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Abstract. Boundaries occur naturally in physical systems which satisfy the Vlasov-
Maxwell system. Assume perfect conductor boundary conditions for Maxwell, and
either specular reflection or partial absorption for Vlasov. Then weak solutions
with finite energy exist for all time.

§0. Introduction

We study the initial and boundary value problem of both the non-relativistic and
relativistic Vlasov-Maxwell system. We shall prove the global existence of weak
solutions under various boundary conditions.

Let Ω be an open set in R3 with C 1 ^ boundary, for some μ > 0. Consider the
non-relativistic Vlasov-Maxwell system:

c

dtE - ccuήB = - j = - 4πΣeβ J fβdv , (VM)
β R3

ccurl£ = 0 ,

where 0 < f < o o , x e Ω and v e R3, with the constraints

div E = p = AπY^ββ j ffidv ,
β R 3 (0.1)
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The initial conditions are

f/,(0, x, v) = fOβ{x, υ) for 1 ̂  β ̂  N9 £(0, x) = E0(x)9 3(0, x) = B0(x) ,

[ d i v £ 0 = Po and div£ 0 = 0 .

The boundary conditions are

' £ x n = 0 ,

fp(t, x, v) = ap(t9 x, Ό)(Kfp(t, x, υ)) + gp(t9 x, υ\ 1 S β g N, ( * )

for X G 3 Ω and n u < 0, where n is the outward normal vector of 3Ω at x. Here the
reflection operator is defined as

Kf(t9 x, v) = /( r , x9υ-2(υ n)n)9 (0.4)

where v — 2(υ n )n is the reflected vector of ϊ; respect to H. Also N is the number of
different types of particles with charges eβ and masses mβ, c is the speed of light. The
absorption coefficient aβ(t, x, v) and the boundary source gβ(t, x, t;) are two given
functions on n- v < 0 satisfying either one of the following conditions:

1. Purely specular reflection condition:

aβ(t9 x, v) = 1, gβ(t9 x9υ) = 0. (0.5)

2. Partially absorbing condition:

0 S aβ(t, x, v)^ao< 1, <^(ί, x, t;) ̂  0 , (0.6)

where a0 is a constant. The purely absorbing condition is aβ = 0 and gf̂  = 0.
These are two typical kinds of the boundary conditions for transport equations.

The assumed condition E x n = 0 comes naturally from physics when Ω is
surrounded by a perfect conductor. The integrated energy for the non-relativistic
case is

<̂ τ = 4 π Σ J (l + \υ\2)mpfβdtdxdυ+ f (E2 + B2)dtdx . (0.7)
/? (0,Γ)xΩxl?3 (OJ)χβ

Let Xτ(') be the characteristic function of [0, T]. Our main results are as follows.

Theorem 0.1 {Non-relativistic case). Let dΩ e Cliμ

9for some μ > 0. Let foβ ^ 0 a.e.,
for 1 ̂  j8 ̂  iV, αnrf feί £ 0 flwd ̂ o ^ ̂ 2(Ω) satisfy div Eo = ρ0 and di\ Bo = 0 in
the sense of distributions. Assume fOβ(l + \υ\2) e L1. In the purely specular case (0.5),
assume fβ e L°° n L1. In the partially absorbing case (0.6), assume fOβ e Lp,
χτgβ e Lp,χτgβ(l + | f | ) 2 e Lί,for some 2 ^ p ̂  oo and all T < oo. TTien ίherβ ̂ xisί
α ŵ α/c solution o/(VM) m 0 < t < oo, x e Ω, v e i^3 with finite energy Sτ,for all
T < oo. Moreover, if fOβ e Lq, χτgβ e Lq, for all T < oo, ί/*en χΓ/^ e L9, /or all
T < oo, where 2 ̂  q ̂  oo.
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The relativistic Vlasov-Maxwell system (RVM) is the same as (VM) except that

— is replaced by v = — = = = = = . (See [GS1].) The energy is the same as for (VM)

Imj + — r

v c / \v\2\ϊ
except that (1 + \v\2)mβ is replaced by 2c21 m\ Λ γ I . We have a parallel

V ^ /
theorem (Theorem 5.1).

This paper is a first attempt to describe the plasma-wall interaction. An
important potential application is to a tokamak. However, there are several
sources of particle fluxes to the wall, such as ions and electrons that diffuse across
the confining field, runaway electrons, and neutral particles that are injected into
the plasma from the wall. According to [St], "the physics of the transport processes
within the plasma core and boundary regions and the atomic physics of the
plasma-wall interaction are sufficiently complex and the experimental evidence is
sufficiently limited, that it is very difficult to confidently predict the magnitude and
energy distribution of the particle fluxes to the wall." Because of this uncertainty, it
is useful to remark that our proof works if we replace the second condition in (0.3)
by//? = Jffβ + gβ, and eliminate (0.4), (0.5), (0.6), where X is any linear operator:
Lp({n-v >0})-+Lp{{n v <0}), with \\jf\\ < 1, assuming that 2 <Ξ p < oo.

Arsenev [A] first proved the global existence of weak solutions of the Vlasov-
Poisson system. Using a velocity averaging argument, DiPerna and Lions [DL]
proved the global existence of the weak solutions of the Cauchy problem of the
Vlasov-Maxwell system. Regularity of the global weak solutions with regular
initial data for the Vlasov-Maxwell systems (VM) and (RVM) were proved earlier
by Glassey, Strauss and Schaeffer in [GS1, GS2 and GSc], but they require some
restrictions on the data. In the Vlasov-Poisson case, regularity without extra
restrictions on the data have recently been proved by [Pf, H, Sc and PL].
Greengard and Raviart [GR] proved the uniqueness and existence of weak
solutions for the one-dimensional stationary Vlasov-Poisson system with bound-
ary conditions. The case of linear transport equations have been studied by many
mathematicians. In particular, Beals and Protopopescu [BP] gave a unified formu-
lation in a general setting. Cooper and Strauss [CS] treated the general initial-
boundary value problem for the Maxwell system in time-dependent domains.

Even in the case of the full (VM) or (RVM) system without the boundary, as in
[DL], the questions of uniqueness, regularity and conservation of energy are open,
unless the data is restricted as in [GS1, GS2 and GSc]. We have some positive and
negative results on these questions, which will appear in a later paper.

To prove the existence of the weak solution, we first approximate the phase
space Ω x R 3 by a sequence of bounded domains. In each bounded domain, we
approximate a cut-off problem by a sequence of linear Vlasov equations and linear
Maxwell systems with suitable new initial and boundary conditions. Using the
results of [BP], we get a sequence of weak solutions (Sect. 2). We take the weak
limits of the solutions of the linear problems and obtain the energy estimate by the
compactness results of [DL] (Sect. 3). Then we get the weak solution of the partial
absorption problem as the limit of the solutions of the cut-off problems. We
approximate the purely specular problem by partial absorption problems (Sect. 4).
Finally we treat the relativistic case (Sect. 5).
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1. Notation and Weak Formulation

Definition 1.1. Let Π = (0, oo) x Ω x R3, w/zere Ω is an open set in R 3 with
Cι'μ bioundary, μ > 0. Lei n be the outward normal vector of dΩ at x. Let

y± = {(ί,x,ι;)e(0, oo)xdί2xR 3 | + « ι>>0} , (1.1)

y° = {(ί, x, υ) e (0, oo) x dΩ x R31 n v = 0} . (1.2)

For any Γ > 0, let Πx = (0, T)xΩίxVίe Π. Let

. (1.3)

p ! the LPnorm on Πu and let | |p;y±(^) be the Lpnorm ony± with respect to
the measure \dyβl where

dγβ = (n —)dσxdvdt, (1.4)

where dσx is the standard surface measure of dΩu and 1 ^ p ^ + oo.

Most of the estimates in this paper depend on any fixed T, but the solutions are
defined for 0 ^ t < oo .

Definition 1.2. The integrated energy in a region is

δ{fβ9 E, B, Ωl9 Vu T) = 4πX mβ J (1 + \v\2)fβdtdxdv + J (E2 + B2)dtdx .
β Πj_ (OJ)xΩi

(1.5)

We also define the initial-boundary energy as

β J (1 + \v\2)f0βdxdv
/? ΩxR 3 Ω

+ \v\2)0βdyp, for a fixed Γ > 0 .
β y~

(1.6)

Definition 1.3. 77ιe ίesί function spaces are

TT = {α(ί, x, ϋ) G Cc°°([0, oo)xR 3 xR 3 ;R 1 ) |

suppαczc {[0, oo)xΩxR 3 }\{(0xM)uy 0 }} , (1.7)

t/# = {(^φ) |^ G C c

α ) ( [0, oo)xΩ;R 3),φeC c

ω([0, oo)xR3;R3)} . (1.8)

Definition 1.4. (Test functionals). Let Π1 be as in Definition 1.1. Let fβ e LiocC^iX
/ o ^ e L U Ω x R 3 ) , fβeLioΛyΐ), and gβsLϊoc(yϊ\ with respect to dyβ, for
l^β^N. Let E and B e Ltoc((09 T) x Ω), and Eo and Bo e Lfoc(Ω). Let aβ e TT,
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and (ψ, φ) e Jί. Define

Aβ(fβJβ,E, B, (xβ, Ωu V1)= - J foβθίβ{0, x, v)dxdv - J {δtaβ + Wxaβ'V

+ (E + vxB) Vvaβ)fβdtdxdv+ J <xβf£ dyβ

+ l*β{aβKfϊ+gβ}dyβ9 (1.9)

Γ

C(E9B9φ9j9Ωl9 V1)= - J J E-δtφdtdx- J φ{Q>x) Eodx
0 Ωi Ωi

T Γ

- J J cmlψ-Bdtdx + J Iψ-jdtdx, (1.10)
Ofii OΩi

where j = 4π§VίΣβveβfβdv, and

T

,B,φ,Ωu Vt)= - J J B-dtφdtdx- J φ(0,x) B o ^
OΩi

Γ

+ J J cuήφΈdtdx. (1.11)
0 Ωi

Definition 1.5. (PTeα/c solutions). Let /^ ^ 0 a.e, /^ e L}OC{Π)9 fβ ^ 0 a.e.,
/ 7 e L1

1

0C(y + ) and £ , ΰ e Aoc((0» ° ° ) x β ) ^ ^ flr^ « w e a k solution of (VM) witft
conditions (0.1) ί/irowgf/z (0.3), ι/Va^ £ ^ , V(^, φ ) 6 ^T, 1 ^ β ^ N,

,φ,Ω,R3) = 0, (1.12)

I div E = p and div 5 = 0 m ί/ẑ  sense of distributions .

Since γ° has zero surface measure (see [GMP]), it is omitted.

Lemma 1.1. div B = 0 is implied by the other conditions in (1.12).

Proof. For any ζ e Cc°°([0, oo)xί2; R). Assume ζ(t9 x) = 0 when t > T. Plug
φ = poVζdτ - $lVζdt into £>(£, B, φ,Ω,R3) = 0 and the lemma follows.

Lemma 1.2. Suppose that fΌβ, E0,g and a are smooth, that Eo x n = 0, on dΩ, thatfβ,
/ / , E and B are a weak solution o/(VM), ίfcαί/^ e CX(Π), ίfcαί// G C 1 ^
E, B e C ^ O , oo) x Ω), ί/zαί /^ /zαt;̂  continuous extensions to y~ u y+ u {t = 0},
ί/zαί £ and 5 /zai e continuous extensions to [0, Γ] x Ω,for all T < oo. Γ/ϊβn fβ, fβ ,
E and B is a classical solution o/(VM) with classical initial and boundary conditions
on γ+ u y" u {ί = 0}.

The proof is standard.

Remark. If n 5 0 = 0 in the weak sense on dΩ, then n-B = 0follows for all t. Since
div Bo = 0, the weak form of n £ 0 = 0 is J o V ζ β 0 dx_^= 0, V C 6 Cc°° ( # 3 ) . Choose
a test function ζ such that C(ί, x) = 0 when t > T. Plug φ = f0V ζ dz - j J V ζ dt into
D = 0. We get - \HΩVζ-Bdtdx = 0, which is the weak form oΐn-B = 0.
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2. An Approximate Solution for (VM)

For notational simplicity in Sects. 2-4 we take only one species of particle, drop the
subscript β and set the basic constants equal to unity. Under these assumptions, we
treat the partially absorbing problem of (VM) in the next two sections.
Let's assume / 0 ( l + M 2 ) e L\Ω x R3\ f0 e L°°(ί2 x R3), f0 ^ 0 a.e, χτ(l + \v\2)g
e Lx(y~\ χτg e L°°(y~), g^O a.e., for all T < oo, 0 g α(ί, x, t;) ̂  α0 < 1, and
Eo, Bo e L2(Ω). In order to get good estimates, we cut the physical space Ω to ΩN

and the velocity space R3 to VN, where

Ω v = {x e Ω| |x | < JV}, F* = {u e # 3 | |ι>| < iV} .

Let Πjy = (0, N)xΩNx VN9 and 77^ be its closure. For fixed N, we will define
a sequence of functions by solving a sequence of linear problems, (2.11) and (2.17)
below.

The first approximations are E° = E o and B° = Bo. Suppose we already know
Bk and Ek e L2((0, N) x ΩN\ for some k ^ 0. Let B\,B\e Cc

α)((0, N) x ΩΛT) such

that \E% - £fc|2;(o,N)xΩN ύ 2^, l^k - ^kl2;(o,N)χΩN ύ ^ The linear equation satisfied

by fk+1 will be defined following the procedure of [BP], as follows.

Definition 2.1. For fixed k9 let (ί, x, υ) e ΠN. The path Γk(s; t, x, v) is the solution
(t(s), x(s), v(s)) of the system

£ = «, ^ = £ U - ^ , ^ = 1 (2.1)
as as as

which passes through the point (ί, x, v) when s = ί, extended over the maximal
s-ίnterval for which the path lies in ΠN. By the length ofthis_ path we mean the length
of the maximal s-ίnterval over which the path remains in ΠN.

Definition 2.2. (Incoming and outgoing sets). Let D~(D + ) be the subset of dΠN

consisting of the left (resp. right) limits (in the parameter s) of all maximal paths with
initial values in ΠN. Keep in mind that D± depend on k and N.

We also define y^ = y± nfϊN. Clearly from (2.1) we have

yϊczD*, {ί = 0}c:Z)-, { ί = Γ } c D + . (2.2)

We also define the following sets, which are also dependent on k and JV,

Definition 2.3. By Φ = Φk = Φk

N we denote the test function space of the linear Vlasov
equation. It consists of all the Borel functions φ on ΠN with the following three
properties'.

1. φ is continuously differentiable in the variable s along the path Γk(s; t, x, ι;).
2. φ and Yφ are bounded, where Y = δt + v V* + (E% + υ x B%) V,.
3. Among all the paths which meet the support ofφ, there is a positive lower bound to
their lengths inside ΠN. This lower bound may depend on k and N.

If φ is smooth, then properties 1 and 2 are obviously satisfied. But we want to
allow φ to be discontinuous in some directions. Notice that the test function space
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depends on k and N. The following lemma shows that V belong to every Φk after
being cut off.

Lemma 2.1. Given E%,B%e Cc°°((0, N) x ΩN\ and let XN = {|x| < N}9 let

rN = {aer\ suppα <=c= [0, N)x(Ωn XN) x VN} . (2.4)

Then rN c Φ\ for all k.

Proof. Choose α e i^N. Let K2 = the ^-projection of suppα. Then K2 c=<= VN. Let
Kx = the x-projection of (suppα n {ί = 0}), then K1 czc ΩN. From the definition of
i^, and from (2.4), we know that α vanishes on a neighborhood of F ". Now we let

d0 = min{d(Kl9Ω
c

N)9d(K29 V%\ d(suppα, F~)9 d(suppα, γ°)9 d(suppα, XC

N)} ,

(2.5)

where d is the Euclidean distance in R x R3 x Λ3. Certainly d0 > 0 and α satisfies
properties 1 and 2. Let Γk(s; ί, x, ι;) be a path in 77^ which meets suppα. Because

— = 1, and t G [0, AT], the path must emanate from some point (£', xr, ι/) e /) ~. So
ds
we can write the path as Γk(s; ί, x, ι>), where (ί, x, t;) e D~. We shall find a lower
bound for |s — ί|.

do
Case 1. d((t, x, v), suppα) ^ — . Since the velocity is bounded, clearly there is

4 7

a lower bound of time to cover the distance —.
4

do
Case 2. d((t, x, ι;), suppα) < —. From (2.5), we know

| x | ^ N - — and | ι ; | ^ N - — . (2.6)

By (2.1), we have — \v\2 = vΈ% g |ι;(5)|2 + \E%\2. By the boundedness of E% and

by GronwalΓs inequality, |t;(s)|2 ^ (|t;| + C4(s — ί)1/2)2> where C 3 and C 4 are

. Let s0 = t + mini T T ^ X T T )• If S ^ SOJ
constants depending only on HE^H^. Let s0 = t + mini TT^I^TJ )• If S ^ SOJ then

\ 4 C 4 2N J

s0 clearly is a lower bound for \s — t\. If t ^ s ^ s0, we know from (2.6) that

| ι ? ( s ) | ^ | ϋ | + y < N , and |x(s)| ^ |x| + y < N. By (2.5) and (2.3), we know

(ί, x, v) G {t = 0} u yΰ.

Now we treat two different situations. In case (ί, x, v) e (t = 0}, then from (2.5),
d 3d

d(x, ΩC

N)^ d(suppα, ΩC

N) — rf(suppα, x) ^ d0 £- = —- .
4 4

Since |x(s) — x | ^ -y, ί/(x(s), ΩC

N) ̂  d(x, ί2^) — d(x(s\ x) ^ — - — ^ = —. Hence,

(s, x(s), t (s)) G ΠN, when 0 = ί ^ s ^ s 0 . Thus s 0 is a lower bound for the length of
the trajectory. Finally in case (ί, x, i ? ) e y ^ then we know that n v <0. F r o m (2.5),
we have

d((t, x, ι;), y°) ^ d(supp α, y°) — ίi(supp α, (ί, x, ι?)) ̂  d0 r = —r^
4 4
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Hence there is a δ > 0, such that

n' v ^ — δ, for all such (ί, x, v) . (2.7)

Since 3Ω e C 1 > μ, μ > 0, we know that \y — xΓ1^ — x)'n\ is uniformly small,
provided that \y — x| is small, and x, y e δ£2 n XN. Now let x e dΩ, and

|x| ^ JV -p-. It is easy to show that there is a — > η > 0, such that

if \y - x\ < η and (y - x) n ^ — — , then we have y e ΩN . (2.8)

Now let Sl = t + mhi\so,jjz, fe fe >• If ί ^ s ^ s 1 ? |x(s)-x |

g f>(τ) | dτ S (s - t)N < | From (2.7),

s s Γ~ τ

(x(s) - x)-n = f v(τ)-ndτ = j t?(τ) + ft/

(5
loo) ^ — (S — t)~.

2

Hence (x(s) - x) n ^ ΛIT By (2.8), x(s) e ΩN. Since φ ) e VN, (s, x(s), v(s))

e ΩN and sx — ί is a lower bound for the trajectory. Therefore we conclude there is
a lower bound for the trajectory in every case. Q.E.D.

Lemma 2.2. There are two unique positive Borel measures μ± on D±, such that

f Yφdtdxdv = \φdμ+ - f φdμ"9 Vφ e Φ . (2.9)
ΠN D+ D-

Moreover, dμ~ restricted to {ί = 0} is dxdv and dμ± restricted to y^ is \dy\. These
measures depend on k and N.

Proof. Equation (2.9) is proved in Lemma 3.1 in Chapter XI of [GMP]. Choose
α = φ £ Ψ"N cz Φ. By (2.3) we know α = 0 on F ± . Therefore we can replace D ± by
yiv in (2.9). Applying the divergence theorem to the left side of (2.9), we deduce the
rest of the lemma.

Definition 2.4 (Trace). If u and Yu belong to LP(ΠN\ the trace of u is a pair of
functions w* in Li^D^1, dμ±), such that Mφ e Φ,

<7w, φy + <w, Yφy = J uφdμ+ - j uφdμ- . (2.10)
D+ D-

From Prop. 1 of [BP], we know that trace of u exist and is unique. Now we are
ready to define our fk+1 as a unique solution of the linear Vlasov equation

f) / * + i _i_ ij v fk+1 4- (Fk 4- 7)x Rk \ V fk + 1 — 0 ί ? 11Ϊ
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with the initial and boundary conditions

f ffc+im v ,,\ /• / v ,,\ fk+ί\ A

) / (u, x, v) —jo{x, v), j \F— υ ,
c + iι -—a(t x v)(Kfk + 1)\ ++a(t x v) '

satisfied in the sense of trace. More precisely, we have the following

Lemma 2.3. Given E% and B\, there exist two unique nonnegative functions
fk + 1 e LP(ΠN) and f+

+1 e Lp{D + \ such that Vφ e Φ,

l(Yφ)fk + ίdtdxdv = I φf+

+1dμ+ - $φ{aKfk

+

+ί -
ΠN

- J φfodxdv . (2.13)
ί = 0

Proof Recall from (2.3) that R~ = F" u γΰ. Define

d X |

for any function q(t,x,v) on R~. Now we can write part of (2.12) as/ f c + 1 | R -
? f c 1 + g. By changing i -variables, we have

U xy v - 2(n-υ)n)\'dγ\P

J

= I J + α ( ί , x , i ; - 2 ( n i 7 ) i ; y | g ( ί , x , t ; ) | ^ y | " = | J + ( V

Also Kq ^ 0 , if ^ ^ 0. Now our lemma is an immediate consequence of the
following special case of the theorems in [BP].

Theorem 1 and 2 of [BP]. Suppose that Jf
1 ^ p < oo, has operator norm less than 1. For any f0 e LP(ΩN xVN\ge LP(R~),
the linear transport problem

Yu = 0 in ΠN, w|f = o =fo u~ — ̂ w + + g on R~

has a unique solution u e LP(ΠN) with unique trace u± e Lp(dΠN). Moreover, if
\/q E LP{R~\ q^O implies Jfq ^ 0. Then the solution u ^ 0 if f0 ^ 0 and g ^ 0.

Lemma 2.4. The solution from the previous lemma has the following properties:

MaerN, A(fk + ϊ,fk

+

+\El,Bl,a,ΩN,VN) = O, (2.14)

(1 - αo)W+ + 1 Uri + \Xτfk+\π. ^ 2eτ(\f0\,,Πa + (1 - αoΓ^χ^U,-) (2.15)

for 1 ^ p ^ oo, w/jere Πo = ΩNx VN, and χτ(') is the characteristic function of

[0, T], 0 < T ^ N, Here we set (1 — αo)ΐ = 1 if p = oo. Furthermore,

\e-'(l + \v\2)χτf
k+1dtdxdv ^ f (1 + M2)/0Λc*> - J χΓ(l + \v\2)gdγ

ΠN Πo γ-

+ 2$ e-'xTElvf + ^tdxdv . (2.16)
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Proof. By Lemma 2.1 and 2.3, if α G f̂  c Φ, we recall that α = 0 o n F ± and on
t = T. Plugging α into (2.13), we have

0 = - $fk+1Yadtdυdx+ J fk

+

+1adμ+ - Jα(αK/*+

+1 + g)dμ~ - \ afodxdυ
ΠN D+ y* ί = 0

= - J Yocfk+ίdtdxdv+ $otfk

+

+ίdy + f(ftK/*+

+1 + <?)αdy- J a/o

which proves (2.14). Next, let 11% = ΠNn((0, T)xΩNxVNl and let Dψ be
its incoming (outgoing) sets. Multiplying (2.14) by e~\ we have
γ(e-tfk + η + g-ί/fc + i = o in 2{Πl). Since e'ψ^ has β"7k

±

+1 as its trace, by
Prop. 1 of [BP],

I (e-tfk++iydμ+ + p j (e-
tf+1)Pdtdxdv = j (e'ψ^γdμ- ,

D r

+ ^ Df

for 1 ̂  p < oo. Let's write out every term above explicitly. Notice that

Z)+= {t = T} υ {F+nΠ£} u W n J7£} ,

Df = {ί = 0}υ{f-π77ϊ}u{)'wn77ί}.

Since αK/V"1 + g is the trace for / fc+ J on yΰ, and since / k + 1 ̂  0 and /V"1 ^ 0,
we get

J (e-'/V1)pd/i+ + ί χ τ ( e - ' A + 1 ) p ^ + + ί χτ(e-<fk

+

+Ύdy + p j (e~T+1Ydz
t = T F+ γ£ ΠT

N

= - J Zr[e-'(aK/fc

+

+1 + 0)]'dy + J/Sώcd» + f χτ(e-<fk-+Ύdμ- ,

where rfz = dί Jx dt;. Notice that the first and second terms are nonnegative, and the
last term vanishes. We estimate the first term on the right as

0 S ~ f Xrle-'iaKfV1 + g)γdγ = J Xrle'^Ka)^1 + Kg)γdγ

S J χr[e-'(βoA+ 1 + (1 - βo)(l - ao)-1Kg)γdy

(1 - «o)J Zτ [(l - β o ) " 1 ^ '

Therefore

(1 - fl0) ί iΛe-T+'Ydy + J
IN ΠN

This proves (2.15) for 1 ^ p < oo. Since all the measures here are finite, when

p -> oo, (2.15) is valid. Finally we multiply (2.11) by e'^l + \υ\2) on Πl to get
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where e'ψ + HEX e L\ΠΉ). Noticing e~\l + \v\2)fk+1 has trace e~\\ + M 2 ) / ± + 1 ,
repeating the argument as above, we get (2.16). Q.E.D.

We now define Ek+1 and Bk+1 as the weak solution of the linear Maxwell
system

3tE
k + 1 - c m \ B k + 1 = -jk+1 = -$vfk + 1dv,

1 0 { '

with initial data Eθ9 ^o a n d boundary data Ek + 1 xn = 0. More precisely, we have

Lemma 2.5. For fixed k, suppose j k + ί = \VN vfk + 1 dυ e L°°((0, N) x ΩN). There exist

Ek + 1andBk + 1 e L2((0, N) x ΩN), such that \/(ψf φ) e Jί, and suppψ aa [0, N) x ΩN,

\Bk + \φ,ΩN,VN) = 0, (2.18)

ί XTe-'UE"*1? + \Bk + 1\2^dtdx S J(£§ + Bl)dx
(0,N)xΩN Ω

$ , (2.19)
πN

where 0 < T < N.

Sketch of the proof. Notice that ΩN has a Lipschitz boundary which is not
necessarily C 2 . In case dΩN happens to be C 2 , the proof is standard. See [CS]. In
the case dΩ is not C 2 , by [N], we deduce our lemma by approximating ΩN with
smooth domains.

We summarize our constructions as follows.

Lemma 2.6. There is a well-defined sequence fk,fk+, Ek, Bk satisfying (2.14), (2.15),
(2.16), (2.18) and (2.19).

3. The Cut Off Nonlinear Problem

In this section we let k —> oo. This process will result in the following lemma.

Lemma 3.1. There exist f / + , E, B such that Vα e i^N, V(ψ,φ)€Jΐ with
supp \jj c=cz [0, N) x ΩN, we have

£ , β , α , Ω N , Ktf) = 0 , (3.1)

C(E9BJ9ψ9ΩN9VN) = 09 D(E,B,φ,ΩN,VN) = 0, (3.2)

\χτf
+\p;ys + \Xτf\P;πN ^ 2eτ(\fo\p;Πo + (1 - ao)-ι\χτg\p,r) (3.3)

, £ , β , Ω N , VN9 T) ̂  e τ S 0 { T \ w h e r e l ^ p ^ o o , O ^ T ^ N . (3.4)

Proof By (2.15) and (2.19), there exist weak limits / / + , E, B and subsequences
such that fk-^f weakly in LP(ΠN), f^f+ weakly * in Lp{y^\ Ek-^E weakly in
L2((0, N) x ΩN)9 and Bk-^B weakly in L2((0, N) x ΩN) for 1 ̂  p ̂  oo. Since E^E
and 5^-^.B weakly in L2((0, AT) x Ω^), we get (3.3) by weak lower semicontinuity. In
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order to prove the lemma, we have to consider the limit of (2.14), (2.16), (2.18) and
(2.19), when k -> oo. Since in (2.18) every term is linear, (3.2) is valid. Our main task
is to prove (3.1), for which we take the limit in (2.14). It is sufficient to consider only
these two delicate terms as follows. We claim that for each α e Ϋ"N,

lim f φ(Kf\+1) + g)dy = $φKf+ + g) dy , (3.5)

lim j (E* + υxBl)Vvotfk + 1dtdxdv = J (E + vxB)Vvafdtdxdv , (3.6)
^^π* πN

Proof of the claim. For (3.5), we change v-variables, take the weak limit, and then
change f-variables back again. Thus,

lim j φ(Kf+

+1) + g)dy = lim J (-l)Ka((Ka)f\+1 + Kg)dy
k> k * +

= ί a(aKf+ + g)dy .
ys

This proves (3.5). For (3.6), fix any η e C?(ΠN), 0 ^ η ^ 1. From our construction,

dt(ηfk+i) + Wx(ηfk + 1) = ~ d i v ^ E * +υxB%)fk+1)

+ ηtf
k + 1 + vVxηfk+1 = hk (3.7)

in Si'. Noticing that hk is a bounded sequence in L2(RxRl, H~1(R^))9 by the
averaging lemma of DiPerna and Lions, ([DL]), we deduce that Vφ(t ) e C?(R3%
\ηfk+1φ(υ)dv is bounded in H*((0, oo)xR3). Hence §ηfk + 1φ(v)dv is compact in
L2. So there is a subsequence (still denoted by / k + 1 ) , such that §ηfk+1φ(v)dv-+
\ηfφ(v)dυ strongly in L2 as fe-^- oo. By a density argument, we can assume α
of the form a1(v)a2(t,x\ where αχ(ι;) = 05 if \υ\^.N, and α2(ί,x)
may not vanish on the boundary. We wish to show that §S7<xfk + 1dv con-
verges strongly in L2((0, N)x ΩN). We break up fk + 1 ~f= η{fk + 1 - / )
H-(l — η)(fk+1 — / ) , and estimate these two terms separately. We have

Γ J «l\s(l-η)(Γ + 1-f)VvΛldv}dtdx]Zc\ S{l-η)2dtdvdxY,

(3.8)

by (2.15), we can choose C depends only o n α 1 , α 2 , / 0 > f l o a n <3 9- Now for any ε > 0,
we choose η such that C[JΠ j v(l — η)2dtdvdx~]* < ε/2. Then for this fixed 77, we
choose k so large that [ J ^ ^ X Ω , <*l(]vMfk + 1 ~f)V*\dv)2dtdxβ < ε/2. Thus we
have shown

Γ j α i ( J ( / f c + 1 - / ) V α 1 ^ ) d t d x \ =
L(O,JV)xΩJV \VN / J
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Now in (3.6), §{OfN)xΩN £*(JVNVα/fc + 1 dv)dtdx converges because one factor con-
verges weakly in L2 and the other converges strongly in L2. The second term in
(3.6) is

= J BkJ J > x Vva)fk + 1dv jdtdx .
ΠN (O,N)xΩ \VN J

Regarding v x V^α as another test function, we deduce our claim.
Finally let's consider the limit of (2.16) and (2.19). By exactly the same method

as in the proof of (3.6), both J ^ r ^ * * " V ^ 1 dtdxdυ and $ΠNχτE
ke~tvfkdtdxdv

converge to \π^χτEe~tυfdtdxdυ. The reason is that XT^~1V now behaves like a test
function, since our ΠN is bounded. Letting k -» oo in (2.16) and (2.19), using the
weak lower semicontinuity, then adding (2.16) and (2.19) together, we finally prove
(3.4). Q.E.D.

4. Solution of (VM)

In this section, we begin with the partial absorption problem and conclude with the
specular case. We let N -• oo in the cut off problems. The method is similar to the
previous section.

Theorem 4.1. Suppose dΩ e C 1 > μ , for some μ > 0. Let / 0 ( l + \v\2) e Lι{Ω x R3%
/o e L°°(ί2 x R3), and / 0 ^ 0 a.e.. Let 0 ^ α(ί, x9 υ) ^ α 0 < 1, χτg(t, x, v) e LΛ(γ~)9

(1 + \υ\2)χτg e L^y'lfor all 0 < T< oo and g^O a.e. Lei E o and £ 0 6 L 2 (Ω)
wiί/z the constraint conditions div Bo = 0, d i v £ 0 = Po in @'{Ω). Then there is a weak
solution /, / + , B, E of the partial absorption problem, with

3, Ω, T) g e $o{T\ for l ^ p ^ o o , \/T < oo .

Proo/ We now have sequences fN9f^, # N ? ^ N satisfying (3.1), (3.2), (3.3) and (3.4).
We extend the functions fN,fίi ,EN,BNby0 outside Π\ΠN. The extended functions
still satisfy (3.1) to (3.4) in the cut off domains. Abusing notation, we call them fN,

/ # , EN and BN again. It is easy to show that there exist measurable functions /, / + ,
E and B defined for 0 :g t < oo, and subsequences (still denoted by JV), such that

XτfN-χτf weakly in L2(Π), χτf£±χτf
+

9 weakly * in L°°(y + ),

χτEN-^χτE weakly in L2((0, oo) x Ω),

XτBN-^χτB weakly in L2((0, oo) x Ω), for all T. (4.2)

By weakjower semicontinuityJor f f+, E and B, (4.1) is valid. We also have

Vα e i^N, V(^, φ) e Jί with suppϊj/ cue [0, Γ) x ΩN,

Z, £ N ? # N , α, Ω, R 3) = A(fN9 ft, £ N , BN, α, ΩN, KN) = 0 ,

C(EN9BNJN, φ9 Ω9 R
3) = C(EN9 BN9jN9 φ9 ΩNi VN) = 0 ,

D(EN9 BN9 φ9 Ω, £ 3 ) = D ( £ N , B N , φ, ΩN, VN) = 0 . (4.3)

Now fix any α e f , and (ψ,φ)e Jί. There exists^ a r > 0, such that suppα czc:
[0, r) x (ΩN n XN) x F^ when N > r, and supp i// czcr [0, r) x Ω^ when N > r.



258 Y. Guo

In other words, (4.3) holds for any α and (φ, φ) when N > r,r depending on α and
φ. When letting N -• oo in (4.3), we only need to consider

f φjN dt dx and j (EN + t; x BN)(Vvoc)fN dt dx dυ . (4.4)
(0,r)xΩ i7

In the former integral, we break up j N = l^vfNdv into its parts over \υ\ ̂  R
C

and M > J R . Then we get \${o,r)χΩχ{\v\>R)VfNdtdxdv\ ^ - | J(l + \v\2)fNdtdxdv\
c R

^ — , thanks to the energy inequality (3.4). Vε > 0, choose R big enough
IV

C ε
that — < - . For this fixed R, by (4.2) we have ${o,r)χΩχ{\v\<LR}φvfNdtdxdυ-+

$(o,r)χΩχ{\υ\^R)Φυfdtdxdv. Hence the former one goes to the correct limit.
For the latter integral in (4.4), we follow the proof of (3.6). We first choose

η e C?(Π\ 0 S η S 1, such that (3.8) holds for (fN - / ) . There exists N0(η) such
that when N ^ N0(η\ supp^ c c ΠN. Therefore the rest of the argument for (3.6)
holds with N ^ N0(η) and T= N0(η). Hence A, C and D are zero with f, f+, E
and B.

Finally, in order to complete the proof of Theorem 4.1, we only need to check
div E = p in the sense of distributions. To accomplish this, we use the following
observation, which is a fundamental motivation of this paper.

Lemma 4.2. // Λ = C = D = 0 holds with fe L°°((0, T)xΩxR3), Ee
L2((0, Γ)xΩ), and χτ(l + \υ\2)*fe L\Π\ V0 ^ T< oo. Then div£ = p.

Proof of Lemma 4.2. Under above assumptions, we claim that A = 0 holds for any
α(ί, x) e Cc

co([0, oo) x Ω) which is independent of υ and vanishes near dΩ. In fact, let

bN(\v\) e C?{R3), with bN = 1, for \v\ ^N,bN = 0, for \v\ ^ 2N9 and IVfe l̂ ^ - .

Then bNoί e Ψ*. Assume α(ί, x) = 0 if t ^ T. Plugging it into A = 0, we know that
- J bNaf0 dxdv-\ bNdt(xfdt dx dυ - $fbNv Vxa dtdxdv - j (£ + vx B)fVvbNoc dt dx dυ

equal to zero, since there is no boundary term. Notice that V^b^ is parallel to v, so
that υxB- YvbN = 0. When JV -> oo, only the last integral will present any difficulty.
Noticing that the volume of {N ^ \v\ ̂ 2N} is O(AΓ3), we have

\$EfVΌbNaιdtdvdx\^( J \E\2dtdx) ( J {\fVvbNadυ)2dxdt J
\(0, Γ)xΩ / \(0, Γ)xΩ /

Npdυdtdx)
/

J (l + |ι;|2)*/rft(ίί;rfx .

The last integral goes to 0 as JV -» oo. This proves A = 0 for such α.
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Now for any α(ί, x) e Cc°°([0, oo) x Ω). Notice that α(ί, x) = γQadτ - J Jadt is
again a test function of the form given above. Replacing α by α, and (ψ,φ) by
( JQ Vαdτ — j"0

ΓVα<it, 0) in A, C, and D, we deduce div£ = p from the
div£ 0 = po Q.E.D.

Now we can extend our results about the partial absorption problem.

Theorem 4.3. Suppose 0 ^ T < oo, f0 e Z/(Ω x R3), χ Γ # e Lp(y") /or some
2 ^ p < oo, where f0 and χTg are not bounded. Let the other assumptions of The-
orem 4.1 remain the same. Then there is a weak solution ff+, E, and B with given
data /o, α, g, Eo, Bo, and satisfy (4.1) for above p.

Proof. We first treat the case of 2 < p < oo. Let /(

0"
} e L°°(Ω x # 3 ) , χ Γ # ( n ) e L°°(y ~),

such that | l Λ " ) - / o l l L l n L P ( Ω x R 3 ) ^ 0 , | | χ Γ ( ^ ) - ^ | | L l n L P ( Γ ) ^ o when n->oo. By
Theorem 4.1, there exist weak solutions f(n\ f(n) +, E{n\ B(n) with given data/8°, £ 0 ?

5 0 , α, ^(n). Also / ( n ), / (" ) +, £ ( n ) , and B(n) satisfy the estimate (4.1) with the fixed p.
Hence there exist weak limits ff + ,B and E of the corresponding sequences such
that (4.2) holds for these functions. By weak lower semicontinuity, /, / + , B and
E satisfy (4.1) with the fixed p. To prove they are weak solutions, the only difficult
term is again the nonlinear one j (£ ( π ) + vxB{n))f{n)Vvadtdxdv. By the Lp boun-
dedness of f(n\ we can follow the proof as in (3.6). We only need to replace (3.8) by

/ = Γ f α|(J(l - η)(fin) -ftVa.dvfdtdx
L (0, oo) xΩ

J ( f (l-η)2dv)( J (f»-f)2άv)dtdx\2. (4.5)
p p 0C2 \ SUpp CL\ J \ SUpp CL\ J A

N e x t we use H o l d e r inequal i ty wi th - + - = l 5 p > 2 . Since f(n\ fe Lp, we get
q p

SCl J (1 -η)2qdtdxdv j T J
l_ supp α2 x supp αi J |_ supp 0.2 χ suppαi

I (1 -η)2qdtdxdv\ ,
pp α2 x supp αi J

where C depends on α l 5 α 2, / 0 , «o and f̂. We thus conclude the proof for p > 2 by
the same arguments in (3.6).

Now let p = 2, and we repeat the process of case 1. It suffices to show that / in
(4.5) can be arbitrarily small. To this end, we follow the idea of [DL] and [S2]. It is
easy to show if f0 and χτg in L2, then there exist a C 2 function θ(u):
[0, oo] -> [0, oo), such that 0(0) = 0, θ^ + u2) ^ θfa) + 0(w2), l i m ^ ^ θ ^ ) = oo,
and

J θ(fo)βdxdv < oo, j * r % ) # 2 l ^ l < C r < oo .

With this 0, we claim that both \πθ{pn)){f{n))2χτdtdxdv and \πθ{f)f2χτdtdxdv
are uniformly bounded on n, where / (" } and / are the same as in case 1.
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Proof of the claim. It suffices to show that (2.15) holds for Θ(f(^k+1), where
Θ(u) = θ(u)u2. Since Yie^θtf**1)) + έΓ ί6>(/ f e + 1) = 0, by the same proof in
pp. 380-382 of [GMP], it is easy to show that e~tΘ{f{S)Λ+ι) has trace

ft]i+ί). By Prop. 1 of [BP],

J e~tΘ{f^l+ι)dμ+ + J e-'Θif^^^dtdxdv = J e-'θifig^+^dμ- . (4.6)

From the same argument as in (2.15), by the boundary condition, we get
jβ- = j y _ + j ί = 0 By the properties of θ(u\ for any integer M > 1, we write the
integral over γ~ as

J Xrβ-'θiaKfS]^1 +g)\dγ\= J + J = Λ + / 2 .

Since α 5i α0 < 1, α0 H < 1 when M is large. Since #(u) is increasing,

which can be killed by the same integral on γ + . Since Θ((M + l)w) ^ (M +

/ 2 ^ ί ^ J Xτe'ιθ((M + l)flf)2|dy| ^ C(M) J

The remaining terms in left side of (4.6) are nonnegative, hence
lπNe~tXτΘ{fnNk+1)dtdxdv is uniformly bounded on n and L Thus our claim
follows through the limiting procedure as /c, N -* oo from Sects. 2 to 4.

Now we can estimate (4.5) by the standard method. Since

J ( j (l-η)2dv)( J (fθψ+f2dv)dtdx~\\
supp α2 \ suppαi / \ suppαi / J

it suffices to estimate f{n) and /separately. The integral with f{n) is split to two parts,

Jyω ̂  M and j}(»> ̂  M . The term with f(n) ^ M is bounded by CM[ j (1 - η)2 dt dx dυ]\

and the term with fn) ^ M is bounded by -^—^θ(fn)(fn)2dtdxdv | . For any
[0(M) J

ε > 0, we first choose M large, such that Jyw ̂  M < -, then for this fixed M, choosing

η such that J/<">^M<T It is the same for / Hence / can be arbitrarily

small. Q.E.D.

Next we study the purely specular problem. Now the boundary condition for
the Vlasov equation is/ y - = Kfγ+. In other words, α(ί, x, υ) = 1, ̂  0.

Theorem 4.4. Suppose dΩ e C x ' μ , /or some μ > 0. Let / o G Γ π L ^ Ω x R 3 ) ,
/o(l + lί I ^ G L ^ ί β x ^ 3 ) , and / 0 ̂  0, a.e.. Let Eo e L2(Ω\ Bo e L2(Ω) with
constraint conditions div Eo = p0, div Bo = 0ίn @f(Ω). Then there is a weak solution
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/, / + , E, B of the purely specular problem. Moreover

\χτf\P;πS2eτ\fo\p;Πo, for l g p g o o ,

o o ; y - ύ 2 e τ \ f 0 \ a o ; Π o 9 ϊ o τ p = π V 0 ^ Γ < < x ) , (4.7)

<?(/, £, B, Ω, R3, T) S eτi0{T) .

Proof Choose 0 < am < 1, Xιmm^aoam = 1, where am is a constant. For fixed m,
consider the partial absorption problem (VM) with the boundary conditions
Eim) x n = 0 and /(

y

m-} = αm/(

y

w

+\ and with initial values / 0 , Bo and JE0. Since ^ Ξ O ,
by Theorem 4.1, there is a solution / ( m ), / ( m ) + , £ ( m ) and J5(m) satisfying (4.7) for all m.
Now as m -• oo, there are global weak limits ff+,E,B of corresponding sequences
such that (4.2) holds. So we get (4.7) by weak lower semicontinuity. Since in (4.7) the
constants are independent of m, we get the correct limit by the same method in
Lemma 3.1. Q.E.D.

5. Relativistic Case

Let Π, y± and y° be the same as before. When the particles with which we are
concerned move very fast, we have to consider the following (RVM) system [GS1]:

dtE-ccur\B= -j= - 4πΣeβ$ύβ-fβdv (RVM)

dtB

with the constraint conditions

= 0 (5.1)

and with the same initial and boundary conditions as (VM), (0.4) through (0.8).
Here

ϋβ= . V = , l^β^N.

/ \mβ +—r)

We shall make the following definitions for (RVM).

The surface measure dyβ is the same as (1.4) except that — is replaced by vβ,
mβ

1 ύ β ^ N. The test function spaces for (RVM) remain the same as (1.9), (1.10) and
(1.11). The energies $ and S0for (RVM) are the same as (1.5) and (1.6) except that

the factor (1 + \v\2)mβ is replaced by 2c2 mβ + - ^ , 1 ̂  β ^ N. For the new dyβ,

the test functίonals and the definition of a weak solution for (RVM) are the same as

in (1.12), except that — is replaced by ύβ. With the new definitions, Lemma 1.1 and

mβ
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Lemma 1.2 are still valid for (RVM). Our major results about (RVM) are parallel to
those for (VM). We summarize these results in the following Theorem.

Theorem 5.1. (Relatίvistic case). Let dΩ e Cliβ,for some μ > 0. Let f0>β ^ 0 a.e.,
1 ^ β ̂  N. Let Eo and Bo in L2(Ω) satisfy d iv£ 0 = Po> divJ50 = 0 in the sense of
distributions. There are two kinds of conditions for fOβ.

(1) Ifaβ = 1, and gβ = 0, let fOβ e L^nL'&xR3), fQβJ{\ + \v\2)e LHΩxR3).

(2) // 0 ^ aβ(t, x, v) S a0 < 1, and gβ(t, x,v)^0 a.e, let fQβJ{\ + \v\2)

eL\ΩxR*\UβeU{ΩxR*\χτgβeU{y-) and χτgβj{\ + \v2) e L\y-\

for 2<Lp^> o o , 0 < T< oo.

ίftere is α weak solution o/(VM), denoted fβ9 fβ , £ and JB with finite energy.
Moreover, iffoβ e Lq(Ω x R3), χ Γ ^ e Lp{y'\ then χτfβ e ^ ( Π ) , w/zere 2 ̂  ^ ̂  oo.

Sketch of the proof of Theorem 5.1. We follow the arguments step by step from
Sects. 2 to 4 with some suitable changes. We first modify the definitions in Sect. 2.
Definition 2.2 remains the same for (RVM). Definition 2.1, 2.2 and 2.3 still make
sense if we define Ϋ= dt + v-Vx + (E* + £ x 5 * ) V, instead of Y= dt + vVx

+ (Ek% + v x Bk%) Vv, where t; = —===. Under these new definitions,
(i M2)V( M)

Lemma 2.1 and Lemma 2.2 now are valid. Hence Definition 2.4 makes sense for
(RVM) with Yand dμ*, where dμ± is the new measure in Lemma 2.2. In order to
prove Lemma 2.3 for (RVM), it suffices to modify the results of [BP] as follows.

Theorem Γ and Theorem 2. Suppose that Jf : Lp(R + ,dμ + ) H-» Lp{R~,dμ'\
1 ^ p < oo, has operator norm less than 1. For any f0 e LP(ΩN xVN\ge LP(R~),
the linear transport problem

Ϋu = 0 in ΠN, u\t=o=fo, u+ = Jfu~ + g on R~

has a unique solution u e Lp with trace u± e Lp. Moreover, if Vq e LP(R ~), that
q^O implies Jfq ^ 0. Then the solution u ̂  0 if f0 ^ 0 and q^O.

Proof of these two Theorems. Theorem 1 and 2 of [BP] are exactly the same as
Theorem 4.3 and Theorem 4.4 in Chapter XI of [GMP]. We deduce these The-
orems by the same proofs as in Theorem 4.3 and 4.4 of [GMP].

So our Lemma 2.3 for (RVM) follows easily. Therefore our Lemma 2.4 holds by

multiplying (2.11) with 2(1 + \v\2f. Now (2.16) takes the form

2 f e~\\ + \v\2γXτf
k + 1dtdxdv ^ 2J (1 + \v\2ff0dxdv - 2 J χτ(l + \v\2jgdy

πN π0 γ~

+ 2 J e~tιΎE\vfkJrldtdxdv .

Lemma 2.5 is also valid with ύ in (2.19). In Sect. 3, we need the relativistic version of
DiPerna—Lions's Lemma, see [S2]. Then Lemma 3.1 is true for (RVM) by using
the same argument. In Sect. 4, since we get J{\ + \v\2)fe L^Π) for (RVM), the
first term in (4.4) goes to the correct limit with j — \vfdv. So is Lemma 4.1. Using
the same method as in Theorem 4.1, Corollary 4.3 and Theorem 4.4, we establish
Theorem 5.1. Q.E.D.
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