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Abstract. The Landau-Lifshitz (LL) equation is studied from a point of view that is
close to that of Segal and Wilson's work on KdV. The LL hierarchy is defined and
shown to exist using a dressing transformation that involves parameters λl9 λ2, λ3

that live on an elliptic curve Σ. The crucial role of the group K ~ Z2 x TL2 of
translations by the half-periods of Σ and its non-trivial central extension K is
brought out and an analogue of Birkhoff factorisation for K-equivariant loops in
Σ is given. This factorisation theorem is given two treatments, one in terms of the
geometry of an infinite-dimensional Grassmannian, and the other in terms of the
algebraic geometry of bundles over Σ. Further, a Ward-like transform between
a class of holomorphic vector bundles on the total space Z of a line-bundle over
Σ and solutions of LL is constructed. An appendix is devoted to a careful definition
of the Grassmannian of the Frechet space C 0 0 ^ 1 ) .

1. Introduction

This paper aims to expose the links between a variety of methods for solving
completely integrable non-linear equations in the special case of the Landau-
Lifshitz (LL) equation (cf. (2.23)). The interest in this example stems from the fact
that the spectral curve Σ which arises from the Lax form of the equations is an
elliptic curve. This means [13] that there is no immediate generalisation of the
methods which are applicable when the spectral curve is the Riemann sphere. For
example, a generic SL2(C)-valued loop on the unit circle has a Birkhofif factorisa-
tion as a product of loops, one holomorphic inside the unit disc, the other
holomorphic outside the disc. There is however no such factorisation in general for
a disc in Σ. It emerges that the only loops that arise in the study of the LL equation
behave in a prescribed fashion under a discrete group of symmetries of Σ and for
such loops an appropriate analogue of Birkhoff factorisation does exist (cf.
Theorems 3.1 and 4.1 below).

Previous literature on the LL equation may be traced from [7]. Our motivation
for its study stemmed partly from the relation to conformal field theory that is
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revealed by the approach of the Kyoto school [5]. In [2], a framework was
developed (see also the Appendix) for extending the methods of [14] for the KdV
equation to the case of LL. These are used in Sect. 3 to prove one version of the
factorisation theorem mentioned above.

In Sect. 4 we give a more geometric version of our factorisation theorem which
rests on Atiyah's classification of vector bundles over elliptic curves [1].

In Sect. 5, a twistorial description of LL is given along the lines of [8] and [9].
We close with two further remarks. First, and this is another reason for its

interest, LL is an example of an integrable system which is not in any obvious way
a reduction of the self-dual Yang-Mills equations [15]. Nonetheless, methods very
similar to those of [8] are applicable to its study. Secondly, LL points the way to
the analysis of integrable systems with higher-genus spectral curves.

2. Preliminaries

2.1. Background on Elliptic Curves. Fix Σ = <E/A, an elliptic curve. A is the lattice
generated by 1 and τ (Im τ > 0) and z is a complex parameter on (C. Let K be the
Klein 4-group of half-period automorphisms of Σ, so K consists of the elements

z h-> z, zv^z + 1/2, z h-> z + τ/2, z κ z + 1/2 + τ/2 .

We often refer to the second of these as % and to the third as |?. Important also will
be the non-trivial central extension K of K by Z 2 This has an explicit realization in
terms of Pauli matrices,

K = {±U ±iσl9 ± σ 2 , ± σ 3 } ,

where

= [i 0}
Definition. If U is a K-inυariant subset of Σ, we shall write ^u for the group of
holomorphίc maps y: U -> SL2((C) that are K-equiυarίant in the sense that.

σ2y(z)σϊ1 (2.1)

and

y(z + τ/2) = σ3y(z)σ3"
1 . (2.2)

We note that γ lies in ^υ if and only if

7 ( Z ) = \ (z) f*\z)\' ( 2 3 )

where the functions f9 g, /*, g* are holomorphic on U and satisfy

f (z) = f(z + 1/2), g« (z) = g(z + 1/2) (2.4)

and

f(z + τ/2) =/(z), ^(z + τ/2) = - <?(z). (2.5)

In order to understand ^ v better, we shall need a good understanding of the
meromorphic functions on Σ. To this end, we proceed as in Chapter 1, Sects. 1-6
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of [11]. Introduce first the ^-functions

3ab(z) = Σ e[τ(n + a/2)2/2 + (n + α/2)(z + 5/2)] , (2.6)

where e(u) — exp(2πm) and

(α,fc) = (0,0),(l ,0),(0,l),( l , l) . (2.7)

One has

6 flί,(z + 1) = ( - \)a9ab{z), 3ab(z + τ) = (-l)be(-τ/2-z)Sab(z). (2.8)

The zeros of 3ab are as follows:

Put

where for (α, b) Φ (1,1), #α b = i9αb(0). It follows from the quasi-periodicity (2.8) of
the Sab that the λ{ are yl-periodic meromorphic functions on (C and hence represent
meromorphic functions on Σ.

For future use we note that the behaviour of the λt under K is given by the
following table:

z

Ai
λ2

z + 1/2

-λ1

-t

z + τ/2

-λ,

't
We also note Riemann's identities (p. 23, Eqs. Eu E2, Mx of [11]) for the λt:

λι — λ2 = SQI/ SQQSIQ = J1 — J2 \

= J2

^3 ~ *Ί = ^10/^00^01 — ̂ 3 ~ ^1 5 (2.10)

(these equations serving to define the Jt to within an overall additive constant) and

^ 0 = ̂  + ̂ 0 . (2.H)

The λi define a holomorphic embedding of what we shall call the finite part of Σ,
namely Σ - {0,1/2, τ/2, 1/2 + τ/2} in C 3; Riemann's identities indicate that the
image under this embedding is an intersection of quadric surfaces. Note that we
shall often call the points 0, 1/2, τ/2, 1/2 + τ/2 the infinity of Σ.
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The following results are devoted to establishing convenient versions of the
notion of Laurent series expansion on Σ. Let <β be the union of circles of radius
ε about the four points at infinity - 0, 1/2, τ/2,1/2 + τ/2 (Fig. 1). We suppose that
ε is so small that these circles are disjoint; it follows that none of the λt has a pole or
zero on (β.

Lemma 2.1. Let f be a (C00 or Cω) (^-valued function on <β which satisfies a periodic-
ity condition of the form

f(z + 1/2) = ±/(z), f(z + τ/2) = ±/( 2 ) .

Then there exist unique complex numbers fn such that, on <&,

3 + Zflk+ 1̂ 1̂ 3

Proof Expand/on \z\ = ε as a Fourier series ^ F n e ί M θ . The periodicity conditions
determine / on the rest of c€. Consider the case ( + + ) and put u2k = λf,
u2k+ι= λi λ2λf~1. Then un has a pole of order n at z = 0 (interpreted as a zero of
order - n if n < 0) and so, restricting to \z\ = ε, the TL x Έ matrix relating {e~ίnθ}
and {un} is invertible (in fact, triangular). Thus the Fourier expansion is equivalent
to the claimed expansion in the un9 on \z\ = ε. Since the un have been chosen to have
the same periodicity property as /, the expansion holds also on the rest of c€.

The proof for the other cases is the same. •

Note that Riemann's identities (2.10) give linear dependences between Af,
λ\ and λ\, so other expansion schemes are possible.

A simple consequence which has obvious application to the study of the group
<&v defined above, is the following:

Corollary 2.2. Letf g be (C00 or Cω) (^-valued functions on <β which obey (2.5):

f(z + τ/2) =/(z), g(z + τ/2) = - g(z) .

Fig. 1. The torus Σ with its points at oo and the curve (
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Then f g have unique expansions in the form

f=Σ{fnλ%+fnλ,λ2λ\-2) (2.12)

and

g = Σ(θnλ2λΓί+gnλ1λΓ1). (2.13)

Example. If A is X-equivariant and polynomial of degree 1 in the λh then A has the
form

A = a0 + i{b1λ1σ1 + cιλ2σ2 + d1λ3σ3) ,

for some constants aθ9bί,c1,d1.lϊ B is X-equi variant and polynomial of degree
2 in the λt then B has the form

B = a0 + a2λ\ + /(bi^i + b2λ2λ3)σ1 + ( c ^ + c2λ1λ3)σ2 + ( d ^ + d2λίλ2)σ3 ,

for some further constants a2,b2, c2, d2.

2.2. The LL Hierarchy. We proceed to give an algebraic description of the LL
hierarchy in a fashion analogous to the scheme of Drinfeld-Sokolov [6] for
hierarchies of KdV type. The key idea is that of "dressing."

Definition. Let £f be the space of connections on the interval a^x^b of the form

dx-A9

where the 2 x 2 matrix

A = i(λ1S1σί + 12^2^2 + ^3S3σ3)

is K-equivariant, polynomial of degree 1 in the λi9 trace-free and normalized so that

s? + si + si = i .

y is called the space o/LL initial data. A hhflow of order r on Sf is an evolution of
the form

Id, -B,dx-A\ = o,

where B is K-equivariant, polynomial of degree r in the λt and trace-free.

To prove the existence of the LL hierarchy, that is, the existence of mutually
commuting LL-flows of each order, we begin with the following dressing theorem.

Theorem 2.3. Given any element

dx — i(λ1S1σ1 + λ2S2σ2 + / i 3 S^ 3 )

of £f) there exists a K-equivariant SL2((C) gauge transformation y, of the form given
below, such that

γ (dx - U a σ a ) - ? " 1 = dx - i(λ1S1σ1 + λ2S2σ2 + A 3 S 3 σ 3 ) ( 2 1 4 )

If we write

y = a — i(bσί + cσ2 + dσ3) (2.15)
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then α, b, c, d are required to have formal series expansions:

n — V (n 1 ^ 2 k ~ 1 _l_ r 1 I2k~2\
c — Zu \C2kAlA3 -T- c2k~lΛ2A3 )>

k<0

d= L) (2.16)

Proof. Multiply the given Eq. (2.14) on the right by γ, substitute for y using (2.15)
and (2.16), and collect coefficients of the various powers of the λt. The result is the
following system of equations:

where

Mφn =

0

Si

s2

- 1 +s 3

φn

1 •

+ X+Ψ.

- S i

0

+ s 3

- s 2

_ g

- 1 -

0

S i

2

s 3

0)

1 - s 3

s 2

- S i

0

(2.17)

M =

Φn = [βn> bn, cn, dnj and φn is a linear function of φn (which depends also upon the
St and the J^). (Here we have put an,bn,cn, dn equal to 0 for n > 0.)

Note that the determinant of M is equal to (1 — Sj — Si — S3)2 and so M has
rank 2 if and only if the Si are normalized as in the definition of £f above. With this
condition assumed to hold, we have the decomposition C 4 = / 0 β, where / is the
image of M and Q is the kernel of M; and dim / = dim Q = 2.

To solve (2.17) we proceed inductively. When n = 0, the RHS = 0 and so (2.17)O

is solved by any φ0 in Q.
The inductive assumption is that for some n < — 1, we have found

φ0, φ _ 1 ? . . . , φn + ί and φn9 the latter up to the addition of any element of Q. The
inductive step has two parts. Fix a choice φn of φn so that all other choices have the
form φn + u for some u in Q. Choose u so as to make (2.17)M_ 1 solvable, by solving
the ODE

ΠQ(dxu + dxφn - = 0

where we have written ΠQ for the projection onto Q. The second part of the
inductive step is to solve the resulting linear equation for φn-χ. The inductive step
is completed by observing that this solution is determined up to the addition of any
element of Q.

We now have a formal solution of our Eq. (2.14) which, may, however, not have
unit determinant. To rectify this, take the trace of (2.14):

= δ^logdety = 0 .

Thus dety is a constant C φ O and by multiplying by C~ 1 / 2 we get a gauge
transformation y with all the properties required by the theorem. D
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To construct the LL flows on ίf, put

U2k = iλ^λf^σ^ U2k.1 = iλf -'σ3 . (2.18)

Then for each r, Ur is X-equivariant and polynomial of degree r; moreover,

[5 r - Ur, ds - C/j = 0 for r, s = 1, 2, (2.19)

Here we have introduced the infinitely many time variables t1 = x, ί2, ί3, . . . and
have written <5r for 3/3ίr.

Now given δx — A in ^ , construct the gauge transformation 7 of Theorem 2.3
and for each r, put

5 r - j B r = y . ( a r - l / r ) . y - 1 , (2.20)

choosing the (hitherto undefined) dependence of y upon tr so that Br is polynomial
in the λt. Then A = Bx and

[3, - Br, δ s - Bs] = 0 for r, s = 1, 2, . . . (2.21)

is a formal consequence of (2.19) and the fact that for each r, dr — Br is gauge
equivalent to dr - Ur (Eq. (2.20)).

We have to check finally that the flows constructed by this method preserve the
normalization of the St given in the definition of Sf. To do so, multiply the
evolution equation got by putting s = 1 in (2.21) by A = B1 and take the trace:

1Br) . (2.22)

The LHS of this equation is equal to

- λ2

3dr(s2

x + s2

2 + si) - liJuStdrSt + J23S2drs2)

so we will be done if we can prove that the coefficient of λ\ on the RHS is zero.
Using the formula (2.20) for B1 and Br, we calculate that the RHS of (2.22) is equal
to

The part of this that could contribute to the coefficient of λ\ is

It is easy to check that this vanishes.
To summarise the discussion of this section: we have introduced the spectral

curve Σ for the Lax form of LL and the group K of symmetries. We have also
introduced the space Sf of LL initial data and defined a hierarchy of commuting
flows on y . We have shown that such flows exist by the use of a dressing
transformation. We close by writing down B2, the matrix which defines the basic
LL flow, leaving the energetic reader to derive it by the methods of this section.

Example. If as before,

A = i(λ1S1σί + λ2S2σ2 + λ3S3σ3) ,

then we claim that

B2 = ίί(λ2λ3Tί + λ1U1)σ1 + {λιλ3T2 + λ2U2)σ2 + (λλλ2T3 + λ3
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where
T = S and U = S Λ S X .

The condition

[ 3 x - Λ δ f - B 2 ] = 0

can be checked to be equivalent to the LL equation

Sf = S Λ Sxx + S Λ JS . (2.23)

where J = diag( Jl9 J2, J?>\

3. An Analogue of Birkhoff Factorisation for Elliptic Curves

In this section, we present the first version of our factorisation for K-equivariant
loops. The method of proof involves the infinite-dimensional geometry of a certain
Grassmannian and is analogous to the proof of Birkhoff factorisation given in [12].
These methods give a rigorous framework for the conformal field theoretic ap-
proach of [5]. This point of view is briefly discussed here also.

As in Sect. 2.1, we let # be the union of the four circles of radius ε about the
points 0, 1/2, τ/2, 1/2 + τ/2 in Γ, where ε is chosen so small that these circles are
disjoint. We denote by Σ+ (Z_) the region outside # (resp. inside #) including the
boundary (Fig. 1).

Definition. We denote by <& the group of smooth maps y: # -» SL2(<£) such that y is
K-equίυariant. We denote by^ + the subgroup of& whose entries consist of boundary
values of K-equivariant holomorphic maps: Σ+ —• SL2 (C).

We note that the definition makes sense because # is K-invariant and recall the
description of elements of ^ that is contained in Eqs. (2.1)—(2.5) above.

The main result of this section is the following factorisation theorem for
elements of ^.

Theorem 3.1. Let &,$+ be as above. Then there is a dense open set ^ 0 °f^ s u c n ^na^
ifγe^o, there exist y±e&± unique up to overall sign such that y = y^.1y-.

Remark. (1) The plausibility of this result can be checked by considering its
"infinitesimal version." This states that for any element A of the Lie algebra of ^,
there is a unique splitting A = A+ + A-, where A± is a K-equivariant holomor-
phic map from Σ± into the Lie algebra of SL2(C). This is a consequence of
Corollary 2.2. Write A in terms of/and g and expand them according to (2.12) and
(2.13). Because \x{A) = 0, we have

/θ =/±l =/±2 = ' ' ' =0.

Thus the required splitting of A corresponds t o / = /+ +f-,g = g+ + g~, where/+
(resp. g+) is given by the expansion (2.12) (resp. (2.13)), the sum extending over
n > 0, and/_ = / - / + , g~=g- g+.

(2) If y in ^ 0 is a real-analytic element, this theorem asserts the triviality of the
holomorphic vector bundle Ey over Σ obtained by using γ as a clutching function.
A precise statement of this geometric version of the result appears below (Theorem
4.1). It follows from that result, combined with Proposition 4.3, that ^ 0 = ^
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Proof. We mimic the proof of Birkhoff factorisation that is given in [12]. Let

%, <C2) I u(z + τ/2) = σ3u(z)}

and introduce a polarisation V = i^+ ® f"l as follows. If [/ #]r is in f, then
/(z + τ/2) =/(z) and g(z + τ/2) = — #(z). So we can expand/and g according to
Corollary 2.2. Define g+ by letting the sum in (2.13) run over all n > 0 and put
g- = g — g+. Then g+ is holomorphic in Σ + .

We cannot polarise/so cleanly: there is ambiguity arising from the term in/0

(which is holomorphic in both Σ+) and the term in/t (which is holomorphic in
neither). We proceed by observing that the function (/Lt — λ2)f has the same
behaviour under (? as does g and can be split accordingly. (This particular resolu-
tion of the ambiguities follows the approach to the polarisation given in [2].) To
make this explicit, rewrite the expansion (2.12) as

/= Σ/US + Σ fn^λ2λγ2 +/;μ3 + λ1λ2λ;1), (3.1)
nΦ 1

put

and/_ = / - / + .
Then y+ consists of those functions holomorphic o n l + but ^1 consists of

those functions which are holomorphic on Γ_ — {0, τ/2}, with at worst a simple
pole at {0, τ/2}, modulo the subspace C [1, 0]'.

This polarisation defines a Grassmannian Gr t a m e as in the Appendix and ^ acts
on if and on Gr t a m e. Define ^ 0 <= ̂  as the set of γ for which the transversality
condition γ(rΓ+) n T̂ l = 0 holds. For 7 e ̂ 0 ? there exists an operator Ty: τΓ+ -> V-
such that y(^+) is the graph of Ty.

Since [1, 0]' lies in f+, we may put / = ( I -f Tyί I. Then by definition

f-yΓ),

If/= ^ Y we have

Hence

Taking determinants we obtain

u2u\ =fj\ +f2f2 . (3.3)

The LHS is holomorphic in Σ+ while the RHS is holomorphic on Σ- except
possibly for simple poles at the points at oo, and each side is X-invariant. Hence
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each side is a constant and this is non-zero because /i = 1 + h for some h which
vanishes at infinity. Thus/i and/ 2 are actually holomorphic in Σ- and so Eq. (3.2)
gives the desired factorisation. D

Remark. In the proof we alluded to [2] and we shall now expatiate on the
connection with conformal field theory. In [2] and [5] the group ^ b of meromor-
phic functions on Σ/\> (and real analytic on ^/b) satisfying (2.1) was introduced.
This group is isomorphic to ^ (one conjugates elements of ^ by the matrix valued

function I * J on Ή to produce matrix valued functions which are (? invari-

ant and these descend to Γ/b to give elements of ^b.) By pulling back the
constructions in [2] to Σ we obtain an invariant bilinear form on Ψ* which is
preserved by ^ . The polarisation introduced above has /V± as subspaces isotropic
with respect to this bilinear form and hence there is a representation of the Clifford
algebra over Ψ* on the skew-symmetric Fock space AV±. The group ^, which acts
as automorphisms of the Clifford algebra, is now represented by (densely defined,
unbounded) operators on the Fock space (cf. [4]). The solutions of LL described in
[5] are expressed in terms of τ-functions which may be interpreted in our frame-
work as the vacuum expectation values of singular limits of elements of 3? acting on
this Fock space. Closer to our present point of view, however, is the observation
that solutions of LL in Lax form are constructed in [5] by elements of ^ satisfying
the "bilinear identity" [5], Eq. (3.10). This bilinear identity is a consequence of
Theorem 3.1.

The following is the exact analogue of the basic construction of [14, Proposi-
tion 5.13] and clearly displays the relation of Theorem 3.1 to the LL hierarchy.

Construction. Let Γ + be the infinite abelian group of elements of @ of the form

t2k+ιλ?+1+ Σ tnλMf-Aσs]. (3.4)
J

Here we have written t for the infinitely many variables (t1 = x, t2, t3,. . .). Thus Γ +
acts upon & by the formula

y(z)^y(z)G(t>z)~1 . (3.5)

For generic t, we may perform the factorisation

according to Theorem 3.1. Set

Ψ(t, z) = y_(t, z)G(t, z) = y+(t, z)y(z) . (3.6)

For the differentiated action, we compute

drψ- Ψ'1 = dry-*yZι + y4drG- G " 1 ) ? ! 1 = dry+ -y; 1 . (3.7)

Now

d2k+1G'G~1 =λ2

3

k + ίiσ3, d2kG-G~1 = λ1λ2λlk~2iσ?> ,

so comparing the two expressions for the LHS of (3.7) we find that there is
a trace-free X-equivariant matrix Br which is polynomial of degree r in the λt such
that

drΨ = BrΨ. (3.8)
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The consistency conditions for these linear evolution equations is precisely the LL
hierarchy as defined in Sect. 2.2.

Thus the action of Γ+ on the space of ^ +-orbits induces the LL-flows. By
identifying the space of these orbits with ^ _ (Theorem 3.1 again), we obtain:

Corollary 3.2. The map <S _ -> £f given by

has the property that the action (3.5) of Γ+ on ^ goes over to the LL-flow on £f.

Remark. This map is not surjective. Roughly speaking, its image corresponds to
the solitonic solutions.

4. Invariant Holomorphic Vector Bundles over an Elliptic Curve

In this section we prove a classification theorem for K-equivariant holomorphic
SL2(C)-bundles over our elliptic curve Σ. To be more precise, we begin with the

Definition. The holomorphic SL2{^)-bundle E^Σ is said to be K-equivarίant if
K acts holomorphically on E in such a way as to cover the action of K on Σ. Such
a covering action is said to be irreducible if it preserves no proper line-subbundle ofE.

In terms of this definition, we can state the main result of this section.

Theorem 4.1. Suppose that the holomorphic SL2(<U)-bundle E-+Σ admits an irredu-
cible covering action of K. Then E is a direct sum of spin bundles E = S © S.

The proof exploits the fact that all holomorphic bundles E -• Σ have been
classified by Atiyah [1]. Given this classification, it remains to analyze which of the
available bundles can admit irreducible X-actions.

Before giving the proof, we note that this theorem implies Theorem 3.1, at least
for real-analytic elements of ^, as follows. Define an action of K on the trivial
bundles (C2 x Σ+ by letting % act on a vector-valued function υ as σ2v(z + 1/2) and
by letting (? act as σ3v(z -f τ/2). If γ lies in ^ this action patches together to the
holomorphic SL2(<£)-bundle Eγ obtained by attaching these two trivial bundles
with γ. Thus Ey is an irreducible K-equivariant bundle over Σ and so Theorem 4.1
asserts the existence of a bundle isomorphism Ey ~ S © 5, where S is a spin bundle.
By Proposition 4.3 below, S is trivial and the above-mentioned bundle isomor-
phism gives the required factorisation.

Another corollary, relevant to the approach proposed in [13], is the following.

Corollary 4.2. Consider the K-invariant set Ψ on Σ represented on C by the lines
z = kτ/2 + ί, where ίelR and keZ. Letγ:Ψ -+ SL2(C) be a K-equivariant loop. Then
y factorises, y = y+1y_, where y±e@'±9 and ^ + have the obvious meanings.

Proof. This is essentially the same as the previous corollary. The X-equivariance of
y once again guarantees that when used as a clutching function, an irreducible
X-equivariant bundle is obtained. D

Proposition 4.3. Let y be a real-analytic element of &, and suppose that Ey is
isomorphic to S © S, where S is a spin-bundle. Then S is the trivial spin-bundle.
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Proof. By hypothesis, there exists a holomorphic frame J F ± for S © S over Σ± such
that y = F+1 F_ on ζ€. Because 5 is a spin-bundle, we have

F±(z + τ) = ζF±(z), (4.1)

where η and ζ are ± 1 . The K-equivariance of y gives

σ2y(z)σ2 * = F + ( * + 1/2)'^-(z + 1/2) = σ2F+(z)'1F-(z)σ21 ,

and so

1 = F+{z + l/2)σ2F+(z)'1 .

The LHS is a holomorphic matrix function on Γ_, the RHS is holomorphic on Γ + ,
and so each side is a constant T2i say. Thus

F ±(z+1/2) = T2F±(z)σ;1. (4.2)

Similarly,

Γ 3 F ± (z)σ 3 - 1 . (4.3)

Moreover, det F+ = det F- = a constant, because det y = 1. Combining (4.1) with
(4.2) and (4.3), we find that

Tl = η, 71 = £ T2T3=-T3T2 (4.4)

and

det T2 = det Γ 3 = - 1 .

Now it is simple to check that if the 2 x 2 matrix T satisfies

T2=-l d e t Γ = - l

then Γis ±i times the identity. So if either of η or £ equal — 1, the three relations
(4.4) cannot be satisfied. Hence η = ζ = 1 and S is the trivial spin-bundle. D

The remaining subsections of this section supply the relevant background and
the proof of Theorem 4.1.

4.1. Vector Bundles over Σ. We shall study bundles over Σ by thinking of them as
twisted quotients of the form F x C / ^ where Vis some vector space and

(v9z)~(v'9z')

iff z' = z + λ for some λeΛ and υ' =f(z, λ)v. One checks that the automorphism
/has to satisfy the following conditions:

and

/(z, λ + μ) =f(z + A, μ)f{z, λ) =f(z + μ, λ)f(z, μ) .

It turns out that one can always take/(z, 1) = 1. Let us put/(z, τ) = A(z) and refer
to A as a (matrix) factor of automorphy. Then the above compatibility conditions
give

A(z + 1) = A{z) .
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We note that A and A' determine isomorphic bundles iff there exists an automor-
phism g(z) such that g(z + 1) = g(z) and A'(z)g(z) = g(z + τ)A(z). In particular, if
g satisfies the conditions

g(z + 1) = g(z\ A(z)g(z) = g(z + τ)A(z) (4.5)

then g represents an automorphism of the bundle represented by the factor of
automorphy A.

The classification of vector bundles of ranks 1 and 2 is contained in the
following results.

Theorem 4.4. If L-+ Σ is a holomorphic line-bundle, then L is isomorphic to a line-
bundle obtained from the factor of automorphy e( — w — kz\ where weΣ and keΈ.

The proof can be found, for example, in [10], p. 20 (the "theorem of Appell-
Humbert"). We remark that the integer k is precisely the degree of L.

Theorem 4.5. IfE is a holomorphic SL2((C)-bundle over Σ, then either E is isomorphic
to a direct sum of line-bundles LQL'^^.orE is indecomposable. In the first case
E can be given by a factor of automorphy of the form

Λ{Z)" L 0 e(w + kz)

In the second case, E can be given by a factor of automorphy of the form

η
0 e(-Λ)J

where h is one of the half-periods 0,1/2, τ/2, 1/2 -f τ/2.

Proof. This is a restatement of Theorem 5 of [1]. D

Before we proceed to the proof of Theorem 4.1 in the next subsection, we
remark that it is often convenient to discard the normalisation f(z9 1) = 1 when
dealing with the spin-bundles of Σ. With this normalization in place they corres-
pond to factors of automorphy of the form e( — h\ where h is one of the four
half-periods (or points at infinity) on Σ. On the other hand they also correspond to
the choice

/(z,l) = ± 1 , / ( z , τ ) = ± 1 .

(The change of trivialization to make/(z, 1) = — 1 is given by g(z) = e( — z/2).)

4.2. Proof of the Theorem. The key point is to classify the lifts of the automor-
phisms # and b of Σ. Now such a lift is the same thing as a bundle isomorphism
£* -• E (resp. Eb -+ E\ where E% is the pull-back of E by % and Eb is the pull-back of
E by b We note that if £ is given by the factor of automorphy A9 then E* (resp. £b) is
given by the factor of automorphy A(z + 1/2) (resp. A(z + τ/2)).

We now refer to Atiyah's Theorem 4.5. From this, one sees that for any £, E%

and £ b are always of the form E (x) S, where S is a spin-bundle. So to lift % and |? is
the same as finding a bundle isomorphism E® S -• E.

Consider the first case given in Theorem 4.5, E = L® L~1.lϊk = deg(L) > 0,
then an isomorphism E (x) S -• E either does not exist (if S is non-trivial), or carries
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L to L (if S is trivial). Such isomorphisms can never define an irreducible K-action
on£.

If k = 0, then £# = £b = E and to define an irreducible X-equivariant bundle, it
is a necessary condition that L (x) L be trivial, that is, L = L~1 = S, a spin-bundle.
We shall postpone the verification that for each spin-bundle S, S © S admits an
irreducible K-action; meanwhile, we dispose of the other possibility appearing in
Theorem 4.5, that where E is indecomposable.

If E is indecomposable, then E% = £b = E and as before, the problem is to
construct automorphisms g of E. For this, it is convenient to use the characterisa-
tion of such automorphisms given in Eq. (4.5). These give a matrix Fourier series

satisfying

It is easy to see from this that if n =j= 0, then φn = 0 and hence that φ is constant and
upper triangular. So E cannot admit an irreducible K-action.

To complete the proof it remains to check that there exists an irreducible
K-action on S © S for each of the four spin-bundles S. Think of S © S as Fx(C/-
where ~ is generated by the conditions

(v, z) ~ (ηv, z + 1) and (v, z) ~ (ζv9 z + τ)

in which η and ζ are equal to ± 1 . Make σ2sK act upon S@S as (ι>, z)ι—•
(η1/2σ2v, z + 1/2) and make σ3 act as (υ, z)\->(ζ1/2σ3v, z + τ/2). Then it is easy to
check that this defines an irreducible X-action on S © S. D

5. The Twistor Description

5.7. Outline of the Ward Transform. The setting for the Ward transform is a holo-
morphίc correspondence between complex manifolds X (the "space-time") and
Z (the "twistor space"). Such a correspondence is given by a certain closed
submanifold Y of the product X x Z. The Ward transform goes between a class of
holomorphic vector bundles on Z and holomorphic solutions of a non-linear PDE
o n l .

One should emphasise a few general features of the Ward transform. First, it is
natural in the sense that the solution of the PDEs on X depends only upon the
bundle E up to holomorphic equivalence. Secondly, the transform is local in X. In
particular, no boundary conditions need be imposed upon the solutions sought on
X; and so when applied to integrable PDEs, the Ward transform provides a tool to
unify the various classes of solutions (solitonic, scattering, rapidly decreasing, etc.)
that are usually described by different, albeit related, methods.

To describe the main steps in the transform, let us begin with a rank-2
holomorphic vector bundle over Z. In practice, E will be topologically trivial and so
may be identified with the product bundle, denoted <C|, over Z equipped with
a ^-operator dE = d + α, say, where α is a matrix-valued (0, l)-form on Z such that
the integrability condition d\ = 0 is satisfied.

Denote by p and q the natural maps Y-*X and Y -> Z obtained by restricting
the canonical projections of X x Z to Y.
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5.1.1. Step I. Pull E back to 7 by g, denoting the resulting bundle by E, say. By
construction, E is equipped with a canonical holomorphic flat relative connection.
(A g-relative connection gives the means to differentiate (local) sections of E in
directions tangent to the fibres of q. Such a connection has a curvature form, which
is an endomorphism-valued skew 2-form on the g-vertical tangent vectors of Y.
A relative connection is flat if its curvature vanishes. In the case at hand, the
restriction E\q~1(ζ) to a fibre has a class of canonical trivializations given by
pulling back frames for the fibre Eζ. The relative connection is uniquely defined by
requiring that all connection 1-forms vanish when the connection is written using
such a trivialisation.) To be quite explicit, E may be identified with the product
bundle (Cy, equipped with the ^-operator dg = d + α (α = </*(oO) In this gauge,
dg clearly commutes with any holomorphic vector field V that is ^-vertical (i.e. that
is everywhere tangent to the fibres of q), and so the components of the flat relative
connection are given precisely by such vector fields (in this gauge).

5.1.2. Step II. Push E down to X, keeping track of the information contained in
the flat relative connection. In practical terms, this is achieved by a change of gauge
g on (Cy from the ^-adapted gauge of Step I to a p-adapted gauge. For this it is
necessary to make a basic assumption about E'.for each point x in X, the restriction
ofE to p~1(x) is holomorphically trivial. Under such an assumption, together with
the technical condition that X is Stein, there exists a gauge transformation g such
that g d g'1 = dg. If Vis any holomorphic g-vertical vector field on 7, define the
operator V = g ~1 K g. Since V commutes with dg, so V commutes with δ- that is,
V is holomorphic. A compactness assumption on the fibres of p will give a rather
"mild" (roughly speaking, polynomial) dependence of V in the p-vertical direction.
The operator Fwill commute with V' whenever Fand V are commuting g-vertical
holomorphic vector fields so a commuting system of differential operators is
obtained on X: it is the commutativity of this system that yields the non-linear
PDEs on X.

5.1.3. Remarks. In the case of interest, the basic set-up described above is enriched
by two group actions, one of K and one of (C. These have to be carried along
through the above steps, and this makes for a little additional work.

As indicated at the beginning of this section, the Ward transform is natural.
However we broke the gauge invariance in our brief description of Steps I and II. In
fact, appropriate gauge choices can greatly facilitate the identification of the PDEs
on X and we shall use such choices in the rest of this section. We have not thought
it appropriate to prove the existence of gauges with the described properties in this
paper, as these can be relatively technical problems in complex analysis. Thus the
proofs of a number of propositions in this section are omitted. However, such
gauges can be defined rather explicitly for LL-bundles which arise from elements of
9 (cf. Theorem 5.3 below).

5.2. The LL Correspondence. The relevant correspondence for LL is as follows.
The twistor space Z is the total space of the bundle L®2 over Σ given by the factor
of automorphy e( — 8z). The space-time X is the space of sections of Z and is
biholomorphic to C 8 . The correspondence space Y is the submanifold of X x Z of
points (JC, ζ) for which the point ζ of Z lies on the section x. Notice that Y can be
identified with I x Σ s o that p becomes projection on the first factor.
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5.2.1. The Action of K. The action of K is lifted to Z as follows:

#: (Ό, Z)K»( - υ, z + 1/2), b: (v, z)H->(e(τ - 4z)v9 z + τ/2) .

We shall comment on other possible lifts of the K-action at the end of this section.
The given action induces one upon the space X of sections of Z, and so too

upon Y.

5.2.2. Coordinates on X, Y, Z. To introduce coordinates on these complex mani-
folds, we begin with a choice of basis of sections of Z. Put

L0(z) = e(2z)311(2z\ Lt = L0^ for i= 1,2, 3 .

These form a basis of the space of holomorphic sections of L. Taking into account
Riemann's identities (2.10), we note that any holomorphic section of Z may be
written in the form

3

v = wxLl + w2Ll + ΣiutLoLi + VtL^Ls/Li) . (5.1)

In this way, the 8 numbers (ws, uuVi) become coordinates on X. The following table
summarises the behaviour of the coordinates on X under % and b

W1 W2 Uι U2 U3 V1 V2 V3

% — w1 — w2 Uι — u2 u3 Vγ — v2 υ3

b Wι w 2 — Uι — u2 u3 — Όγ — υ2 v3

In what follows we shall be mainly concerned with the following restriction of
the correspondence. Put Xo = {w2 = u1 = u2 = υ1 = υ2 = 0} and Yo = ^'^(XQ).
Then the restriction of q to Yo maps onto Z.

Coordinates on Z may be introduced by putting

(v, z) = {Llμ, z) away from oo

and

(v, z) = (L3μ\ z) near oo .

If Z± denotes the part of Z which lies over Σ±, then μ is a fibre coordinate on
Z+, μ; is a fibre coordinate defined over Z_ and μ — λ\μ! over Z+ n Z_.

From (5.1), the following are ^-vertical holomorphic vector fields on Yo:

U = L0d/du3 - L3d/dwl9 V=L%δ/dv3 - L1L2d/dw1 . (5.2)

These form a commuting basis of the q-vertical tangent space at each point of the
finite part of Yo (i.e. the part where Lo + 0). Strictly, and this will be important
later, U and V are vector fields with values in L and L®2 respectively. For the
present, we shall continue to call them vector fields.

5.2.3. The (C-Action. We define an action of C on X by translation of the wί

coordinate. The corresponding action on Z is:

(5.3)
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In particular, this action fixes the points at oo on Z. The action is generated by the
vector field δ/δwx on X and by ξ = L%δjδv on Z. In coordinates over the finite part
of Z, ξ is d/dμ. The induced action on 7 is generated by ξ = d/dw1; indeed,

5.5. LL-Bundles over Z. A holomorphic SL2((C)-bundle E -• Z is called a Landau-
Lifshitz (or LL) bundle iff

1. £ is irreducible K-equivariant;
2. E admits a holomorphic (C-action covering that on Z described in Sect. 5.2.3,

acting by Qxp(isσ3) on the fibres at oo and compatible with the X-action;

3. the restriction of E to each section of Z is holomorphically trivial.

Remark. The notion of X-equivariance was defined in Sect. 4 only for bundles over
Σ. But we have already defined the action of K on Z so the meaning of Property 1 is
clear.

The Ward transform we are going to describe in this section begins with an
LL-bundle over Z and produces a holomorphic solution of LL on the 2-dimen-
sional space Xo/C, where the (C-action on X has been defined in Sect. 5.2.3. To
facilitate the description it is convenient to have the data of the LL-bundle
presented in a standard way. To do that, start from the observation that any
SL2((C)-bundle E -> Z is topologically trivial. So we can choose a smooth identifica-
tion of E with the product bundle (C| on Z and we claim that this can be chosen in
such a way that the K-action on E is given by

%: (ϋ, z; e)ι->( - υ, z + 1/2, σ2e) \>\ {υ, z; e)H>(e(τ - 4z), z + τ/2, σ 3 e), (5.4)

where ee(C2 is the fibre variable (Cf. Having done this,_the holomorphic structure
on E is completely determined by a ^-operator <5"£ = δ + α, where α is a matrix
valued (0, l)-form on Z. In such a trivialisation, a satisfies the following conditions:

tr(α) = 0 (5.5)

(because E is an SL2(C)-bundle) and

t (5.6)

where α# (resp. αb) is the pull-back of α by # (resp. by |?). By choosing a K-
equivariant holomorphic frame near oo and by using the fact that the fibres of
Z are Stein we may prove the following:

Proposition 5.1. If E is a LL-bundle over Z, a smooth trivialisation E -> Cf can be
chosen so that

1. the d-operator of E takes the form dE = δ + adz;
2. the matrix function a is trace-free and satisfies o? = σ 2 aσ 2 ~ 1 , a17 = σ3aσ^~1

3. there is a K-equivarίant open neighbourhood W of oo such that a = 0 in W.

To take into account the (C-action on £, we work with its differentiated version,
which is given by a Lie derivative operator jSf̂  on E. In the gauge of Proposition
5.1, J5?£ has the form $£ξ = ξ — β, where /? is some smooth trace-free matrix with
β(oo) = iσ3. The properties of β that correspond to the C-action being holomor-
phic and compatible with the K-action are summarised as follows:
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Proposition 5.2. If E is a LL-bundle over Z, triυίalised as in Proposition 5.1, then
£gξ = ξ — β satisfies:

1. [δE, JSf J = 0;
2. βt=-σ2βσϊ1,β* = σ3βσς1;
3. β is holomorphic in W.

Moreover, given any integer N > 0, there is a change of holomorphic gauge in
W which gives β = iσ3 + O(λςN) in W.

Proof. All except the last part follow directly from the definitions. That part is
obtained by the argument of Theorem 2.3 (with the role of x taken here by λ3μ)9

truncated after N steps. D

Remark. It may be helpful to point out that if β takes a constant value at oo in Z,
then the K-equivariance statement of this proposition forces β to be a multiple of

There is an important class of examples of LL-bundles for which one can
choose β identically equal to iσ3 in W9 our K-invariant neighbourhood of oo.
These correspond to the solitonic solutions constructed at the end of Sect. 3.

Theorem 5.3. There is a natural map from <& _ to the class of LL-bundles.

Proof lϊ γe@-9 consider the holomorphic bundle E over Z obtained from the
clutching function

P(μ, z) = y(z)exp( — iμσ3) on Z+ n Z_.

In this description, jSfξ is given by dμ on Z + and by dμ — iσ3 on Z_. To bring this
description into coincidence with that of Proposition 5.1, use a bump function to
construct a smooth K-equivariant modification / of 7 which agrees with γ near 00 ,
but which equals the identity outside a neighbourhood of £_. Then if (s+, s_) is
a smooth section of £,

f(/exp( - iμσ3))~1s+ on Z+
e = <

I s- on Z_

becomes a smooth section of <C|. Then

α = exp(iμσ3)/"1δz-7/exp( - iμσ3)

is supported in Σ+ and β = iσ3 identically over all of Z. The triviality of £ over any
section of Z is guaranteed by Theorem 4.1. D

Remark. The map is "natural" in the sense that the Ward transform restricts to
give the construction described at the end of Sect. 3. The truth of this claim should
be apparent by the end of this section.

5.4. The Ward Transform. Recall that Step I of the Ward transform pulls E back
to Y. In fact, we restrict to the subspace Yo of Y defined in Sect. 5.2.2. With
coordinates (x, z) = (wl9 u3,v3, z) on Yo we can summarise the result of applying
this step to a LL bundle presented according to Propositions 5.1 and 5.2 as follows.

Proposition 5.4. The pull-back to Yo of a LL bundle is equivalent to the (gauge
equivalence class of) following data: a d-operator dg = d + δίdz and a symmetry
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operator £Pξ = dWι — β on the product bundle Cy0 over Yo which satisfy the following
conditions'.

1. K-equivariance: o? = σ2ασ2~
1, αb = σ 3 ασ^ 1 ; β% = — σ2βσ2

1, jfi = σ3βσ3

ι\
2. compatibility. \_δg, &(\ = 0;
3. relative flatness: [δg, F] = 0, [JSff, F] = 0 /or any holomorphic q-vertical

vector field F;
4. the asymptotic conditions: α = 0, /? = iσ3 + O(/l3

N) m α neighbourhood W of
oo /or some integer N > 0.

Proo/ Take α and /ί as in Propositions 5.1 and 5.2 and put α = g*(α), /Γ = #*(/?). It
is then straightforward to check the conditions listed in the proposition. D

Step II of the Ward transform, push-down to X, is accomplished in practical
terms by finding the gauge transformation g on Yo which intertwines dg and d.
Such a g exists because of the basic triviality assumption about LL-bundles. In fact,
one can insist that g satisfy all the conditions of the following proposition:

Proposition 5.5. Given the pull-back E of a LL-bundle on Yo, presented according to
Proposition 5.4 one can find a gauge transformation g: (Cy0 -> (Cγ0 such that:

2. g &ξ g-^^dni
3. g is K-equivariant: g$ = o2go2

 1 and g^ =
4. near oo, g is holomorphic.

Proof. Because δg and £?ξ commute, one can find a gauge transformation g which
satisfies the first two conditions. Any such g will also satisfy the fourth condition
(because of the corresponding condition of the previous Proposition). To analyze
the X-equivariance, put T2 = {g%)~ι^ig and Γ3 = (gb)~1σ3g.

By pulling back the first two conditions by % and |? and using the K-
equivariance of α and β we find that T2 and T3 are holomorphic and independent
of w l e The only globally defined holomorphic functions on Σ are the constants, so
in fact T2 and T3 are independent of z. By definition of the K-action on Yo, it
follows at once that

and similarly for Γ3. Thus, as in the proof of Proposition 4.3,

T2

2 = T2

3 = 1, T2T3= - Γ 3 Γ 2 .

So by the representation theory of K, there is an invertible matrix Q such that
T2 = Qσ2Q~1 and T3 = Qa3Q~x. Replacing g by g Q yields a gauge transforma-
tion which has all the required properties. D

Now with such a g chosen, put U — g U g~ * and V = g V* g~ \ where U and
V are the vertical vector fields of (5.2). Because they commute with δ they are
holomorphic operators on Yo and because U has values in L while V has values in
L2, they are polynomial in the Lt of respective degrees 1 and 2. Written explicitly,

-L3δWi).g-\ (5.7)

V=g.(L2

oδV3-L1L2δWl)-g-1 , (5.8)
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and

g-swi-g~1 = dWί + gβg'1. (5.9)

Use (5.9) to write the operators (5.7) and (5.8) in the form

U = g-(L0dU3 - L2>β)-g~1 + L3dWι , (5.10)

V=g-(L2

0dV3 - L1L2β) g~1 + L,L2dWl . (5.11)

Now divide by the (C-action; on invariant sections, dWι acts by zero, and so V and
V take the form of a LL Lax pair, by the truncated version of Theorem 2.3.

This observation completes our long journey from a LL bundle on Z to
a holomorphic solution of LL on the invariant slice of X.

5.5. Remarks. The inverse construction is achieved by reversing the steps de-
scribed above. The details are omitted, save to point out that given a solution of LL
in the form of the Lax pair ύ9 V, the fibre at ζeZ of the corresponding holomorphic
bundle is given by

Eζ = {s: ϋs=Vs = 0}.

There are two simple generalisations of the twistor description which require
very little work to set up. The first concerns the twistor description of local
solutions. One can restrict the correspondence between X and Z to an open subset
U of X; provided this is, say, convex, everything in this section will go through to
give a correspondence between LL bundles on the corresponding region of Z and
LL solutions on U.

The second generalisation concerns the hierarchies. The "higher flows" of the
LL hierarchy can be incorporated by considering LL bundles over the manifold
Zjy, which is by definition the total space of L®N over Σ.

A final remark concerns the choice of lift of the action of K to Z. A different
such choice will result in a different 2-dimensional subspace of X being fixed by the
action. Our choice corresponds to the particular presentation of LL which singled
out λ3 over λx and λ2. Other choices correspond, in essence, to permutations
of the λι.

A. Appendix: Frechet Grassmannians

Other work [2, 3], on Clifford algebras (or fermions) on an elliptic curve indicates
that the natural setting is a C00 version of the L2 infinite Grassmannians of [12].

This Appendix is thus devoted to a careful construction of the Grassmannian of
CCO(S1) and the corresponding restricted general linear group and to a development
of their basic properties. The treatment is dictated by the requirements of the proof
of Theorem 3.1 and could certainly be taken much further.

Let Kbe a finite dimensional inner product space with an inner product (,) and
norm | |. Denote by V the space of smooth V-valued functions on S1. The usual
Frechet topology of TΓ may be defined by a countable family of Sobolev norms
H U , with

I = ί (\fΨ)\2 + άθ
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Equivalently, in terms of Fourier series:

As in Nash-Moser theory, we make the following:

Definition. An operator A on if is said to be of degree m if it extends to a bounded
operator L\ —• Ll+mfor each k. It is said to be compact of degree m if it extends to
a compact operator L\ -> Ll+m for each k.

Since the inclusion Ll + x -> Ll is compact, we have

Proposition A.I. If the operator A on if is of degree m, then it is compact of degree
m + 1.

To define G L t a m e ( ^ ) 5 we polarise if in the usual way: if = Ψ"+ © if- with if±

being the subspaces of functions which have analytic extensions to the interior
(resp. exterior) of the unit disc with the convention that the constants lie in if+.
This done, let Q = Q+ — g_ with Q+ being the projections onto ir

±.

Definition. Denote by GL t a m e(f^) the set of all invertible maps A\if -±if such that
A is of degree 0 and [β, A~\ is of degree — 1.

We shall often write an operator A on if as a 2 x 2 matrix of operators relative
to the polarisation Ψ* = ir+@ir_,

\

Then the definition says that ,4eGL t a m e ( f ) if it is invertible, a and d are of degree 0,
and b and c are of degree — 1. Now we can prove

Proposition A.2. The set G L t a m e ( ^ ) is a topological group with a natural Frechet
topology.

Proof The product of two elements of GL t a m e(f^) lies in GL t a m e(iΓ) because the set
of operators of degree — 1 is an ideal in the ring of operators of degree 0. Suppose
now that AeGLtame(i^) has the block matrix representation above and that

By the open mapping theorem, A'1 is of degree 0. So to check that
A~1eGLtSime(ir) we have only to prove that q and r are of degree — 1. Now.

pb -f qd = 0 and rb + sd = 1 ,

so qd is of degree — 1 and d is Fredholm (as an operator on Ll). Thus the image of
d is of finite codimension and it follows that q is of degree — 1. Similarly, r is of
degree — 1.

Thus GL t a m e(f^) is a group. It can be equipped with a Frechet topology defined
by using the sequence of operator norms Ll -+ Ll for the diagonal blocks and
Ll -> Ll + x for the off-diagonal blocks. The verification that the group operations
are continuous in this topology is omitted. D

The topology we have just defined on GL t a m e(iΓ) (though not the actual norms)
is independent of the inner product on V, so we may think of GL t a m e(iΓ) as
associated to the polarised space if.
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We saw in the course of the proof that the diagonal blocks of A are Fredholm.
Because it is true for nuclear spaces that any compact perturbation of a Fredholm
operator is Fredholm of the same index, we have ind(α) = — ind(d). As in the L2

case, the connected components of G L t a m e ( f ) are given by the index map
A\-+mά(Q+AQ+).

Natural subgroups of GL t a m e (i^) are obtained by considering the operators
which preserve an inner product on *V and those preserving a non-degenerate
bilinear form on Y. We denote these respectively by ftame and (9iame.

Let LGL(F) denote the group of smooth loops in GL(K). Then LGL(K) acts by
multiplication on Ψ'. Moreover, we have

Proposition A.3. The multiplication action ofLGL(F) on Y defines an embedding
into GL t a m e(iΓ).

Proof It is immediate that multiplication by a smooth loop is an operator of
degree 0 on i r . To prove that the off-diagonal blocks are of degree — 1, let/e i^+

and γ e LGL(F) be expanded in Fourier series:

/ = y fmeίmθ> y — y Ίm£imθ J

where the ym are endomorphisms of V. Then

(?/)- = Σ ( Σ yn-mfXimB

and

7 j Yn + mJ — nll(ϊf)-ll/2= Σ (1 +

< y (i + n2γ y ( 1

n<0 m^O

^ Σ ( i + N 2 y + { \ y N \
N<0

Thus the "off-diagonal block" /V->(y/)_ extends to a bounded map L2 -• L2 for all
t and k. D

Just as in the L2 case, the topology introduced on LGL(K) by restricting that of
GL t a m e (Y) is much coarser than the C00 topology on LGL(F). However it is much
finer than the L2

/2 topology which is induced by the topology of L2 restricted
general group GL r e s . This is one reason why we have taken the trouble of
introducing it.

Having taken some trouble over the definition of the group GL t a m e ( f ) , we shall
now give a rather swifter account of the corresponding restricted Grassmannian.

Definition. We denote by Gr t a m e the set of all closed subspaces if ofΨ" such that the
projection Pw: iV -• 'fr+ is Fredholm (of degree 0); the projection if -> iC is of
degree — 1.

The proofs of the following can be found by making the obvious modifications to
the proofs of the corresponding results in [12, Sect. 7.1].

Proposition A.4. Gr t a m e is a Frechet manifold modelled on the Frechet space of
operators from Ψ"+ to Ϋ- of degree — 1. Moreover, t t a r a e acts transitively on Gr t a m e .

This statement of transitivity implies the key fact needed in the proof of
Theorem 3.1, that if #^eGr t a m e is transverse to ^ _ , then there is an operator T of
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degree — 1 such that Ψ* is the graph of T. As explained in the proof of that
Theorem, the polarised space Y introduced there can be identified with the
standard polarised space C 0 0 ^ 1 , V) (for an appropriate choice of V).

We conclude this appendix with some remarks which may assist the reader to
connect the viewpoint of this paper with that of [2]. In the latter there are two
crucial ingredients. The first is the existence of a distinguished bilinear form on
°V which is preserved by the functions ^ . Although we do not make this explicit
here it is a consequence of the K equivariance. So, the group ^ of Sect. 3 is
contained in the group LΘ = LGL(F) n Θtame of loops preserving the bilinear
form on y . This latter group leaves the connected component of y- in the
Grassmannian Gr t a m e (the set of subspaces of virtual dimension zero) invariant. In
fact the orbit of LΘ consists of polarisations of y by subspaces isotropic with
respect to the bilinear form. This orbit of polarisations has two connected compo-
nents (necessarily because there are just two connected components in LΘ). These
components are distinguished by the parity of the dimension of the kernel of the
Fredholm operator Q + AQ+ for ΛeLΘ.

The second ingredient in [2] is the connection with Clifford algebras and their
representations which we will not go into here.
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