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Abstract. In Skyrme’s soliton model of baryons, a single Skyrmion has six degrees
of freedom, so it is expected that two-Skyrmion dynamics at modest energies can
be modelled by motion on a 12-dimensional space of Skyrme fields. A candidate
for this space is generated by the gradient flow of the potential energy function,
descending from the unstable, baryon number two, hedgehog solutions of the Skyrme
field equation. An apparently very similar space is obtained by restricting the gradient
flow to the Skyrme fields derived from SU(2) Yang-Mills instantons of charge two.
On both of these spaces, one may quotient out by the group of translations and
isospin rotations. Hartshorne’s geometrical description of charge two instantons leads
us to a conjecture for the global structure of the 6-dimensional quotient space. The
conjectured structure is that of complex projective 3-space, with complex conjugate
points on one projective plane identified and the real points in this plane removed.

1. Introduction

A fundamental problem in non-integrable soliton models of elementary particles is to
find an approximate description of soliton interactions in which each soliton has the
same number of degrees of freedom as a single isolated soliton. Such a description
reduces a field theory with infinitely many degrees of freedom to a “particle” theory,
and is appropriate at modest energies where radiation and particle-antiparticle pair
production can be neglected. In certain special Lagrangian field theories, there is a
moduli space of exact static solutions of a Bogomol nyi-type equation [1], representing
multi-soliton configurations, and the dimension of the k-soliton moduli space, suitably
defined, is of the form Nk, where IV is the number of degrees of freedom of a single
soliton. For SU(2) Yang-Mills-Higgs monopoles, for example, N is four [2], and for
vortices in the abelian Higgs model, IV is two [3]. The moduli space is a flat valley of
minimal energy in the configuration space of fields at a given time, and has a natural
Riemannian metric inherited from the kinetic terms of the field theory Lagrangian.
The classical dynamics of the solitons is modelled by geodesic motion on the moduli
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space [4], and quantized dynamics may be approximated by quantizing the moduli,
with a purely kinetic Hamiltonian proportional to the Laplace-Beltrami operator [5].

In more general field theories, with solitons but no Bogomol’nyi equation, a
substitute for the moduli space must be found. One again seeks a valley in the field
configuration space, as flat as possible, and of the appropriate dimension. The fields
of minimal energy, for given soliton number, need to be included but usually do
not have sufficient dimensions. One proposal, suggested by analogies with molecular
reaction dynamics, is to use the gradient flow curves, or paths of steepest descent, on
the field configuration space [6]. In field theory, the gradient flow curves are solutions
of a generalized diffusion equation which can be derived from the Lagrangian. They
are tangent at their upper ends to the unstable modes of a static, saddle point solution
of the field equations, and generically they descend to minimal energy solutions. The
moduli space M is defined as the union of gradient flow curves descending from
a suitable family of saddle points, completed, if necessary, by gradient flow curves
descending from lower saddle points.

Ideally, M should be a manifold, but it may have singularities. M inherits from the
Lagrangian of the field theory a metric and potential energy function, so that there is
a well-defined Lagrangian dynamics on M. Motion on M will approximate the field
theory dynamics of the solitons provided the potential on M is not very steep and
velocities remain modest, so that soliton interactions do not excite much radiation.
Quantized soliton dynamics is now modelled by a Hamiltonian on M which has a
potential term in addition to the previous purely kinetic term.

The Skyrme model is an example of a field theory with solitons, but no
Bogomol’'nyi equation [7]. Skyrme fields, at a given time, are characterized by an
integer topological invariant, which may be identified both as the soliton number
and physically as the baryon number. This integer is conserved classically, and
also, presumably, quantum mechanically. The soliton has a spherically symmetric
“hedgehog” form, and is known as a Skyrmion. The Skyrmion solutions of the Skyrme
field equation have six degrees of freedom — three translational and three rotational.
After quantization of these degrees of freedom, the Skyrmion models a spin 1/2,
isospin 1/2 baryon — that is, a proton or neutron [8].

The problem of interest here is two-Skyrmion interactions. We therefore seek a
12-dimensional moduli space of Skyrme fields of baryon number B = 2. The known
static solutions of the Skyrme equation in the B = 2 sector are the toroids [9], which
are stable, and the B = 2 hedgehogs [10], which have higher energy and are unstable.
We shall assume that there are no other genuine solutions with energy less than that
of the hedgehogs. However, there are the virtual solutions consisting of two infinitely
separated Skyrmions, whose energy is less than that of the hedgehogs but greater
than that of the toroids. The family of B = 2 hedgehog solutions is 6-dimensional,
and linear analysis shows that each hedgehog solution has six unstable modes [11],
so the union of gradient flow curves descending from the family of solutions is 12-
dimensional. The generic curve descends to one of the toroids, but some special
curves descend to infinitely separated Skyrmions. This union of gradient flow curves,
completed with the curves that descend from infinitely separated Skyrmions to a
toroid, is our first candidate for the two-Skyrmion moduli space. We denote it by
M,,. A sketch of it is shown in Fig. 1.

There have been attempts to model two-Skyrmion interactions using fewer than
twelve degrees of freedom. Quantizing the eight degrees of freedom of the toroids
gives a qualitatively sensible description of the two-baryon bound state, the deuteron,
but the binding is much too strong, and clearly there are insufficient degrees of
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Fig. 1. Sketch of the gradient flow curves on the two-Skyrmion moduli space M,

freedom for the two baryons to separate [12]. The union of gradient flow curves
descending from infinitely separated Skyrmions to the toroids is a 10-dimensional
manifold, called the “attractive channel”. Approximations to the attractive channel
have been determined in various ways, and the degrees of freedom occurring there
have been (approximately) quantized. The result is a better description of the deuteron,
but it is still quantitatively poor. The problem with the attractive channel is that the
relative orientation of the two Skyrmions is partially frozen. This is reasonable on
energetic grounds when the Skyrmions are close together, but when the Skyrmions are
well separated they should be free to rotate independently. Nevertheless, the attractive
channel fields are of great importance in all low-energy two-Skyrmion phenomena.

There is an independent way of reducing the degrees of freedom of Skyrme field
theory. Recently, it was observed that a Skyrme field in R®> may be obtained from an
SU(2) Yang-Mills instanton in R* by calculating the holonomy of the instanton along
all lines parallel to the Euclidean time axis [13]. A dynamical Skyrme field is obtained
when the instanton parameters depend on the physical time. The charge k instantons
give rise to an 8k — l-dimensional manifold of baryon number k Skyrme fields.
These instanton-generated Skyrme fields do not satisfy the static Skyrme equation,
but for suitable parameter values they apparently give good approximations to most
known Skyrmion and multi-Skyrmion configurations. They capture the positional and
orientational degrees of freedom of separated Skyrmions, and have some degrees of
freedom to spare (including a scale factor for each Skyrmion). They fail to model the
radiation modes of the Skyrme field, but this does not matter for our purposes.

The manifold of B = 2 Skyrme fields generated by instantons of charge two is
15-dimensional, and we denote it by M 5. The metric and potential energy function on
M, inherited from the Skyrme Lagrangian, define a physically reasonable Lagrangian
dynamics for these fields. (This is rather a hybrid construction, as the instantons are
already defined dynamically as solutions of the Yang-Mills self-dual equations.) The
fields of minimal potential energy are close to the toroid solutions of the Skyrme
equation, with an energy less than 2% higher. The B = 2 hedgehog fields of minimal
energy in M, correspond to the B = 2 hedgehog solutions of the Skyrme equation.
Within M5, they have six degrees of freedom, and they appear to be unstable. This has
not been checked numerically, but there are six directions in M5 which correspond
qualitatively and semi-quantitatively to the unstable modes of the hedgehog solutions.
We shall assume that there are indeed six unstable modes. Then the gradient flow
curves descending from these minimal energy B = 2 hedgehogs, derived using the

metric and potential on M|s, generate a 12-dimensional space. The completion of the
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union of gradient flow curves, which we denote by M,,, is our second candidate for

the two-Skyrmion moduli space. One may hope that M, is uniformly close to M,
in the full Skyrme field configuration space.

By exploiting the geometry of the manifold of charge two instantons, we can
visualize M, 1> somewhat more clearly than M |,. Our main result is a conjecture for
the global structure of the quotient moduli space ]\712 J@R3 x SOB)isospin)> Where

R3 x SOB)isospin 18 the freely acting group of translations and isospin rotations. The
conjecture is that this quotient space is diffeomorphic to CP;, with complex conjugate
points on a CP, subspace identified, and with the RP, of real points in this subspace

removed. There remains a major computational challenge to construct M}, and M,
in detail, and to verify that they are close to each other, and so diffeomorphic. It will
then be necessary to calculate the metrics and potential energy functions on them,
in order to calculate two-Skyrmion bound and scattering states. The problems seem
formidable, but the analogous programme for two-monopole interactions, where there
are fewer degrees of freedom, is well-advanced [4, 5].

In Sect. 2 we summarize relevant material about Skyrme fields and Skyrmions.
In Sect. 3 we discuss the Skyrme fields generated from instantons, and in Sect. 4
the geometry of charge two instantons, developing the material in [13]. Section 5 is
concerned with the B = 2 Skyrme fields of hedgehog type generated by instantons. In
Sect. 6 the stability properties of hedgehog fields are discussed. In Sect. 7 we describe
the low energy attractive channel for two Skyrmions, and its relation to the moduli
space of two Bogomol’nyi monopoles. Finally, in Sect. 8 we explain and discuss our
conjecture for the global structure of the quotient moduli space for two Skyrmions.

2. Skyrmions

A Skyrme field is a smooth, scalar SU(2)-valued field U (z,,X), defined in one
time and three space dimensions. U may be expanded as

Uz, x) = o(zy, X) + im(xy,X) - T, 2.1)

where 7,7, and 7; are Pauli matrices. m;, m, and 7; are a triplet of pion fields, and
o is the “sigma” field, constrained by

o+ m+m 4l =1 (22)

There is a Lie algebra valued current L, = U‘18MU (w = 0,1,2,3) in terms of
which the Lagrangian density is [7]

£ = —5Tr (L, L) + 35 Tr (L, LI, L)), 23)

Here, indices are raised using the Minkowski metric (+, —, —, —) and [, ] denotes the
bracket of the SU(2) Lie algebra. Natural length and energy units have been chosen.

The first term in % is the “sigma model” Lagrangian, and the second is the
“Skyrme term”, introduced by Skyrme to ensure the existence of a static soliton
solution of the field equation. Various modifications and replacements for the Skyrme
term have been proposed, but none leads to a clearly superior model, so we shall
not discuss them. According to (2.3) the pions are massless Goldstone bosons. It is
straightforward to add a pion mass term to (2.3), but the symmetry of the model is
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then reduced. The symmetry group of the Lagrangian density (2.3) is the Poincaré
group, together with chiral rotations

U — U UU, 2.4)

where U} and Uy, are constant SU(2) matrices.
The potential energy of a Skyrme field at a given time is

V= / dz{ - JTr(L,L,) — =T ((L;, L,1(L;, L)} 2.5)
(1,7 = 1,2,3). Its kinetic energy is
T = /d%{ — 3Tr(LyLg) — 3Tr ([Lg, L[ Ly, LD}, (2.6)

which is an expression quadratic in time-derivatives. A Skyrme field with finite
potential energy tends to a constant value at infinity, independent of direction. If
the field also has finite kinetic energy, then this constant cannot change with time. It
is therefore conventional to suppose that a physical Skyrme field satisfies the boundary
condition

Uzy,x) — 1 2.7

as |x| — oo. This boundary condition implies that the chiral symmetry (2.4) of the
Skyrme Lagrangian reduces to isospin symmetry, where U, = U, !, Equivalently,
isospin symmetry is realized as an isospin rotation on the pion fields

™, — \Qz-jﬂ‘]—. (2.8)

Let us denote by £ the configuration space of Skyrme fields at a given time which
satisfy the boundary condition (2.7). The symmetry group acting on & is E;, the
Euclidean group of R3, together with the group of isospin rotations, S O(3)isospin. The
operator quadratic form

1= 3L, (L, 11, (2.9)

derived from the kinetic energy expression (2.6), defines a Riemannian metric on the
configuration space &.
The Skyrme field equation is

8, (L* + 1L, (LY, L") =0, (2.10)
and the equation defining the gradient flow of a Skyrme field is
Ly — ;1L Ly, Loll = 0, (L; — 51L;, [L;, L11). 2.11)

(The equation for the gradient flow on a finite-dimensional manifold with metric g, 4
and potential V is g, ﬂ(q)qﬁ = —0,V. Equation (2.11) is the analogue of this for the
configuration space %).

At a given time, U(z,,x) is a map R* — S3, but because of (2.7), R® may be
compactified to a 3-sphere of infinite radius. Then the map has a definite degree, an
integer B, which Skyrme identified with the baryon number of the field. A formula
for B is )

= m/d%eijk'rr(LiLij). (2.12)
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By continuity, B is conserved, and this led Skyrme to the remarkable idea that physical
baryons (proton, neutron etc.) may be modelled by solitons in a theory whose only
fundamental fields represent pions.
A simple class of Skyrme fields are the spherically symmetric, time-independent
hedgehog fields
Ux) =expif(r)X- T, (2.13)

where » = |x| and X = x/r. To satisfy the boundary condition (2.7) and ensure
smoothness at the origin, one requires f(r) — 0 as 7 — oo, and f(0) = nw with n
an integer. (A shift of f by an integer multiple of 27 has no effect on U.) Such a
hedgehog field has baryon number B = n.

For fields of hedgehog form the energy simplifies to

o 2
V=47r/dr{r <Zf> + 2sin? f+ sin* f + 2sin? f( f) }, (2.14)
0

from which the variational equation for f may be straightforwardly derived. Solutions
can only be obtained numerically [8, 10]. There appears to be a unique solution for
each value of n, which minimizes the energy among fields of hedgehog form. The
solutions for negative n are obtained from those with positive n by reversing the sign
of f, and the energy is unchanged. For n = O the solution is trivial. The solution for
n = 1 is known as the Skyrmion, and its energy is

E, = 1.2314 x 127%, (2.15)
The solution for n = 2 (the B = 2 hedgehog solution) has energy
By — 1.834 x 2472, (2.16)

which is significantly greater than 2E, and solutions for larger n have considerably
larger energy than nE,. Hedgehog fields may be translated and rotated without
changing their energy by replacing x by {2(x—X), where X is the new centre and {2 is
a rotation matrix. Note that a rotation is equivalent to an isospin rotation. Numerical
evidence strongly suggests that the Skyrmion is the minimal energy field of any shape
with B = 1. However, the B = 2 hedgehog solution has been shown to be unstable
to non-spherical deformations. The instabilities are discussed in detail in Sect. 6.
The asymptotic form of any hedgehog solution is

c
f(r)~ 2 (2.17)

for some constant C'. The asymptotic pion fields are therefore those of three mutually
orthogonal scalar dipoles

. Cz,

t 43

(2.18)

each of dipole moment C. For the Skyrmion, C ~ 2.15.

Let the Skyrmion centred at X and rotated by {2 be denoted U (X, §2). As Skyrme
showed, one obtains a useful class of B = 2 Skyrme fields by taking the product of
two Skyrmions

U=UX,, 2)UX,, 12,). (2.19)
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Provided |X, — X,| > 1, this product field models two well-separated, undistorted
Skyrmions centred at X, and X,, since each term in the product approaches 1 far
from its centre. The energy of two well-separated Skyrmions differs from 2E, by the
interaction energy of the pion dipoles. To leading order in the interaction, the total
energy is [14]

CZ

V=28 - o

2,071),,6,; - 3X.X), (2.20)
where X = X, — X,. If £2,02;" is the matrix for a rotation by § about an axis 0, then
(2.20) may be rewrltten as

2

© axp - cos )(1 — 3(X - i)?). (2.21)

V=25 - %

For fixed X, the minimum energy occurs when § = 7 and 1 is perpendicular to X, that
is, when one Skyrmion is rotated relative to the other by 7 about an axis perpendicular
to the line joining them. This defines the attractive channel for two Skyrmions. The
maximum energy occurs when # = 7 and n is parallel to X. There is a further saddle
point of the energy, still with X fixed, when 6§ = 0 and the Skyrmions have the same
orientation.

The manifold of such product fields is 12-dimensional, and has been used as a
model for the two-Skyrmion moduli space [15]. However, a serious problem is that the
minimal energy B = 2 Skyrme fields, the B = 2 toroids, are not even approximately
of the product form. These latter fields, which are solutions of the Skyrme equation,
were discovered by combining symmetry arguments with careful numerical work [9].
The solutions have axial symmetry, with energy concentrated in a toroidal region,
and total energy .

Eid ~ 1.18 x 247, (2.22)

which is about 4% less than 2F,. Generally, translations, rotations and isospin
rotations act independently on the B = 2 toroids, but a rotation about the axis of
symmetry has the same effect as an isospin rotation by twice the angle about a
suitable “isoaxis”. There is therefore an 8-dimensional family of B = 2 toroids.

Summarizing: in the B = 1 sector of the Skyrme model just one class of solutions
is known—the Skyrmions. In the B = 2 sector there are two classes of genuine
solutions—the unstable high energy B = 2 hedgehogs, and the minimal energy
B = 2 toroids. The two-Skyrmion moduli space M, will include these solutions and
fields that interpolate between them. M, may be compactified by adding the virtual
solutions, with intermediate energy, consisting of two infinitely separated Skyrmions.

Further remarkable solutions of the Skyrme field equation with B = 3,4,5 and 6
have been found [16], and a spatially periodic solution representing a Skyrme crystal
is also known [17], but we shall not discuss them here.

3. Skyrme Fields from Instantons

The basic formula which generates a Skyrme field in R? from an instanton on R* is
[13]

o

U(x)=9)exp/—A4(x,t)dt. 3.1

—00
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A, is the time-component of an SU(2) Yang-Mills instanton [18], and ¢(= z,) is the
auxillary Euclidean time, independent of the physical time z,,. The integral is along
a line at fixed x, parallel to the time axis, and &” denotes path ordering. That is, U(x)
is the holonomy of the instanton along time-lines.

As is well known, instantons on R* can be smoothly extended to S* by adding a
point at infinity, but the resulting gauge potential may have an apparent singularity
at infinity which can be removed by a gauge transformation. If A, tends to zero
faster than (|x|2 4 ¢2)~!/2 then there is no singularity at infinity, and (3.1) as it stands
defines a Skyrme field satisfying the boundary condition (2.7). U(x) is the holonomy
effectively along a closed curve, since all points at infinity in R* are identified to one
point on S*. Provided we allow only gauge transformations that extend to S*, the
effect of a gauge transformation g(x,t) on U(x) is simply a conjugation, or isospin
rotation,

U — 9o, UM9, (3.2)

where g is the asymptotic value of g(x,?).

If the instanton is in a singular gauge at infinity, a correction factor must be
included in the definition (3.1) in order to obtain the true holonomy along closed
curves in S*. The correction, which is simply —1 in the case we shall study below,
ensures that the Skyrme field U(x) satisfies the boundary condition (2.7).

The fundamental topological result is that instantons of charge k£ generate Skyrme
fields of baryon number k. This follows from general principles. Recall that S* may
be covered by two coordinate patches overlapping on an equatorial strip, and that an
SU(2) principle bundle over S* is characterized by a bundle transition function, a
map g from the equator S to the group SU(2)(= S%). The topological charge of an
instanton or any other gauge field on such a bundle is the degree of this map k. Now
the space of gauge potentials on a given bundle is an affine space, and therefore
connected. It follows by continuity that the baryon number of the Skyrme field
generated from an instanton of charge k£ equals the baryon number of the Skyrme field
generated from any other gauge field on the same bundle. Now it is straightforward to
construct a gauge potential whose component along meridians is zero. Consider the
holonomy U(x) of such a gauge potential along the closed meridional paths shown in
Fig. 2, starting and ending at NV, with x,, fixed and x variable. The gauge potential itself
makes no contribution, so U(x) equals g~!(x,)g(x). The map U(x) : S3 - SU©)
therefore has degree k. The result applies in particular to an instanton of charge k,
and is gauge independent.

Now, the time-lines in R*, when mapped onto S*, are conformally equivalent to
meridians, with N and S tending to a single point. A similar result therefore holds:
the Skyrme field U(x) has baryon number k. The result may be checked by taking
an example of an instanton of charge k, for which the Skyrme field U(x) is simple
to calculate. We shall exhibit such checks in what follows.

The SU(2) instantons of charge k, with all gauge degrees of freedom quotiented
out, have a moduli (parameter) space I, ; which is a connected manifold of
dimension 8% — 3 [19]. When we include the choice of gauge at infinity, the instantons
have an 8k-dimensional moduli space. The resulting Skyrme fields depend on 8k — 1
parameters, as a rigid time translation of the instanton leaves the Skyrme field
uArlchanged. We denote the manifold of Skyrme fields generated by all instantons

Mg, It is a submanifold of the configuration space & . Like &, it is acted on by
E,, the Euclidean group of R3, together with the isospin group SO(3)igospin Which
acts by conjugation on the Skyrme field, as in (3.2).
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Fig. 2. Closed meridional paths on S*. Along these paths, the holonomy of a gauge field of
topological charge k is a map of degree k

Some charge k instantons can be regarded as k well-separated single instantons.
If these are well-separated in time, the Skyrme field that is generated is a product
of B = 1 Skyrme fields, ordered according to the time-ordering of the instantons.
Even if some of the single instantons have small time separations, but large spatial
separations, the resulting Skyrme field is still approximately of product form, because
the ordering ambiguity is unimportant for Skyrme fields with little spatial overlap.

We have not been able to find an explicit formula for the Skyrme field U(x)
generated by a general instanton. It is an open problem to understand the properties
of such a Skyrme field. Does it satisfy a differential equation, for example? We shall
discuss in this paper only Skyrme fields generated by ’t Hooft instantons [20, 21], and
the more general Jackiw, Nohl, Rebbi (JNR) instantons [21].

The time-component of a "t Hooft instanton of charge k£ has the form

1V
A, = 5?9 .7, 3.3)

where
o(@) =1 +Z " —XLIZ (3.4)

The centres {X,} are arbitrary distinct points in R*, and the weights {),} are arbitrary
positive constants. A, falls off sufficiently fast asymptotically, that (3.1) defines a
Skyrme field. However, the gauge has been fixed in (3.3) and (3.4), so to obtain all
Skyrme fields of interest, we need to include all conjugates UyU(x)Uj, ! of the field
U(x) given by (3.1).

The integral (3.1) is apparently ill-defined for time-lines that pass through the
singularities of g, but the Skyrme field may instead be defined by taking the limit
along any set of time-lines approaching the singular one. The result is unique and
gives a smooth Skyrme field, because the apparent singularity in the instanton is only
a gauge artifact.

A ’t Hooft instanton of charge k has 5k parameters, and there are three more
in Uy, but an overall time-translation does not affect the Skyrme field. Thus, these
instantons generate a (5k + 2)-dimensional manifold of Skyrme fields. For £ = 1, but
not k > 1, every instanton can be gauge transformed to the 't Hooft form.
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A ’t Hooft instanton with potential

k
A
g(x,t)=1+zm, r=[x], (3.5)
=1

(i.e. centres on the time axis), generates a baryon number k Skyrme field of the
hedgehog type (2.13). A, simplifies to the form

A, = ih(r, )X - T, (3.6)

so the path ordered integral (3.1) becomes an ordinary integral. The profile function
f(r) depends on the parameters {7}, \;} in a non-trivial way, via the roots of a
polynomial (in ¢) of degree 2k. These roots can be explicitly found when k£ = 1, and
in the case of a time-reversal symmetric instanton when k = 2 (see Sect. 5).

When k = 1, since a time-translation has no effect, we can suppose

A

L 3.7

ox,t) =1+

Straightforward integration then gives a hedgehog field with profile function [13]

A —1/2
f(?")=7r[1— <1+ﬁ) ] (3.8)

As anticipated, f(0) = 7 and f(co) = 0, so B = 1. The Skyrme energy function
(2.14), for the profile (3.8), has a minimum value of

E, = 1.2432 x 1272 (3.9

when A\ = 2.109. For this value of ), the field is similar to the Skyrmion solution of
the Skyrme field equation, so in the context of instanton-generated Skyrme fields, we
refer to this field as a Skyrmion. Notice that | exceeds E|, given by (2.15), by less
than 1%.

A charge k ’t Hooft instanton reduces to k single instantons, centered at { X} with
scale sizes {/A;}, if the scale sizes are much less than the instanton separations. The
resulting Skyrme field is then a product of k£ separated B = 1 hedgehogs, each with
a profile of the form (3.8). The centre of the [ hedgehog is the spatial part of X,
and its scale parameter is A = );. The major limitation of the ’t Hooft instantons for
our purpose is that all these hedgehogs have the same orientation.

The time-component of a JNR instanton of charge k is again given by (3.3) but
now

k+1
(m)—i—Al— A >0 (3.10)
anT =1 lz — X2’ ! ' '

A, falls off only inversely with distance now, and the formula (3.1) can be shown to
have limiting behaviour U(x) — —1 as |x| — oo. It is therefore necessary to multiply
(3.1) by —1 to obtain a Skyrme field. This factor may be interpreted as the extra
holonomy along a large semicircle at infinity connecting ¢t = oo with ¢ = —oo, which
must be included to obtain holonomies along closed paths. It equals —1, because

the gauge potential of the JNR instanton is asymptotically Au ~ 8”99_1, where
tlim 9=-, lim g. The function g may be interpreted as a bundle transition function
—00 ——00

defined on a 3-sphere surrounding the point at infinity on S*.
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In general, JNR instantons of charge k¥ depend on 5k + 4 parameters, since a
constant rescaling of the weights {);} has no effect. The resulting Skyrme fields
depend on 5k + 6 parameters, when allowance for time-translation and U, is made.
However, when k& = 1 or k = 2 there are fewer parameters. The case & = 2 is the most
interesting. Here, as observed first by Jackiw, Nohl and Rebbi [21], and elaborated
by Hartshorne [22], one of the parameters is a gauge artifact, so the instantons have
13 parameters, and the resulting Skyrme fields have 15 parameters. This is the full
complement of parameters for £ = 2 instantons, and indeed all £ = 2 instantons can
be expressed in JNR form. In Sect. 4 we discuss the £ = 2 instantons in more detail.

The £ = 1 JNR instantons generate a 7-parameter family of hedgehog fields, the
parameters determining the position, orientation and scale. This is because a JNR
instanton with potential

Al Ay
= 3.11
TR AR FES & 4D
is gauge equivalent to a 't Hooft instanton with potential
A
=1 3.12
o=1+ EESd (3.12)
where NX X
_I_
X =172 2 3.13
and o
A= —122 X, - X 3.14
()\1 +A2)2| 2 1| ( )

The Skyrme fields generated by the JNR and 't Hooft forms of the k¥ = 1
instanton differ therefore only in their orientation. Explicitly, let 7 = (7, 1) and let
X = (X, — X,)/|X, — X,|. Then, as may be verified by calculating the asymptotic
field, the Skyrme field generated by the JNR instanton is obtained from that of the ’t
Hooft instanton by conjugating by the SU(2) matrix U, = X.r.

4. k = 2 Instantons

Hartshorne has shown that £ = 2 instantons have an elegant, geometrical, gauge
invariant characterization [22]. It is simplest to describe this first for instantons on
a 4-sphere, S*. We regard S* as the unit sphere in R’ in the usual way. Hartshorne
showed that there is a 1 — 1 correspondence between k = 2 instantons on S* (with
all gauge freedom quotiented out) and a class of ellipses interior to S*. Such an
ellipse lies in a plane in R which intersects S* in a real circle. The admissible
ellipses are those for which the ellipse and its associated circle satisfy the Poncelet
condition, which means that there is a one-parameter family (or porism) of triangles
with vertices on the circle and tangent to the ellipse. Poncelet proved, in fact, that
if one such triangle exists, then there is automatically a porism of triangles and any
point on the circle may be a vertex [23]. For a given circle, the Poncelet condition is
a single algebraic constraint on the parameters of the ellipse.

For a given circle and ellipse there is an algebraic way of characterizing the porism
of triangles inscribing the circle and tangent to the ellipse [22]. Introduce a projective
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linear coordinate s along the circle. (In terms of a polar coordinate 6, set s = tan %6.)

Associated with any triangle of the porism are the coordinates s;, s, and s; of the
vertices, and hence the cubic equation

DoS° + 8% +pys+py3 =0 .1)

whose roots are s;, s, and s;. The coefficients (py, p;, p,,p3) are real, not all zero,
and defined up to a constant factor, so they define a point in RP;. The fundamental
property of the one-parameter family of cubics associated to the Poncelet porism is
that their coefficients lie on a (projective) line in RP;. That is, if (4.1) is one of the
cubics and

08 + 98"+ g5 +¢=0 4.2)

with roots s/, s5 and s} is another, then the general cubic of the family is

(upy + vqy)s® + (up; + vq))s* + (up, + vgy)s + (upy + vgs) = 0 4.3)

with (u, v) real and not both zero. Note that the leading coefficient up, + vq, will be
zero for some (u,v), in which case the roots of (4.3) are taken to be s = oo together
with the two roots of the surviving quadratic equation. s = oo corresponds to a finite
point on the circle, so there is no problem. Note also that the geometrical requirement
that the ellipse be interior to the circle corresponds to the algebraic statement that the
roots of (4.3) are real and distinct for all (u, v).

An immediate consequence of this algebraic approach is that if we know two
triangles of the porism, possibly separated only infinitesimally, then we can determine
the others by linear interpolation. The gauge invariant properties of the instanton can
only depend on invariants of the line of cubics. We may, in fact, regard the instanton
as defined by the circle and a line of cubics with real roots, since the resulting porism
of triangles envelopes a unique ellipse.

Consider now the stereographic projection of S* (and its interior) from a point N
on the sphere to the R* tangent to the sphere at the point S antipodal to N. Since a
stereographic projection is conformal, it maps a k = 2 instanton on S* to a k = 2
instanton on R*. There are two cases to consider, depending on whether the circle
associated with the instanton on S* passes through N or not. If it does not, then the
circle, ellipse and associated porism of triangles in R> project to a circle, ellipse and
associated porism of triangles in a plane in R*. (The Poncelet condition is projectively
invariant.) From the geometrical data in R* one may reconstruct the instanton fields
in JNR form. Choose one triangle of the porism (see Fig. 3) with vertices X, X,
and X, and tangent to the ellipse at A,, A, and A;. Then define weights A;, A, and
A3, up to a common multiple, by

)‘I X1A3
o . tc. 4.4
N AX, etc 4.4)

The JNR potential in R* is given by
Al Ay Ay
0= + - :
lz— X |z —-XP  |z- X

and this determines the gauge potential. In particular, the time-component of the gauge
potential is, as before,

(4.5)

a,=LYe . 4.6)



Geometry and Kinematics of Two Skyrmions 403
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Fig. 3. The circle and ellipse associated with a k = 2 instanton in R, and one member of the porism
of triangles with vertices on the circle and tangent to the ellipse

By pulling back the stereographic projection one obtains instanton fields on S*. If
another triangle of the porism is chosen, then a different expression for p is obtained,
but the instanton changes only by a gauge transformation, and the Skyrme field it
generates changes at most by an isospin rotation. The infinitesimal version of this
gauge invariance was already noted by Jackiw, Nohl and Rebbi.
It is straightforward, conversely, to find the circle and ellipse in R* associated with
a k = 2 instanton, given the JNR data. One defines A, A, and A, using (4.4) and
then the circle is the circumcircle of the triangle X, X, X and the ellipse is the conic
tangent to the triangle at A;, A, and A, (whose existence and uniqueness follow from
the classical theory of conics [23]). An advantage of the geometrical data, because of
its gauge invariance, is that it shows the symmetry of the instanton. The choice of a
triangle implicit in the JNR potential can hide this. The Skyrme field generated from
the instanton tends to have less symmetry than the instanton itself, because integration
along time-lines breaks rotational symmetry in R*. The exception is where the plane
containing the circle and ellipse either contains the time axis or is perpendicular to it.
The weights, as defined in (4.4), appear to be associated with one triangle of the
porism, but they may be interpreted in terms of an infinitesimal motion of the triangle
within the porism. For suppose X]X}X} is a triangle of the porism infinitesimally
close to X, X, X;. The side X, X, rotates into XX/ about the point of tangency to
the ellipse A, and similarly for the other sides. Then, by elementary geometry, the
ratio of lengths X, X|/X, X} is related to the weights by
XX _ XA A 4.7)
XX AX, A
Therefore, under an infinitesimal motion within the porism, the vertices X, move
along the circle by a distance (or polar angle) proportional to A,. From this, one may
see how the JNR data determine the line of cubics associated with a k = 2 instanton.
X, X! is proportional to the change in polar angle 66, between X, and X. Now

so bs; = %(1 + s2)66,. Thus if one cubic of the porism has roots s;,

1
S; = tan 597:,

s, and s;, then neighbouring ones have roots s; + e\, (1 + s2), s, +eA,(1 + s3) and
83 + €A5(1 + s3), where ¢ is infinitesimal. The line of cubics is therefore
(s — s(s — 8,)(s — 53)
+ VA (1 + 81)(s — 8,)(8 — 83) + A(1 + 83)(s — 53)(s — 5,)
+ A1+ 83)(5 — 8,)(s — 5,)) = 0. (4.8)
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This latter interpretation for the weights allows us to discuss the second case
referred to above, where the circle on S* passes through N. Under stereographic
projection, the instanton on S* still projects to an instanton on R*. This time the
circle projects to a line L in R*, and the ellipse, being coplanar with the circle,
projects on to the same line and becomes degenerate. Because of the degeneracy it is
no longer possible to keep track of tangents to the ellipse after projection. However, it
is straightforward to consider the projection of the porism of triangles. The vertices of
each triangle of the porism project to a triple of points on the line L. These triples are,
as before, the roots of a line of cubics of the form (4.3), where s is simply interpreted
as an affine coordinate along L. Suppose one triple of points is X, X, and X3, and
suppose another triple, infinitesimally separated, is X, X} and Xj. Define weights,
up to a multiple, by

A XX
A X X))

Then the JNR potential is (4.5) as before, and the instanton fields may be calculated.
Conversely, given a k = 2 instanton in R* with a INR potential where X, X, and X,
are collinear, one may invert the stereographic projection and reconstruct an instanton
on S* and its associated circle and ellipse. An example is discussed in Sect. 8. In
the collinear case, the JNR data determine the line of cubics in the following way.
Suppose the points X, X, and X; on L have affine coordinates s;, s, and s;. An
infinitesimal motion along the porism changes these coordinates to s; +€X;, s, +€),
and s; + €. The line of cubics is therefore

etc. 4.9)

(s — 5)(s — 5,)(8 — 83) + V(A (5 — 5,)(8 — 83)
+ X5 —83)(s — 8)) + A3(s — 5)(s — 5,)) = 0. (4.10)

Let us conclude by mentioning a limiting case of £ = 2 instantons. Suppose,
for an instanton on S*, the associated Hartshorne ellipse has high eccentricity and
almost touches S* at two points. The instanton degenerates to a pair of k& = 1
instantons near these points. After stereographic projection one obtains two well-
separated single instantons in R*. All possible separations and relative orientations
occur. Let us describe this in more detail, using the JNR parametrization for instantons
in R*, and assuming that X, X, and X; are not collinear. The relevant instantons
are those where \; = 1 (say) and )\, < 1, A\; < 1. Such data define an ellipse in R*
of large eccentricity, almost touching the circle through X, X, and X at the points
X, and X;. In the neighbourhood of X, the JNR potential is approximately

O S
Tl =X P e - X,P

which gives a single instanton centred near X, (actually at A;) with approximate
scale parameter \,| X, — X, |? and orientation given by the direction of the line X, X.
Similarly there is a single instanton centred near X; with scale parameter A;| X5 — X |2
and orientation given by the direction of X;.X,. Since A, < 1 and A\; < 1 the single
instantons are small, relative to their separation. If the scales are appropriately fixed,
then integration along the time-lines gives approximately a product of two Skyrmions,
one located at the spatial position of X,, the other at the spatial position of X5, with
orientations determined by those of the instantons.

In this limiting case, many triangles of the porism have X, and X; approximately
fixed, and X, moving along the arc between X, and X;. The single instantons centred
near X, and X retain their scales but change their orientations. However, because

@.11)
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the angle X, X, X; remains approximately constant, the relative orientation of the
instantons is unchanged, so the Skyrme field that is generated changes only by an
isospin rotation, as expected. To see that two-Skyrmion product fields with all relative
orientations can occur, consider X, in a position much nearer to X, than X3, so that
A3 € Ay < 1. Now keep X,, X5, A;, A, and )\, all fixed, and allow X, to move
freely on a 3-sphere of fixed radius centred at X,. (The circle and ellipse will vary.)
All orientations of the Skyrmion near the spatial location of X, occur (in fact twice
over, as S° double covers the SO(3) of orientations), whereas the orientation of the
Skyrmion near the spatial location of X; remains approximately constant. All relative
orientations therefore occur, twice each.

5. Hedgehog Skyrme Fields from k£ = 2 Instantons

From k = 2 instantons in R* with SO(3) rotational symmetry about the time axis we
obtain a three-parameter family of B = 2 Skyrme fields of the hedgehog type

U(x) = expif(r)X-T. (5.1

We have determined numerically the parameter values which give the minimal energy
Skyrme field in this class; the energy exceeds by less than 2% the energy of the
known solution of the Skyrme equation. In the first part of this section we show how
to determine the profile function f(r) from instanton data, and in the second part we
present our results concerning the minimal energy field.

The hedgehog Skyrme field (5.1) is generated by a JNR instanton with the points
X,, X, and Xj located on the time axis. The potential is of the form

/\1 )‘2 )‘3
= ) A > 0, 5.2
r2+(t—t1)2+r2+(t—t2)2+r2+(t—t3)2 : ©-2)

which may be rewritten as

4

_ N(r,t)

TP =D E = D+ (1))
where N is a positive quartic polynomial in r and ¢. Apart from a constant factor, the
quartic N is gauge invariant, unlike the parameters {¢,, A, }, because it is an invariant
of the line of cubics associated with the instanton. This is shown below. Let us regard
N as a quartic in ¢, with r-dependent coefficients, and denote its roots (which are
gauge invariant and occur in complex conjugate pairs)

a(r), o*(r), B, B*r)
where, without loss of generality, Ima > 0 and Im 8 > 0. Then

log 0 =log(t — a) + log(t — a®) + log(t — ) + log(t — 5%
3

e (5.3)

— > log(t — t; — ir) + log(t — t; +ir)], (5.4)
j=1
SO
100 1 da_ 1 do* 1 d6__ 1 dp*
00r  t—adr t—o* dr t—Bdr t—p(* dr
1 1

' - . 5.5
+Zz{t—tj—z‘r t—t, +ir (5-5)
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Now, for an instanton with potential (5.3), the time-component of the gauge potential

is
i (100\~
Along a time-line, X - 7 is a fixed element of the Lie algebra of SU(2), so the path

ordered integral (3.1) reduces to an ordinary integral. The resulting Skyrme field is
of the hedgehog form (5.1), with profile function

1 7 100

—00

fr)=—

f(r) may be computed by contour integration. First note that because the leading
terms in the polynomial N are

N o~ A+ X + At = 200ty + ) + Myt + 1) + M, + ) + O, (5.8)

the sum of the roots is independent of r. Therefore, from (5.5), the integrand in
1

6.7is O 7 for large |t|, so the integral converges. After closing the contour of

integration in the upper half ¢-plane, we find that
fr)= ﬂi%(a +B) + 2. (5.9
Again, because a+a* 43+ * is independent of r, we obtain the final real expression
fr) = —ﬂj—r(lma+lmﬂ)+27r. (5.10)

Since the roots of a quartic can in principle be expressed in closed form, there is
the possibility of finding a closed expression for f(r), but the algebra is complicated
and we have not pursued this route. Note that the numerator of p contributes the
interesting part of f(r). The denominator, which depends explicitly on ¢, ¢, and ¢,
and is not gauge invariant, only contributes the unimportant constant 2.

We verify that the profile function (5.10) is indeed that of a B = 2 Skyrme field,
by showing that f(0) — f(oo) = 2. For large r, the quartic N(r,t) is

N=O+X+ )0+ 2+ (5.11)

and its roots are
t=1r, ir, —ir, —ir (5.12)

with O(1) corrections. Therefore a(r) = B(r) = ir, and

lim f(r) =0. (5.13)
T—00
For small r, the roots of N have the form const + O(r2). Therefore, at 7 = 0,
d
%(Ima—f-lmﬂ) =0, (5.14)

so f(0) = 2. f varies linearly with 7 for small 7, and as const/r? for large r.
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Let us next clarify the relation between N(r,t) and the line of cubics associated
with the instanton. As we argued in Sect. 4, the line of cubics is

u(t — tl)(t - tz)(t - t3)
+ l/()\l(t — L) —t3) + At — t3)(t —t)+ /\3(t -t —1,) =0, (5.15)

where (u,v) are homogeneous coordinates of the line. A general line of cubics
pup(t)+vq(t) = 0, where p(t) = pyt® +p,t2+p,t+p; and q(t) = qot> + ¢, 1% + gyt +s,
has homogeneous Pliicker coordinates

Ly =Pu9, — P4, (5.16)

It is straightforward to compute the Pliicker coordinates [,, of the line (5.15).
Further computation then shows that the quartic polynomial Nézr t) has the following
representation:

N(r,t) = {Iypt* + 213 t% + Iy, + 30t + 2ot + 110}
F{250t? + 2l t + 1y — lyg}r?
+ Iyt (5.17)

This expression depends homogeneously on the Pliicker coordinates, confirming that
the roots of N(r,t), and hence the associated profile function f(r), depend only on
the line of cubics and not on the particular cubic which one chooses in order to get
an explicit potential of the form (5.2).

It is possibly useful to mention that the three polynomials in ¢ which occur as
coefficients of 1, 2 and r* in (5.17) have a fairly simple interpretation as Jacobian
invariants of the line of cubics (5.15). Indeed, for any cubics p(¢) and q(t), one has
the identities

Ingt* + 2Ly, 8 + (Lyy + Blag)t + 2Lyt + 1 = ‘Z i ' (5.18)

U Lot — =19 P19 P 5.19

32l 2t + iy 020G 5| 8|G P (5.19)
1§ P

o =1 |4 p{ (5.20)

d . . .
where p = —f etc. It would be nice if these observations led to a natural geometric

interpretation for the Skyrme profile function f(r).
An alternative to the JNR description of £ = 2 instantons with SO(3) symmetry
is ’t Hooft’s description. A °t Hooft instanton has A, given by (5.6), but the potential

is now
r+t-T)* r+¢-T)%

which may be rewritten as

o=1+ A,>0 (5.21)

N(r,t)
P+ -T)Hr*+t—T,)%)
The presence of only two factors in the denominator of the ’t Hooft potential means

that the resulting gauge potential has better asymptotic behaviour than in the JNR case,
so the appropriate definition of the Skyrme field is (3.1) without the extra factor of

(5.22)

g:
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—1. This is compensated by one fewer contribution of 7 from the denominator. The
result is that the hedgehog Skyrme field generated by a 't Hooft instanton with SO(3)
symmetry has a profile function of the form (5.10), with « and [ the roots of the
quartic polynomial N(r,t).

A JNR instanton with potential (5.3) can be gauge transformed to the 't Hooft
form by choosing that cubic on the line of cubics with one root, say ¢;, at infinity,
and then ¢; = T}, t, = T,. The singular factor in the denominator is then dropped to
give (5.22). The numerator N(r,t) expressed in terms of A, A,, T}, T, is identical,
up to a constant multiple, to the numerator N(r,t) in (5.3). It is not difficult, given
the JNR potential, to find the gauge equivalent 't Hooft parameters A,, A,, T} and 7.
One needs to find the line of cubics, and then find the cubic on the line whose leading
coefficient is zero. 7} and T, are the roots of the remaining quadratic polynomial.
Then A, and A, are determined by linear algebra.

Conversely, given the ’t Hooft potential (5.21), one can find the associated line of
cubics as follows. One cubic on the line is

t-Tpt—-1,)=0. (5.23)
The ’t Hooft potential may be identified with a JNR potential (for all finite t) by
taking A\; — oo, t; — oo with A\;/t3 = 1, and then t, = T}, A\, = A,, t, = Ty,
A, = A,. Now recall the JNR rule for shifting the roots, 6t, = €),. This rule implies
here that

1 A
5t = eA;, 6ty = eA,, 5(—) =—e2 =—¢ (5.24)
ts 8
A cubic close to (5.23), with roots
1
t, =T +eA;, t,=T,+ed,, t,= —c (5.25)
is
(t + é)(t —T,—eA)t—T, —eA,)) =0. (5.26)

Expanding in ¢, this becomes
(t — Tt —Tp) 4 (t(t — T))(t —Tp) — A (t — Ty) — Ay(t —T))) + O(e*) = 0. (5.27)

The line of cubics is therefore
pt =T —T) + vt —TE —T,) — At —T,) — At —T)) =0. (5.28)

Let us consider next on how many parameters the hedgehog Skyrme fields depend.
In the JNR potential there are effectively five parameters, as only ¢,, ¢,, {; and the
ratios between A, A, and A; are significant. However, another parameter drops out,
because t;, say, can be varied arbitrarily by moving along the line of cubics. Finally,
the Skyrme field is unchanged by a rigid translation of ¢, ¢, and ¢, (which simply
shifts (Rea + Re ) by a constant). We therefore have a three-parameter family
of Skyrme fields. In the ’t Hooft framework, the four parameters T}, T,, 4, 4,
characterize the instanton, but the Skyrme field depends only on T, — T}, A; and
A,. The Skyrme field is actually invariant under the Z, action (A;, 4,) — (A4,,4)),
which corresponds to a time-reversal of the instanton, but we do not quotient out by
this, because the action is not free (since A; = A, is possible).
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An instanton may be centred on the time axis in a natural way by requiring
Re o + Re 3 = 0. This condition is gauge invariant and r-independent. In the JNR
potential one requires

Aty + 1)+ Mty + 1) + M(t, +1,) =0, (5.29)

and in the ’t Hooft potential
T,+T,=0. (5.30)

Centring leads to no obvious simplification, however.

For time-reversal symmetric instantons, the formalism above simplifies and we
obtain a closed expression for the Skyrme field, depending on two parameters. Let
us use the 't Hooft parametrization here. We centre by setting 7} = -7, T, = T
and impose time-reversal symmetry by setting A; = A, = A. The quartic polynomial
N(r,t) reduces to a quadratic in r* and t?

N(r,t) = (% + 22 + 2(A + THr? + 2(A — THE + T* + 2AT2. (5.31)
It is straightforward to see that Im o = Im (3, and
2(Ima)® =r* + A =T+ ((? + A+ T?? — 4H)'/2 (5.32)
The profile function is
fr)y=2m— 2#%(Im ). (5.33)

We discuss next the energy of instanton-generated B = 2 Skyrme fields of the
hedgehog form. We present our results in terms of the ’t Hooft parametrization. Recall
that the energy expression for a hedgehog field with profile function f is (2.14), and
that the solution of the variational equation for f, satisfying the boundary conditions
£(0) = 2, f(c0) = 0, has energy Ey* 8¢ = 1.834 x 24r2,

It is not difficult to compute the energy for profile functions of the form (5.33),
generated by time-reversal symmetric instantons. Preliminary work, reported in [13],
suggested that the minimum occurred in the limit 7' — oo, where the profile function

has the simple form
A —1/2
f(r)y=2m [1 - (1 + ﬁ) ] (5.34)

Varying A, one finds a minimal energy £ = 1.855536 x 2471 when A = 2.6211.
More careful calculations give, however, a different result. We now find a minimal
energy of £ = 1.855529 x 2472 when 72 = 84.6 and A = 2.6427.' This slight
reduction in the energy has been verified by treating the profile at large, finite 77 as
a perturbation of the profile (5.34).

It is satisfactory that the minimal energy obtained from the instanton-generated
profile is less than 2% greater than the energy of the true solution. Practically, it
makes hardly any difference from an energetic point of view whether T2 = 84.6 or
T2 = . Conceptually, it is better that the minimum occurs for finite 7" and A for
this means that the energy has a quadratic minimum in the interior of the parameter
space, rather than a linear minimum at the edge.

1 We are grateful to Robert Leese for confirming the results of these calculations using a different
algorithm, and for improving their numerical accuracy
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It is more difficult to analyse the instantons which are not time-reversal symmetric.
As we have seen, f(r) depends on the derivatives of the roots of the polynomial
N(r,t), and we have not attempted to calculate these. Nor have we calculated f(r)
from the integral (5.7). Instead we have used an approximation. The general 't Hooft
potential, after centring, may be written

A+ A A-A
=1 . .
o=t i trrarre A<A (5.35)

If T? >> A, the resulting Skyrme field has approximate profile

_1 _
ﬂm:Zw—w<LkA;A> Z—WO+WN_A) , (5.36)

N —

r2

which is the profile of the product of two instanton-generated B = 1 hedgehogs,
with scale parameters A+ A and A — A. Essentially, (5.36) allows for time-reversal
asymmetry but assumes 7' = oo. We have evaluated the energy for this profile
as a function of A and A. The minimum is at A = 0, and with A = 2.6211,
E = 1.855536 x 247? as before. The energy is symmetric in A (both for the potential
(5.35) and for the approximate profile (5.36)), so it is reasonable to conjecture that
when T2 = 84.6, which is large compared with A when A = 2.6427, the minimal
energy for the exact profile still occurs when A = 0. If so, then E = 1.855529 x 2472
is the minimal energy of B = 2 hedgehog Skyrme fields obtained from £ = 2
instantons. We shall assume from now on that this conjecture is true.

6. Instabilities of B = 2 Hedgehogs

The spherically symmetric B = 2 hedgehog solution of the Skyrme field equation (in
the standard form (2.13)) is stable against perturbations which preserve the hedgehog
form, but is not stable against other perturbations. Its instability is not surprising, as its
energy is considerably greater than that of two well-separated Skyrmions. Wirzba and
Bang have determined the unstable modes [11]. They span a six-dimensional vector
space, which decomposes under the orthogonal group O(3) into two irreducible three-
dimensional spaces. O(3) acts by the vector representation on one of these, and by
the axial vector representation on the other.

The product ansatz gives an interpretation of these unstable modes. The product
of two B = 1 Skyrmions, with both oriented in the standard way and both centred
at the origin, gives a good approximation to the B = 2 hedgehog solution. The
energy is reduced if either the centers are separated, or the relative orientation is
changed. Separation of the Skyrmions gives an axial vector perturbation of the B = 2
hedgehog, the vector being along the separation direction. Rotating one Skyrmion
relative to the other gives a vector perturbation, the vector being along the axis of
rotation. These perturbations are qualitatively like the modes found by Wirzba and
Bang. They have the same angular structure but somewhat different dependence on
the radial coordinate. Naively, one might have expected that vector and axial vector
would have occurred the other way round here, but they do not because the ordering
in the product ansatz is important when one considers reflections.

If the instanton-generated B = 2 Skyrme fields are to be useful, then the instanton-
generated analogue of the B = 2 hedgehog solution should have six similar unstable
modes. Now we described in the last section the minimal energy B = 2 hedgehog
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a)

Fig. 4a—c. Instanton data for a the minimal energy B = 2 hedgehog field, b the same, perturbed by
its vector unstable mode c¢ the same, perturbed by its axial vector unstable mode

field generated from £ = 2 instantons. It has three energy-increasing modes preserving
the hedgehog form. It also has six energy-neutral modes (zero modes) associated with
translations and rotations (or isospin rotations). There remain six instanton-generated
modes which are potentially energy-decreasing. We have not investigated their effect
on the energy directly, as this is computationally hard. Instead we shall show here that
they qualitatively perturb the field in the same way as Wirzba and Bang’s negative
modes, and we conjecture that they decrease the energy in the same way.

Recall that in the ’t Hooft parametrization, the potential of the instanton generating
the B = 2 hedgehog of minimal energy is

A A

r2+(t—T)2+r2+(t+T)2’ ©.1)

o=1+

with T2 = 84.6, A = 2.6427. It is convenient here to transform to the JNR form (i.e.
choose another cubic along the line of cubics associated with (6.1)), and bring one
root of the cubic from co to 0. The resulting potential, which is still time-reversal
symmetric, is
1 A A
T a2 N T2 ne
P24+2 24+t -T)?  r24@+T")

0= (6.2)
The relation of (T”, A") to (T, A) is easily found by expressing (6.1) and (6.2) over
common denominators, and comparing numerators. One finds 77 = (T?+2/4)/2 and
A" = A/T?. The INR points X, X, and X; for the minimal energy B = 2 hedgehog
are shown in Fig. 4a.

One perturbation of the JNR data is indicated in Fig. 4b. X, and X; move by
purely spatial displacements in the x,-direction to X and X3, and X2 coincides with
X,. The weights A, A, and )\, are unchanged to leadmg order. The vector character
is measured by (for example) the spatial displacement of X; from X;. The perturbed
Skyrme field is not symmetric under z; — —z;, but it has O(2) symmetry in the
z, — 3 plane (the same symmetry as a vector along the x-axis). An axial vector
perturbation is obtained by spatially perturbing X, and Xj; in the x,-direction to the
positions X, and X, in Fig. 4c, leaving X, fixed. Again the spatial displacement
of X; from Xj is a measure of the perturbation. The perturbed Skyrme field has
SO(2) symmetry in the x, — x; plane as well as the reflection symmetry under
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z; — —x,. A reflection , — —x, reverses the sign of the perturbation, because it
arises from simultaneous reflections ¢ — —t and x, — —x, of the instanton data.
(These symmetry properties are the same as for an axial vector along the z-axis.) If
these perturbations are combined, with both vectors in the z,-direction, one obtains a
rather general instanton with its circle in the £; — ¢ plane. The only symmetry of the
resulting Skyrme field is SO(2). If the perturbations are combined, with the vector
in the z,-direction and axial vector in the x,-direction, then the instanton has data
as in Fig. 4b but tilted towards the x,-direction. The resulting Skyrme field has no
continuous symmetry.

Our arguments so far show that the perturbations associated with varying the
instanton moduli as in Fig. 4b and 4c have the same symmetry properties as the
energy-decreasing perturbations of the B = 2 hedgehog solution of the Skyrme
equation. This suggests that these perturbations decrease the energy among instanton-
generated fields. But the argument can be made a bit more convincing. Note that
the parameters of the potential (6.1) are such that there are two well-separated single
instantons along the time axis, and the resulting Skyrme field is approximately a
product of two coincident Skyrmions with the same orientation. Now, the instanton
whose JNR points are as in Fig. 4b also gives a B = 2 Skyrme field approximately
of product type. The Skyrmions have the same’ spatial location but they no longer
have the same orientation (see the discussion of fields of product type in Sect. 4).
Similarly, the instanton of Fig. 4c gives a product of two Skyrmions with the same
orientation but different positions. It follows that the perturbations of the instanton
moduli we are discussing have approximately the effect of changing the positions and
orientations of two Skyrmions in a product ansatz, and are therefore likely to decrease
the energy.

7. Two Skyrmions — The Attractive Channel

Two Skyrmions oriented to minimize their energy at a given separation are said
to be in the attractive channel. The field configurations in this channel are quite
well understood from several viewpoints. Verbaarschot et al. [24] argued that the
fields in the attractive channel have no continuous symmetries but have three
mutually orthogonal reflection symmetries, and a typical field has an energy density
schematically as in Fig. 5, with reflection symmetries in the three coordinate planes.
At large separation, the two Skyrmions are hardly distorted from their spherical form,
but one is rotated relative to the other by 180° about the x;-axis (with the labelling
of axes in Fig. 5). As they approach, they deform, and at minimal separation the
Skyrmions coalesce into a B = 2 toroid whose field has O(2) symmetry in the
x; — T, plane as well as reflection symmetry under z; — —x5.

Verbaarschot et al. defined a Skyrmion separation parameter (a moment of the
baryon density) for B = 2 Skyrme fields with the assumed symmetries. Then, using
a Lagrange multiplier technique, they found numerically the minimal energy field at
various separations. As the separation decreases, the energy decreases monotonically
from 2F,, the energy of two infinitely separated Skyrmions, to E™“. Walhout has
recently repeated the calculation with a different definition of the separation parameter,
with qualitatively similar results [25]. Any definition of separation is rather ad hoc,
and it would be interesting if the gradient flow curve connecting infinitely separated
Skyrmions to the toroid could be found, but it is unlikely to be very different from
the paths through the constrained minima found in [24, 25].
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Fig. 5. Regions where the energy of two separated Skyrmions in the attractive channel is concentrated
(shown schematically)

Let us assume that such a gradient flow curve exists. Then the moduli space of
B = 2 Skyrme fields M,,, introduced in Sect. 1, has a 10-dimensional subspace of
attractive channel fields, which we denote M,,. The generic orbits of the symmetry
group E; x SO(3)y0pin acting on M, are 9-dimensional, and the tenth coordinate is
a measure of the separation. The orbit of the minimal energy toroids is exceptional.
Because of the O(2) symmetry of a toroid, the orbit is 8-dimensional.

Skyrme fields generated by instantons model the attractive channel well, at all
separations. The geometrical data in R* of the relevant instantons are a concentric
circle and ellipse in a spatial plane. Suppose the major and minor axes of the ellipse
are ¢ and b, and the radius of the circle is R. It is straightforward to verify that there
is a porism of triangles with vertices on the circle and tangent to the ellipse if and
only if a + b = R. If the circle and ellipse are located as in Fig. 6, then the energy
density is as in Fig. 5. There are manifestly three reflection symmetries in the -,
x,-, and x;-axes. These axes are distinguished from each other, but they have no
preferred orientation.

R=a+b

7
N

Fig. 6. Circle and ellipse associated with a k = 2 instanton which generates an attractive channel
Skyrme field.
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A special case is whena = b = %R. Then the instanton has circular symmetry and

the triangles of the porism are all equilateral. The Skyrme field that is generated is a
toroid. When a >> b, the Skyrme field becomes a superposition of two well-separated
B =1 hedgehogs, one near each end of the major axis of the ellipse. Using the JNR
data for an isosceles triangle of the porism, with apex on the z,-axis, one may verify
that one hedgehog is rotated relative to the other by 180 ° about the x;-axis.

The attractive channel Skyrme fields generated from k& = 2 instantons form an
11-dimensional subspace of M. Nine degrees of freedom arise from the symmetry
group, and the remaining parameters are a, b and R, subject to the constraint a+b = R.
Ideally, one should find the gradient flow curve in the (a, R) parameter space which
descends from infinitely separated Skyrmions, i.e. hedgehogs of energy minimizing

size, to a minimal energy toroid (with a = %R). Its orbit under the symmetry group

would be a space M, which would model M. The gradient flow curve has not been
found, but a qualitatively similar path of constrained minima has been, by Hosaka
et al. [26]. They have calculated numerically the energy of Skyrme fields obtained
from these instantons (and others). They used the JNR formula for the instanton,
associated with one of the isosceles triangles of the porism. Here two of the reflection
symmetries are manifest, and the third was verified algebraically. For a given ratio
a/b (or eccentricity of the ellipse) the Skyrme energy depends on the scale R in a
simple way. The energy is minimized when the sigma-model and Skyrme term parts
of the energy are equal. Hosaka et al. showed that this minimal energy decreases as
a/b decreases, reaching an overall minimum when a/b = 1. By introducing a (again,
rather ad hoc) separation parameter, they inferred that the energy decreases as the
separation decreases. At all separations the instanton-generated fields have 1%-2%
greater energy than those found in [24,25].

Let us now describe more geometrically the manifolds of attractive channel Skyrme
fields M, and M,,. To simplify the discussion, let us quotient out the free action of
the group of translations and isospin rotations. There remain 4-dimensional manifolds

of centred Skyrme fields, M, and M,, acted on by SO(3), the group of spatial
rotations. Either of these manifolds is parametrized by a separation coordinate, and
by three Euler angles which specify a frame of labelled but unoriented Cartesian axes.
The generic SO(3) orbit is therefore SO(3)/V, where V is the viergruppe of 180 °
rotations about three Cartesian axes. At minimal separation, the orbit is RP,, the set of
unoriented symmetry axes of minimal energy toroids. There is a smooth manifold with
this orbit structure, namely the Atiyah-Hitchin manifold (AH) parametrizing centred
two-monopole solutions of the SU(2) Bogomol’nyi equations [4]. It is therefore not
necessary to consider Skyrme fields where the separation parameter is less than
its value at the toroids, as in [24, 25]. In the attractive channel, Skyrmions can
approach head-on and scatter smoothly through 90° (as has recently been verified
in a numerical solution of the Skyrme equation [27]). The major and minor axes
of the ellipse exchange roles in the instanton description, preserving the reflection
symmetries.

It appears, therefore, that AH is the manifold parametrizing centred Skyrme fields
in the attractive channel. The metric and potential energy must be calculated using
the Skyrme Lagrangian restricted to the appropriate fields. If one regards the fields
calculated in [24-26] as good approximations to those on M, and M,, then some
of this dynamical information is known. The angular part of the metric has been
determined by Verbaarschot et al. and by Walhout, as they calculated moments of
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inertia of their field configurations, but unfortunately the data is not presented in
detail. The radial part of the metric has not been calculated. For a given set of fields,
the precise definition of the separation parameter will no longer matter once the radial
metric is determined. The potential energy is simply the static energy of the Skyrme
field, as a function of separation.

A candidate metric on M, or M, is the Atiyah-Hitchin metric of monopole theory
[4]; it has the correct qualitative behaviour but cannot be correct in detail. Skyrmions
have a weaker asymptotic interaction than the velocity-dependent Coulomb interaction
between monopoles, implicit in the Atiyah-Hitchin metric.

The manifold AH may be compactified by including the RP, representing
Skyrmions with infinite separation. This is a topological compactification, and the
metric must be modified. A point in RP, specifies the (unoriented) line of separation
of the Skyrmions, but the rotation angle about this line is lost. The resulting manifold
is S*. The foliation of S$* by SO(3) with generic orbit SO(3)/V and two special RP,
orbits is familiar in various contexts.

The manifold AH is not simply connected, but it has a simply connected double
cover AH which may also be compactified by adding RP, at infinity. The resulting
manifold is CP,. (For a discussion of CP, as a branched double cover of S, and
of the action of SO(3) on these manifolds, see [28].) Now Skyrmions should be
quantized as fermions, and it has been shown that two-Skyrmion wavefunctions, for
Skyrmions restricted to the attractive channel, are well defined only on the covering

space AH [12,24,25]. For this reason, both CP, and 54 should be considered when
discussing Skyrmions in the attractive channel.

We may summarize as follows. The moduli space of centred two-Skyrmion fields
in the attractive channel, with isospin rotations quotiented out, appears to be a smooth
4-dimensional manifold similar to the Atiyah-Hitchin manifold, and with the same
SO(3) orbit structure. It would best be found using gradient flow curves, but this
remains to be done. Various approximations to the manifold have been computed,
using constrained minimization applied to general Skyrme fields and instanton-
generated Skyrme fields. In these approximations the potential energy is known as a
function of a separation parameter, but the Riemannian geometry is not yet known in
detail.

8. Ellipses, CP, and the Global Picture

We have argued that the space ]T/fls of B = 2 Skyrme fields generated by k = 2
instantons accurately models various types of low and moderate energy Skyrme fields.
From now on, we assume that the gradient flow of the Skyrme energy function,

restricted to these fields, defines a subspace M, which is qualitatively the same as,
and quantitatively close to, the two-Skyrmion moduli space M,,. After quotienting

out by the free action of the group R? x SO(3)i50spin» there remains a 6-dimensional

space M;. For the remainder of this paper we shall discuss only M.

The picture we have developed of the stationary points of the Skyrme energy
function on Mg, and of the gradient flow, is as follows. The energy has a maximum
at a point representing a minimal energy B = 2 hedgehog. The tangent space to
My here is the 6-dimensional space of unstable modes discussed in Sect. 6. There is
an RP, of minima, a point in RP, specifying the unoriented axis of symmetry of a
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minimal energy B = 2 toroid. Finally, if M, is compactified, there is an RP, of saddle
points representing two infinitely separated Skyrmions, a point in this RP, specifying
the unoriented direction of separation. Each of these saddle points has two negative
modes, which bring the Skyrmions to a finite separation in the attractive channel.
Almost all gradient flow curves which descend from the maximum end at one of
the minima, but some exceptional curves end at a saddle point. The 4-dimensional

manifold AH representing attractive channel fields is a submanifold of m, and is the
union of gradient flow curves from the saddle points down to the minima.

This information about M, does not immediately tell us its global structure. For
a more detailed understanding, let us consider the global geometry of the moduli
space I;; of k = 2 instantons, where all gauge freedom has been quotiented out. It
is best to consider the instantons to be defined on S*, the unit 4-sphere in R3 with
centre O. Then an instanton is completely characterized by its Hartshorne ellipse,
and there is a 1-1 correspondence between I;; and the ellipses interior to S* which
satisfy the Poncelet condition with their associated coplanar circles on S*. There is
a large symmetry group acting on the instantons and hence on the ellipses, namely
SO(5, 1), the conformal group of S*. Note that the interior of S* can be identified
with hyperbolic 5-space, H>, the lines in H°> being the Euclidean line segments
connecting two points on S*. The group SO(S, 1) acts on H> as the isometry group
of the hyperbolic metric. A Hartshorne ellipse may be interpreted as an ellipse in H°,
and has a well-defined hyperbolic centre [29]. The ellipse and its hyperbolic centre
are carried round H° naturally by the action of SO(5, 1), and when the hyperbolic
centre is at O, but not otherwise, the usual euclidean centre of the ellipse is also at
0.

Now fix the point N on S* to be (0,0,0,0, 1) in R>. Stereographic projection from
N is on to the R* defined by x5 = —1. Consider the subgroup R*JR* of the conformal
group SO(5,1) which keeps IV fixed, and preserves the directions of tangent vectors
at N. This subgroup becomes the semi-direct product of translations and rescalings
of instantons after the instantons are stereographically projected from N. The orbit
of a Hartshorne ellipse under this subgroup has precisely one representative whose
centre is at O. This is because the group R* TR acts transitively and freely on H>,
so the hyperbolic centre of the Hartshorne ellipse is moved to O by a unique element
of the group. I, therefore has the structure

I; = Cy x R* x RT, (8.1

where Cy is the 8-dimensional manifold of Hartshorne ellipses centred at O.

We recall now a standard argument, which shows that the manifold Cj is
(CP, —RP,)/*, where /+ means modulo complex conjugation. Consider an oriented
ellipse in R> centred at the origin, with major axis a and minor axis b. There is
an associated element of CP, with homogeneous coordinates Z = a + ib. If the
ellipse is not degenerate, then Z is not in RP,. Note that ellipses with different
scales are identified to the same point in CP,. One may replace (a,b) by (—a, —b)
without changing the orientation, but this leads to the same element of CP,. If the
ellipse is in fact a circle, then |a] = |b| and a - b = 0, and one may replace (a, b) by
(acosa+bsina, bcosa—asina). Then Z is replaced by Z' = (a+ib)e™** = Ze™*®,
which is again the same point in CP,. An oriented ellipse in R, of undetermined
scale, and centred at the origin, is therefore associated with a well-defined element
of CP, — RP,. For an unoriented ellipse, (a,b) is identified with (a, —b), so that
unoriented ellipses are associated with elements of (CP, — RP,)/*.



Geometry and Kinematics of Two Skyrmions 417

Conversely, suppose we are given an element of CP, — RP,, denoted in homoge-
neous coordinates by a complex 5-vector Z = a-+ib. There are two cases to consider.
If Z? = |a|> — |b|> +2ia-b = O then identify a and b with orthogonal radii of a circle
centred at the origin. The scale ambiguity of Z means that the circle has an arbitrary
size; the phase ambiguity leads to an arbitrariness in the choice of (a, b) in the plane of
the circle, but the circle itself and its orientation are unambiguous. If Z? # 0, multiply
Z by a phase factor €' so that Z? is real and positive. Then a-b = 0 and |a| > |b|.
Since Z is not in RP,, both a and b are non-zero. a and b may therefore be identified
with the major and minor axes of an ellipse. The remaining arbitrariness in Z is its
scale and its sign (since a can be replaced by « + 7), which means that the scale
of the ellipse is undetermined, and (a, b) is identified with (—a, —b). So CP, — RP,
parametrizes centred, oriented ellipses of undetermined scale in R>. (More generally,
CP,_, —RP,_, parametrizes centred, oriented ellipses of undetermined scale in R",
for any n > 2.)

Now the Hartshorne ellipses are unoriented, and their scale is determined by the
Poncelet condition. For ellipses centred at O, the Poncelet condition is |a| + [b| = 1.
Clearly, among a 1-parameter family of centred ellipses, which differ only in their
scale, there is precisely one which satisfies this Poncelet condition. We conclude that
Cy may be identified with (CP, — RP,)/*.

Having found the form of I,;, we now quotient out the factor R* which
parametrizes translations. This is because the Skyrme fields generated by instantons

are independent of a time-translation, and in M, we have quotiented out the spatial
translations. Also, since /;; parametrizes instantons with no residual gauge freedom,

the Skyrme fields they generate have their isospin rotations quotiented out, as in M.

Our task therefore reduces to identifying M as a subspace of Cy x R*.

The instantons parametrized by a fixed element ¢ of C; and a variable scale
parameter in R™ generate Skyrme fields in R® which differ only in scale. The terms
of the Skyrme energy function vary in a simple way under rescaling — the sigma
model term varies directly with the scale, and the Skyrme term inversely. There is
therefore a unique scale [(c) at which the sum of these terms is minimized. The pairs
(¢, l(c)) define a graph in Cy x R which is diffeomorphic to Cg. Let us identify the
graph with Cg, which parametrizes Hartshorne ellipses centred at O, but we must
remember now that there is a scale factor in R* associated with such an ellipse. The
stationary points of the Skyrme energy function on Cg x R* lie on the graph, and
we expect the gradient flow between them to lie either on or close to the graph. We
conjecture that if we restrict the Skyrme Lagrangian and the associated gradient flow

to the graph, then we shall find a good approximation to Mg, with the correct global
structure. The results of Hosaka et al. [26] show that this conjecture appears to be
verified for the attractive channel fields.

It is convenient at this point to consider the simply connected double cover of
My, by supposing that centred Hartshorne ellipses are oriented, and parametrized
by elements of CP, — RP,. A given instanton is therefore associated with a pair
of ellipses of opposite orientations. We shall comment on the physical relevance of
orientability later. The elements of CFP, — RP, which parametrize the minimal energy
B = 2 hedgehog and attractive channel Skyrme fields are as follows.

The minimal energy hedgehog, which is a maximum on M, was described in
Sect. 5. The associated instanton in R* defines a porism of triples of points along the
t-axis. Two triples of the porism are (—T, T, 00) and (—T",0,T"), where T? = 84.6,
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T = T? 4+ 24, and A = 2.6427. After inverse stereographic projection, these points
are mapped to the unit circle on S* lying in the z, — z5 plane, and become the vertices
of two triangles. Let us use ¢ as a projective linear coordinate on the circle, so the
coordinates of the vertices of the triangles are the same as those of the triples on
the line. The two triangles envelope a unique Hartshorne ellipse interior to the circle.
Since T > 1, this ellipse is not centred at O. Let us now rescale by an element of
R™* to centre the ellipse. The effect is to multiply 7" and 7 by a common factor &, so
the pair of triangles have vertices at (—xT, kT, 00) and (—&T",0, kT"). The ellipse
is centred when these triangles are congruent, i.e. when x*T'T" = 1. The major and
minor axes of the centred ellipse are a = (0,0,0,1 — b,,0) and b = (0,0,0,0, by),
where the signs have been fixed arbitrarily. Because 72 > A, we find an ellipse of
high eccentricity, with b, ~ 0.015. The elements of CF, corresponding to the two
orientations of this ellipse are Z = (0,0,0, 1 — b, £iby).

An attractive channel Skyrme field is generated by an instanton in R* whose
geometric data are a concentric circle and ellipse in a spatial plane. Since we have
quotiented out by translations, we may assume the centres of the circle and ellipse
are at the origin of R*. After inverse stereographic projection the circle and ellipse
are still concentric, and in a plane orthogonal to the z,- and z5-axes. By rescaling by
an element of R, we can centre this Hartshorne ellipse at O. The element of CP,
parametrizing the centred ellipse is of the form Z = (a,+ib;, a,+ib,, as;+ibs;, 0, 0),
where a and b are, up to a scale factor, the major and minor axes of the original ellipse
in R*. The attractive channel Skyrme fields are thus parametrized by the subspace
CP, — RP, of CP, — RP,, defined by z, = z; = 0. This subspace is a concrete

model for the manifold AHdiscussed in Sect. 7. The minimal energy toroidal Skyrme
fields are those where the Hartshorne ellipse is a circle, and are parametrized by the
elements Z of CP, for which 72 = 0, that is, by the (complex) conic @,. As we
argued before, the compactification of the space of attractive channel Skyrme fields,
obtained by including infinitely separated Skyrme fields, is CP;.

Elements of CP, of the form Z = (0,0,0, z,, z5) parametrize instantons whose
JNR points X, X, and X; (after stereographic projection to R*) are on the t-axis.
Variations of the real and imaginary parts of zs/z, away from zs/z, = %ib,/(1 — b),
together with variations of the R* scale parameter, generate perturbations of the
minimal energy B = 2 hedgehog which preserve its hedgehog form and increase its
energy. The unstable modes of the hedgehog are orthogonal to these and are therefore
generated by instantons whose CP, parameters are of the form

L = (2,2, 23,1 — by, Liby), (8.2)

where |z,|, |2,| and |z;| are small. If (2, z,, 23) is a real 3-vector, the perturbation
is of the type indicated by Fig. 4c. If (2, 2,, 23) is a pure imaginary 3-vector, the
perturbation is of the type indicated by Fig. 4b.

We have now given the CP, parameters for the minimal energy B = 2 hedgehog
field, and for the attractive channel fields, and (8.2) gives the parameters for the
unstable directions away from the hedgehog. The gradient flow of the Skyrme energy
function joins the hedgehog to the attractive channel fields. Since we have not
computed the gradient flow curves, let us consider the simplest model for this join,
which is given by linear interpolation. Let CP;" denote the complex projective 3-space
which linearly joins the point (0,0, 0, 1 —b,, ¢b,) to the projective plane (CF,) defined
by z, = z5 = 0. The interpolating points in CP;" are of the form (z;, z,, 23, 1 —by, iby),
where z,, z, and z; are arbitrary complex numbers. CP; has the desired tangent space
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at (0,0,0,1—b,,4b,). Let CP;" similarly denote the linear join of (0,0, 0, 1—by, —ib,)
to the same CP,. CP;" and CP; intersect on the CP,, so their union CP;" U CP;
is not smooth. The only points in CP;+ U CP;” which represent infinitely separated
Skyrmions are those in the RP, subspace of the common CP,, where z,/z, and z;/z,
are real. Therefore, the space ((CP;r UCP;") — RP, represents two Skyrmions which
are either coincident or at finite separation.

We now state our main conjecture. This is that the double cover of Mﬁ is
diffeomorphic to the space (CP; U CP; ) — RP,. The only likely difference from
the linear model is that 2, and zs vary somewhat nonlinearly as z,, 2, and z; vary,
but with the SO(3) symmetry acting on 2,,2, and z, preserved. As stated above,
the linear model has the correct tangent space at the points (0,0,0,1 — by, £ib).

The gradient flow on the double cover of M; is incomplete, as some gradient flow
curves begin and some end with two Skyrmions infinitely separated. By including the
RP, representing infinitely separated Skyrmions, we obtain a space diffeomorphic to
CP;" UCP; . This is compact, and the gradient flow is complete.

The individual gradient flow curves on the double cover of M cannot be exactly
or even approximately linear, because most of them end on the conic @; of CP,,
defined by 22+ 22+ 25 = 0. However, the Skyrme energy varies very little on the CP,
of attractive channel fields, relative to the energy difference between the hedgehog
and toroids. It is therefore possible that a typical gradient flow curve is approximately
a line until it gets close to the CP,, and then it turns and ends at a point of Q).

A model energy function on CP, which gives this type of gradient flow is

E= 24> X B(z5/24)
1211 + 125 + (23 + |2l + |25
|22 + 23 + 23

(2P + 12 + [z + [z + |25
where ¢ is small and positive, and ¢ has a minimal value of 1 where 2z /z4 =
+iby/(1—by). E has saddle points where 2z, = 2z, = z; = 0 and 25/z, = Fiby/(1-by),
corresponding to the minimal energy B = 2 hedgehog. There are lower saddle points
where z, = z5 = 0 and (2, 2,, 23) is a real point of CP, (i.e. 2,/2; and 2;/z, are
real). These represent infinitely separated Skyrmions. Finally, there are minima where
z, = zs = 0 and 22 + 2% + 22 = 0. These represent the minimal energy toroids. With
the standard metric on CP,, the union of the CP;’s defined by z5/z, = Fib,/(1 — by)
is invariant under the gradient flow, and linearly models the compactified double
cover of M. If € = 0, the gradient flow is along lines, but if € is small and positive,
the gradient flow on either one of the CF;’s is as in Fig. 1.

One may exploit the SO(3) symmetry to pick out some invariant subspaces of the
gradient flow. For example, the subspace z; = 0 is invariant, and almost all gradient
flow curves in it descend to (1,¢,0,0,0) or (1, —¢, 0,0, 0). These points both represent
a toroid with symmetry axis along the x;-axis, but with opposite orientations. An
example of a smaller invariant subspace is z, = z; = 0. Here, gradient flow curves
descend to (1,0,0,0,0), which represents two Skyrmions infinitely separated along
the x,;-axis. The lines within this subspace, with either z, real or z; pure imaginary, are
also gradient flow curves. Finally, because of the reflection symmetry z5 — —zs, the
CP, submanifold z, = 25 = 0, which represents the attractive channel, is invariant.
Within it, SO(3) symmetry implies that all the gradient flow curves are lines of the

8.3)
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form (Aa; +1ib;, Aa,+ib,, Aa;+ibs, 0, 0) where a and b are orthogonal vectors and
A varies from oo to 1. These lines connect a pair of infinitely separated Skyrmions
to a toroid.

The pair of (possibly nonlinear) subspaces of CP, discussed above, CP;" and
CP;, are mapped into each other by complex conjugation. Since Hartshorne ellipses
are really unoriented, we should identify conjugate points. In particular, we should
identify the points (2, %, 23,0,0) and (2], 25", 25, 0,0) in the CP, where CP;' and
CP5 intersect. Our conjecture for the structure of the double cover of M, therefore

implies that M itself is diffeomorphic to (CP;/+) — RP,, and its compactification is
diffeomorphic to CP;/*. The operation * does not act in the standard way on CP;,
but only acts on the CP, subspace z, = z; = 0. The fixed point set of the operation
* is the RP, representing infinitely separated Skyrmions. CP;/+ is not a smooth
manifold but is rather like a manifold, embedded in a larger space, which intersects
itself. There are two distinct tangent spaces at the points of intersection.

In the quantized theory of Skyrmions, it is necessary to consider wavefunctions on
the double cover of the two-Skyrmion moduli space, which takes us back to oriented
ellipses. Fermionic quantization of Skyrmions requires that in a quantum state where
the total momentum and isospin are zero (i.e. where the wavefunction descends to the

double cover of M), the wavefunction changes sign under change of orientation, or
equivalently Z — Z*. The allowed wavefunctions are therefore determined by their
values on one copy (say CP;") of CP;, and they are unconstrained there, except that
they must change sign under * on the CP, where CP;t and CP; intersect.

The symmetry 25 — —z5 also maps CP;" to CP;, and allows a finer classification
of the allowed wavefunctions. Energy eigenstates may be assumed to be either
even or odd under this symmetry. Wavefunctions that are even change sign under
(21,23,23) — (zf,25,27) over all of CP}f, and may be non-zero on the CP,
representing attractive channel fields. Wavefunctions that are odd are unchanged under
(21,23, 23) — (2, 23, 2¥), and must therefore vanish on the CP,. Low energy states,
like the deuteron, will have even wavefunctions. An even wavefunction must vanish
at the point (0,0,0,1 — by, ib,) representing the minimal energy B = 2 hedgehog.
For the deuteron state, such a result is not unexpected. The deuteron has isospin zero
and spin 1, which also implies that the wavefunction vanishes at the hedgehog.

It remains a considerable task to calculate in detail the gradient flow of the Skyrme
energy fL_lnction on the space of instanton-generated B = 2 Skyrme fields, and to
check whether our picture of M;, and hence of the two-Skyrmion moduli space M,,
is correct. It is also important to check that M, is a good approximation to the space

M,,. If all is well, then one may use M, 12 With confidence to investigate the classical
and quantized dynamics of two Skyrmions.
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