of (1.4), (1.2) might be helpful for the applications, mainly for the
large TV limit; the latter is important both in string theory and the Kazakov-Migdal
model. In this respect I would like to note the elegance of (3.3); it might lead to
an interesting equation in the large TV limit. These results might also be helpful in
the statistical models, discussed in [7]. Migdal has derived an explicit formula for
the general 2-point function in leading order of the large TV approximation in his
approach based on the Riemann-Hilbert method [8]. I known from Morozov [9] that
he has conjectured a simple formula for the 2-point function that looks similar to the
one obtained from (1.4) after integration over m ι in the case of the 2-point function.
It would be interesting to find the geometric approach that could explain in more
invariant way the results obtained in the IZ model both for finite and large TV.
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