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Abstract. We study the time evolution of a non-viscous incompressible two-dimen-
sional fluid when the initial vorticity is concentrated in TV small disjoint regions of
diameter ε. We prove that the time evolved vorticity is also concentrated in N regions
of diameter d, vanishing as ε —>• 0. As a consequence we give a rigorous proof of the
validity of the point vortex system. The same problem is examined in the context of
the vortex-wave system.

1. Introduction

This paper is devoted to the study of the behavior of the time evolution of a non-
viscous incompressible two-dimensional fluid, when the initial data becomes singular.
Namely we study the case in which the initial vorticity is sharply concentrated in N
small disjoint regions of diameter ε. We prove that the time evolved vorticity is
also concentrated in N small regions. More precisely we prove that, with the total
vorticity of each region fixed and an arbitrary time t > 0, the support of the vorticity
is contained in TV disjoint disks of radius d, d vanishing with ε. We call this property
"localization."

The difficulty in proving this localization property relies in the divergent kernel
describing the interaction among the vorticity elements. Actually, when ε is very
small, the velocity field in each blob becomes very large and it is difficult to exclude
that the radial component of the velocity pushes away thin filaments of vorticity. We
prove that this does not happen.

At the same time, as a main consequence of the present result, we prove a general
rigorous connection between the Euler Equation and the point vortex theory (for the
first definition of the point vortex system see [1], for a review on the topic see [2,3]).
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Matematica) and CNR contract n.92.00544.01
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Namely we prove that the vortex system describes the asymptotic behavior ε —-> 0 of
the Euler flow.

Partial results have been previously obtained for short time and vortex intensity
of every sign in [4], for any time and vortices of the same sign in [5]. (Furthermore
there are two particular results globally in time: one vortex [6] and two vortices of
different sign [7] both cases in bounded regions.)

Finally, we note that the localization property was already proved for the simple
system composed by one vortex only in the absence of any external field [5]. The
main statement of the present paper is a non-trivial improvement of such a result.

In Sect. 2 we establish the main result, which will be proved in Sect. 3. Then in
Sect. 4 we discuss possible generalizations when the initial data do not have compact
support. Finally in Sect. 5 we apply the result of Sect. 2 to the vortex-wave system.

2. Main Results

Consider the Euler Equation in R2 in terms of vorticity:

dtω(x, t) + (u V)ω(x, t) = 0, (2.1)

V u{x, t) = 0, (2.2)

ω = curlu = dλu2 - d2uι , ω(x, t) = ω0 , x = (xι,x2). (2.3)

Here u = (u1^u2) denotes the velocity field.
If u decays at infinity, we can reconstruct the velocity field by means of ω as

u(x, t) = I K(x - y)ω(y, t)dy , (2.4)

K = V±G, (2.5)

V ± = ( 0 2 J _ 3 I ) J (2.6)

G(x) = -^-ln\x\. (2.7)

As is well known, Eq. (2.1) means that the vorticity is constant along the particle
paths which are the characteristics of the Euler equations. Therefore

ox,-t),O), (2.8)

where the trajectory x(xQ,t) of the fluid particle, initially in x0, satisfies:

d

— x(xQ, t) = u(x(x0, t), t), x(x0,0) = x0, (2.9)

u(x, t) = ί K(x - y)ω{y, t)dy . (2.10)

As is well known Eq. (2.8), (2.9), (2.10) imply the weak form of the Euler Equation:

^ω[f] = ω[u.Vf] + ω[dtf], (2.11)

where f(x,t) is a bounded smooth function and

CJ[/]ΞΞ fdxω(x,t)f(x,f). (2.12)
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It is well known that there exists a unique solution ω(x,t) £ LιΠ L^ to the initial
value problem associated to (2.11) provided that ω(x,0) e Lγ Π L^. Moreover the
divergence-free condition (2.2) implies that the time evolution (2.9) preserves the
Lebesgue measure on R2.

We consider an initial datum of the form:

N

ωε(x,0) = Σωε,ι(X'°)i ( 2 1 3 )

where ωε.t(x, 0) is a function with a definite sign supported in a region Λε;i such that

Λ = s u p p u ; £ . 2 C Σ { Z i \ ε ) \ Σ ( z A ε ) Π Σ ( z A ε ) = 0 i f i ^ j (2.14)
t , 6 A A C.,6 6 1 6 1 ' j 1 '

for ε small enough, where Σ(z\r) is the circle of center z and radius r.
We denote by

Γ
/ <ixα;ε;.(x,0) = αϊ GM (2.15)

the vortex intensity (independent of ε) and we assume

μ ε ; (x,0)| < constε-^ , η < | . (2.16)

A particular case considered in previous papers satisfying (2.15) and (2.16) is given
by:

ωε.^(x, 0) = a^~ 2 x04 £ ; i ), (2.17)

where χ(Λ) denotes the characteristic function of the set A and

measylε;2 = ε2 . (2.18)

We prove the following result:

Theorem 2.1. Denote by ωε(x, t) the time evolution ofωε(x, 0) according to the Euler
Equation. Then, for a fixed arbitrary T > 0,
i) for all d > 0 there exists εo(c£, T) such that, if ε < εo(d, T), then

(x,t) C £Ό^(t)|cO for any t e [0,T], (2.19)

where z^t) is the solution of the ordinary differential system (called point vortex
system)

N

-zx{t) = -Vf— Σ ^\Zi(t)-z(t)\,
at 2ττ *—^ J (2.20)

provided that such a solution exists up to the time T. Moreover d —> 0 as ε —> 0.
ii) For #?2_y continuous bounded function f(x),

r N

lim / dxωε(x,t)f(x) = ^ a t / ( ^ ( ί ) ) . (2.21)
£ ^ ^ ι = l

The proof will be given in the next section. Here we briefly comment on the
statements of the theorem, i) states that the blobs of vorticity remain localized until
time T for any d and T, provided that we choose ε small enough, ii) states that

N

ωε(x, t) > V atδ(zt(t)) (2.22)
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weakly in the sense of measures, where δ(-) denotes the Dirac measure. This last
statement gives a rigorous justification of the point vortex model.

We observe that the singular nature of the right-hand side of Eq. (2.20), diverging
when two vortices are close to each other, does not guarantee the existence of the
solutions of Eq. (2.20) for every time. In many cases (for instance for aτ > 0)
collapses are forbidden by the first integrals of the motion, but there are cases in which
singularities do happen. However it can be proved that the collapses are exceptional
[2] in the sense that the initial configurations developing singularities have Lebesgue
measure zero. In general we can either restrict ourselves to this full measure set or
say that theorem 2.1 holds up to the time T for which the solutions of Eq. (2.20)
exist.

3. Proof of Theorem 2.1

First we consider a single blob of unitary vorticity moving in an external, divergence-
free, uniformly bounded, time dependent, vector field F(x, t), satisfying the Lipschitz
condition

\ F ( x , t ) - F(y,t)\ < L \ x - y \ , L > 0 . (3.1)

Equation (2.9) becomes

— x(t) = u(x,t) + F(x,t), (3.2)
at

while Eqs. (2.8), (2.10) remain unchanged. The Euler equation in weak form reads

jt ω[f] = ω[(u + F) V/] + ω[dj]. (3.3)

Then we prove Proposition i) of Theorem 2.1 for this particular evolution. Define
the center of vorticity as

Bε(t) = xωε(x,t)dx. (3.4)

Theorem 3.1. Suppose that

suppωε(x,0) C Σ(x*\ε) and \ωε(x,0)\ < const e"7*' η < | , (3.5)

and fix an arbitrary T > 0. Then for any d > 0, there exists εQ{d, T) > 0 such that, if
ε < ε0, we have:

suρpωε(x, t) C Σ(B(t)\d) for any t G [0, Γ ] , (3.6)

where B(t) is the solution of the ordinary differential equation

Moreover

ί B{t) = F(B(t), t), B(0) = x* . (3.7)
at

lim B£(t) = B(t) uniformly in t e [0, Γ ] . (3.8)

Remark. The above theorem does not assert that the motion of the fluid particles
supporting the vorticity ωε converges, in the limit ε —• 0, to B(t). In general, this is
false. The motion of such fluid particles, due to the singularity of the kernel K(x - y),
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is very irregular and is not converging at all. However the motion of the center of
vorticity converges to the motion of a single point vortex in the velocity field F.

The above theorem is a basic preliminary step in proving the validity of the vortex
model: we are looking to the behaviour of a single vortex, assuming that the field
generated by all the others is given and smooth.

Proof. The difficulty of the proof arises from the singularity of the kernel K which
forces a fluid particle rotate with a very large velocity around the center of vorticity. To
overcome this difficulty we study the motion of the center of vorticity which will turn
out to be much more regular than the motion of a given fluid particle. Moreover, the
moment of inertia is almost conserved during the motion, so that we can also control
the spreading of the vorticity distribution around the center of vorticity. However,
as we shall see, the control given by the moment of inertia is not enough for our
purposes.

We introduce the moment of inertia Iε with respect to B£:

I(t) = ί ωJx, t) (x - B(t)fdx . (3.9)

Then we study its growth in time. If F would vanish, Bε and Iε would be constant
along the motion. For F ^ O w e have

-ίlBε(t)= I F(x,f)ωε(x,t)dx, (3.10)
d

Jt

jtlε(t) = 2 I (x - Bε(t)) • F{x,t)ωε{x,t)dx , (3.11)

where we have taken into account the antisymmetry of K. Making use of the fact
that

J(x- Bε(fi)) F(Bε(t),t)ωε(x,t)dx = 0 (3.12)

and the Lipschitz condition on F, we have

d τ < 2L / ωε(x, t) (x - B(t))2dx = ILIΛt) (3.13)

from which

/ e (ί)</ e (0)exp(2Lt). (3.14)

Therefore lim I (t) = 0, uniformly in t e [0,Γ], since
Ό

/(0) = / ωJx, 0) (x - x*)2dx-I
- ί ωε(x,0)(x-x*)zdx <ει -» 0 as ε ^ O . (3.15)

Σ(x*\ε)
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Then it is easy to prove Eq. (3.8). In fact

t

\B(t) - Bε(t)\ < |x* - B£(0)\ + / ds\F(B(s), s) - ί dx F(x, s)ωε(x, s)\

o
t

< \χ* - B£(0)\ + fds\F(B(s),s) - F(Bε(s),s)\

o

<\x* -

ds\F(Bε(s), s)- dx F(x, s)ωε(x, s)\

t

B£(O)\+L ί ds\B(s) - B£(s)\

o
t

L ds dx\Bε(s),s) — x\ωε(x,t)

< |x* - Se(0)| + L / ds\B(s) - Bε(s)\

o

+ LT sup ^/ϊε~{t). (3.16)

By the Gronwall Lemma, because the first and the third term in the right-hand side
of (3.16) are vanishing in the limit ε —> 0, we finally achieve the proof of statement
(3.8).

We now proceed in proving the last step, namely statement (3.6). We study the
vorticity amount crossing the boundary of a small disk around Bε{t). We prove that
it is small and so the radial part of the velocity field is also small and the particle
paths cannot go far apart from B£.

To control the vorticity flux we introduce, for R > 0, the following function
WR e C°°(R2), r -» WR(r) depending only on |r |, defined as:

such that, for some Cx > 0:

\VWR(r)\<^, (3.18)

\VWR(r) - VWH(r')| < ^ \r - r'\. (3.19)

Define the quantity:

= 1- fdx WR(x - Bε(t))ωε(x, t). (3.20)
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Notice that, if ωε(x,t) C Σ(Bε(t),R) then μR(t) = 0. Thus we choose μR as a
measure of the localization of ωε(x, t) around Bε. Then we evaluate the time derivative
by using (3.3):

μ R = - / dx VWR(x - BΛt) - < u(x, t) + F{x, t) BΛt) \ωΛx, t)
dt J n \ dt J

= f dxωε(x,t)VWR(x - Bε(t)) - ί dy K(x - y)ω£(y,t)

- / dxωε(x, t)VWR(x - Bε(t))

x j dy ωε(y, t) [F(x, t) - F(y, t)]. (3.21)

We now estimate the first term in the right-hand side of Eq. (3.21). By the
antisymmetry of K, it can be written as:

1 f f
- - / dx / dyωε(x,t)ωε(y,t)

x {VWR{x - B£{t)) - VWR(y - Bε{t))} K(x - y). (3.22)

To estimate this term we split the integration domain in the following sets:

Tx - {(x,y)\x e Σc(Bε(t)\R)y <Ξ Σ(Bε(t)\Ί} ,

T2 = {(x,y)\x e Σc(Bε(t)\R)y φ Σ(Bε(t)\Ί} ,

T3 = {(x,y)\y e Σc(Bε(t)\R)x e Σ{Bε(t)\Ί},

T4 = {(x,y)\y e Σc(Bε(t)\R)x £ Σ(Bε(t)\Ί} ,

where 7 = E α (α > 1 will be fixed later) and, from now on, R < | so that η < R.
Notice that the integrand in (2.22) vanishes in the complement of Γ 1 UΓ 2 UΓ 3 UT 4 .
Thanks to the identities WWR(x-Bε(t))-K(x-Bε(t)) = 0 and S7WR(y-Bε(t)) =

0 if y E Σ{Bε(t)\η), the contribution of the integral (3.22) due to Tλ is bounded by

j dx J dy ωε{x, t)ωε(y, t)VWR(x - Bε(t)) • {K{x - y) - K(x - Bε(t)}

Σ(Bε{t)\Ί)

< [by (3.18) and the fact that VWR(x - Bε(t)) = 0 if \x - Bε(t)\ < R]

ί ί
dx / dyωε{x,t)ωε{y,t)

(Bε(t)\Ί)

/ T~\\ I

χ(\Be(t) -y\>R)

Here we set:

< C2mt(R)R

mt(R) - ί

a - 3

ω (x, t)dx,

(3.23)

(3.24)

Σc(B£(t)\R)

that is the amount of vorticity outside Σ(Bε(t), R).
To estimate the contribution due to T2 we use, thanks to the obvious inequality

\K(x)\ < C\x\~\ (3.19) and the bound:

\{VWR(x - Be(t)) - VWR(y ~ Bε(t))} - K{x - y)\ < C3R~2 (3.25)
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from which we estimate such a contribution by:

CA " * y ) , (3.26)

The contributions due to T3 and Γ4 can be handled exactly in the same way.
To achieve the estimate of the time derivative of μR, we evaluate the second

integral in the right-hand side of Eq. (3.21). It is:

- /dxωε(x,t)VWR(x-Bε(t)) ίdyωε(y,f){F(x,f)-F(y,f)}. (3.27)

We split the domain of integration in y into the two regions \y — B£(t)\ > R and its
complement. The first contribution is bounded by:

2||ίΊloo ^ψ-, (3.28)

while the second one is certainly bounded by:

C5mt(R), (3.29)

since from Eq. (3.18),

\VWR(x - Bε{t))\ \x-y\< Const . (3.30)

Before collecting all the above estimates we evaluate mt(R) in terms of Iε(t):

mt(R) < -^ J άxωε(x,t)x2 <^<C6^ (3.31)
Σ(Bε(t)\R)

[here we used (3.14)]. In conclusion

dμR

dt

where

(3.32)

A(R, ε) = C7ε
2(Ra-5 + ε2R~2a~4 + ε2R~5). (3.33)

On the other hand, we can bound mt(R) in terms of μR/2'

mt(R) = 1- ί dxωε(x,t) < 1 - ί dxωε(x,t)WR/2(x - Bε(t)) (3.34)

Σ(Bε(t)\R)

so that from (3.32) we arrive at the integral inequality:

t

μR(t) < TA(R, ε) + C5 / dr μR/2(τ) + μΛ(0). (3.35)

The term μR(0) vanishes if R > ε.
We iterate inequality (3.35) k-times, with k satisfying the conditions

(3.36)
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We choose R = εδ, δ < ^, and k = integer part of D\ lnε|, D < ± so that Eq. (3.36)
is satisfied for ε < 1. Therefore:

fc!
λCs

5A(R2-s,ε). (3.37)

We see now that the first term in the right-hand side of inequality (3.37) can be
bounded by ε~^ with ξ arbitrary large provide that ε is small enough. This follows
by observing that kl > kke~k. Moreover the sum in (3.37) can be bounded by [see
Eq. (3.33)]:

ε-D\ogC£2sεδa-5δ i ε2-2<Sα-4<5-(2α+4)Dlog2 , 2-5δ-5D\og2>> (3.38)

From this expression we realize that, choosing D and δ small and α large, such that

aδ = 3, we have

μ>R,(t) < const ε^ (3.39)

with β < 3 but arbitrary close to ^. The definitive choice of D, δ, a, and consequently
β will be done later on.

So we have proved that the amount of vorticity escaping from the disk Σ(Bε(t), εδ)
is vanishing at least as ε^. This information allows us to conclude the proof. Consider
the disk Σ2 = Σ(Bε(t)\εδ/3). A particle localized in x, outside the boundary of such
a disk, is moving under the action of three fields: the one generated by the vorticity
inside the disk Σ(Bε(t)\εδ) = X\, say ux, the other one, u2, generated by the vorticity
outside the disk Σx and u3 due to the external field. Let n be the versor in the direction
Bε(t) - x. Then:

\uλ(x) - n\ = \n - dyω£(y,t)K(x-y)\

n J dyω£(y,t){K(x ~ y) - K(x - B£(t))}

0 as ε -> 0 . (3.40)

Moreover

\u2(x)\ = dyωε{y,t)K{x-y) < / dy
\χ-y\

where r is defined by

ίC^ I *5i
Σ(O\r)

Cε~ηπr2 = mt(εδ).

(3.41)

(3.42)

The last inequality (3.41) is a consequence of the fact that \u2(x)\, among all the
vorticity distributions ωε(y, ί)χ(Σ'1

c), bounded by Cε~η and whose total mass is given
by mt(εδ), is maximized by a constant vorticity distribution, valued Cε~η, on a circle
of radius r [given by Eq. (3.42)].
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By Eq. (3.42),

r < Cεβl1+^2, (3.43)

from which:

\u2(x)\ < constε- η ί dy^- = constε β / 2 ~ η / 2 -> 0,

J \y\
Σ(0\r)

a s ε - ^ O i f β>η. (3.44)

Equation (3.44) fixes the choice of β:β G (?7, §) .

Finally the Lipschitz condition on the external field assures that u3 —> 0 as ε —> 0.
Therefore the fields which could be responsible for bringing the particle paths far

from Bε(t) are arbitrary small and it follows that in a finite time T, s\xppωε(x,t)
must be contained in a fixed circle Σ(Bε(t)\d), for an arbitrary d, provided that ε is
sufficiently small. Then the proof of the theorem follows immediately by observing
that Bε(t) -> B(t) as ε -> 0. D

Remark. Notice that estimate (3.14) on the momentum of inertia is not enough to
prove that u2 is vanishing. Actually it gives only that the amount of vorticity outside
a disk of a fixed radius d around Bε(t) is of order ε2. It generates a bounded field not
vanishing a priori. Thus we need a more sophisticated analysis to prove the complete
localization.

We give now the proof of Theorem 2.1 which, after Theorem 3.1 is almost obvious.
Single out a blob, and consider the action of the others on it as an external perturbation
field. If all the other blobs are rather far apart, they generate a Lipschitz vector field.
On the other hand we proved that the blobs remain localized. Thus it is not difficult
to achieve the program.

The proof follows readily by the following considerations. Let b be the minimal
distance at which any couple of point vortices can arrive in the time T, according
to the vortex dynamics, for the initial datum {^} ϊ = 1 JV Consider, for the initial
condition ωε (with ε to be chosen later) the following regularized dynamics for the
Euler equation: two disjoint blobs interact via a kernel K , V = JQ ' Kη *s defined as
a C°° function which coincides with K(x) when \x\ > η. Each blob interacts with
itself via the singular K. By Theorem 3.1 it is not difficult to prove Theorem 2.1 with
the Euler dynamics replaced by this regularized dynamics. In fact the blobs remain
localized around their center of vorticity, and hence around z^t). Moreover we can
choose ε so small that the minimal distance between two blobs is larger than 6/2.

Finally, by the choice of η = ^ , we argue that this regularized dynamics coincide

with the real one. This concludes the proof.

4. Generalizations

First we note that we have studied the problem in the whole R2 only for sake of
simplicity, but all the results hold also in a region with boundary. Of course in this
case we must consider initial data for which the point vortices never develop collapses
or hit the boundary up to the time T.

In the present paper we have proved that the "localization" property is a sufficient
condition for a rigorous justification of the point vortex model. We can ask whether
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such a derivation is still possible without localization. When all the vortices have
intensity of the same sign we can prove the following more general theorem:

Theorem 4.1. Consider an initial datum of the form

N

ω£.ι(x,0), (4.1)

where ω£.z{x, 0) e Lλ(R2) Π L^iR2), ωε;i(x, 0) > 0 and

/ ω ε ; i(#, 0)C£E = aτ — vortex intensity . (4.2)

Moreover for any bounded continuous function /,

lim / f(x)ωε(x,0)dx — 2 a%f(z%). (4.3)
ε-*° J ~f

Then
f N

lim f(x)ω£(x,t)dx = y^aif(zi(t)), (4.4)
£^OJ »=i

where ωε(x,t) is the Euler evolution of the initial datum ωε(x,0) and zz{t) is the

solution of the vortex equation (2.20) with initial datum z{.

We do not give here the explicit proof, which is essentially the same as in [5] (see

also the technique of [8]).

When ai have different sign we do not have, at present, a result like the previous

one. However we can generalize the result of the previously section supposing that

£.i(x^0)dx > aτ (4.5)

and cJ ε > i (x,0) is bounded outside Σ{zi\έ). Then we consider this last vorticity as the

source of an external field that turns out to be uniformly "quasi-Lipschitz." We recall

that a bounded vorticity ω(y) produces a velocity field such that

/ dy\K(x ~y)- K(xf - y)\ω(y) < constd^H^ + H^H^dx - x'\), (4.6)

where
f r(l — lnr) if r < 1

φ(r) — < . (4.7)
[ 1 otherwise

Hence, following the same lines of Sect. 3, we can prove:

N

Theorem 4.2. Let c<;ε(x,0) = ^cJ ε > i(x,0), where ω^^x^O) have a definite sign and
is such that ΐ=i '

ωε.i(x,0)dx >α,, (4.8)

\ η < | , (4.9)

\ωε.z(x,0)\ < const if x e Σc(zt\ε), (4.10)

f N

lim / dx ωε(x, 0)f(x) = ^ <»,/(*,), (4.11)
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for any continuous bounded function f. Then

ί A
lim / dx f(x)ωε(x, t)=} aJ(zAt)), (4.12)

ε~*0J ~[
where ωε(x,t) is the Euler evolution of the initial datum ωε(x,0) and z{{t) is the
solution of the vortex equation (2.20) with initial datum zτ.

5. Vortex-Wave System

The technique we use for proving Theorem 2.1 gives us also a rigorous justification
of the so-called vortex-wave system. This is a model in which point vortices (vortex)
and a smooth flow (wave) coexists. More precisely, we consider the initial value
problem in R2:

d N

— φΛx) = u(φf(x)) + >^ a KiώΛx) — z ) x Φ zAO), (5.1) adt % ι ^ ι ι % % a

d

It

ω(φt(x), o) = ωo(x) eLιfλLoo, φo(x) = x, ^(0) = zi. (5.1)d

It describes a system composed by N point zi9 each of them moving along the
velocity field produced by the others and by an incompressible fluid with a bounded
vorticity. At the same time this fluid moves along the whole velocity field. When
the point vortices are absent this system reduces to the usual Euler equation [notice
that here we denote by φt(x) the quantity that in Eq. (2.9) we indicated by x(x0, t)].
The system (5.1) has been studied in [9], where a global existence theorem has been
proved. Moreover with the additional hypothesis that:

suppc<;0(x) Π zi = 0 for any i and ziφ z3 if i φ j , (5.2)

the uniqueness of the solutions and their regularity have also been proved.
We can justify this model by a result analogous of Theorem 2.1:

Theorem 5.1 Consider an initial datum of the form

N

ωε(x, 0) = ωo(x) + ] Γ ωe;i0z, 0), (5.3)
i=\

where ω^ix, 0) is a function with a definite sign supported in a region Λε.i such that

Aε.% = suppcjε;. C Σ(Zi\ε) Σ(Zi\ε) Π Σ(Zj\ε) = 0 if ί φ j (5.4)

for ε small enough and where Σ(z\r) is the circle of center z and radius r. Moreover

distance (UZ^OJQOE)) > r 0 fixed (5.5)

and
Γ

= a{ eR (vortex intensity) (5.6)/
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and

ωε.τ(x,Ό)\ < constε~η η < f . (5.7)

Then for all d > 0, d <C r 0 there exists εo(d, T) swc/z ί/iflί, z/ε < εo(cϊ, T), ί/zen

supp^ε ; ϊ(£, t) C Γ(z^) |d) /or any t G [0, Γ] (5.8)

and

d-^0 as ε ^ O . (5.9)
Moreover for any continuous bounded function f(x)

r r N

lim / dxωε(x,t)f(x)= / da;c«;(Φt(a:),ί)/(x) + 5^α</(^(t)), (5.10)

where α;ε(x, ί) is the time evolution ofωε(x, 0) via the Euler equation and ω(Φt(x), t),
zτ{t) are the solution of the vortex-wave system (5.1).

The proof is analogous to that of Theorem 2.1.
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