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Abstract. The purpose of this paper is to construct non-perturbative deformation
quantizations of the algebras of smooth functions on Poisson supermanifolds. For
the examples t / 1 ' 1 and Cm|n, algebras of super Toeplitz operators are defined with
respect to certain Hubert spaces of superholomorphic functions. Generators and
relations for these algebras are given. The algebras can be thought of as algebras of
"quantized functions," and deformation conditions are proven which demonstrate
the recovery of the super Poisson structures in a semi-classical limit.

I. Introduction

LA. Deformation quantization is a natural scheme for constructing non-com-
mutative spaces, in the sense of [10], as deformations of Poisson manifolds. In this
framework, the algebra of functions on a manifold is replaced by a family of
non-commuting algebras of "quantized functions," which are indexed by a para-
meter ("Planck's constant"). The guiding principle of the deformation quantization
construction is that the classical algebra of functions is obtained from the quan-
tized algebras in the limit as Planck's constant goes to zero, with a first order
correction determined by the Poisson structure on the manifold. This scheme was
originally proposed in the context of a formal power series in the deformation
parameter [2, 4], but has recently been extended to the non-perturbative setup (see
[18, 19], and references therein).

This non-perturbative scheme was applied to the Poincare disc in [12], with an
approach using Toeplitz operators as quantization maps based on the ideas of
[3-6] (Toeplitz operators were also used to quantize the sphere in [20]). The
techniques of [12] have been applied to compact Riemann surfaces in [13], to the
rc-dimensional complex vector space in [9], to a two-parameter deformation of the
unit disc [14], and to the four large classes of Cartan domains in [8]. The basic
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ingredients for the procedure were a group of automorphisms, a symplectic form
invariant under the action of the group, and a perturbation of the invariant
measure depending upon a parameter related to Planck's constant. The Toeplitz
operators were defined with respect to the Hubert spaces of holomorphic functions
which were square integrable in the perturbed measures.

In this paper, we extend these techniques to the case of Poisson supermanifolds
[7,15,16]. The basic concepts of Poisson supermanifolds and of our procedure are
outlined below.

LB. Let Ji = (M, Θ) be a smooth supermanifold (see e.g. [7, 15, 17]) of finite
dimension. Here, M is an ordinary smooth manifold, called the base of Jί9 and Θ is
a sheaf of supercommutative superalgebras, called the sheaf of smooth functions on
Jί. Let C™(M) denote the superalgebra of global sections of Θ. In this paper, we
will be concerned with Poisson supermanifolds, i.e. supermanifolds for which
C°°(~#) is a Poisson superalgebra [7, 16]. This means that C™(Jί) is equipped with
a bilinear mapping

(I.I)

called a super Poisson bracket, which satisfies the conditions:

} = ̂ , (1.3)

{f,gh} = Ug}h + (-iyif)p^gUh} , (1.4)

where/, g9 \ιeCOd{Jί\ and where p{f)e{0, 1} is the parity of the (homogeneous)
element/e C°(Jί\ Conditions (1.2) and (1.3) say that C™(JC) is a Lie superalgebra,
while condition (1.4) says that the super Poisson bracket obeys the super Leibniz
rule. Poisson supermanifolds arise in physics as phase spaces for classical systems
involving both bosons and fermions.

In the examples discussed in this paper, Jί is supersymplectic (in fact, super
Kahler), i.e. it comes equipped with a supersymplectic (by which we mean even,
closed and non-degenerate) two-form ω. Furthermore, the superalgebra C^{Jί)
has a natural *-structure. A supersymplectic form defines a super Poisson bracket,
just as an ordinary symplectic form defines a Poisson bracket. This comes about
as follows [7, 15]. In local coordinates,

ω = ΣdXkΛdXjωjk, (1.5)
j , k

where the supermatrix {ωjk} satisfies

+1)ωkj, (1.6)

with Sj'.= p(Xj). Let {ωjk} be the inverse of {ωjk}9 i.e. Yjlω
jlωik = δjk. Then

{f,g} := Σ (- iy«»+'*«<ω* -$- ^- (L7)
j , h cχj vχk

is a super Poisson bracket.
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The examples studied in this paper are the super unit disc I / 1 ' 1 and the
superspace <Cm|". These supermanifolds and their supersymplectic structures are
defined in Sects. II and VI, respectively.

I.C. The goal of this paper is to study, in a rigorous, non-perturbative way,
quantizations of Poisson supermanifolds. We restrict attention to the two examples
mentioned in Sect. I.B. We believe that the methods explained here can be
generalized to include, for example, super Grassmannians and Cartan super-
domains (for the bosonic case see [8] and references therein).

By a (deformation) quantization of a Poisson supermanifold Jt, we refer to
a family of normed *-superalgebras sίμ(Jί\ parametrized by a Planck's constant
μe(0, 1) (say), and a grading preserving *-homomorphism of vector superspaces

f^ T{μ\f)estfμ{Ji) such that

lim
μ

= 0 , (1.8)

where || | |μ is the norm on stfμ{Ji). In the above formula and throughout this
paper, [ , ] denotes the graded commutator. This notion of quantization is
closely related to that of [18, 19]. We think of the elements oίstfμ{Jί) as "functions
on the (quantized) non-commutative superspace." In our examples, srfμ{Jt) gener-
ates a (C *-algebra, and this could be made part of the definition (it is natural to do
so in the purely bosonic case). It appears to us, however, that (C*-algebras are
rather unnatural in the super-context.

The central notion of our construction is that of a super Toeplitz operator,
defined in Sects. Ill and VI. Super Toeplitz operators are super-analogs of the usual
(bosonic) Toeplitz operators (see e.g. [1, 21] and references therein) and share some
of their properties. They are defined on certain Z2-graded Hubert spaces of
superholomorphic functions on M. The quantization map C™(Ji)3f^> Tiμ)(f)
esrfμ(Jί) introduced above is just a map assigning to a symbol the corresponding
super Toeplitz operator, and stfμ{Jί) is the *-algebra generated by super Toeplitz
operators with smooth bounded symbols.

I.D. The paper is organized as follows. In Sect. II, we study the properties of the
super unit disc I/ 1 ' 1 . In Sect. Ill, we construct a quantization of U1]1 by means of
super Toeplitz operators. The structure of the resulting (C*-algebra of "quantized
continuous functions" is studied in Sect. IV. Section V contains the proof of the
deformation estimate (1.8). In Sects. VI and VII, we construct the quantization for
the superspace C m | ".

II. The Supermanifold I/ 1 1 1

II.A. In this section we describe the simplest hyperbolic supermanifold, namely
the super unit disc. We will discuss the quantization of this space in the next
section. The super unit disc f E [ / ! | 1 is the supermanifold (U,Θ)9 where
U = {z e C: I z | < 1} is the open unit disc, and where Θ is the sheaf of superalgebras
on U whose space of global sections is C°°(^):= C°°(l/)<8>/\(C), where /\(<C)
denotes the exterior algebra over C ^ 1R2. In the following, we will refer to the
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elements of C°°(^)_as smooth functions on °U. We denote the standard generators
of /\(C) by θ and θ. An element / e C °° (%) can thus be written as

/(z, θ, θ) =/ 0 0 (z) + /1 O(*)0 + /oi(*)0 +/u(z)0θ , (Π.l)

where fjkEC
A function /e C °°(°ll) is called bounded if all the components fjk and their

derivatives are bounded functions on U. We let Cζ'iflί) denote the superspace of
bounded functions on %. We give C^(β) the topology of a Frechet space. This
topology is defined by the family of norms:

| | / | | t : = X Σ sup\d ?d"Ξfjk(z)\, (II.2)

where t ^ 0.
A function / e C °° (^lί) is called superholomorphic, if d-zf= dξf= 0 or, equiva-

lently, if

f(z9θ)=f0(z)+f1(z)θ9 (113)

with/o and/i holomorphic. We will find it convenient to use a collective notation
for the generators of C °°(^), namely Z := (z, 0).

J/.B. The super unit disc % admits an action of the Lie supergroup S£/(l, 1|1).
Recall that this supergroup is defined as follows. Its base manifold is SU(1, 1),
and its structure sheaf is generated by yjk and yjk9 1 ^ j , k g 3, with the parity
assignments:

O, if l£j,k£2 o r ; = /c = 3 ,

l f o t h e r w i s e (Π.4)

Let γ = {yjk} denote the supermatrix with entries yjk and let y* denote its hermitian
adjoint, y%:= ykj. We require that

y*Jγ = J , (11.5)

where

0 0

1 0 , (II.6)

0 - 1

and that

Bery = l , (II.7)

where Ber denotes the Berezinian. Recall that the Berezinian of a block super-
matrix

with A9 D even, D invertible, and B, C odd, is defined by

BerM:= det(A - 1 1
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Conditions (II.5) and (II.7) are the relations defining the structure sheaf of
SU(l, 111). The multiplication on SU(1, 111) is defined in the obvious way. In the
following, we will refer to the supermatrices of generators of SU(1, 1|1) as the
elements of SU(1, 111). A simple calculation shows that the formulas below define
an action of 5(7(1,111) on %\

, yuz + 7i2 + γ13θ
z —̂  z '——

+ 722

±n1±yIAθ
+ Jll + 723#

The expression (y2iz + 722 + 7230)"1 is defined in terms of the standard Taylor
series for superfunctions [7]. By a slight abuse of notation, we write (11.10) as
Z ' = y(Z).

Define

/(Z) = Ber

/ 5£ djT

Ύz Hi
dz' dθ'

\ ~δθ Iβ,

Proposition 11.1. IfγeSU{l, 1|1), then

γ'(Z) =
5 . (IL12)

722 + 723^

Proof. The proof is by explicit computation. The supermatrix of derivatives,
written in the notation of (11.11), is the following,

/ 7 u -

=
dZ 7 2 1 ^ + 722 + 7 2 3 ^ \ 7 l 3 - 7 2 3 ^ ' 7 3 3 + 7 2 3 Θ ' / '

Taking the Berezinian of this supermatrix, we have

, (731 - 7 2 1 Θ')(7l3 - 7 2 3 ^ ) 1
Ϋ(Z) = 7 ^ 7 Z 7 ( I L 1 4 )

733+723^ J 733 +723#

We substitute the expressions for z' and θ\ and with a little manipulation we obtain

Y(Z) = J ^ - - . D (11.15)
721^ + 722 +7230

We set

ZW\= zw + θή , (11.16)

where Z = (z, θ\ W = (w, η), and consider the expression 1 — ZW.

Proposition II.2. With the above definitions,

1 - y{Z)y{W) = (1 - ZW)γ'{Z)y'(W). (11.17)

Proof The identity follows immediately from the requirement (II.5) and from
Proposition ILL D
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II.C. The superalgebra C °° (%) can be equipped with an SU(1, 11 l)-invariant super
Poisson structure. This arises as follows. Let Ωx(%) and Ω~γ(flί) denote the
C°°(^)-modules of 1-forms and vector fields on °U> respectively. The following
elements of Ωx(<%) ® Ω "*(%\

Q'= Σ dzi®^>

Q:= Σ dZj®-^, (11.18)
Ogjgl dZj

are clearly SU(1, 11 l)-invariant. Consider the following two-form,

ω : = β β l o g ( l - Z Z )

= Σ (-l)pi*k) + 1dZk A dZj - log( l - ZZ) . (11.19)
j,k dZjδZk

Proposition Π.3. ω is an 5(7(1, \\\)-inυariant supersymplectic form on °U.

Proof. To see that ω is SU(l, 11 l)-invariant, we note that, as a consequence of
(11.17),

log(l - y(Z)y(Z)) = log(l - ZZ) + log/(Z) + log/(Z). (11.20)

Since /(Z) is holomorphic,

ίZ) = 6βlog/(Z) - 0 , (11.21)

and so 7*ω = ω, as claimed.
To see that ω is supersymplectic, we write

ω = — dz A dzωzϊ + dz A dθωze + dθ A dzωθz + dθ A dθωθό, (11.22)

where

1-flg 1 1 + zz -

zθ

(1 - zz - θθf (1 - zz)2 '

zθ zθ

" (l-zz--βθ)2 (1-^T

1 - z z - 2ΘΘ~ 1

""-(i-g-rty-iΓΠfl ( Π 2 3 )

It is clear from these explicit formulas that ω is non-degenerate and closed and
thus supersymplectic. D

Observe that

Ber I ω" ωzθ I = (1 - ZZ)~ι . (11.24)
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As explained in the introduction, a super Poisson bracket may be constructed out
of ω. Explicitly, using (11.24) we obtain, for/ geC™(°lί\

{/, g) = - (1 - zz - θθ)(l - zz)(djdsg - d-Jdzg)

+ (1 - zz)zθ{{-ψf)djdeg - dθ-fdzg)

+ (1 - zz)zθ(dθfd-zg - (-lf^dzfdθg)

iγσ) + 1(dθfdθ-g + dθ-fδθg) . (11.25)

This super Poisson bracket is 517(1, 11 l)-invariant, as a consequence of the invari-
ance of ω. We have thus proven the following theorem.

Theorem Π.4. The pair (C°°(*), {*, }) is a Poisson super algebra with a 5(7(1, 111)-
inυariant super Poisson bracket.

II.D. Define the following form ("super Poincare measure"),

dμ(Z):= - ( 1 - ZZyH2zd2θ , (11.26)
n

where d2z = (i/2)dz A dz and d2θ = dθ Λ dθ. As a simple consequence of (11.17), we
obtain the following proposition.

Proposition Π.5. The form (11.26) is SU(1, l\l)-inυariant.

III. Quantization of U1]1

HI A. The main object of this paper is the following perturbation of (11.26). For
r ^ 2 we set

dμr(Z) := (1 - ZZ)rdμ(Z) = - (1 - ZZ)r~xd2zd2θ . (III.l)
71

Proposition III.l. The form (III.l) has the properties:

ί dμr{Z) = 1 ,

dμr(y(Z)) = y'(Zγy'(Zγdμr(Z) . (III.2)

Remark. Since r does not need to be an integer, the rth power of y'(Z) in the above
formula has to be defined carefully. Using Proposition II. 1, we can write

y'(Z) = (az + b + εθy1 = (az + b)'1 - (az + by2εθ

with α, b even and ε odd. We now define

log/(Z):= -log(αz + b) + (az + b)~hθ , (III.4)

where logz is a fixed branch of the logarithm (for concreteness: logz:=log|z|
+ z'argz, where —π < argz ^ π), and set y'(Z)r\= exp{rlogy'(Z)}.

Proo/ The second statement is a consequence of Proposition II.2 and Proposition
II.5. The first statement is remarkable in that the integral is independent of r, even
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though the normalization constant in (III.l) does not involve r. This is a manifesta-
tion of supersymmetry and comes about as follows. We have the expansion

(1-zz- ΘΘY'1 = (1 - zzf~ι - (r - 1)(1 - zz)r~2θθ, (III.5)

and so

J dμr(Z) = r-^- J (1 - zzj-2d2z = (r - 1) J (1 - t)r~2dt = 1 . D (III.6)
% π u o

IILB. For fige Cb°° (Φ), we set

(f,g)r:=Sf(Z)g(Z)dμr(Z).

For / and g arbitrary, (IΠ.7) is not positive definite. When restricted to super-
holomorphic functions, (/, g)r turns out to be positive definite and so it defines an
inner product. The completion of the resulting inner product space in the norm
|| ||r induced by ( , )r is a Hubert space and we denote it by fflyψll).

Because the measure used to define the norm involves Grassmann integration,
we must be careful about applying the usual analytic facts. The following proposi-
tions show that we can extract sup norms from an integral over dμr(Z\ just as we
could from an ordinary integral. In the following, || / 1 | 0 := supz e C / \f(z)\ denotes the
usual sup norm of a bounded function / on U.

Proposition III.2. For φ,φe3er(<%l andfeC^ψU) such thatf(Z) =foo(z), we have

\~φ{Z)f{Z)φ{Z)dμr(Z) £ | |/oollolllMlrll0llr. (ΠI 8)

Proof. To simplify the notation, we will suppress the subscript r in || | | r. First, note
that in terms of components,

φ\\

Since/(Z)

2 r

= /oo

—
π i ( l

we

\φo(z)\2(]

have

L zzj-
2d 2z-

1
|_1

π

φ(Z)foo(z)φ(Z)dμr(Z) = - J φ1(z)foo(z)Φi(z)(l -

and so

j φ(Z)foo(z)φ(Z)dμr(Z)

Γl Γ ) 1 / 2 ( ) 1 / 2

ύ ll/oollo - j ί l^iWI2(l -zzf-H2z\ I j \φ1{z)\2{\-zzΓH2z\

f \φo(z)\2(l - zzΓ2d2z^ I f \φo{z)\2{\ - zzf-2d2z^ J .
r - 1

I

(IIL11)
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J φ(Z)f(Z)φ(Z)dμr(Z) (III. 12)

and the claim is proven. D

Proposition III.3. For ψ, φ

φ(Z)f(Z)φ(Z)dμr(Z)

, andfeC?{<%), we have

^ Σ

Proof. The claim is an immediate consequence of Proposition III.2 and the
following inequality,

Wll^r-1'2

To prove (III. 14), we write φo{z) = Σ π > 0 anz
n and compute:

(111.14)

\\ΘΦ\\2 = -

= Σ Iβ-I

1

) 0

"' Γ(n + r)

= r - l ! _ i j | 0 o ( z ) | 2 ( 1 _

where we have used (III.9). D

For future reference we formulate the following proposition, whose proof is an
immediate consequence of Proposition III.3 and (II.2).

Proposition III.4. For ψ,φe34?r{Wl andfeC{?(<%), we have

J ψ(Z)f(Z)φ(Z)dμr(Z) (IIL15)

IILC. The Hubert space ^?

r(
ϋlί) carries a natural projective unitary representation

of the supergroup SU(l, 111). This is given by y -+ U(y), where

U(y)φ(Z) = {(y~1)f(Z)Yφ(y~1(Z)) . (III. 16)

Proposition III.5. Formula (III. 16) defines a projective unitary representation of
SU(l \\\)on

Proof Set

(III. 17)

We verify easily that σ(yu y2) is indeed independent of Z (as our notation suggests).
As a consequence,

= σ(yuy2)U(y1)U(y2). (III. 18)
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From the independence of (III. 17) on Z we easily derive the following cocycle
condition:

which shows that (III. 16) is consistent with associativity. The unitarity is a conse-
quence of Proposition III. 1. D

III.D. We now define a projection map P taking Cb°°(^) to

Proposition III.6. For feC?{<%\ set

Pf(Z):= J Kr(Z, W)f{W)dμr{W) , (111.20)

where

Kr(Z, W) = (1 - ZWγr. (111.21)

Then Pfejer(W) and Pf = f, iffejfr(<%).

Proof. We verify easily that the sequence {φΛ,j}n^o,j=o,i> where

:

( Π L 2 2 )

forms an orthonormal basis for jίfffl). Consequently,

Kr(Z, W) := Σ Φn,j(Z)φnJ(W) = (1 - ZWyr (111.23)

is the Bergman (or reproducing) kernel for J f r (^) and the claim follows. D

To each point Z e ^ , w e will associate an element yz of SU(1, 111), such that γz

maps the origin in °U to the point Z. This element is defined by

1 z c-Hθ-z

:=c-Ί z 1 c'Hzθ-θ) | , (111.24)

where

c = (1 - zz - θθ)112 . (IIL25)

For future reference, the action of γz on PF = (w, ^) G ̂  is given explicitly by

θ-zθ a - zz- ΘΘΫ12

, = θ + - — w + K- ' η . (111.26)
1 + zw 1 + zw

The Bergman kernel given by (111.21) has the following properties with respect
to SU(1,111).
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Proposition III.7. The Bergman kernel transforms under the action of SU(1, 1|1)
according to

Kr(y{Z\ y(W)) = y'(Zyry'{W) ~rK(Z, W) . (111.27)

Furthermore, for Kr(Z, Z) we have

Kr(Z, Z) = y'z(θyryf

z{θyr. (111.28)

Proof. The first statement follows immediately from Proposition Π.2. The second
is a direct consequence of the first and the fact that Kr(0, 0) = 1. D

III.E. For feC?(<%) and φejfr(<%)9 we set

(Tr(f)φ)(Z):= J X'(Z, W)f(W)φ(W)dμr(W) . (111.29)

Proposition IIL8. Tr(f) is a bounded operator on J ^ ( ^ ) . Furthermore,

Λ*llo. (IΠ.30)

Proof Clearly, (Tr(f)φ)(Z) is holomorphίc. From the reproducing property of
Kr(Z, W\

(φ, Tr(f)ψ) = J φ(Z)f(Z)ψ(Z)dμr(Z) . (111.31)

The inequality follows immediately from Proposition III.3. D

We call the operator Tr(f) a super Toeplitz operator with symbol/ and we let
^7°(^) denote the *-algebra generated by all super Toeplitz operators with
bounded symbols. Observe that

TΛf°y)=U{γ)-1Tr(f)U(γ)9 (111.32)

where U(y) is defined by (III. 16).

IILF. We now come to the main result of this section, which is that the map
C{?(<%) -> 3Γ?{qι) given by Tr is a deformation quantization. Define

θ ' " - (111.33)

In Sect. V, we will prove the following two theorems.

Theorem III.9. ForfeC^{%\ we have

l i m | | Γ r ( / ) | | r = | | / o o l | o . (IΠ.34)

The above theorem is a rather peculiar fact, showing that the classical limit of Tr(f)
"forgets" about the fermionic degrees of freedom.
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Theorem III.10. For fgeC^iflί), with the components faβ compactly supported,
there is a constant C = C(f g) [depending on f and g), such that

^Cr~2, (111.35)

for r sufficiently large.

As a consequence of this theorem, we conclude that 3~™[tfl) is a quantum deforma-
tion of the Poisson superalgebra C&°°(^), with the ratio μ = [r - I ) " 1 playing the
role of Planck's constant. The assumption that/has a compact support is certainly
not optimal and we regard it as a proviso. However, a closer look at our proof
shows that some kind of decay of at least one symbol at the boundary of U is
needed. On the other hand, it is easy to verify that for polynomial / and g, the
conclusion of the theorem remains valid.

Theorem III.ll. Under the assumptions of Theorem III. 10,

\\rlTr[f),Tr[g)]-Tr[{fg})\\r^Cr \ (111.36)

for r sufficiently large.

Proof. We see from (111.26) that

Γ00[Z)=l-zz,

Γ10(Z) = - (1 -

Γ1! (Z) = (1 - zz - θθ)112 . (111.37)

The proof follows immediately from Theorem III. 10 and the explicit form (11.25) of
the super Poisson bracket. D

IV. The (C*-Algebra of Super Toeplitz Operators

IV.A. In this section we study the structure of the Z2-graded <C*-algebra
generated by all super Toeplitz operators with symbols / whose components
fjk extend to C00-functions on the closure of the unit disc U. This <C*-algebra is
generated by σ:= Tr{z\ σ:= Tr(z) = σ*, χ:= Tr{θ), and χ:= Tr(θ) = χ*.

Proposition IV. 1, The generators of ^~r(%) satisfy the following relations,

[σ, σ] - μ(I - σσ - χχ)(I - σσ) ,

- σσ)σχ ,

CZ,Z]=O, (IV.l)

and their hermίtian conjugates, where μ:= (r — I)""1.
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Proof The easiest way to obtain these relations is to observe that

σφnΛ{Z) =

σφnΛ(Z) = n + r + k - 1

χφn,k(Z) = (1 - *)(* + r)-

where {</>„,*} is the orthonormal basis defined by (IIL22). D

IV.B. Let X denote the Z2 -graded C*-algebra of compact operators on
and let C(S1)b& the trivially Z2 -graded <C*-algebra of continuous functions on the
unit circle. The following theorem describes the structure of &~r(β); namely it states
that 3Γr{?U) is an extension of Cfi1) by Jf.

Theorem IV.2. There is a short exact sequence of Z2-graded C*-algebras,

0 -» JΓ -• ̂ ( # ) -> C ί S 1 ) -> 0 . (IV.3)

Furthermore, as C*-algebras, ^ ( # ) ̂  3Ts(q/\for all r,s> 1.

Let </ denote the commutator ideal in ^ ( # ) . It follows immediately from
(IV. 1) that the quotient (C*-algebra ^ΓrψU)j^ is generated by a single element and so
^rχ%)IJ - C ^ 1 ) . We claim that J ~ Jf. Indeed, as a consequence of (IV.l) and
(IV.2), [σ, σ] 6 Jf. Furthermore, from (IV.2), χeJf and so all the commutators
involving χ and χ are compact. This shows that J> c J Γ . On the other hand, since
5V(<#) is irreducible, Theorem 5.39 in [11] implies that Jf c Jv(#). Consequently,
J^ is a non-zero ideal in JΓ and so it must be equal to Jf. This proves (IV.3).

To prove the second statement, we realize the C*-algebras ^ ( ^ ) and ^~s(%) on
the Z2-graded Hubert space /2 (Z +) © /2 (Z +) and denote the corresponding gener-
ators by σΓ, σs, etc. Obviously, χr,_σs - σreJΓ a 3ΓS(^) and so ^V(<#) c ^ ( # ) . By
the same argument, ^Γsifll) c V̂(<$0, and the claim follows. D

IV.C. We now show that the <C*-algebra ^V(#) can be characterized in terms of
generators and relations. Let &r be the unital algebra generated by σ, σ, χ, χ with
relations (IV.l). A representation π: &τ-+ S£(3tf) of Θ>r on a Hubert space 2tf is
called a *-representation, if π(σ)* = π(σ) and π(χ)* = π(χ).

Theorem IV.3. Let π: ^ r—• J^f(Jf) foe an irreducible ^-representation of 0*r on
a Hubert space Jf. 77ίen, π is unitarily equivalent to either the one dimensional
representation Jf7 = (C, w/ί/i

/or some θ e [0, 2π), or ίo the representation (IV.2).

Proo/. Let π be an irreducible ^-representation of £Pr on a Hubert space
Consider first the subspace

- σ σ ) n K e r ( χ ) .
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Using the commutation relations, it is easy to see that W is an invariant, closed
subspace for the representation π, and so either W = 2tf or W = 0. If W = jf, then
the representation π is one dimensional and it is unitarily equivalent to a repres-
entation of the type (IV.4).

Assume from now on that W = 0 and set Jf0 := Ker(χ). It is easy to see that Jfo

cannot be zero. Let ^r be the subalgebra of 0>r generated by σ and σ with the
commutation relation

The representation π induces a representation π 0 of Sfr on Jfo We claim that this
representation is irreducible. Indeed, suppose we have an invariant proper sub-
space Vo a J4?0. Pick a non-zero vector ξeJ^0, ξφV0. The spaces Vo and χ(V0) are
clearly orthogonal. Consider now the orthogonal sum K 0 ®χ(K 0 ). Using the
algebra structure, it is easy to show that the representation π restricts to a repres-
entation of 3Pr on Vo © χ(V0). It is clear that ξφχ(V0), for χ(V0) is orthogonal to
Ker(χ). This shows that π 0 is irreducible. At the same time, the above argument
shows that

3/e = Jf0 θ ^ i , (IV.6)

where Jfx = χfflo). Now we can invoke Theorem III.2 of [12]: there is an
orthonormal basis φn 0 , n = 0,1, . . . , for Jt0 such that σ and σ act according to
(IV.2).

Now, using this result it is easy to check that

r(l - σσ) = (r - 1)(1 - σσ(l - μ(l - σσ))) ,

on Jfo. The relation, χσ — σχ = μχσ(l — σσ), yields

rχ(l - σσ) = (r - 1)(1 - σσ)χ , (IV.7)

on J'fo Finally, we have

[σ, σ]χ = μ(l - σσ)[(l - σσ)χ - μχ(l - σσ)] ,

on J#Ό, which by means of (IV.7) can be rewritten as

[σ, σ]χ = - (1 - σσ)(l - σσ)χ .

This implies the following relation on ^ :

[σ, σ ] = - (1 - σσ)(l - σσ) . (IV.8)

r

As a consequence, π induces a representation πί of ^ . + 1 on J>f1.
We now show that π x is irreducible. To prove this, observe first that χ\#>0 is

injective. Indeed, if a vector φ is in the kernels of both χ and χ, then the
commutation relation [χ, χ] = μ(/ — σσ — σσχχ) implies that (1 — σσ)φ = 0. But
this is impossible because W = 0. Let now Vγ a 3#Ί be a closed, invariant subspace.
It is then easy to verify that χ~1(Vί)eJίf0 is an invariant subspace for the
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representation π 0 of «Ŝ , and so χ " 1 ^ ) = Jfo By the injectivity of χ, we conclude
FΊ = tf1% We use Theorem III.2 of [12] to determine the action of ^ r + 1 on Jf\.
There is an orthonormal basis φHt λ for J&Ί and the action of £fr+ x on the elements
of this basis is given by (IV.2). Finally, the commutation relation of σ with χ tells
that χ(Kerσ n Jf 0) = Ker(σ n J fJ . Denoting by J>fnj the one dimensional space
spanned by φnJ, we easily see that χ: 3^n,o^> ̂ n,i- Furthermore, an explicit
computation shows that χχ\j?n0 = (n + r ) " 1 / . This completes the proof of the
theorem. D

A standard consequence of the above two theorems is the following character-
ization of ^Γγψΰ\ Let <&,(%) denote the universal enveloping C*-algebra of ^ r , i.e.
the closure of gPγjJf in the norm ||x| | := supπ{ | |π(x)||}, where the supremum is
taken over all ^representations of ^ , and where JV':= {xePr: \\x\\ = 0} is the
nil-ideal.

Theorem IV.4. As <C*-algebras, 3Γr(q/) ~ <#,(<%).

Proof. The proof follows the proof of Theorem III.5 in [12]. D

V. Proof of Deformation Estimates for t/1'1

V.A. Proof of Theorem III.9. From Proposition III.8,

, (V.I)

as r -^ oo, i.e. l i m s u p ^ ^ || Tr(f)\\ ^ | | / 0 0 IIo We will show below that

(V.2)

as r -^ oo, i.e. liminf^oo || Tr(f)\\ ^ | | / 0 0 1 | 0 , and this will prove the claim.
To prove (V.2), we set Z = (z, 0) and write

f(Z) =foo(z) = (0 O i θ 9 T(foγz)φ0t0)

+ Lo(z) - \J{yz{W))dμr{W)\ , (V.3)

where 0o,o = l Using (111.32), (III.5), and (111.26), we rewrite the above equation as

fooiz) = (Φo,o, U(γz)-1Tr(f)U(γz)φOtO)

The first term in (V.4) can be bounded by || Tr(f) ||, as U(γz) is unitary. By Lemma
VI.3 of [12], the second term is o(l) uniformly in z, as r -• αo. Finally, using the
inequality |(1 + zw)~1\ ^ (1 - Iwl)"1 we bound the third term by

-H/iilloί(l-M2Γ3d2w = ^
π u r — z

and the claim follows. D
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V.B. Proof of Theorem III.10. Our procedure will be to expand [12]

/>, Tr(f)Tr(g)ψ) = J φ(Z)f(Z)Kr(Z9 X)g(X)φ(X)dμr(Z)dμr(X) , (V.5)

where φ,φeJ^r(^ί) and/ geC°°(^), in a power series in r. We make the substitu-
tion X = yz(W\ and use the transformation properties of the Bergman kernel to
rewrite (V.5) as

(φ,Tr{f)Tr(g)ψ)= J ^f^

(V.6)

The next step will be to expand g(yz{W)) in a Taylor series. We will expand out to
fourth order, as follows:

= g(Z) wιrlj{z)djQ{Z))

lJ Σ WιΓlj{Z)WkΓkm{Z)dmdjg{Z)+l- Σ WxWmΓmVj(Z)diQ(Z)

WιΓιJ(Z)WmΓmk(Z)dkdjg(Z)

where

A j,k,l,m

+ 3rd order terms

+ G(Z, W),

WmΓmk(Z)dkdjg(Z) + \ Σ WιWmΓnai(Z)d1g{Z)

(V.7)

w = o

and where the fourth order remainder term is given by

G(Z, WY= i } ds(ί - g(yz(sW)).

(V.8)

(V.9)

Denote by lVΛ the contribution to the integral from the term in the expansion of
g with p powers of W and q powers of W, and let R denote the contribution of the
remainder term. In evaluating these terms, we will make use of the following facts.
Suppose we have a holomorphic function h on °tt. Then one can easily check that

J wkh(W)dμr(W) = i | 4 ( 0 ) J \w\2kdμr(W) ,
ωt K\ OW at/

and

j wkήh(W)dμr(W) = 1
an κ\

(0) f Iw\2kήηdμr(W)

(V.10)

(V.ll)

where W = (w, η).
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For the lowest order term in the expansion, we have

J o , o = J

The integrand is holomorphic in W9 so we apply (V.10) to get

/o,o = j φ(Z)f(Z)g(Z)φ(Z)dμr(Z)

= (φ, Tr(fg)ψ) . (V.13)

The same fact also easily implies that IPtq = 0 for p > q.
The next non-zero term is thus Jo> x, which is given by

/ o , i = Σ ί Φ(Z)f(Z)WιΓlj(Z)dJg(Z) κr
j,ι m*m κ

where we have incorporated the Kr(Z, Z) term into the super Poincare measure
dμ(Z\ defined by (11.26). We now apply (V.10) and (V.ll), using the integrals

J \w\2dμr(W) = f ήηdμr{W) = - . (V.15)

This gives

(V.16)

where εt = p(Zι)9 and the sign arises from the permutation of elements of the
integrand (keeping in mind the fact that WΓ = ΓW). Applying the chain rule gives

/ 0 1 = - Y (-iyιip{

r j,k,l

r rt,

x ί φ(Z)Γlj(Z)Γιk(Z)f(Z)djg(Z)δk Γ J ' f U dμ(Z) . (V.17)

Next we integrate by parts,

'o.i = -- Σ ( -
r
rjXι « L l - z z

x φ(Z)(ί - ZZ)dμr{Z)
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= - - Σ (-ip*/)+^+1)f φ(z)dk\
Γιj{Z)Γlkiz)]f(z)δjg(z)

r j,k,ι •% L I — ZZ J

xψ(Z)(ί-ZZ)dμr(Z)

J φ(Z)Γlj(Z)Γlk(Z)δkf(Z)dJg(Z)ψ(Z)dμr(Z)

1
- - Σ {-φ+εk)p{f) J φ(Z)Γlj(Z)Γlk(Z)f(Z)dkdjg(Z)φ(Z)dμr(Z) .

(V.18)

Observe that, as a consequence of the assumption that r is sufficiently large, no
boundary terms are present. One can quickly check that

l

This leaves two terms in (V.18).
Now consider the term 7 1 1 ? which is given by

r(Z, Z)
h,i= Σ ί Φ(Z)f(Z) rr( (UΛ Ύλ WιΓlj{Z)WmΓmk{Z)dkdjg(Z)

xφ(γz(W))dμr(Z)dμr(W). (V.20)

Using (V.IO) and (V.ll), together with (V.15), we can perform the Wintegration to
get

r

= " Σ ( - l ) ( ε ' + ε ^ ( / ) j φ(Z)Γlj(Z)Γlk(Z)f(Z)dkdjg(Z)φ(Z)dμr(Z) . (V.21)
r j , k , l *U

This exactly cancels the third term in (V.18), so that we finally obtain

Jo i + h l = - Σ (-ψp{f) + 1(Φ, T^ΓuΓtkdkfδ^φ) . (V.22)

Of the remaining second order terms, I2,o = 0, and /0>2 is given by

h,2=\ f W)f(ZW(yz(W),Zy1\ Σ WιΓlj(Z)WmΓmk{Z)dkdjg{Z)
Z Lj,k,l,m

φ(γz(W))dμ(Z)dμr(W) . (V.23)

We want to bound this term for large r. First, we use (V.IO) and (V.ll) as before, to
evaluate the W integration. Noting that

,
(v.24)
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and

$\w\2ήηdμr(W) = --*-- (V.25)
<% r{r + i)

we can make the bound

J φ(Z)f(Z)lΓlj(Z)Γmk(Z)dkdjg(Z) + δjkΓmlj{Z)dkg{Z)-]

(V.26)

j,kJ,m

ldWιδWmKr(yz(WlZ)jw=0

As before, we can apply the chain rule to convert W derivatives into Z derivatives,
and then integrate by parts to move these derivatives onto/and g. Because of the
compact support of/ the derivatives which hit the Γ 's do not affect the result. We
get a maximum of two derivatives of/and four derivatives oϊg. Using Proposition
III.4, we can extract the sup norms of the derivatives of/and g from the integral. In
this way we obtain

I Jo, 21 = Cr~~2 | | / I I , \\g\\t || φ\\ \\φ || , (V.27)

for some t.
We can apply the same arguments used for / 0 > 2 to the bound the third order

terms. The terms are more complicated to write out than in the case of /0> 2 , but the
approach is exactly the same. The result is that

\IPJ^Cr-2\\f\\t\\g\\ΛΨ\\\\Φ\\, (V.28)

for some t for p + q = 3.
Now we turn to the remainder term, which is

R= f J(Z)f(Z)G(Z, W) t{yf^]) dμ(Z)dμr(W) . (V.29)

Note that

K'(γz{W)9Z)

(V.30)

where U is the projective unitary representation of SC7(1,111) on Jfr(^), and we
have used the fact that γ'z(Q) is real. Denote U(yϊί)φ{W) by ψz{W), noting that
ll /'zll = II /ΊI The remainder term can thus be written

R = J φ(Z)K'{Z9 Zfl2f{Z)G{Z, W)φz(W)dμr(Z)dμr(W) .

We can write the components of the function G(Z, W) as

G(Z, W) := X Gjklm(z, w)θΨήιηm . (V.32)
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For some positive integer N, we claim that we have the bound

(V.33)

for some t. This may be established as follows. Consider the definition of G(Z, W\
Eq. (V.9), which involves taking five derivatives, and the explicit form (111.26) of the
function yz{W\ First of all, each derivative with respect to s in (V.9) brings out
a factor of W9 since only the combination sW appears in the definition. This
accounts for the |w|4~*"~m appearing in (V.33).

One can see by inspection of the formulas (111.26) for yz(W) that divergence will
come only from a denominator term of the form 1 + szw, raised to some power.
Observe that such a term can be bounded using

szw\~1 g ( l -

(V.34)

which follows from s ^ l , | z | < l , | w | < l . One can check fairly quickly that the
best bound one can make is N = 12, but this will not really matter.

Lemma V.I. For w, t e C 0 0 ^ ) , φe3tfri?U\ we have the inequality:

J u{W)v{W)φ{W)dμr(W)

11/2

S C\\φ\\ Hul U\ujk{W)\2dμr{W)\ . (V.35)

Proof. To prove this lemma, we view dμr as a positivemeasure on the space of
functions of the formif, where / e C M ( f ) such that df/dθ = 0. We write

u{W)v{W)φ(W)dμr{W) * Σ
j , k, l,m

Ujk(w)ήJηkυlmή'ηmφ(W)dμr(W)

= Σ \(ύjkηjηι,vιmηkηmφ)\.

We apply the Schwarz inequality to obtain

J u(W)v{W)φ{W)dμr{W) ^ X | | i; / m | | 0 \\ΰjkηW\\ II
% j , k, I, m

The lemma then follows from Proposition III.3. D

(V.36)

(V.37)

Applying Lemma V.I to both Wand Z integrations in (V.31), together with the
bound (V.33), we obtain

w

f (1 -zz)~2d2z
K

2(4-j-k)

1/2

k) -11/2

(V.38)
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for some ί, where K is a compact set in which/has support. The integral over K is
finite and independent of r, so we can absorb it into the constant, which we now
write Cκ. For the remaining integral over W, we have

{•W 7 /TTTΛ ί* \*) (ά. i k\ / Λ i \7 \r 9 ίVϊ9

J (1 - |H,ιψ d^(w) = —^~ 1 |w|2(4 J fc)(l-|w|2)r Nd2w

r ~ 1 ~ " -j-k+ \,r- 1 - N ) . (V.39)
π

For large r, we can bound this term by Cr~ 4 + J ' + k . Applying this to (V.38), we have

\R\^Cκr-2\\g\\t\\f\\t\\Φ\\\\Ψ\\ , (V.40)

which completes the proof. D

VI. Quantization of (C m | n

VI.A. In this section we describe a quantization of the superspace <Cm|n. The
scheme is similar to that of Sect. Ill, and so some of our arguments will be rather
sketchy. Recall that C m | M is the trivial supermanifold (<Cm, Θ\ where 0 is the sheaf of
superalgebras on C m whose space of global sections is C°°(Cm)®/\(C"). Let
θl9 . . . , θn denote the standard generators of/\((C"). Then any/e C°°(Cm|/ι) can be
written as

(vi.i)

where the summation runs over all_multi-indices α = (αl5_. . . , αm), β =
(βl9 . . . , / U aj9 βke{0,1}, and where θ^ = θ?1 . . . θ^θf1 . . . Θg".

In analogy with Sect. II, we say that/e C°°((Cm|n) is bounded if the components
faβ and their derivatives are bounded functions on Cm. We let C&°°(Cm|M) denote the
superspace of bounded functions on <Cm|n. We give Cj?(<Emln) the topology of
a Frechet space by introducing the following family of norms:

*:= Σ Σsup|3£S;-/β,(z)|, (VI.2)
a,β

where μ and v are multi-indices, |μ| := Σi^j^mft
A function/is called superholomorphic if d-Zjf= d§kf= 0, or equivalently if

/(z, θ) = Σ/α(z)θα ,
α

with /α(z) holomorphic. Also, we will use the notation Z:=
(zl9...9zm,θl9\..9θn).

The space Cm | M has a natural structure of an abelian supergroup. This super-
group acts on C m | " by supertranslations defined by

Z-+Z' = Z+ W. (VI.3)
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On the superalgebra C°°(Cm|"), one can define a supertranslation invariant
super Poisson structure. The two-form

ω = £ (- ψ + HZj A dZj = - QQZZ , (VI.4)

where Q and Q are defined in analogy with (11.18), is closed, non-degenerate and
supertranslation invariant, and so it is supersymplectic. The associated super
Poisson bracket is

{f,g} = - Σ (S.Jd^g - dEifdZjd)

+ (-l) p ( / ) + 1 Σ (dejdίjg + dβjfdϊjβ) . (VI.5)

VLB. Let us now consider the following family of Gaussian measures on C m | n ,
γtn — n

dμr(Z) = —^- Qxp(-rZZ)d2mzd2nθ . (VI.6)

Proposition VI.l. The form (VI.6) has the following properties

f dμr(Z) = 1 ,

dμr(Z +W) = Qxp(-rZW-rWZ - rWW)dμr(Z) . (VI.7)

Proof. The statements follow by a direct calculation. D

ForfgeC?(<£mlnl we define

(fg)r:= J f(Z)g(Z)dμr(Z) . (VI.8)
< C m i "

As before, when restricted to superholomorphic functions, (f g)r defines an inner
product. We denote the resulting Hubert space by J^(C m | n ) .

Using the methods explained in Sect. Ill, we easily establish the following
technical fact.

Proposition VI.2. Let φ, ψ e jer(<Emln). Thenjor

ί ψ(Z)f(Z)φ(Z)dμr{Z)

In particular,

ψ(Z)f(Z)φ(Z)dμ,(Z) rWΦWr (VL10)

The space J^ r(Cm |") carries a natural projective unitary representation of the
supergroup of supertranslations, W'-• U(W\ where

U(W)φ(Z):= exp(rZW- rWWβ)φ(Z - W) . (VI. 11)

Indeed, we verify easily that

U(ΪV+ Y) = σ(W, Y)V(W)U(Y), (VI. 12)
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where the cocycle σ(W, Y) is defined by

σ(W9 Y):= exp-(WΫ- YW) . (VI. 13)

VI. C. We set

Kr(Z, W):= εxp(rZW), (VI.14)

and make the following proposition.

Proposition VI.3. Kr(Z, W) is the Bergman kernel for Jf r (C m | "). Furthermore,

Kr{Z + 7, W+ Y) = expr{ZΫ + YW)Kr{Z, W) . (VI.15)

/ The sequence {ψμ,α}, μ = (μi, . . . , μm\ Vj = 0, 1, 2, . . . , α = (α l 5 . . . , αn),
α7- = 1, 2, defined by

0 μ α(Z) :=

where μ! = μ x ! . . . μm\, is an orthonormal basis for ^.((Cm | n), and so

r jμi

Σ ΦμJz)ΦμAW) = Σ i Σ —

= exp(rzw)exp(rθή) = exp(rZW) . D (VI. 17)

K/.D. For /6Cb°°(Cm|") and φEJ^r(<Cmln)f we define the corresponding super
Toeplitz operator:

(Tr(f)φ)(Z):= j Kr(Z,W)f(W)φ(W)dμr(W). (VI. 18)
C m | π

As an immediate consequence of Proposition VI.2 we obtain the following esti-
mate.

Proposition VIA Tr(f) is a bounded operator on J«fr(Cm|"). Furthermore,

The algebra ^ r°°(Cm | n) generated by all super Toeplitz operators is a Lie
superalgebra whose generators σ, := Tr(Zj), χk:= Tr(θk), σ ; := Tr(zj)9 χk\= Tr(θk),
j = 1, . . . , m, k = 1, . . . , n, satisfy the following relations,

[σ/, σk~] = r'1δjk,

°j> X*] = 0 ,

θ , Z * ] = O , (VI.20)
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and their hermitian conjugates. Strictly speaking, the operators σ and σ are not
elements of the algebra ^"r°°(Cm|11), as they are unbounded. The algebra ^ ( < C m | M )
is generated by χ, χ and certain bounded functions of σ and σ, but we will not
elaborate on this point here.

VI.E. We now formulate the main result of this section, namely that the map
Qoo^min^^roo^mi^ g i γ e n b y j ^ i s a deformation quantization. In the next
section, we will prove the following two theorems.

Theorem VI.5. For/eCΠ<Cm|"), we have

H m | | Γ r ( / ) | | r = | | / o o l l o . (VL21)
r-* oo

Theorem VI.6. For f9geCj?(<Em\n)9 such that the components fΛβ are compactly
supported, there is a constant C = C(f g) (depending on f and g\ such that

Tr(f)Tr(g) - Tr(fg) -

for r sufficiently large.

(VI.22)

We can now conclude that ^ r ' r

c o(Cm | n) is a quantum deformation of the Poisson
superalgebra C6°°(Cm|n), with the ratio r " 1 playing the role of Planck's constant.

Theorem VI.7. Under the assumptions of Theorem VI.6,

| | r [Γ r (/), Tr(g)-] - Tr({fg})\\r £ Cr'1 , (VI.23)

for r sufficiently large.

VII. Proof of Deformation Estimates for C m | "

VILA. Proof of Theorem VL5. We follow the steps of the proof of Theorem III.9.
From Proposition VI.4, we obtain the analog of (IV.l). To prove (IV.2), we use the
decomposition (IV.3) with φOfO = 1 and yz(W) replaced by W + Z. The estimates
are straightforward, and we leave the details to the reader. D

VII.B. Proof of Theorem VI.6. As before, the starting point will be to expand

(φ, Tr(f)Tr(g)ψ) = j φ(Z)f(Z)Kr(Z, X)g(X)φ(X)dμr(Z)dμr(X) , (VII.l)
C m|n χ ( E m|π

where φ, φe J(fr(Cm|w), in a power series in r. We make the substitution
X = w+ Z, and use the transformation properties of the Bergman kernel to
rewrite (VII.l) as

(φ, Tr(f)Tr(g)ψ) = J ^φ(Z)f(Z)exp{-rWZ}

xg{W+Z)ιj/(W+ Z)dμr(Z)dμr(W) . (VΠ.2)
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The next step will be to expand g(W + Z) in a Taylor series. We will expand out to
order M := max(4, 4 + m — n\ as follows (see [9] for the purely bosonic case

Z) = g{Z) + Σ(wAΰ(Z) + Wjdjg(Z))
j

+ \ Σ (WjWkdkdjg(Z) + 2WjWkdkdjg(Z) + WjWkdkdjg(Z))
1 hk

+ terms of order 3 through M-1 + G(Z,W), (VII.3)

where the M t h order remainder term is given by

G(Z, W) = — \ ds(l - s)M-1—Ήg(sW+ Z) . (VII.4)
(M — 1)! o dsM

Denote by lVΛ the contribution to the integral from the term in the expansion of
g with p W\ and q W% and let R denote the contribution of the remainder term. In
evaluating these terms, we will make use of the following facts. For a holomorphic
function h on (Cm|M and a multi-index μ,

1
J wμh(W)dμr(W) = — d%h(O) J J~[ \Wj\2μidμr(W) , (VII.5)

( C m | n /*• <Cm|" l ϋ ^ m

and

1
J wμη<χh(W)dμr(W) = — ΘQ dμh(O) \ j j |w7 |

 jyja^(χdμr(W) . (VII.6)
^pwin μ . d^mi"

The lowest order term in the expansion is

7o,o = j φ(Z)f(Z)exp{-rWZ}g(Z)ψ(W+Z)dμr(Z)dμr(W) . (VII.7)
C m | " x C m | "

The integrand is holomorphic in W, so we apply (VII.5) to get

/o,o = ί φ(Z)f(Z)g(Z)ψ(Z)dμr(Z) = (φ, Tr(fg)φ) , (VII.8)
( C m | " x ( C m | "

which gives the first term in the expansion of Tr(f)Tr(g) in Theorem VI.6. In the
same fashion we also easily show that lv>q = 0, for p > q.

The next non-zero term is thus / 0 > 1, which is given by

Jo,i = Σ ί Φ(Z)f(Z)cxp{-rWZ} Wjdjg(Z)φ(W + Z)dμr{Z)dμr{W) .
j C m | " x < C m | "

(VII.9)

We now use (VII.5) and (VΠ.6) as well as the integrals

f \wa\
2dμr{W)= f ή0!ηud(W)

(£rn\n f jml"
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to obtain

^ o , i = - Σ ( - 1 ) M ί 7 ( g ) + 1 ) ί Φ^)f(Z)djg(Z)Qχp(rZZ)
r j <£rn\n

ψ(W+Z)exp{-r(W+Z)Z}\ dμr(Z) , (VII. 11)
Jw = o

where £,:= p{Zj). Applying the chain rule gives

1 ^
, Σ ί Φ(Z)f(Z)djg(Z)

x dj{φ(Z)exp(-rZZ)}exp{rZZ}dμr(Z). (VII. 12)

Integrating by parts we obtain

Io.i = --Σi-Ψ^ ί W)djf(Z)djg(Z)φ(Z)dμr(Z)
r j Cm|H

(~Ψ9)εj J JΪZ)f(Z)djdjg(Z)φ(Z)dμr(Z) .

Now consider the term / 1 ? 1 , which is given by

I l t l = Σ ί
j,k <C m | "x(C m | "

x V>(1^+ Z)dμr{Z)dμr{W) . (VII. 14)

Using (VII.5) and (VII.6), together with (VII.IO), we can perform the ^integration
to get

h Σ i i - 1 ) ^ ^φ{Z)f{Z)djdJg(Z)φ(Z)dμr{Z). (VII.15)

This exactly cancels the second term in (VII. 13), so that we obtain

Ό.i + /i.i = - ^ Σ ( - ! ) β j l K / ) ( ^ Tr(djfdjg)φ), (VII.16)

as desired. Of the remaining second order terms, / 2, 0 = 0, and / 0 j 2 is given by

Ό,2 = ^ Σ ί Φ ( Z ) / ( Z ) e x p ( - r ^ Z ) P r j ^ ^ ^ ( Z )

x φ(W + Z)dμr(Z)dμr{W) . (VII.17)

We want to bound this term for large r. First, we use (VII.5) and (VII.6) as before, to
evaluate the W integration. Then observe that for any N ^ 0,

ί Π Wki Wkjdμr{W) = κN(ku . . . , kN)r~N ,
( C m | π
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with κN(ku . . . , kN) independent of r, and so we can make the bound

Σ ί φ(Z)f(Z)dkdjβ{Z)exp(rZZ)
j , k <C m | "

x l iτJlπ, Ψ(W + Z)exp{-r(W + Z)Z}~\^ άμ,(Z) . (VII. 19)

As before, we apply the chain rule to convert W derivatives into Z derivatives, and
then integrate by parts to move these derivatives onto/and g. Using Proposition
VI.2, we can extract the sup norms of the derivatives of/and g from the integral. In
this way, we obtain the bound

|/0 i 2 | ύCr'2 \\f\\t\\g\\ΆΦ\\\\Φ\\, (VII.20)

for some t.
We can apply the same arguments used for / 0, 2 to bound the explicit terms of

order three through M — 1 in (VII.3). The result is that

for 3 ^ p + q ^ M - 1.
Now we turn to the remainder term, which is equal to

R = j φ(Z)f(Z)G(Z, W)φ{W + Z)exp(-rWZ)dμr(Z)dμr(W) . (VII.22)
C m | " x C m | "

Note that

ψ(W+Z)Qxp(-rWZ) = Qxp(rZZ/2)(U(-Z)ιl/)(W) , (VII.23)

where U is defined by (VI.ll). Denote U(-Z)φ(W) by ψz{W), and observe that

\\Ψz\\ = \\Ψ\\ (VII.24)

The remainder term can now be written in the form

R = j φ(Z)f(Z)G(Z, W)φz(JV)exp(rZZ/2)dμr(Z)dμr(W) (VII.25)
C m | " x ( C m | "

Lemma VΠ.l. For u, i;eC°°(Cm|n), 0 e ^ ( C m | " ) , we have

\ . (VII.26)

Proo/ The proof follows closely that of Lemma V.I. •
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We write the function G(Z, W) as a sum of terms of the form Gμv(Z, W)ήμη\
We use Lemma VII. 1 to obtain

j φ{Z)f(Z)G »{Z, W)ή»ηvexp(rZZ/2)ψz(W)dμr(Z)dμr(W)
( C m | " x ( C m | "

y
g C κ r - ( M - m + " ) / 2 | | / | U | ^ | U | φ | | | | ^ | | ,

which completes the proof, since M — m + n^ 4. D

Acknowledgement. We would like to thank Lewis Coburn for very helpful comments on the
manuscript. We also wish to thank the anonymous referee for a constructive remark.

References

1. Axler, S., Conway, J.B., McDonald, G.: Toeplitz operators on Bergman spaces. Can. J. Math.
34, 466-483 (1982)

2. Bayen, R., Flato, M., Fronsdal, C, Lichnerowicz, A., Sternheimer, D.: Deformation theory
and quantization. Ann. Phys. 110, 61-151 (1978)

3. Berezin, F.A.: Quantization. Math. USSR Izvestija 8, 1109-1165 (1974)
4. Berezin, F.A.: Quantization in complex symmetric spaces. Math. USSR Izvestija 9,341-379 (1975)
5. Berezin, F.A.: General concept of quantization. Commun. Math. Phys. 40, 153-174 (1975)
6. Berezin, F.A.: Models of Gross-Neveu type are quantization of a classical mechanics with

nonlinear phase space. Commun. Math. Phys. 63, 131-153 (1978)
7. Berezin, F.A.: Introduction to Superanalysis. Dordrecht: D. Reidel 1987
8. Borthwick, D., Lesniewski, A., Upmeίer, H.: Non-perturbative deformation quantization of

Cartan domains. J. Funct. Anal., to appear
9. Coburn, L.A.: Deformation estimates for the Berezin-Toeplitz quantization. Commun. Math.

Phys. 149, 415-424 (1992)
10. Connes, A.: Non-commutative differential geometry. Publ. Math. IHES 62, 94-144 (1986)
11. Douglas, R.: Banach Algebra Techniques in Operator Theory. New York, London: Academic

Press 1972
12. Klimek, S., Lesniewski, A.: Quantum Riemann surfaces, I. The unit disc. Commun. Math.

Phys. 146, 103-122 (1992)
13. Klimek, S., Lesniewski, A.: Quantum Riemann surfaces, II. The discrete series. Lett. Math.

Phys. 24, 125-139 (1992)
14. Klimek, S., Lesniewski, A.: A two parameter deformation of the unit disc. J. Funct. Anal., to

appear
15. Kostant, B.: Graded manifolds, graded Lie theory and prequantization. Lect. Notes in Math.

570. Berlin, Heidelberg, New York: Springer 1977
16. Kostant, B., Sternberg, S.: Symplectic reduction, BRS cohomology, and infinite-dimensional

Clifford algebras. Ann. Phys. 176, 49-113 (1987)
17. Manin, Yu.: Gauge Field Theory and Complex Geometry. Berlin Heidelberg New York:

Springer 1988
18. Rieffel, M.: Deformation quantization of Heisenberg manifolds. Commun. Math. Phys. 122,

531-562 (1989)
19. Rieffel, M.: Deformation quantization for actions of lRd. Preprint 1991
20. Sheu, AJ.-L, Lu, J.-H., Weinstein, A.: Quantization of the Poisson SU(2) and its Poisson

homogeneous space - the 2-sphere. Commun. Math. Phys. 135, 217-232 (1991)
21. Upmeier, H.: Toeplitz C*-algebras on bounded symmetric domains. Ann. Math. 119, 549-576

(1984)

Communicated by A. Jaffe




