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Abstract. We give a rigorous and very detailed derivation of the short distance
expansion for a product of two arbitrary composite operators in the framework of
the perturbative Euclidean massive Φ^ The technically almost trivial proof rests
on an extension of the differential flow equation method to Green functions with
bilocal insertions, for which we also establish a set of generalized Zimmermann
identities and Lowenstein rules.
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1. Introduction

Wilson's hypothesis [1] of the short distance expansion of products of composite
operators plays a rather important role in a variety of contexts in field theory.
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Rigorous investigations of the validity of Wilson's hypothesis in 4-dimensional
perturbative quantum field theory were initiated by Brandt [2]; his work [2] was
devoted to establishing the principal (i.e. singular) part of the short distance
expansion of products of 2 or 3 fermionic or bosonic fundamental (i.e. noncom-
posite) fields. Brandt's results were confirmed by Zimmermann [3, 4] who, using
his own version of the BPHZ renormalization techniques in the framework of the
relativistic massive Φ£ theory, gave a systematic derivation of the principal part as
well as of the asymptotic form of the short distance expansion of the product
Φ(χ + y)Φ(* — y) Subsequently Clark [5] applied Zimmermann's methods to
derive the short distance expansion of φ(xι) ' ' - φ(xn), n ̂  3. A few years later, the
short distance expansion of a product of two arbitrary Zimmermann normal
products (these are a special class of renormalized composite operators [3, 6]) was
proven by Anikin and Zavialov [7] by using BPH techniques (a more accessible
presentation of their work can be found in [8]). Because any renormalized com-
posite operator can be written as a linear combination of Zimmermann normal
products [9], Wilson's short distance expansion of a product of two arbitrary
composite operators is indeed valid in perturbation theory.

Unfortunately, however, the BPHZ type proofs [2-8] might hardly be called
simple, and a less involved alternative would be welcome. We believe, and hope
that we succeed in convincing the reader, that the present work offers such an
alternative.

This paper is the continuation of [9] (henceforth called I) where some novel
continuous renormalization group techniques were employed to control the per-
turbative renormalization of local composite operators. One of the benefits of the
methods introduced in I was the finding that, without ever worrying about
the combinatorics of Feynman diagrams, an essentially trivial proof of the
Zimmermann identities [3, 6] obeyed by the local composite operators could be
obtained.

The general theme of the present paper is the analogous, novel and technically
rather unpretentious analysis of general properties of bίlocal operators, e.g. of
Φ(χ + y)Φ(χ — y) and of some of its short distance regular renormalized versions
N[φ(x + y)φ(x — j>)] The basic goal is to establish - in the framework of the
perturbative Euclidean massive Φ\ theory - a completely new, comprehensive and
quite uncomplicated proof of the validity of the principal part and of the asymp-
totic form of the short distance expansion for a product of any two local renor-
malized composite operators.

Let us give a sketchy survey of how we prove the short distance expansion. We
will exemplify our method by deriving the short distance expansion for the most
simple operator product, i.e. for φ(x + y)φ(x — y). We wish to stress that the
methods described below carry over, without essential changes, to products of two
arbitrary operators. We will brush under the rug most questions concerning
mathematical rigour, because our only aim is to demonstrate the basic simplicity of
our method.

Let ΛQ be a momentum space UV cutoff and A a scale parameter in the range
[0, AQ]. We write C^°(x, y) for the free propagator of the Euclidean massive scalar
field, where the momenta are integrated out over the interval [Λ, y!0]. The generat-
ing functional of the unamputated Green functions of the Euclidean massive
Φ\ with 1 insertion of the operator O = 0(φ) is given by

(J9 0) = $dμcϊ(Φ)Oe-loM + <3>*> , (1.1)
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where the indices Λ, A0 indicate the range over which the momenta have been
integrated out, and where 1Λ° stands for the bare Φ\ interaction (i.e. the usual φ3

and φ4 vertices plus counterterms).
We will be interested in the following O's: Oί(x, y) = φ(x + y)φ (x — y);

02(x, y) = Nlφ(x + y)φ(x - y}-] = φ(x + y)φ(x - y) + CT(x9 y\ where CT(x9 y)
denotes a local counterterm, i.e. a dimension 2 polynomial in φ(x) and its derivat-
ives with coefficients depending on y,

CT(x,y) = MJO'I + h2(y) φ(x) + h3(y) dφ(x) + h4(y) φ2(x) , (1.2)

where the h(y)'s are adjusted in such a way that N [φ(x + y)φ(x — y)] stays regular
as y -> 0; 03 = 1, 04 = φ(x)9 05 = dφ(x\ 06 = N [(/>2(x)] = lim^0 02(x, y).

The generating functional of the (by C^°) amputated Green functions with
1 insertion of 0, GΛ'Λ°(φ, 0\ can be shown to read

GΛ^(φ9 O) = e-AΛ'Λ°M GA>Λ°(φ, 0) , (1.3)

where AΛ'Λ° is the generating functional of the connected amputated Φ\ Green
functions without insertions, and where for a local 0

GA>Λ»(φ,0)= -LΛ>Λ°(φ,0), (1.4)

whereas for the bilocal Oh ί = 1,2,

GΛ^(φ9 00 = - LA^(φ9 00 + LΛ^(φ9 φ(x + y))LA^(φ9 φ(x - y)) ,

i = l , 2 , (1.5)

where we used the notation LA'A°(φ,0) for the generating functional of the
connected amputated Green functions with 1 insertion of 0.

Why is it convenient to perform all this gymnastics with generating functionals?
The point is that one can give an extremely simple proof that the "reduced" Green
functions GA'A°(φ, 0) satisfy a linear homogeneous differential equation with respect
to variations of the integration scale Λ9 i.e.

dAG
A^(φ9 0) = D(φ9 G

A^(φ9 0)) , (1.6)

where (as said before) D(φ, ) is linear homogeneous in (•) and where, as the
notation suggests, D(φ, ) does not depend on the insertion 01 Therefore, any linear
combination

FA^(φ; x, y):= GΛ>Λ°(φ, 0,(x9 y)) - GΛ>A«(φ, 02(x9 y))

A'Ao(φ9Ol(x))9 (1.7)
i=3

where the/(j;)'s are arbitrary functions of y9 also obeys

dAF
A^(φ; x, y) = D(φ9 FA>A°(φ; x, y)) . (1.8)
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Now, it is easy to establish that for given boundary conditions (imposed e.g. at
A = ΛQ) there is a unique solution to this differential flow equation. Therefore, if we
can show that the coefficients/^) can be chosen such that FΛo'Λo(φ , x, y),

FΛo>Λ°(φ; x,y) = - LΛ°>Λ°(φ, Ox(x, 3,)) + LΛ°>Λo(φ, 02(x, y))

+ Σft(y)'L^Λo(φ9Oi(x))
ί=3

= -CT(x,y)- ΣMy)Όi(x) (1.9)
i = 3

(we used (1.4), (1.5), (1.7) and the fact that LΛ°>Λ°(φ, 0) = connected part of - 0), is
identically zero, then the linear combination FΛ'Λ°(φ:) x, y) vanishes identically for
all A e [0, ΛQ']; so, letting A -> 0 and Λ0 -> oo we will have proven the principal
part of the short distance expansion

φ(x + y)φ(x - y) = /

R(y) = Nlφ(x + y)φ(x - y)l -

for j ;->0. (1.10)

Noting that the Oh 3 ̂  i ̂  6, form a basis in the linear space of polynomials of
dimension 2, (1.2) and (1.9) imply that indeed there are uniquely determined ft(y)
such that FΛo>Λo(φ; x, y) = 0.

The asymptotic form of the short distance expansion, finally, is obtained by
a Taylor expansion of the remainder term R(y).

As remarked previously, the derivation of the short distance expansion for
a product of two more complicated composite operators will, in principle, be in no
way different from the above outline. This is the reason why our subsequent
remarks on (!.!)-( 1.10) do not address specifically only φ(x + y)φ(x — y) but
rather deal with the general case.

Comments, a) Of course one has to prove that one can find local counterterms by
which one can make a product 0(x + y)0'(x — y) well behaved for y -> 0. Even
without knowing the BPHZ proofs [2-8] it is in some sense obvious that this
should be doable; and once one has established this fact it is heuristically clear that
the short distance expansion must be valid.
b) It is natural that the asymptotic form of the short distance expansion should be
obtainable from the principal part by a Taylor expansion of the remainder term.
How this can be achieved in the simplest case has been explained in great detail in
[3, 4]; however, the implementation of these ideas is less transparent in [7, 8].
The technical tools required to carry out this program in [3, 4] were a set of
Zimmermann identities among bilocal insertions and some Lowenstein rules.
Generalizing both the Zimmermann identities of [3, 4] (similar generalized identi-
ties were obtained in [7, 8]) as well as the Lowenstein rules of [3, 4] we will be able
to expand in a Taylor series the remainder term for a product of two arbitrary
composite operators.
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c) We feel that it is quite remarkable that the short distance expansion can be
established without getting haunted by the combinatorics of Feynman diagrams,
and that it can be proven by more or less invoking but the uniqueness of solution
theorem of a linear homogeneous differential equation.

As regards the technical part of our paper, we assume that the reader is familiar
with I.

One of the starting-points of our analysis is the definition of a suitable UV
regularization. Our choice of UV regularization in I has not really been optimal
(recall that we introduced a 1-parameter family of UV regulators with parameter
θ, θ ̂  #min), because θmin had to increase with increasing dimension of the local
operator insertion. Although this did not present a serious difficulty it certainly was
a nuisance. In the meantime, fortunately, we found a slightly different, single, much
more convenient (and physically equivalent) UV regulator. It is this single UV
regulator (see (2.8)) which we will rely on throughout this work, and this enables us
to simplify the presentation of our results (as compared to I).

In the next section we are going to prove that local counterterms are sufficient
to make the product 0(x + y)0'(x — y) regular for y -> 0. To this end we analyze in
detail the connected amputated Green functions with 1 insertion of a renormalized
bilocal operator (renormalized by local counterterms). Using the differential flow
equation satisfied by these Green functions as well as the results of I, perturbative
renormalizability and short distance regularity can be proven without pain (see
Theorem 2). The proof is given in the Appendix.

In Sect. 3 we derive the flow equation obeyed by the G's and use this fact to
prove various identities (generalized Zimmermann identities, Lowenstein rules)
obeyed by various short distance regular renormalized bilocal operators.

In Sect. 4 we prove that coefficients/^) can be found so that the short distance
expansion holds for any two renormalized composite operators. We give explicit
formulae for the/(j;) in terms of Green functions. The main results can be found in
Theorem 9 (principal part of short distance expansion for a product of two
Zimmermann normal products), Theorem 10 (principal part for a product of two
arbitrary composite operators) as well as in Theorem 11 (asymptotic form). As an
example we present the derivation of the short distance expansion for
φ(x + y)φ(x - y).

2. General Setting

2.1. Definition of the Bare Interaction. Let Λθ9 0 < AQ < oo, and F, Fez R4, be
a momentum space UV cutoff and an intermediate IR cutoff, respectively. gl9g2

and λί9λ2 will be formal variables. By φ, φ e ̂ (IR4), we denote the scalar field and
Zι> %2 e^OR4) will stand for source functions.

The effective Lagrangian at scale Λ0,L
A°'Λ°'V, i.e. the bare interaction, is

a formal power series (fps) in gι,g2,λl9λ2 defined according to the following
prescription:

2

Q V._ iΛo V _ £ ^ J d*χ χ.(χ)β® (X)

i=l V

- λ,λ2 I d4xd4yχι(X)χ2(y)B^2\x, y). (2.1)
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Here 1Λ°' v represents the bare interaction of the Euclidean invariant Φ* theory with
"coupling constants" gί9 g2; i.e. putting r = (r1? r2), r, e N0?

1Λ°''V= Σ / tfo;F, (2.2)
M ^ i

where gr = g^g^2, \r\ = r± + r2, and where

/*>;":= J ^xfflWψίx) + α<2V2(x) + flJ3)0Dφ + α<4)03 + a™φ*} . (2.3)

The bare parameters a(

r

j\l^j^5, become uniquely determined functions
of Λ0, . . . once the renormalization conditions on the Φ£ Green functions are
specified.

Whereas 1Λ°' v defines the underlying field theory, the remaining terms on the
r.h.s. of (2.1) specify what types of local insertions into the Green functions (of this
underlying field theory) will be investigated. We will restrict our attention to
insertions B(1\ B(2) and B(ίt 2) which are local polynomials in φ and its derivatives,
i.e. for i = 1, 21

Dd)
B<θ(χ) := ftg) + £ £ 6(0{w) MM> {w}(x) , (2.4)

« = 1 (w}:\w\+n^D(l)

where MΠj{w}(x):= 5^0(x) d™nφ(x); the finite integers D(0 ̂  0 indicate the
dimensions of the polynomials, and b$\ b®{w} are fps in gl9 g2

b$= Σ tf Wo
| r | ^ 0

6ί?{w>= Σ ^ M?..{w> (2-5)
|r|£0

whose coefficients are uniquely fixed once we impose renormalization conditions
on the Φ4 Green functions with 1 insertion of B(1} respectively of B(2} (see I). The
local polynomial B(1'2)(x, 3;) of dimension D(1'2) ̂  — 1 has a very similar struc-
ture: If D(1 2) = - 1 then JB(1 2)(x, y) := 0; but if D(1' 2) ^ 0 we set

B« 2)(x, y) := b$> v(x-y) + DΣ Σ frϋiS (̂  - JO Aί.. M
π = l { w } : | w | + w ^ D ( 1 ' 2 )

(2.6)

and now the fps (in gl9 g2) b(Q> 2)(x — y\ b£$(x — y) are functions of (x — y) whose
coefficient functions b(

r^(x — y) and b(

r]^w}(x — y) will be determined by the
renormalization conditions imposed on the connected Φ^ Green functions with
1 insertion of the operator product plus counter term (#(1)(x) B(2}(y) +
β(1>2)(x, y)). For the sake of simplicity we assume that 6j|o2)W and b(

r^w}(x) are
C°°(R4), as long as Λ0 < oo , and that they are polynomially bounded; of course

1 We employ the conventions of I concerning multiindices, i.e. for j = 1, . . . , n we have
w/:=K ,!,. . . ,w Λ 4 ) with w^eNo, and |wj|:=Σj= 1 wΛμ,5^:= Πί=ι(^/^μ)Wjl11; moreover
w = (wi, . . . , wπ) and | w| := ̂ "= λ | W;|. We say that two sequences w and w' are equivalent if there
exists π G Sn such that wπ:= (wπ(1), . . . , wπ(M)) = w'. The equivalence class of w is denoted by {w};
abusing slightly the conventions one might identify {w} = {wl9 . . . , wn}.
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only such renormalization conditions which are consistent with these assumptions
will be imposed later on2.

2.2. The Differential Flow Equation. The regularized free, massive Euclidean
propagator of the scalar field φ is defined as

, y) := J ( - - 2 (R(Λo, P) - R(Λ, P)) , (2.7)

where m2 > 0, A e [0, Λ0], and where (slightly deviating from (2.2) in I)

R(Λ,p):= \κ(^-\e-Λ^ + ( 1 - *(^-)Y(l - <T^) }•*(£) . (2.8)

Definition (2.8) certainly needs some explanations:

1) The function K has been introduced in (2.2) of I. K is a more or less arbitrary C°°
version of the characteristic function χ[0 1]β

2) The scale Λι,0 < Λ1 < AQ, has also been introduced in I (see the remarks
following (2.24) in I). As explained there, Λ1 is fixed once and for all, in particular
it is independent of Aθ9 and plays only a technical role.

3) (2.8) is more convenient than (2.2) of I because the definition (2.8) guarantees
that R(A, p) e C °° ( [0, oo) x R4) (in contrast to C(Θ ~ υ in I) and that in contrast to
I R(A, p) approaches 0 exponentially, as A -»0. The exponential approach to
1 as A -> oo, realized both by (2.8) and by (2.2) of I, is also needed to carry out
the renormalizability proofs.

4) As a result the regularizing function R(Λ, p) is a smoothed variant of the
characteristic function X[ 0,Λ]dPl)

5) The results of I can also be derived by the use of (2.8) instead of (2.2) of I. For
instance, this fact can be proven by showing the physical equivalence of
R (defined by (2.8)) and of Rθ (defined by (2.2) of I). We do not wish to go too
much into details; suffice it to say that one may define the convex linear
combination R(α):= α R + (1 — α) Rθ; one then proves α-independence of the
renormalized Green functions (regularized at intermediate steps by R(α)), and
this can be done in full analogy to the proof of Theorem 5 in I, as outlined in the
Appendix in I. So we may and will apply the results of I as if in I we had been using
the regularizing function (2.8).

With the help of C^° we define the functional Laplace operator

(2.9)

Next we define the fps 8Λ^Λ^v(φ, χl9 χ2\

SΛ,Λ0;V = £ grλt.SΛ:ΛQ V ^ (2.10)

2 More generally one could admit e.g. an integrable singularity of b(

r]'0
2)(x) as x -> 0, etc.; however,

for those applications which we have in mind it is sufficient to consider only the case of smooth
coefficient functions
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where t == (ί1? ί2), ίjeNo, |ί| = ίx + ί2, Λr = ̂ 4% by

S(1rfΛTo,o):=0 (2.11)

and

e-S^^K(0,Xl,X2) :== eA(Λ,Λ0)e -!*>'*>>* ( φ , χ l t χ 2 ) ^ .̂12)

The usual considerations (see I) tell us that due to (2.12) the S* t

ΛolV, \r\ + \t\ ̂  1,
are uniquely defined, finite polynomials in φ9 χ1? χ2 and that because of (2.11) we
have limΛ^ΛoS

Λ>Λo>v = LΛ°>Λ°''V. Thus it is legitimate to define, for A e [0, Λ0), the

oiV\
I field-dependent >

yl_ylo

where φ and χl9 χ2 are called fields; obviously we have limyl_ylo Z ylo; F =
and clearly Lf0',^;[0,o) = 0.

Proposition 1. The effective Lagrangian at scale A, LΛ>Λ°'>V

9 is the generating func-
tional of the nontriυial, i.e. order \r\ + \t\ ̂  1, connected amputated Green functions
of the perturbative Euclidean field theory defined by the vertices LΛ°>Λ°>V and by the
propagator C^°.

The poof of this fundamental result can be inferred from I. We conclude that

LΛ'A°:= lim LΛ'Λ°'V (2.14)
V\ 1R4

exists for all A e [0, AQ\.
Acting with the derivative dΛ = d/dA on Eq. (2.12) one deduces the differential

flow equation obeyed by SΛj Λo; v and therefrom the one satisfied by the effective
Lagrangians:

ΛL
Λ>Λ° = (dΛA(A, A0))L^^

(2.15)

Expanding the generating functional LΛtΛ° as a fps in gί9 g2, λl9λ2,

LΛ,Λ0= fλtmLΛ.Aθ9 (116)

where (as we know) L(o ̂  (0 o) = 0» our Proposition 1 implies that (we abbreviate
(0,0)byO)

:= "Pi- ••' -P«-ι)> (2.17)

+ Σ ί <*** Π
B=ι y= 1^π

•^(i,°o,;n(x;Pι, . . . ,P.) , (2-18)
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t = (0, 1): £ί!',o,°ι, = (r.h.s. of (2.18))|Xl ̂  ,2>(1)0) ̂  (0> i) ,

t = (l.l): ^(f,°i) = ί d*xd*y χ, (x)χ2(y) J^ (?°1); 0(x, y)

+ J Jrf4x^ Π £

Here JSf^S, ^'u,0o);W(*; •) and JS?£ <ί.0

1);ιl(x, y; . . . ) may be interpreted as the
Φ\ momentum space connected amputated n-point Green functions, at rth order in
perturbation theory, with no insertion of a composite operator, with 1 insertion of
B(1)(x), and with 1 insertion of (B(1)(x) B(2)(y) + £(1'2)(x, y)), respectively; the
internal momenta of the Feynman diagrams contributing to these Green functions
have, roughly speaking, been integrated out over the range [Λ, Λ0]

The expansions (2.17), (2.18) have been discussed at length in I, so let us only
add a few words on (2.19). Without loss of generality one may assume that
^M?,°i);n(x> y; Pi, . . . , pn) is totally symmetric under permutations of p l 9 . . . , / ? „ .
And it is clear that for each r there is a finite n(r) such that

'̂(f,°i);n = 0, i f n > n ( r ) ; (2.20)

thus we don't have to worry about the sum over n in (2.19).
As regards notation we set, for ίe {(0, 1), (1, 0)} and n ̂  0, as in I,

= e ~ i-^^Λo^.^ ) ; (2β21a)

but for t = (1, 1) we put

ίio(x, y; Pl, . . . , pB) . (2.21b)

If one inserts (2.16)-(2.19) into the differential flow equation (2.15) one ends up with
an infinite set of coupled differential equations for the momentum space Green
functions &. Those differential equations involving only the JS?£f

t?ί with | ί | ^ 1
have been derived in I (see Eq. (2.23) in I). But now we are also interested in the
differential flow equations satisfied by the t = (1,1) Green functions; they read, for

" ςr + nr

5ΛΛ(ΛO)
r", (1, 1); n+1
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• Γ
r'+r" = i

n' +n" = « H

• < '̂,1l, l);n"(* - 3>; ~ δ> JV> » P»)
Js:

d4qdΛR(A9q)Γr^AΛ fx-y__

«'+n"=/ι

^ - «, P. , P.)]
^ / Js

(2.22)

where ]Γ* indicates that the sum runs over ri ^ 2. Also we have
Q:= — Pi — * * — Pn'-i, and [ . . . ]symm denotes symmetrization w.r.t.
pί9 . . . , pn. If n = 0 then obviously £* does not contribute to the r.h.s. of (2.22).

2.3. The Boundary Conditions at Λ = A0 (Z>(1'2) ^ 0). The definitions (2.1)-(2.6)
combined with the expansions (2.16)-(2.19) yield the general structure of the
momentum space Green functions at A = A0. For 1 1 \ ̂  1 the main conclusions can
be found in I; but for t = (1, 1) and D(1> 2) ^ 0 it is easily seen that, if n = 0,

ΪΆ o (* - y) = - W, Ό2}(χ - y) , (2.23)
whereas for n ̂  1,

Σ b^l}(x - y) [(iPlr (%r]symm - (2.24)
{w}:n + |w |^D ( 1 2)

Thus in particular

n(x - y> Pi, - - >Pn) = 0, if n + |w| > Z)(1'2) , (2.25)

where 3£:= S^1 d%\ but for n ̂  1, n + |w| ^ D(1'2), we find

3]T^ί0(iΛ0);.^ - ^ 0) = - 6<|;f

2/w)(x - y)'^{w} (2.26)

(J {̂w} has been defined in I, Eq. (2.35)).

2.4. The Renormalizatίon Conditions (D(1'2) ^ 0). The renormalization conditions
on the \t\ ̂  1 Green functions have been discussed in I. For t = (1, 1) the symmetry

&?:£(χ -y p i , . . . , A,) = &ϊ:£(χ - y;p«u> - - - , p*w\ Vπe5π ,
implies that if {w} = (w'} then

W&ϊ:£(x - y, 0) = dϊ#ϊ£(x - y; 0)

therefore <?£ .£??;,?£ (x - j; 0) depends on w only through the equivalence class {w}.
Keeping in mind (2.23) and (2.26) it thus becomes plausible that by adjusting the
bare functions b(1\2\x — y) we should be able to realize the following general
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renormalization conditions at zero external momenta:

.̂•(ίυ oί* ~y)= - &ί Ό2)R(* -y), if n = 0 ,

δΐ&?;£l}ίβ(x - y, 0) = - &<!;?£, (x - )̂ ^w), if n ̂  1 and n + |w| ^ D"-2> .

(2.27)

We require that the renormalization "constants" b(1/2)R(x — y) (the index "R"
stands for "Renormalized" and has nothing to do with the regularizing R(Λ, p)) are
polynomially bounded C°° functions of (x — y), and that they are independent of
the UV cutoff AQ - apart from these conditions the r.h.s. of (2.27) may be chosen
arbitrarily. (Notice, however, that strict yl0-independence is not really necessary;
indeed, a weak yl0-dependence, consistent with the bounds in (A.5), could always be
permitted.)

We wish to sketch now the inductive proof that the boundary conditions (be)
(2.27) can indeed be satisfied by a unique choice of the bare parameters
b(1'2}(x-y) and that these b(1\2)(x - y) do exhibit all the required regularity
properties. To this end it is convenient to define, for u, neM0, 0 ̂  n ̂  D(1'2):

β.,»- {(̂  Ό:((|rΊ < H) Λ (0 g FI' g Z)(1'2))) v ((|r'| = u) Λ (n < ri^ D(1>2)))} ,

0Mfll:= {(r', n'):|r'| ^ 0, 0 ̂  n' g D ( 1 '2 )}\ΩM,M . (2.28)

Notice that we may assume that we have fixed some renormalization conditions on
the |ί| rg 1 Green functions and that therefore the bare parameters entering the
definition of 1AQ and B(1\ B(2} (cf. (2.1)-(2.5)) are well-defined, as long as AQ < oo .

Induction hypothesis: The be (2.27) on the Green functions
{^°'(i°, i ) ;n / : ( r / > π) e^M,«) have t>een satisfied by tuning the bare functions
b(ί'2)(x — y) appropriately. There is only one possibility to achieve this: The
functions {b$$t {wΊ : (rr, n') e Ωu „} are arbitrary; and the {b%£{w,} : (rr, n'} e Ωu „} are
uniquely determined, C°° and polynomially bounded (if Λ0 < oo).

Induction step (i.e. analyze (2.27) for JS??;(^1);|I, |r| = u): Using e.g. (2.1)-(2.6)
and (2.12) at A = 0 it is not difficult to check that

- y\ Pi, - , Pn) = ^°(i?ϊ);ι.(* ~ ̂  Pi, - - , P»)

2)), (2.29)

where the sums add up the contributions ^( ) of finitely many connected ampu-
tated Feynman diagrams F(1)(2) resp. F(1'2). The propagators in F(1)(2) and
F(1'2) have the form ^(ylo, p ) ' ( p 2 + m2)"1. JF

(1)(2) contains precisely one vertex

fr^ίw'}'^"*"'^®11^-^')3 ™d one vertex b^\n,,Λ^ei^-χ)l2^L^^P(ptt\
and all other vertices in F(1)(2) are taken from 1Λ°. Because, for A0 < oo, the internal
momenta of JF

(1)(2) are integrated over a compact region this shows that ^(F(1)(2))
is C°° and polynomially bounded in (x — y). On the other hand F(1> 2) contains one
vertex fc^'';

2^",{W'"}(^ - y) P(p'"), where (r"', nw)6ΩM i l I, and the remaining vertices
stem from 1A°\ the induction hypothesis implies that ^(F(1'2)) is uniquely defined,

P( ) stands for some polynomial in (•); and p' = (pi,. . . . p'n,}
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C00 and polynomially bounded in (x - y). Therefore (2.23), (2.26), (2.27) and (2.29)
show that: The be (2.27) can be realized also for ̂ i^^n\ the only way to do this is
to leave the {b^!{w'}:(r/> Όe A,,w\{(r> n)}} arbitrary and to fix in a unique way
the C°° and polynomially bounded functions b(

r}'n
2}

{w}, n + |w| ^ D(1'2). Repeating
this for all r with \r\ = u finishes the induction step.

It is easily seen that this induction scheme eventually covers the whole set
{(r, n): \r\ ̂  0, 0 ̂  n ̂  D(1'2)} upon starting the induction process at u = 0,
n = D(1>2) (because after having treated u = 0, n = 0 we may proceed to u = 1,
n = D(1>2\ etc.).

Let us remark that we will not need (2.27) in all its generality. In fact in order to
establish the short distance expansion it will be sufficient to consider only the most
simple renormalization conditions, namely

fcίjj*)* = 6<|;2>* i 0, for n + |w| £ D(1 2), |r| £ 0 . (2.30)

2.5. Perturbative Renormalizability. In the remainder of this paper we will take it
for granted that the bare polynomials B(1\ B(2) have been adjusted in such a way
that the Green functions JS?£f

f?ι? with 1 1 \ = 1 obey some suitable renormalization
conditions (see I), e.g. so that an insertion of B(1\x) defines an insertion of
a Zimmermann normal product Nc

Dw[MnΛw}(x)]; it goes without saying that an
analogous assumption concerns the Φ^ Green functions 3f*'£°n .

In I we proved the perturbative renormalizability of the Green functions with
no or with 1 insertion of B(i\ i.e. we showed that lim^o^w j^°γ^(p) exists for
\t I g 1. The results of I and the differential flow equation (2.22) (and the be (2.25),
(2.27)) can be employed to prove the same property for 3P?;$°i);n(x — y,p), if
D<ι, 2) ̂  £)(i) + £)(2> and χ _ y arbitrary, or if D(1 2) = - 1 and'x φ 'y. Because the
details of the proof are very similar to the renormalizability proofs in I we have
deferred them to the Appendix. The main results are summarized in the following
theorem.

Theorem 2. a) Assume that D ( l s 2 ) ̂  D(1) + D(2\ For any renormalization condi-
tions (2.27) the renormalized Green functions

^r.(i. !);„(* - 3>;Pι, ,P.):= Mm ̂ .'(ίfD Λ* - tfPi, - - - ,P.) (2.31)
ΛQ^KX>

exist for all r, π, (pί9 . . . , pπ), (x — y). For each r, n the function ^Γj (1> 1); „ is C°° w.r.t.

(Pi? - j Pn) and continuous vv.r.ί. (x — y).
b) Assume that D(1'2) = - 1, i.e. that J3(1 2):= 0. //x φ j; ί/ze Green functions

(2.31) exist for all r, n, (p l5 . . . , pn); ί/i^y are C°° w.r.ί. p and (x — y). In particular, for

for all r, n,

lim (d^?:£l);n(x - y; p)) = 3; JSP r§( l f 1);/ί(x - y; p) , (2.32)
ΛQ—> CO

1) Part a) of Theorem 2 thus shows that for any two insertions £(1)(x), B(2\y) the
potential short distance singularity, as x -» y, of connected Green functions
containing 1 insertion of B(1)(x) B(2)(y) can be cured by the addition of a local
counterterm B(1 2)(x, y) of dimension D(1» 2) ̂  />(1) + Z)(2).
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2) And part b) expresses the fact that the connected Green functions with 1 inser-
tion of B(ί)(x) B(2)(y) exist without counterterms, if x Φ y.

3) Theorem 2a), b) generalizes results which have been derived in the context of
BPHZ renormalization theory [3,4, 7, 8].

For D(1 2) = — 1 Theorem 2b) states that &ft (1> 1 ) ; n (x — y; p) is a smooth function
of (x — y) for x Φ y, but so far nothing has been said about what kind of singularity
may occur at x = y. Fortunately it is not difficult to give a rough estimate of the
distributional character of «£?,,, (ι f i) ;n(x — y\ P\ because the required bounds have
already been established in Sect. A.2 (proof of Theorem 2b)). Let us define the
linear spaces F^yeR, by

Vj:= CC(R4) n [f:\f(x)\ ^ \x\J const(/)} . (2.33)

Theorem 2. c) Assume that D(1'2) = — 1. ///e VDw + Dw + ε _ 3, any ε > 0, then the
limit

lim <J*f° (f ι);,,( ;p),/> (2.34)
Λ.Q~* oo

exists for all r, n, p and is C°° in p. In particular, for |w| ^ 0,

lim <<3™ ̂ I?yί° !);„(*; p)?/) = dp lim <^°'(i°i);n(*;pX/) > (2.35)

/or α// r, n, p.

Remark. Probably one could show that Theorem 2c) holds even for /e
F/)d) + D(2) -j. ε _ 4, any ε > 0; and this result could not be improved any more unless
one plunges into a case by case analysis, because at zeroth order in perturbation
theory the connected vacuum expectation of :φ2(x)::φ2( — x): has leading behavi-
our |x|~4 f°r x -*0.

3. Normal Products and Some (Generalized) Zimmermann Identities

3.1. Generating Functίonals and their Flow Equations. The partition function,
ZΛ>Λ° V ( J 9 χ l 9 χ2), of our theory is given by

Z^' v(J, Xl, χ2) :=

according to I it may be expressed as

Z^'ίJ^χ,)-*1/2"^^ (3.1)

where SΛ>ΛQ'V has been defined in (2.11), (2.12). Because we know that
Z^'ylo;K(J,χ1,χ2)/2:yl'^o;K(0,0,0) generates the unamputated Green functions,
where dividing by the normalization factor ZΛ' Λ°' κ(0,0, 0) eliminates precisely the
field-independent parts of SΛ Λo; F, we see that

GΛ^(φ9 χl9 χ2) := e^^^^^e ~ LΛ'Λo^^^) (3.2)

is the generating functional of the amputated Green functions. Strictly speaking
we are not allowed to amputate < J, C^°J> as long as Λ0 < oo, because (C^0)"1

does not exist for Λ0 < oo. So the correct treatment would be to keep
<J, C^°jy unamputated, e.g. until we have taken the limits which we are really
interested in, namely Λ-+Q, ΛQ-+CO. However, because exp(i<J, C^°J» resp.
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exp(i<(/>, (C^0)'1^)) will always play but the role of a trivial prefactor unaffected
by all our manipulations, the correct treatment would only result in heavier
notation without a real gain.

Expanding both sides of (3.2) as fps in A l 9 λ2 using

GΛ,Λo = GΛ,Λo + Aι GΛ,Λo + χ^Λo + ̂ Qftft + (3.3)

and a similar expansion for LΛ Λo, we end up with

GΛ,ΛO = ei/2^,(c^r^>e-L^A°GA,A0 ? β4)

where obviously GQ'AO = 1, and where

GΛ,ΛO = _LΛ,ΛO^ if μ| = i ? (3.5a)

ftΛ, ΛO _ τΛ,Λ0>τΛ,Λoτ Λ, Λ0 /o c^\
^(1,1)— ~~ ^(1, 1) ~r ^(1,0)^(0, 1) (J.JΌ)

Equation (3.4) shows that the generating functional of the amputated Green
functions with 1 insertion of £(1), Gfι,o°, or with 1 insertion of £(2), G$/ft, or with
1 insertion of (B(1)B(2) + £(1'2)), Gftfo is completely determined by the "reduced"
functional Gf'Λ° once the underlying Φ\ theory has been specified (by LQ' Λ°). This
is the reason why we can restrict our attention to the G^Λ°, \t\ = 1 or t = (1, 1), in
what follows.

One of the crucial ingredients in our proof of the short distance expansion will
be the fact, to be established shortly, that Gf>Λ° with \t\ = 1 and G^ /ft obey the
same linear homogeneous functional differential equation. In view of (3.5a) and
(2.15) it does not come as a surprise that GJ1' yl°, | ί | = 1, obeys such an equation; but
naively one would hardly guess that the same holds also for G^^, because the
Lf'A^ with |ί| = 1 or ί = (1, 1) obey linear differential equations but the expression
for G^ in terms of L? Λ°, (3.5b), is nonlinear.

Lemma 3. For all t the Gf' Λ° satisfy the linear homogeneous functional differential
flow equation

where f= dΛf, and A = A(A, Λ0).

Proof. We collect the "coefficients" Gf'Λ° in the fps GA'Λ° (in analogy to (3.3)).
Thus (3.4) says that

GΛ,ΛO =

and comparing this way of expressing GΛ'Λ° with (3.2) we have

e ~ Lt'ΛoGΛ>Λ° = e ~ LΛtΛ° . (3.7)

It is convenient to reintroduce, temporarily, the volume cutoff V. Due to (3.7) we

Because the field-independent contributions to SΛ'Λ°'V occur only at 0th order in
A l f A2, multiplying (3.8) by exp( - 5^^o;K|field.indep.) and using (2.13) yields



Perturbative Renormalization 259

On the one hand

dA(e-s**'tVGA'**v) = (dΛe-st'Λ°'v)GΛ>Λ° > v + e ~s^v dΛG
Λ^Λ^v

= (Ae -^Λo''v)GA'Λ^v + e-sΛ°'Λo;VdΛG
Λ'Ao'>v , (3.10)

where the second line follows from (2.12). But on the other hand (3.9) and (2.12),
(2.9) tell us that

t Λo vy . (3.11)

Compare (3.10) with (3.11) and use δφS£A° v = δφL$ A°' v (as follows from (2.13));
taking V f 1R4 yields (3.6).

3.2. Definition of Bilocal Normal Products. Given (for i= 1,2) the monomials
Mn« {wω} (by definition w(ί) ^ 1) and the dimensions D(i\ D(ΐ) ^ π(ί) + |w(0|, let
B(ί)(x) be the unique bare polynomials insertions of which into Green functions
define insertions of the renormalized normal products JV/>ω [Mn«jw(θ}(x)] (see I); let
us abbreviate these normal products by JV(ί}[M(ί)(x)].

In accordance with I and (3.5a) we write, for \t\ = 1,

G^^(AΓC

D[MΠ,{W}]) := GA>A*(B) s - L^B) ,

if β codes for the normal product Nc

D[Mn {w}], and similarly for L^'^°, if |ί| = 1.

Example. It is clear that the normal products Nc

D[Mn {w}] are rather special local
composite operators. So one may wonder about the relation between these normal
products and e.g. the fundamental field φ. Now, if we impose the standard, i.e.
the BPHZ type, renormalization conditions on the 1 -point function and on the
mass, i.e.

! i
ς#Q,Λ0 _ r\ &?O,ΛO (n _ f\\ _ π
-^r,0;l — U ' ^r,Q;2(P ~ W — U j

then it is not difficult to convince oneself (cf. Sect. 4.2) that the elementary field
φ coincides with one of its normal products:

And by Lowenstein's rule (cf. Proposition 10 in I) we thus get

More details are presented in Sect. 4.2.
Choose D(1'2) with D ( 1»2 ) ̂  D(1) + D(2\ There is a unique bare polynomial

B(1*2)(x, y) such that the connected Green functions ^^\ι^1);n with 1 insertion of
(B(1)(x) B(2)(y) + J5(1'2)(x, j)) obey the extraordinarily simple renormalization
conditions (2.30). Having determined B(1\ B(2) and B(1>2) in a unique way we are
ready to define the Green functions
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and

GA-

with 1 insertion of the renormalized normal product Nβu,2>[ •]:

GA'Ao(Nc

D^[_ •]) := eVW'^'^e-^G^^Nfr.vί ]) (3.12)

(cf. (3.4)), where (cf. (3.5b))

1- 2)(x, )0) + I^(B(1)(x))Lfol5(*(2)(3θ) (3-13)

Remarks.
1) We deliberately added an index "c" to the normal product symbol "N" because

our normal product JVC[ •] is defined by some renormalization conditions
imposed on connected Green functions. The traditional, but for us less natural,
choice would be to define a normal product Np[ ] by imposing some
renormalization conditions on the proper Green functions [3-8]; see also the
corresponding discussion in I.

2) In principle we are not really interested in the regular bilocal operator
Λ/V 2)[ •] per se; but rather, guided by Zimmermann's [4] proof of the short
distance expansion, one expects that also in our formalism regular bilocal
operators should be valuable tools to establish the main goal of this paper,
namely the operator product expansion. From a pragmatic point of view one is
therefore led to define such regular bilocal operators whose renormalization
conditions are potentially as well suited as possible for the purpose one has in
mind. And with hindsight this criterion entails the be (2.30); but see also the
discussion following Proposition 8.

3) As regards the naming we believe it legitimate to call the regular bilocal
operators obeying (2.30) normal products because by (2.30) the connected
contribution to the Green function with one insertion of (B(1)(x) B(2\y)
+ £(1'2)(x, y)) is then "as much zero as possible."

Let us write down the momentum space representation of (3.13). Using (2.18),
(2.19)) it is immediately clear that

a>[ •]) > (3.14)
| r | £ 0

where

n=o j=

;Pl, . . . ,pn) (3.15)
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with

;p1, . . . ,pn)

+ Σ [̂  αΊo . tepi, ,pn ) &?••$, v ,n >(y;pn +ι, ,p»)]symmr '+r"=r
n' + n" — n

(3.16)

Obviously (cf. (2.20)) the sum over n in (3.15) contains only a finite number of
nonzero summands.

Lemma 4. Put HΛ>Λ°(x,y):= G^
correspondingly

>[̂  - - - >Pn) .

Because we insisted on D(1'2) ̂  D(1) + D(2) we find

a) Jf .ΛtetfPi, - - ,P»):=limΛo_>GOjr^0(x,3';pι, - - - , Pn) exists and is C °° w.r.t.
the momenta ( p ί 9 . . . , pn) and C° w.r.t. (x, y);

b) /or eαc/i φ with φeC™ the limit H(x, y):= lim^-^ H°'Λ°(x, y) exists (as a fps in
g) and is continuous in (x, y).

Proof. Part a) follows from (3.16), (2.21), Theorem 2a) and the renormalizability
theorems in I.

b) By a) (and the Appendix) the 3?®:*° converge uniformly on compact sets in
momentum space, and this implies that HjM°(x, y) converges towards (cf. (3.15))

00 " d4p -
n,(χ> y) '•= Σ ί Π oiέ Φ(PI) ' ' ' Φ(pn)tfr.n(χ> y,pι,. >, A.) ,

π = o j=ιv z π;

for each r, if φeC™. Now, for each r, n the function J^r.n(x,y;pl9 . . . ,pn) is
continuous in (x, y), uniformly on compact sets in p-space, and this means that for
φ E C™ and any ε > 0 there is δ = δ(x, y, ε, φ, r) > 0 so that \Hr(x, y) — Hr(x', /)|
< ε whenever \x — x'\ <δ,\y — y'\ < δ.

Following [3,6] we are going to call a normal product Nc

D[Mn {w}] minimal if

D = n + \w\ (remember that D ^ n H- | w|, see I), and in this case we omit the index
D, i.e. we simply write AΓC[MM {w}]. Similarly, the normal product
7VC[ΛΓ

(

C

1)[M(1)]AΓ|[M2]] denotes a minimal one, i.e. D(1'2) = />(1) + D(2\

Lemma 5.

Remark. Whenever operator identities such as (3.17) appear we take them to be
true in the weα/c sense; thus, (3.17) really says that for all φ with φ e Cc°° (cf. (3.4),
(3.5), (3.13))

lim G(NclNcίM(1)(x + ̂ )]AΓc[M(2)(x - y)]]) = G(ΛT[M(1)M(2)(x)]) , (3.18)
y^O

where as usual G . . ( •) := lim^.^ G°:^°( •)-
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Proof. Due to Lemma 4 the l.h.s. of (3.18) makes sense and equals

Km G0^0(iVc[^c[M(1)(x)]Arc[M(2)W]]) .
ΛQ-+ oo

And the results of I imply that also the r.h.s. of (3.18) is well-defined. We will prove
that VΛ, ΛO, r, n, p,

; p) - '̂/°(^[M(1)M(2)(0)]; p)

(3.19)

vanishes, and together with the above remarks this obviously yields (3.18).
So let us verify that ̂ '̂  = 0, for all r9n9Λ9ΛQ. First of all, using (3.6)

it is easily seen that the set of functions {<^V°} obeys the differential equa-
tions (4.1) of I. Next, put d := D(1'2) = D(1) + D(2} = n(1) + n(2) + |w(1)| + | w(2)|
and remember (3.16), (3.5a) to realize that conditions a), d) of Lemma 6 of I
are obeyed by {^Λ'^°n}. And the boundary conditions at A = 0 and
Λ = Λ0 satisfied by &f fi (NC

D [M (0) p), 1 1 \ = 1, (cf. I) and by
^'α,0ι);w(^

c[^c[M(1)(0)] ΛΓC[M(2)(0)]]; p) entail the fact that {^Λ;A^n} obeys also
b), c) of 'Lemma 6 in I. Therefore &*'£°H = 0.

For nonminimal normal products the analog of (3.17) is in general not true;
however, in the same way as we proved Lemma 5 above and Theorem 8 of I one
can show that Nc

D(i.2)[Nl1}[M(1}(x)]Nl2}[.M(2)(x)']'] is a linear combination of the

3.3. Lowenstein Rules, Zimmermann Identities. By a "Lowenstein rule" we mean
a formula stating that applying Nc commutes with taking derivatives. And the term
"Zimmermann identity" will be reserved for any equation which expresses a linear
relation between normal products of different degrees.

The results which we are going to derive in this section are generalizations of
results obtained in refs. [3, 4, 7, 8] by relying on BPHZ renormalization tech-
niques. Once again the main technical tool for giving the quite simple proofs will be
Lemma 6 of I which says that for given boundary conditions (and given Φ^ theory
(i.e. L$'A°)) the solution GA'Λ° of (3.6) is unique.

In (3.13) we have specified what we mean by the bilocal normal product

[ΛΓfo [M (1)(x)]ΛΓJ2) [M(2)(3θ]] .

We extend this definition by linearity to

(3-20)
.7=1

From Lemma 4 we know that the normal products Nχ>α.2)[ •] are at least
continuous in x, y. The next proposition shows among others that the larger
D<ι f2) _ D(i) _ D(2) the smoother becomes ΛΓfcu.^ •].
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Proposition 6 (Lowenstein Rules). //D(1 2) ^ D(1) + D(2\ then

(2)(x - j;)]]

[M(2)(x - 3;)])] , (3.21)

and z/D ( 1 '2 ) ^ D(1) + Z)(2) + 1, then

(3.22)

Remark. Notice that due to Lemma 4, the Lowenstein rules of I and definition
(3.20) the r.h.s. of (3.21) and (3.22) are known to exist. So the proposition confirms
the existence of some derivatives of bilocal normal products.

Proof. As an illustration we will give quite a detailed proof of (3.21). Performing the
differentiation we have

5*,M(1)(x + Jθ = Σ M<{>(x + y), dxMm(x - y) = Σ M<2>(x - y) , (3.23)
J = l j=ί

where Mf^(x + y) is not necessarily different from M(

({\(x + y), if i Φj. Let us
abbreviate

0(x, y) := N^[M(1)(x

, y) := Λ^f,,., + ! [M<ί> (x + y)]JVJ2) [M(2)(x - y)] ,

Og>(x, y) := N'w [M(1)(x + y)]]Vί,u, + , [M«>(x - y)] ,

JV$(x, y) := JVί,u.« + ! [Og'(x, y)], i = 1, 2 . (3.24)

Due to Proposition 10 of I, the definition (3.20) and the analogous definition for
local normal products (cf. (4.19) of I) we have

SX0(X, y) = Σ Σ 0$(x, y), JVί>«..« + ! [5XB0(x, y)] = Σ Σ tf $(*, y) (3-25)
i=l j i=l j

For φeCc°° and Λ0 < oo the derivative dxG^Λ°(N(x9y)) obviously exists (use
(3.15), (3.16) and the smoothness properties of the «5?'s). So, if we can prove that for
all 0eCc°°, all r and e.g. all Λ, Λ0,

, y)) , (3.26)
i J

then (dXμGr'Λ°(N(x, y))) converges to a continuous function (Lemma 4 applied to
the r.h.s. of (3.26)). Because for each ε > 0 there is a Λ0(s) < oo such that
I Gr(JV(x', y)) - Gr(N(x, y)) - f *' dzdzG?>A°(N(z, y)) \ < ε, if Λ0 > Λ?(ε), the conti-
nuity of HmAίl^aΰ(dzG^Λo(N(z.> y))) implies that dx (Gr(N(x, y))) exists and equals
HmΛo^00(dXtιG^Λo(N(x,y))). Together with (3.26) this yields (3.21).

So let us verify (3.26). According to (3.15) and (3.21) we are done if we can show
that

, y); P) - Σ Σ ^1'/°(̂ (̂0, y)l P) (3.27)
j
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vanishes identically, where P:= Σ*=ι Pk- Now, it is easy to check that {&*'!?„}
satisfies the differential equations (4.1) of I (use (3.6)); part d) of Lemma 6 of
I obviously holds, and with d:= D(l 2) + 1 also part a). In I we proved the analog of
(3.27) for local insertions, i.e. that

this equation, the analogous one for M(2) and (3.16) are applied to the r.h.s. of (3.27)
to show that

y)ι P) + Σ Σ ^(ft);M(A^(0, jfc p) . (3.28)
« J

Equation (3.28) and the be obeyed by the ^(i,0i);iI(#i>D - ];p) imply that the
conditions b), c) of Lemma 6 of I hold true as well.

In a similar way one can check (3.22).

For the proof of the asymptotic form of the short distance expansion we will need,
besides the foregoing results, also a formula which relates bilocal normal products
of different dimensions, i.e. a Zimmermann identity. This formula forms the
contents of the next proposition; notice, however, that both Propositions 6 and
7 will not be required for the derivation of the principal part of the short distance
expansion.

Proposition 7 (A Zimmermann Identity). Let D(1 2) ^ D(1) + D(2\ then

[M(2)(x - j;)]]

+ Σ ^ {W%) #C[ΛW*)]
(«,{w}):n + |w| = D(1 2) + l

Here ίfte coefficients c(w'(w}) are fps c(w'{w})();) = Σ|r |^o/ 4"'(w})(j)

= lim (-(^{w))-1 5jr^?;(^);Λ(Ni>a.«[^ .
ΛO-+CQ

(3.30)

Hence cj ^'ίy) is a C(B<1'2)-B")-J>e)> Junction o/y.

Proo/ Put

c(n,(w»Λ0(y) := _ (^M)-ι .δ;j?o.(Λ>1).11(jv^.ι,[JVJ1)[Aί(1)(3')]N?2)[M(2)( - y)]]; 0) .

Once more the idea is to check that

- y)]]; p)

r' + r" = r

obeys all the conditions of Lemma 6 in I. By now this should be an easy exercise
and thus we leave it to the reader to work out the details. The smoothness
properties of c<" ίw»(j>) follow from (3.30), (3.22) and (3.16).
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The Zimmermann identity (3.29) is a very special case of a much more general
identity among bilocal operators. Before we can state this identity, however, we
have to discuss some trivialities, briefly.

Considering insertions of the identity, 1, into Green functions is a rather
particular case where many details simplify drastically. Indeed, setting B(1)(x):= 1
yields e.g. G^°(l) = - Lfco'W = K**iW, thus

*ΪA..n(llP)=-δr.o δn.<>. (3.31)

We are going to stick to the rule followed so far that we don't allow n = 0 in Mn {>v},
and thus we will always clearly distinguish between the trivial monomial 11 and
nontrivial monomials Mn {w}. This choice necessarily implies that our formulae will
not look as elegant as they could.

Proposition 8 (Generalized Zimmermann Identity). Let B(1\ B(2\ B(1 '2) and F(1»2)

be bare polynomials obeying wig. D / ( 1» 2 ) ̂  D(1 2) ̂  D(1) + I>(2). There exist
uniquely determined fps (in g)c(y) and c(n'(w})(y), 1 ̂  n + |w| g D/(1'2), such that (in
the notation introduced in (3.13)),

- y), B(1' 2)(x + y, * - y))

= G ( l t 1)(B<1)(χ + y), £<2>(x - y), E''1' 2>(x + y, x - y)) + c(y)

c<" ίw»(y).G(ΛΓί>,ι,2)[Mllf{w}(x)]) . (3.32)

The proof of (3.32) follows closely the one of Proposition 7, using (3.31).
Note that (3.32) implies among others that any renormalized operator product

of Nc

(ί} [M(1)(x + y)'] and Nc

(2) [M(2)(x - 3;)], defined with the help of some β(1 2) of
dimension D(1'2) ̂  D(1) + D^2), equals

up to a linear combination of I and of the local normal products N^u.^M^^ίx)].
Therefore, apart from being expedient for obtaining uncomplicated proofs, restrict-
ing our attention to the special regular bilocal operators Λfβu.^f; •] is in fact no
restriction at all.

4. Short Distance Expansion

4.1. Principal Part of the Short Distance Expansion. The general strategy to obtain
a derivation of the principal part of the short distance expansion is to show that for
any two operators 0, 0' the short distance singular product 0(x + y)0'(x — y)
equals a short distance regular bilocal operator AΓ[0(x + y)O'(x — y)], up to
a finite sum of local operators times short distance singular coefficients. This idea is
neither new (it has been expounded in [3-5, 7, 8] in a transparent way) nor is it
surprising that it might work (because the short distance singularity of
0(x + y)0'(x — y) has been shown in Sect. 2 to be removable by the addition of
a local counterterm of finite dimension). The novel features of our treatment are the
quite simple method of proof itself and also the generality in which the results are
proven to be valid.
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Let us use the shorthand

0(x9 y) := NclM(1)(x + y)^NclM(2)(x - y)] (4.1)

and

N(x,y):=NcίO(x9y)l. (4.2)

Keeping in line with (3.13) we set

GA^(0(x9 y)) := G#/ft(B(1)(x + y\ B™(x - y), 0)

+ y\ B^(x - y\ 0)

+ y)) Lfift(B(2\x - y)) , (4.3)

where B(ί)(x + y\ B(2\x — y) are supposed to represent AΓc[M(1)(x + y)],
ΛΓc[M(2)(x — y)]; in the language of JSect. 2, (4.3) corresponds to putting
D<ι,2) = _ i in (3.13). ιn other words, GΛ Λo(0(x,y)) is precisely the "reduced"
Green function with 1 insertion of Nc[M(1)(x + y)]Afc[M(2)(x — y)].

It amounts to a mere repetition of the proof of Lemma 4, using Theorem 2b), to
show that

G(0(x9y))= lim G0'^(0(x,j;)) (4.4)
ylo^oo

exists (and is C°° in y) for y Φ 0 and φeC?. Put differently, if y φ 0 then 0(x, y)
exists. Similarly Theorem 2c) implies that, for φeC™, G(0(x, •)) exists as a linear
functional on e.g. VDw + Dm __ 2 (cf. (2.33)).

We define the fps (in g) cΛ°(y) and c(w'{w}Mo(j;), n + |w| ^ 1, by

c*>(3θ := - JS??; !̂); 0(0(0, j)) (4.5)

and by the recursion relation

;p = 0)) .
r'+r"=r

l^«' + |w ' |<w + | w |
(4.6)

By (2.32) the derivative δJ'JSf?;(ί°ι);Λ(O(0, y); 0) is well-defined (and C°° in y)
also in the limit A0 -> oo , if y φ 0. And from I we know that
5p^r0'',1ϊ,o);«(^c[Mπ%{^}(0)];0) exists as well, as Λ0 -> oo. Thus (4.6) provides
us with a sensible recursive definition of c(n>(w})Λ°(y) in terms of
{c^''{w/}Mo(j;): n' + |w'| <n + |w|, |r r | ^ |r|} for j; Φ 0 and (in particular) for
ΛQ -> oo . Therefore, for y Φ 0 the limits

c(y):= lim cΛo(y) ,
ΛQ-XXI

c<n W(y):= lim c(π'(w}M°(3;) (4.7)
ΛQ-* oo

do exist and are smooth in y (we will only be interested in those c(Mw})(y) with
1 ^ n + |w| ^ D(1) + D(2)). A similar reasoning, using (2.35), leads to the con-
clusion that the limits (4.7), i.e. c' ' •(•)» are well-defined linear functional on e.g.
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The objective is to prove now that for all Λ, Λ0, x, y ,

GA Λ»(0(x9y)) - GΛ>ΛQ(N(x,y)) = cΛ°(y) GΛ>

Again we apply Lemma 6 of I to prove the validity of this linear relation among
various Green functions with insertions. We proceed as in the proof of Proposition
7; using (3.15), (3.5a), (2.18) and a translation by x (2.21) it is easily seen that (4.8) is
true iff the set of functions &£j\0

n ,

^ιlS(p) := 9$nΛ°(0(0, y); p) - 9^(N(09 y); p) - Σ #°(j>) 9$>£(ϊ, p)
r'+r"=r

Σ &'("}>*(y)'9ϊ>$(Ne[.Mm.,(v.}m,p), (4.9)
r' + r" = r

+ D(2)

vanishes identically. Now, (3.6) implies that {^£'ι\°n} obeys the differential
equations (4.1) of I; (4.9), (3.16), (3.31),' ' the be obeyed by
^(^).n(0(09};);p),^^0

1);rι(JV(0,3;);p) and ^,1ϊ,0);n(^c[Mn,^}(0)];p) (as
regards 'the latter see (2.32), (2.37), (4.10) of I) and the definitions (4.5), (4.6) show
that \βF^\^\ does satisfy the conditions a)-d) of Lemma 6 in I (we put
d:= D(1) + Z)(2)); thus &?;& = 0.

We summarize our findings (4.4), (4.7) and (4.8) keeping in mind (3.17).

Theorem 9. Consider the minimal normal products A/"c[M(1)(x H- y)~\ and
Nc[M(2)(x - y)l where M(0 = Mn(of{w«} with n(ΐ) + |w(ί)| = D(ί)( ̂  1) for i = 1, 2.
Then, the product ΛΓc[M(1)(x + 3;)]^Vc[M(2)(x — y)'] exists in the sense of both

a) smooth functions of y for y Φ 0;
b) linear functionals (w.r.t. y) on e.g. VDW + D W - I .

The short distance expansion

x-yK

})(y) ^Vc[Mπ,{w}(x)] + R(y) (4.10)
1 ^ n + |w| ^ D(1) + D(2)

holds in either sense (i.e. a) or b)), where c(y) := c(y) and

c<n W(y) := <** ™>(y) + δn^ + nv δ{w},{w^ w<2>} . (4.11)

77zβ remainder term R(y),

R(y) = JVc[Nc[M(1)(x + y)WLM(2)(x - y)]] - JVc[M(1)M(2)(x)] (4.12)

is continuous for all y and behaves as lim)J_>OJR(y) = 0.

Remarks.
1) The expansion (4.10) is called the principal part of the short distance expansion.
2) The definition (4.5) and (A. 10) show that, up to a constant, |c(j;)|^

\y\~ D(I) ~ Dm ~ *. Now, the conventional opinion, based on dimensional consid-
erations, is that, up to Plog(|y|), |c(;y)| ^ |j;| -D(1)-D(2)^ using partly formal
calculations we can prove that this latter bound holds: For, if for any ε > 0 we
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were allowed to calculate with (dq)
ε just as we do with dq the bound in

(A.10) could be improved to £\y\~ DW ~ D™ ~ ε.

whereas the more formal computation yields

dim (c(y)) ^ D(1) -f D(2) + ε, any ε > 0 .

3) Similarly, there is a rigorous proof that |c(π'{w})(j;)| ^ \y\-DW-DW-1 + n +
that

- n - w ,

and a partially formal one to confirm the naively expected behaviour

dim(c(ll»ίw))(jO) ^ D(1) + £(2) + ε - n - |w|, any ε < 0 .

Let us very briefly indicate how this proof is obtained. With 0(x, y) given in (4.1)
we could also have defined Nc

D[0(x, y)], - 1 ̂  D < D(1) + D(2\ in complete
analogy to D ̂  Z)(1) + D(2). Combining the proofs of Theorem 2a) and 2b) we
would get that, for y φ 0, Nc

D[0(x, y)~\ exists and that

Rewriting the l.h.s. of (4.8) as

Σ (GA Λ°(N'jlO(X, y)]) - G^°(JV;.+ 1 [0(x,

and applying (3.29)± which remains valid also for D(1> 2) < D(1) + D(2\ to each of
the differences of GΛtA°\ (3.30) and (4.8) show that

4) The structure of the y -> 0 singularity of c(j) and c(π> {w})(y) is rather complicated,
in general; δ(y), inverse powers of \y\ and log(|>Ί) may contribute. At pertur-
bative order r = 0 these questions can be explicitly investigated using (4.5), (4.6).

The statement of Theorem 9 can be generalized to cover arbitrary insertions
B(1\ B(2\ not only (B's which encode) minimal normal products. The reason why
this works is the following one.

Recall the generalized Zimmermann identities established in I; they imply that
minimal normal products form a basis, i.e. there exist fps (in g) h\^ ' A° so that for all
Λ, ΛQ and i = 1, 2,

G^(B«(x)) = A# G^(l(x)) + Σ Mo {W}MO;^^O(^C[MM,{W}(X)]),

and /tyj ' := lim^^^h'^ ' A° exists. Concerning the operator interpretation of (4.13) it
would be rather unwelcome if (4.13) did not carry over to Green functions with
more than one insertion; and fortunately, there is an extremely simple proof that at
least for Green functions with 2 insertions there is no problem associated with
(4.13). In fact, rewrite (4.13) as

Σ Λ$)Λ° G^(B(0(Λ)M) = 0, i = 1, 2 , (4.14)
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and define e.g.

FA Λ° := £ h(

({
lJΛo G#/ft (B(1)ϋl)(x), B'(y\ 0) , (4.15)

jl

where B'(y) is arbitrary; using (3.5) and (4.14) we find that

FΛ,ΛO = _ Σhffl^ LfiftφWMfr), βm o) . (4.16)
Jl

Because of (4.15) and (3.6) FΛ>Λ° obeys (3.6), and (4.16) implies that FΛ°>A° = 0;
hence FΛ Λ° = 0 for all A (cf. the proof of Lemma 6 in I).

Playing the analogous game with the insertions associated to i = 2 we thus get
the equation we sought for

Σ fc^fcfe{w>M°G^(l(x + y\ NclMnΛw](x - y)], 0)
^ w + |w| ^ D(2)

y\ l(x - y\ 0)

fc

^ D(2)

Σ Λfo ίw))4)Λ^Gίi ,^(JVe[AfII>(w,(x + y)],l(x-yXO)
| ^D(1)

^h^'^G^(NclMn,M(X + y)l NclMn.Λw.}(x - y)], 0) .

(4.17)

Of course G$%(B(x\ ί(y), 0) = G^°(B(x)) (use (3.5)). Let us write

for the renormalized insertion represented by the bare, dimension D(i) polynomial
B(ί)(x + y). In the limit Λ -» 0, yi0 -» oo (4.17) gives rise to the naively expected
formula

= Π V + Σ Mo^^^ίw^ + ί - i Γ V ) ] . (4-18)
1 ^n + |w| ̂

Theorem 10. Lei £(1), 5(2) Z?e fc^rβ polynomials of dimensions D(1\ D(2) ̂  0 realizing
some renormalization conditions on the Green functions with 1 insertion ofB(1) resp.
ofB(2). Then [£(1)(x + )>)]D<i>[B(2)(x - )^)]DW exists in ίΛe sense o/

a) smooth functions of y for y Φ 0,
b) linear functional^ (w.r.t. y) on e.g. F^d) + Dw _ 2,

αnrf ί/ze operator product expansion can be computed using (4.13), (4.18) and (4.10).

4.2. Example: The Short Distance Expansion for φ(x + y)φ(x — y). The attitude
taken so far was that the bare polynomials B(i\ whose insertions were considered,
are defined by some renormalization conditions on the Green functions,
y^^°Qyn(B(ΐ)(x)\p\ with 1 insertion of B(i}(x). If one wants to analyze insertions of
φ, on the other hand, then one prescribes a priori that, e.g. for i = 1, J5(1)(x):= φ(x);
so in order that we can apply our results also to this latter case we must check that
^f^'(f°0);n(0(x);p) obeys some acceptable be (as described in (2.37) of I) at A = 0.
This exercise can be carried out as follows.
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We expand LA>A° = LA>Ao + λ^L^ + - , cf. (3.3) ff., where LA'A° is defined
by (2.11H2.13). More explicitly, (2.12) reads in our case

e =e ' °e l j F xχίX , (4.19)

where we used (2.1). The first order contribution in λ^ to SΛ'Λ°' V

9 or, what is the
same, L^°;F, can be computed from (4.19) using the commutation relation

( u \
A\(-γ\ I f //^" Λ) f*'-^0 ί-y ιΛ I Λ^ί ̂ J ^O) ίΛ OΛ\

A ' δφ(y)J

The result is

L Λ, ΛQ f J4^ -. (γ\ . Jk(v\ _L / Λ/ f~ΆQ Si \ T A, ΛQ f Λ 01 \
Π O^ — — I Λ! v / Ψ\ ^) ' \ Λ l ' /i "ώ / 0 " v " /

Applying (2.7), (2.17), (2.18) to (4.21) we find accordingly

> (4-22)

where β:=Σ"=ι^ Therefore the terms β;^r°;(f%;M(Φ(0);0) of dimension
n + |w| ^ 1 are given by

.̂'(ίΌ); i (<A(°); 0) = - δr, o + 2 ^°Όl°2(0) ' (4-23)

7. If we impose the BPHZ renormalization conditions

on the Φ\ Green functions, (4.23) shows that

3^r

0;α?o);.(^(°);0)= -^o ^ι ^,o, i f F i + | w | g l ; (4.25)

and clearly

) = 0, i f n + | w | > l . (4.26)

Thus 2>ΐ\ΐ°orn(φ(0);p) obeys precisely the be defining
(see (2.37), (4.10) of I), hence

= φ(x) . (4.27)

The Lowenstein rules of I then imply that

= d»φ(x) . (4.28)
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So φ(x + y)φ (x — y) may be computed by Theorem 9 using (4.27), (4.28):

μ=l

y)φ(x - y)] - ΛΓ<[</>2(x)]) . (4.29)

Case 2. For arbitrary renormalization conditions on the Φ\ Green functions (with
no insertions) we have, by (2.8) and (4.23), for n + |w| :g 1 ,

= finite,

(4.30)

Thus the bare polynomial B(ί}(x) = φ(x) represents a tolerable insertion of dimen-
sion 1 (and Theorems 3, 4 of I hold for <&?\ι0Q).n(φ(x)'9p)). The Zimmermann
identities of I then state that (cf. (4.13))

φ(x) = Λ l + /z ( 1 '0 ) ΛΓ [(/>(*)] , (4.31)

thus for |w | ^ 1,

d»φ(χ) = Λ ( 1 0) Nc[δ^(x)] . (4.32)

After a short calculation, using (4.10), (4.31) and (4.32), we end up with the general
form of the short distance expansion for φ:

φ(x + y)φ(x -y) = (-h2 + (h(1>0})2 c(y) - Λ ft(1 0) c(1 0)(j;)) lL

+ (2h + Λ<1 °>.c(1 0)(jO) φ(x) + £ h^°^c^^(y^dXμφ(x)
μ=l

+ (h(l V)2 c(2 W(y) Nelφ2(x)] + r(y) , (4.33)

where r(y) -> 0 for y -+ 0.
Obviously (4.27H4.29) correspond to the special case h = 0, Λ ( 1 0) = 1.

^J. Asymptotic Form of the Short Distance Expansion. The asymptotic form of the
short distance expansion (4.10) is obtained by a Taylor expansion of the remainder
term R(y). For φ(x + y)φ(x — y) = - the Taylor expansion of the remainder
term has already been computed in [3, 4]; the method which we are going to
present below is but an adapted version of the one of ref. [3, 4],

This Taylor expansion can be performed in an inductive way, each induction
step relying heavily on Propositions 6 and 7. Before we begin to describe the first
step it is convenient to introduce some notation.

Set D := D(1) + D(2) and

RD(y) := R(y); Nj(x, y) := JV;[ΛΓ<[M(1)(x

Let/(y) be some function of yeR4; for j ^ 0 we define
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and

(Tkf)(y):= Σ (*'/)(y) (4-34)

With these preparations we may start to manipulate R(y) = RD(y):

RD(y) = (1 - T°)ND(x, y)

= (1 ~ Tί)ND+1(x,y) + τlND+1(x,y)

+ £ (l-:rVMw))(y)-JVc[MMw))(x)], (4.35)
H + l w | = D + l

where we used (4.12), (3.29), (4.34). Furthermore (3.22), the Lowenstein rules for
local normal products (see I) and (3.17) imply that

τX+1(*,)0 = Σ c'<π (wί)ω JVc[Mn>w(x)], (4.36)
n + | w | = D + l

where lim^0c
/(M'{w})(};) = 0. Combining (4.35), (4.36) with

9 y ) (4.37)

we arrive at a formula representing RD(y) as a sum over minimal normal products
of dimension D + 1 plus a new remainder term vanishing faster than RD:

RDU) = RD + ι(y) + Σ ϊn>™\y).NcίMnΛw}(xK ,
n + \w\=D+l

2<" f»»(y) := (i _ τ°}c(n'(w}\y) + c'(" {w}\y) ,

limc(" W)(3/) = 0, \im\y\~1 RD + 1(y) = 0. (4.38)
y^O y^O

Equation (4.38) is the net result of the first induction step.
In each of the following induction steps we just repeat (4.35)-(4.38) with the

corresponding new remainders replacing RD; e.g. in the second step we expand
RD+1 as

= (1 - T2)ND+2(x, y) + τ2ND+2(x, y)

+ Σ (1 - ^Vπ'{w%) Λrc[MM
n + \\v\=D + 2

and so on. The final result may be summarized as follows.

Theorem 11. The short distance expansion has the asymptotic form

ί^n + \w\^A

+ RA(y) , (4.39)
I

where A ^ D(1) + D(2\ and (with the notation introduced in (4.34))

RA(y) = (1 - TA-DW-D(2))Nc

AlN
clM(»(x + y)]ΛΓc[M(2)(x - y)]] . (4.40)

For n + |w| ^ D(1) + D(2) + 1 the coefficients C(MW}) vanish according to

lim \y\DW + D(2) + ! - » - N . £("> W(y) = o , (4.41)
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whereas the remainder term obeys

lrnί\y\D<>> + Da>~A.RA(y) = 0. (4.42)
y-»0

4.4. Concluding Remarks. Using (4.13), (4.18) and (4.39) the asymptotic form of the
short distance expansion can be computed for the general product
[β(1)(x + )>)]ί)<ι>[£(2)(x - 3>)!fo(2)> in particular for φ(x + y)φ(x - y).

The short distance expansion (4.39) is an expansion w.r.t. a basis of local
operators of increasing dimensions. However, (4.39) is in general not an expansion
in powers of \y\~^ modulo polynomials in log(|y|). Indeed, in general c(M'{w})(>>)
equals a sum of terms displaying different behaviour as y -> 0. For the regular c's
Eq. (4.41) then determines the minimal rate with which all these different sum-
mands vanish; a similar remark applies to the singular c's. Nevertheless, naive
dimensional considerations still apply in the sense that e.g. for the regular c's the
minimal vanishing rate is as expected. See also the remarks following Theorem 9.

If one is willing to stick to the MS scheme and BPHZ techniques, more precise
information on the y -> 0 behaviour of the c(y)'s can be obtained. In fact, in [10] it
has been shown that the c(y)'s may be expanded in (inverse) powers of \y\ and of

Nothing is known on the convergence /divergence of the series on the r.h.s. of
(4.39), as A -> oo . However, one should expect that

diverges in general because of locality reasons.
There is no doubt that the techniques presented in this work could be employed

to prove the existence, as well as to compute the coefficients, of the operator
product expansion for products of more than two insertions. Furthermore, our
methods could be easily extended to treat also theories containing fermions.

Appendix

In this appendix we will prove Theorem 2. Before going into the details let us
prepare the grounds.

As mentioned in Sect. 2 (cf. (2.8)) we choose (and fix once and for all) a scale
parameter Al9 0 < A± < Aθ9 Λ± independent of A0. Our subsequent estimates will
depend on whether Λe[0, A±~] or whether Λe[ylι, Λ0] Also, we choose and fix
η, 0 ̂  η < oo , which will measure the size of the region in momentum space within
which convergence etc. will be shown to hold. The regularization (2.8) guarantees
that &££€€«> (\Q, AQ] x R4(π-^'o)), where [0, Λ0] and R4<» -*•<>) refer to Λ and

(Pi, . . . ) respectively. From I we recall the definition of the norms \\(dzf1)f2 \\(0tbr

ll(θz/ι)/2ll(<J>6):= max l((δ;/ι)/2)(pι, . . - ,P.)\ (A.1)
,Pn", \

w: I w\ =z

We will employ the bounds on the Green functions ^^ f^0, |ί| ^ 1, which have
been established in Theorems 3, 4 in I.
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A.I. Proof of Theorem 2a). Following the strategy in I we divide the proof into
several parts whose combination will finally lead to the statement we seek for.

A.1.1. Boundedness. For t = (1,1) and n ̂  0 the differential flow equation (2.22),
with (2.26) of I (where, due to our new regularization (2.8), we may replace Aθ~1 ~z

by 1) and keeping in mind the support properties of R(A9 p\ implies the inequalities

\\OAU ~ZrJt.n (X , ') \\(2Λ,η)

( .
const.

.
r", ί; n+ 1 V*' (2Λ,η)

|| y>Λ,ΛΌ ||
H-^r ' .O l H (2/1, if)

r'+r"=r
' +n" =n +

|| 3Z' (0Λ, ΛQ || || 3z" (0Λ, ΛQ (,.. \ ||

I I 0 "^r'.O /Γ H (2/1, η)' \\U ^ r", ί; w'Ί*' " / II (2/1,17)

1
2j H ^ °^r'l(l,0);n' 11(2/1, f/) "II ^ ^r"', (0, 1); w" 11(2/1, f/) J

n' +n" =n

(Q^Λ^Λl9z^ϋ) (A.2)

and

|| 3 ^z φΛ,Λ0(γ. \ ||
11^^ ^r,ί;«iX' ' H (2/1, if)

Σ /f - 3 || <^?/l, ylo || . || Λz ?̂̂ 1, /lo /v. . \ ||
71 H "̂  r',0; 1 H (2/1, ι/) H ^ ^ r", ί; w + 1\Λ> / II (2/1,17)

2^ /I ||σ ^ViO /Γ l ' ( 2 / l , ι / ) " 11^ c^r'',ί;«"V X ' ' ) l l ( 2 Λ , / 7 )
r' + r"=r

«' +«" =n + 2
z'+z" +z'"=z

2^ Λ II 0 < Zr ](itθ);n' \\(2Λ, η) ' II 0 ^r'', (0, l);n" 11(2/1,17)

(Λ ^ Λ ^ Λo, * ̂  0) (A.3)

where "const" stands for some finite number which depends neither on Λ, Λθ9 η nor
on x; x e R4 is arbitrary. In order to bound the momentum derivatives of the last
sum on the r.h.s. of (2.22) we employed (2.21a), the identity xw eίqx = i~^d™eίqx

and integration by parts w.r.t. q.

In analogy to I the goal is to show that for any renormalization conditions
(2.27) with Z) ( 1»2 ) ^ Z)(1) + D(2\ for all z ̂  0 and for all x e R4,

„ ** ™Λ. A, /... . „ ^ ίconst' O^A^A,
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where the "const" and the coefficients of the polynomial Plog ( ) (a polynomial in
log( )) are finite and do not depend on A, AQ. Being familiar with I it is an easy
exercise to check (A.4) by using (2.20), (2.25) and (2.27), the bounds (3.2), (3.3) of
I (now valid for all z ^ 0 because of (2.8)), (A.2) and (A.3) and the standard
induction scheme (see I).

A. 1.2. Convergence. We wish to prove that under the assumptions stated in
Theorem 2a)

(A.5)

'-?)> Λ^Λ^ΛO,

for all x and all z ^ 0. The proof of (A.5) parallels completely the one of Theorem
4 in I, so let us only mention that in order to verify (A. 5) one relies heavily on (A.4),
(2.25), on the vl0-independence of (2.27), and on (3.2), (3.3), (3.11) of I.

^4.7.3. Regularity. The bounds (A.5) and standard arguments imply that
^>,d, i);n(x' Pι> » Pn) exists for all x, p9 and that it is continuous in x (uniformly
on compact (x, p)-sets) and C00 in p.

A.2. Proof of Theorem 2b). So now we have D(1 2) = - 1. Instead of the be (2.25),
(2.27) the boundary condition to be obeyed is

^°(ifi);ι,(^ί) = 0, V r , r c , x , p . (A.6)

Fix x, x =(= 0. Choose and fix a multiindex v9 v = (vί9 . . . , ι?4); choose and fix M,
u = (ul9 . . . , H4), but require that u obeys | w | = | t? | + D(1) + D(2} + 1 and that
xu Φ 0. The idea is to establish convergence bounds (via flow equations and be) for
^!'u°i);M(*; P) •= xu ί̂!α,0i);,,(*; P\ because one expects ̂ (ίt°1);ιl to be short
distance regular.

The differential flow equation for ̂ f

(ίf

0

1);ιl is trivially obtained from (2.22). If
/Li <* /I ^ yi0 we employ (2.2 la), trade xu for (dq)

u and integrate by parts in order to
cast x" (last sum on r.h.s. of (2.22)) into a useful form; but if 0 <£ A ^ y^ it is not
necessary to manipulate that term.

^4.2.7. Boundedness. By our remarks above, for 0 ^ A ^ Λj. we just use the bound
(A.2), i.e.

g (r.h.s. of (A.2))|^,,oi);π ̂  ̂ ,ft);n , (0 g yl ^ Λ l 9 z ̂  0) (A.7)

but instead of (A. 3) we estimate

/ίz ?#?Λ,ΛO (γ. \ ||
^ ^r,(l,l);«lX» J 'Wi f )

< ^r»nct . J Λ . II /)z 3^ '̂ Λ<> f\- . ^ IIs const </ι i l ^ -^r.d, i); Π +2l χ 'Vll(2^,ι,)

A ~ 3 . II C^Λ, /10 II . || ϊ\z <i#?Λ, ΛQ / . \ II
O l H ( 2 κ f ι r ) H ^ ^r-.d.D π + l V ^ ) \ \ ( 2 Λ , η )
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Λ'Λ° ίΎ ΉI
r",(l, l);/ι"V Λ > / H ( 2 Λ , i f )+ Y* Λ"3"*"'* ιidz'j;?^'yl0 "-• . n^z" ^5?yi'"10

n'+n"=n + 2
z' + z"+z'"=z

Λl + \υ\-z'" \\flz' φΛ,Λ0 ||
71 I I ^ β Z Γ r / , ( l ,0) ;n / l l (2yl , f ί )

-,θ, 1); .» <2Λ, ,) (A.8)

where the "const" in (A.7), (A.8) are regular as x -> 0. Inductively we thus can check
that for all z ̂  0,

ΛΛ . const, O^Λ^Λ,

' l }

where the r.h.s. of (A.9) is nonsingular, as x -» 0. Hence, e.g. for x Ξ (x, 0, 0, 0),

l^r°,a?i):«(^P)l ^ 1*1 -D<"-βα> -1 -(regular for x^O) , (A.10)

for all r, n, p.

A.2.2. Convergence, etc. In the same spirit as before one can verify that for x φ 0,

, ., 0 g A < A,
AJ . (A.11)

Plog -̂  , = yι = yιo

This yields the existence of the limits (2.31) which obviously are C ( | y | ) in (x — y) and
C00 in (p l 9 . . . , pπ); and (2.32) follows as well.
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