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Abstract. We consider the scattering problem for the non-linear Schrodinger (NLS)
equation with a power interaction with critical power p — 1 +2/n in space dimensions
n — 2 and 3 and for the Hartree equation with potential Ix'l"1 in space dimension
n > 2. We prove the existence of modified wave operators in the L2 sense on a dense
set of small and sufficiently regular asymptotic states.

1. Introduction

This paper is devoted to the study of the asymptotic behaviour in time of the solutions
of the non-linear Schrodinger (NLS) equation and of the Hartree equation

idtu = -(\/2)Δu + f(u) (1 .1 )

in the Coulomb like limiting case, in space dimension n > 2. The non-linear
interaction term is

f(u) = λ\u\p-ιu (1.2)

with p — 1 = 2/n in the NLS case and

/(i/) = (V * \u\2)u = λ(\x\~ι * \u\2)u (1.3)

in the Hartree case with Coulomb potential V(x) = X\x\~ι. Here u is a complex
function defined in n + 1 dimensional space-time, dt denotes the time derivative,
Δ denotes the Laplace operator in W\ and λ is a real constant which matters only
through its sign. This paper is the continuation of a previous paper by one of us [17]
where the same problem was considered for the NLS equation (1.1), (1.2) in space
dimension n = 1. We refer to the introduction of [17] for general information on the
problem in the 1-dimensional case.
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There is a large amount of literature on the theory of scattering for the equation
(1.1), (1.2) and/or (1.3) and we shall briefly summarize some of the available results
in order to put the present paper into perspective. We refer to [1-11, 13, 14, 16-23]
and references therein quoted for more details. We shall need the weighted Sobolev
spaces Hm s defined for m, s e R by

Hm>s = {v e V: \\v; Hm>s\\ = ||(1 + x2)s/2(l - Δ)m/2v\\2 < oc} ,

where || | | r denotes the norm in U = LΓ(Mn), and the unitary group associated with
the free Schrδdinger equation

U(t) = exp[ι(t/2)Δ].

The Cauchy problem for the equation (1.1), (1.2) is well understood, in particular
the following is known for n > 2:
(i) Let 0 < p - 1 < 4/(n - 2) and λ > 0 if p - 1 > 4/n. Then for any initial data
u(0) e Hι = H[>{) [resp. u(0) e Σ = H0Λ Π Hl\ there exists a unique global
solution u G ^ ( R . / / 1 ) [resp. u e ΐ(R, Σ)] [5].
(ii) Let 0 < p — 1 < 4/n. Then for any initial data u(0) G L2, there exists a unique
global solution u G ^ (R, L2) [21,22].

The theory of scattering for the equation (1.1), (1.2) (among others) is organized
around the following two questions:
(i) Let υ(t) = U(t)u+ be a solution of the free Schrδdinger equation. Does there
exist a solution u of the full equation (1.1) which behaves asymptotically as v(t)
when t —>• oc, typically in the sense that for X a suitable Banach space

\\u(t) - v(t)\ X\\ ^ 0 when t -> oc . (1.4)

This may occur in favourable cases for all u+ G X, in less favourable cases only
for u+ G Y, where Y is some dense subspace of X. If (1.4) holds, the map
Ω+: u+ —+ u(0) is called the wave operator (for positive time) in the sense of the
space X. The problem of the existence of xι for given u+ is referred to as the problem
of existence of the wave operator. The same problem can be considered for negative
times. We once for all restrict our attention to positive times.
(ii) For an "arbitrary" solution u of the full equation (1.1), does there exist an
asymptotic state u+ such that v(t) = U{t)u+ behaves asymptotically as u(t) when
t —> oc, typically in the sense that (1.4) holds. If that is the case for any u with initial
data u(0) e X for some u¥ e l , one says that asymptotic completeness holds in X
(for positive time).

We now summarize some of the available results.
(i) For 4/n < p — 1 < 4/(n — 2), the wave operators in the Hι sense are defined at
least in a neighborhood of zero in Hι, and if λ > 0, in the whole of Hι. Asymptotic
completeness in Hι holds for λ > 0 [7].
(ii) Let po(n) be the positive root of the equation

np(p- 1) = 2Q>+ 1)

[note that 2/n < 4/(n + 2) < po(n) - 1 < 4/n for n > 2]. Then for 4/(n + 2) <
p — 1 < 4/(7i — 2) the wave operators in the Σ sense are defined at least in a
neighborhood of zero in Σ, and if either p — 1 < A/n or λ > 0, in the whole of Σ.
Actually in that case (1.4) has to be replaced by

\\U(-t)u(t)-υ Σ\\^0 when ί-> oc . (1 .4 7 )



Long Range Scattering for Non-Linear Schrodingcr and Hartree Equations 621

Asymptotic completeness in Σ holds if p > po(n) and λ > 0 [3, 5, 11, 20, 21].
(iii) For 2/n < p — 1 ^ PoOΌ — 1 and A > 0, the inverses of the wave operators
exist in the L2 sense on the dense subspace Σ of asymptotic states [23].
(iv) For 0 < p — 1 < 2/n, the wave operators do not exist in the L2 sense, namely
for any u+ G L2, (1.4) with X = L2 implies u = v = 0 [1, 4, 18].

The limiting case p — 1 = 2/n is the analogue in the present situation of the case
of the linear Schrodinger equation with Coulomb potential V(x) — \\x\~x and it is
known in that case that the free dynamics v(ί) = U(t)u+ is not the correct asymptotic
dynamics and has to be replaced by a modified asymptotic dynamics.

The situation for the Hartree equation is similar to that for the NLS equation,
the correspondence being roughly that a potential V = λ |x|~ 7 in (1.3) corresponds
to p - 1 = 27/n in (1.2). In particular the limiting Coulomb case for the Hartree
equation corresponds to the Coulomb potential V = X\x\~ι as given in (1.3) [6, 10,
16].

The purpose of the present paper is to prove the existence of modified wave
operators in the L2 sense on a dense subspace of small asymptotic states for the NLS
equation (1.1), (1.2) with p— 1 = 2/n in space dimension n = 2 and n = 3, and for
the Hartree equation (1.1), (1.3) in arbitrary space dimension n > 2. More precisely,
for any asymptotic state u+ in a suitable dense subspace Y of L2, we shall construct
several modified asymptotic dynamics υ(t), and for any such u+ which is small in a
suitable sense, we shall prove the existence of a solution u G £Γ(R, L2) of the full
equation (1.1) such that (1.4) holds with X = L2. Actually we shall obtain stronger
properties than (1.4) on the comparison between u and υ. In particular the left-hand
side of (1.4) will exhibit a power law decay as a function of t. The space Y will
turn out to be H0'2 in most cases, except for the NLS case in space dimension 3
where a smaller space is needed. The precise results appear below as Theorem 3.1
for the NLS equation and Theorem 4.1 for the Hartree equation. A standard property
of the wave operators, whether modified or not, is to intertwine the full evolution
and the free evolution. That property also holds in the present situation, at least on a
suitable subset of asymptotic states. The choice of the modified asymptotic dynamics
has been discussed at some length in the introduction of [17]. That discussion will be
amplified in Sect. 2 below. The method of proof of the main result will be similar to
that in [17] and will mainly consist in recasting the Cauchy problem for (1.1) with
prescribed asymptotic state u+ in the form of an integral equation for the difference
w = u — v and solving that equation by a contraction method for large times.

In order to focus our attention on the main issue, we have restricted our study
to the case where / is a single power interaction with critical power for the NLS
equation and where the potential is V — A | . T | - 1 for the Hartree equation. There is no
difficulty in extending the present results to more general interactions, for instance by
adding a short range interaction of the type (1.2) with a larger power p — 1 > 2/n
in the NLS case or by adding to V a short range potential in the Hartree case. Such
an extension has been considered in [17] in the NLS case in space dimension n = 1.
We have also restricted our attention to the study of the wave operators in the L2

sense, namely to the situation where X = 1? in (1.4). One could also ask for similar
results in a stronger sense, namely with X — Hk for some k > 1, for asymptotic
states in a smaller space Y = H7rlyS for suitable m and s. This question has been
considered in [17] in the NLS case in space dimension n = 1 with X = Hι and
Y _ j^-0.3 η JJ\,2 ^ similar extension for n > 2 is possible in the Hartree case at
the cost of additional estimates, since the interaction term is a polynomial in u and
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ΰ. It is much less obvious that a similar extension can be made in the NLS case for
n > 2. Actually for n = 3, where f(u) is a fractional power, there arises already
some difficulty due to the lack of smoothness of f(u) near zero at the level of the 1?
wave operators (see especially the comments preceding Lemma 3.2 below).

This paper is organized as follows. Section 2 is devoted to preliminaries. We first
recall some basic properties of the free Schrodinger equation and then discuss and
motivate the choice of asymptotic dynamics, starting with the linear case with time
dependent potential and ending with the non-linear case. We propose three modified
asymptotic dynamics [see (2.27), (2.28), and (2.34)]. Section 3 is devoted to the
study of the NLS equation. We first derive a general existence and uniqueness result
using only two basic estimates on the asymptotic dynamics (Proposition 3.1), we
then prove that one of the possible asymptotic dynamics satisfies those estimates
in dimensions n = 2 (Lemma 3.1) and n = 3 (Lemma 3.2), we establish some
comparison results between the various asymptotic dynamics (Lemma 3.3 and 3.4)
and we finally derive the main result (Theorem 3.1) and the intertwining property
(Proposition 3.2). Section 4 is devoted to the study of the Hartree equation and follows
the same pattern. We first derive a general existence and uniqueness result based on
two estimates (Proposition 4.1), we show that those estimates are satisfied by one of
the asymptotic dynamics (Lemma 4.1) and we derive the main result (Theorem 4.1)
and the intertwining property (Proposition 4.2).

We conclude this introduction by giving some additional notation freely used in
this paper. For any r, 1 < r < oo, we denote by f the conjugate exponent defined by
1 /r +1 jf — 1 and we define the variable δ(r) = n/2 — n/r. The argument r will often
be omitted in δ when no confusion can arise. For any interval / C l , for any Banach
space B, for any q, 1 < q < oo, we denote by Lq(I,B) [respectively L\0C(I,B)]
the space of measurable functions v from I to B such that ||?;( );Z?|| G Lq(I) [resp.
\\v(>);B\\ G iJΌcCO]- Finally we shall use the notation £>+ = Max(£>,0) for ρ G R.

2. Preliminaries

In this section we recall some elementary and/or well known facts on the Schrodinger
equation, which will be used in the following sections. We begin with the free
Schrodinger equation

(idt - H0)u = (idt + (l/2)Δ)u = 0 (2.1)

which is solved by the use of the unitary group U(t) = exp[i(t/2)Δ]. That group can
be written as

U(t) = M(t)D(t)FM(t), (2.2)

where

M(t) = exp(zx2/20, (2.3)

D(t)ψ(x) = (it)~n/2φ(x/ί) , (2.4)

and F is the Fourier transform. We shall restrict our attention to positive t and
the variable t will often be omitted when no confusion can arise. The following
commutations, if not well known, are obtained by elementary computations

UxU-[ =x + itV - MiίVM-1 , (2.5)

(x/t)UM~ι - UM~\-iV),

-iVMU~ι = MU~\x/t), (2.6)
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(idt + {\/2)Δ)U = (idt + (l/2)Δ)MDFM

= M(idt + (\/2)Δ + i(n/2t) + i(x/t) V)DFM

= MD{ιdt + {\/2t2)Δ)FM

= MDF(ιdt - x2/2t2)M

= UM~x{idt - x2/2t2)M = Uidt (2.7)

(we use the same notation for functions of x and for the associated multiplication
operators in L2). An immediate consequence of those relations and of the Sobolev
inequality

|M| r <Cr\\(-Δ)δ(r)/2u\\2, (2.8)

where 2 < r < oo is the following well known decay estimate.

Lemma 2.1. Let 2 < r < oo and δ = δ(r). Then

| |C/(ΐH| r < C r | ί | - δ | | | α ; | ό u | | 2 . (2.9)

Proof.

\\Uu\\r = \\M-χUu\\r < Cr\\(~Δf'2M-χUu\\2

= Cr\\M-ιUΓδ\xfu\\2 = Cr\t\-δ\\ \x\δu\\2. Q.E.D.

We shall make an essential use of the following well known estimates on U [7, 13,
24].

Lemma 2.2. (1) Let r and q satisfy 0 < 2/q = δ(r) < 1 and let u G L2. Then
U(')u e Lq(R,Lr)and

\\U( )u;Lq(R,Lr)\\ <C\\u\\2. (2.10)

(2) Let r, q and rx, q' satisfy 0<2/q = δ(r) < 1, 0 < 2/q' = δ(r') < 1. Then for any
interval J c l and any s £ I, the operator

t

drU(t - r)f(r)

is bounded from Lq (7, Lr ) to Lq(I, Lr) with norm uniformly bounded with respect to
I and s.

We now present some elementary remarks on the choice of a modified asymptotic
dynamics for linear Schrodinger equations

(idt - H(t))u = (idt ~ Ho - V)u, (2.11)

where V — V(ί,x) is a long range time dependent potential, multiplicative in the
x variable. Those remarks are of a less general character than the treatment given
in [12,15] since they are concerned only with the special case Ho = — (1/2)Z\ and
with the first order modification of the asymptotic dynamics, but they are useful
to understand the non-linear case. Let U(t, s) be the unitary two parameters group
solving (2.11) in the sense that

= -U(t,s)H(s). ( * }
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If one wants to prove the existence of (possibly modified) wave operators in L2 by
the method of Cook, one has to show that

ιdtU(0Λ)U{(t) = £7(0, ί)(idt - H(ΐ))Ux{t)u+ e Lι(R+,L2), (2.13)

where u+ G L2 is the asymptotic state and Ux(t) is the asymptotic dynamics. A simple
choice for Uι consists in taking

Ux(t) = U(t)exp[-iS] = exp[-UH0 - iS] (2.14)

for a suitable choice of S = S(t: — zV), so that U{ is simply a multiplication operator
in Fourier transformed variables. With that choice, one obtains by using (2.6)

(ιdt - H(t))U{(t)u+ = (0tS(-ιV) - V(x))U{(t)u+

= U(t)(dtS(-ιV) - M~{V(-itV)M)exp[-iS]u+ . (2.15)

Since the operator M tends strongly to 1 in I? when t —> oc, one is tempted to define
S by

dtS(Lξ) = V(t<t0 ( 2 1 6 )

which is the original choice made by Dollard (see [12]). The factors M~ι. M however
prevent one from exploiting the cancellation in a direct way. This suggests to introduce
a second asymptotic dynamics

U2(t) = U(ί)M(ί)-{ exp[-zS], (2.17)

a choice that is also naturally suggested by the commutation relations (2.7). With that
choice, one obtains

(ιdt - H(t))U2(t)u+

= U(t) {M~ιφtS{-iV) - V(-itV)) + idtM~1} Qxp[-ιS]u+ (2.18)

and the cancellation appears, explicitly, at the cost of introducing an additional term
DtM~ι. In order to complete the proof of (2.13) with U{ replaced by U2, it is then
sufficient to prove that

\\(dtS(-ιV) - V(-itV))u+\\2 G /ΛlR+) (2.19)

and

\\(dtM~ι)Qxp[-iS]u+\\2 = (l/2)Γ2\\x2 exp[-iS]u+\\2 e L{(R+). (2.20)

In the best cases (but not always) one can make the choice (2.16) for S thereby
making (2.19) trivial.

The dynamics U2 can be computed in a very explicit way by using (2.2) and (2.6).
In fact let υ2(t) = U2(t)u+. Then

υ2(t) = UM~ιexp[-iS]u+

= exp[-iS(t,x/ί)]MDFu+

= (itΓn/2 exp[-iS(i, x/t) + ix2/2t]ύ+(x/t). (2.21)

In particular \v2\ is independent of the choice of S:

(t,x)\ = Γn/2\ύ+{x/t)\. (2.22)
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It is interesting to ascertain whether the asymptotic dynamics Uλ and U2 are
equivalent in L2. For that purpose it is sufficient to show that

\\(U{(t) - U2(t))u+\\2 = \\(M - l ) e x p [ - 2 S ] u + | | 2 -> 0 (2.23)

when ί —>• oc. In view of the obvious estimate

\\(M - l)exp[-ιS]u+\\2 < t~σ\\ \x\2σ exp[-iS]u+\\2, (2.24)

where 0 < σ < 1, that property follows in practice from estimates similar to, but
simpler than, those needed for the proof of (2.20).

We now turn to the non-linear equation

(idt + a/2)Δ)u = f(u), (2.25)

where / is a non-linear interaction (possibly non-local and actually so in the case of
the Hartree equation). We assume / to be gauge invariant, namely

f(ωu) = ωf(u) for all ω e C. \ω\ = 1 , (2.26)

so that f(u) takes the form f(u) = ug(\u\2).
In the next two sections we shall study the existence of modified wave operators

for the equation (2.25) by the same method as in [17]. That method fits nicely in the
framework of the previous remarks. We shall use as above two asymptotic dynamics
defined by

υ{ (ί) = U{t) exp[-z5(t, -iV)]iί+ , (2.27)

υ2(t) = U(t)M(tΓι exp[-i5(ί, -iV)]u+ . (2.28)

Those dynamics are both non-linear since now S = S(t. —iV) will depend on u+.

The equivalence of those dynamics in L2 reduces as previously to the fact that

||i;,(i) - ι;2(ί)||2 = ||(M - l)exp[-zS]u + | | 2 -+ 0 (2.29)

when t —^ oc. The dynamics v2 will be used for direct comparison with the original
one (2.25). Of special interest will be the fact that v2 approximately satisfies the
equation (2.25) in the sense that

(idt + (l/2)Δ)v2 - f(v2) = f (2.30)

is suitably small. Now the left-hand side of (2.30) is that of a Schrodinger equation
for v2 with time dependent potential g{\v2\

2). That potential is independent of the
choice of S, since |i?2| is [cf. (2.22)]. By exactly the same computation as that leading
to (2.18), we then find

f = (idt + (\/2)Δ-g(\Dύ+\2))υ2

= UM-{{dtS(-ιV) - g(t-n\ύ+(-ιV)\2) - x2/2t2} exp[-iS]u+ . (2.31)

As in the linear case, we shall need that / G L !(IR+, I?) and for that purpose that

\\{dtS{-iV) - g(t-n\u+(-iV)\2)}u+\\2 e L\R+) (2.32)

t-2\\x2Gxp[-iS]u+\\2 e L !(M+). (2.33)

Actually we shall need a stronger property, see (3.3) and (4.2) below.
Another possible choice of asymptotic dynamics, both in the linear and nonlinear

case, is
v3(t) = Qxp[-iS(t, x/t)]U(t)u+ . (2.34)
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That choice has the virtue that it differs from the free dynamics U(t)u+ only by a
phase (in the x space representation). It has been considered in [17J where it is actually
used in the statement of the results. That choice is easily seen to be equivalent to the
choice v2 in L2 since by (2.6) v2 can be rewritten as

v2(t) = exp[-zS(ί, x/t)]U(t)M(tTγu+ (2.35)

so that

when t —>• oo under the only assumption that u+ e L2 since M tends strongly to 1 in

L2 when t —» oo. We shall also make use of υ3 in the present paper.
For completeness, we finally recall that the modified wave operators will be

constructed as in [17] by solving the integral equation for u

u(t) - υ(t) = i ί dτU(t - T) {/(ιt(τ)) - f(v(τ)) - />)} (2.36)

with v — υ2. In fact, if u is a solution of (2.25) and if / is defined by (2.30), the
following identity holds for t < t0 < oo and v = υ2:

u{t) - υ{t) = U(t - t0) (u(t0) - v(ί0)) - i ί dτU(t - r)f(r)

t

to

+ i ί drU(t - r) {f(u(r)) - f(υ(r))} . (2.37)

t

If u(t) - v(i) -> 0 in L2 when t —> oo and if / e Lι(R+, L2), the first two terms in
the right-hand side of (2.37) converge in L2 to the obvious limits when t0 —> oo and
u is expected to satisfy (2.36).

3. The NLS Equation

In this section we prove the existence of modified wave operators for the NLS equation
(1.1) with nonlinearity

f(u) = \\u\v-ιu. (1.2)

Our final result will be concerned with the case p - 1 = 2/n. Since however some
intermediate results are not restricted to this special choice, we shall keep p as a
parameter in some parts of the argument. As regards the dimension n, the case n = 1
has been considered in [17] and we restrict our attention to the case n > 2. The final
results will apply to n = 2 and 3 only, but again some intermediate results are not
restricted to that case.

The main step of the argument consists in solving the equation (2.36) for u in a
neighborhood of infinity in time by a contraction method under suitable assumptions
on v. For that purpose we define the following Banach spaces, which are the natural
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generalization of those considered in [17]. Let θ > 0, 0 < 2/q = δ(r) < 1 and T > 0.
We define

X(T) = XΘJT) = {w eΐ ([T, oo), L2) Π Lq([T, oc), Lr):

\\w; X(T)\\ = sup tθ(\\w(t)\\2 + \\w; L\[t, oo), L r)| |) < ^ } . ( 3 > 1 )

The spaces Xθ r(T) depend monotonously on θ and r (or δ), namely Xθ r C X#/ r/

if 6> > θ' and r > r'.
The basic existence and uniqueness result is the following.

Proposition 3.1. Letn>2 andp- 1 = 2/n. Let To > 0 tf/7d /̂ ί ?; G fίf ([Γo, oo), L2)Π

/^ t>τ 0 , 0.2)
2 /^Γ ί > T 0 . (3.3)

/<9Γ ̂ <9/72̂  ^ 0 > n/4, where

f = (idt + (l/2)Δ)υ-f(υ). (3.4)

Then for c^ sufficiently small (depending only on λ and n),for 0 < 2/(7 = δ(r) < 1
n/4 < θ < θ0, the equation (1.1), (1.2) /zαs α unique solution

u — v = w £ Xθ r(T 0).

Proof. The first and main step consists in solving the equation (2.36) for iu by a
contraction method in X(T) for T > To, T sufficiently large. We rewrite (2.36) as

00 oc

w(t) = - z ί dτU(ί - τ)f(τ) + i I dτU(t - r) {f(v(τ) + w(r)) - f(υ(τ))}

t i

= w(0)(t) + F(w)(t). (3.5)

We estimate w(ΰ) by the use of Lemma 2.2 part (2) as

||κ;(0); L°°(lt, 00), L2)| | + | |^ ( 0 ) ; Lq([t, 00), L r ) | |

^CII/ Lk^oo)^2)!! (3.6)

so that by (3.3) for any T > T o

( 0 ) {Θ°-Θ). (3.7)

We next estimate the integrand in F(w) for general p and for K; G X(T). From the
identity

1

/(^) - /(w2) = (λ/2) / dσ{(p + 1) \σu{ + (1 - σ ^ l ^ 1 ^ ! - w2)

0

+ (p ~ 1) |σn2 + (1 - σ)^ 2 | p" 3(σ'u 1 + (1 - σ)i/2)
2(n1 - ΰ2)}

we obtain
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so that

\f(υ + w)- f(v)\ <

Using again Lemma 2.2 part (2), we estimate

|jF(w); L°°([t, oo), J})\\ + \\F(w); Lq([t, oo), Lr)\\

< C{\\ \v\p-ιw;L\U,<x>),L2)\\ + || \w\V;L«'([t,^),LfJ)\\} (3.8)

for 0 < 2/q' = δ(r') < 1, r' otherwise arbitrary, and similarly

- F(w2); L°°{[i, oc), L2)\\ + \\F(Wι) - F(w2); L«([t, oo), Lr)\\

< C

+ \\(\Wl\
p-] + \w2\

p-[)w;Li'([t,oo),Lf')\\} (3.9)

with w = wι — w2 From (3.2) we obtain for all t > T > To,

|| \υ\p-ιw; L\[t, oo), L2)| | < Ccv^x \\w; X{T)\\tχ-{p-χ)nl2'θ. (3.10)

We next estimate the last norm in (3.8). By the Holder inequality

IK||f, < jMipΊHI" (3 ii)
with

(p- l)n/2 = δ' + σδ: (3.12)

where δ = δ(r) and δ' = δ(r'), provided 0 < σ < p. Taking the appropriate norm in
time and using the Holder inequality, we obtain for any t > T,

| |w p ;//([*, oo), L f /) | | < \\w;X(T)\\p-σ

x <̂  / dτ\\w(τ)\\f r~(P-σWf \

x I dττ-(p-σ)θi'k\ , (3.13)

where l/k = σq''/q and provided the last time integral converges, namely

(p-σ)θ> \/q'k, (3.14)

so that (3.13) can be continued by

.. . < \\w;X(T)\\pt-{θ+ε), (3.15)

where

(p-σ)θ + σθ- \/q'k = θ + ε, (3.16)

or equivalently

(p-l)θ-ε= i/kq' = 1 - \/q - 1/kq' = 1 - \{δ' + σδ),

namely by (3.12)

( p - l)((9 + n / 4 ) = 1 + ε . (3.17)
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The conditions to be satisfied by the various parameters reduce to the conditions
0 < δ' < 1, the condition σ > 0 or equivalently (p — \)n/2 > δf, the condition
k > I ^ σ/q < \/qf Φ> δ' + σδ < 2 <=> (p - l)n/2 < 2, and the time integrability
condition (3.14) which implies σ < p, and which reduces to σ < 1 Λ-ε/θ by (3.16). We
enforce that condition by imposing ε > 0 and σ < 1 or equivalently (p—l)n/2 < δ+δf

which implies (p ~ \)n/2 < 2. Finally, under the conditions θ > 0, 0 < δ, δ' < 1,

1 < (p- \)n/2<δ' + ό, (3.18)

(p- l)(0 + rc/4) = 1 + ε > 1, (3.19)

we obtain from (3.8), (3.10), (3.13), (3.15),

\\F(w);X(T)\\ < C{cζ^ιTι~(p~l)n/2\\w;X(T)\\ + T~ε\\w; X(T)\\P} . (3.20)

In exactly the same way, we obtain from (3.9),

||F(u>,) - F(w2); X(T)\\ < c{cp

x

ιTι-(P-i}n/2\\w; X(T)\\

εY Ww^XiTψ-'Ww XiDH. (3.21)
2=1,2

We next specialize to the case (p— \)n/2 = 1, where (3.18) (3.19) reduce to δf + δ > 1
and

0 = ( n / 4 ) ( l + 2 ε ) > n/A . (3.22)

It follows immediately from (3.7), (3.20), and (3.21) that for c^ sufficiently small
and T sufficiently large, the right-hand side of (3.5) defines a contraction from the
ball B(R) of radius R in X{T) to itself for a suitable R. By standard arguments, this
implies that (3.5) has a unique solution w in X(T).

By known results on L2-solutions of the equation (1.1), (1.2) [22] the solution
u = v + w just defined for t > T can be continued to all of R with the properties
stated. QED

The previous result calls for the following remarks.

Remark 3.1. From the fact that r and r' are completely decoupled in Lemma 2.2 part
(2) and from the estimates in the proof of Proposition 3.1, it follows that any solution
w of the equation (2.36) in Xθ r(T) for a special choice of T > 0, θ > n/A and r with
θ < δ < 1 belongs to Xθ r (T) for the same T, θ and for any r1 with 0 < δ(r{) < 1.
In particular existence and uniqueness for one special choice of r implies uniqueness
for any such choice of r and existence in the intersection over r of such spaces under
the same assumptions.

Remark 3.2. The smallness condition on the data u+, namely c ^ small, comes from
the estimate (3.10). When one tracks back the various constants, one finds that the
condition is of the type

where Cδ comes from Lemma 2.2, is bounded for δ = δ(r) in compact subsets of
fθ, 1) and blows up when δ | 1. By Remark 3.1, it is sufficient to impose that condition
for one single value of δ to obtain the results for all δ. One can for instance choose
one such δ close to zero. As regards the dependence on θ, since one needs θ > n/A,
one can impose a smallness condition that is valid for all admissible θ by imposing
the previous condition for θ — n/A. If one does so, Proposition 3.1 yields uniqueness
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in Xθ r(T) for any admissible 0, and since Xθ r(T) depends monotonously on θ, the
solution belongs to the intersection of all such spaces for admissible values of θ.

Remark 3.3. The restriction to small data coming from (3.10) is needed only for
(p — i)n/2 = 1. For (p — l)n/2 > 1, the same result as in Proposition 3.1 holds
without such a restriction. Proposition 3.1 can therefore also be used to prove the
existence of (ordinary non-modified) wave operators in L2 on a dense (in L2) set of
initial states for such values of p in so far as the assumptions (3.2), (3.3) are satisfied,
namely for n = 2 and 3 (see below). For n — 3, that result was previously known
only for 4/(n + 2) = 4/5 < p - 1 < 4/(n - 2) = 4 [3].

Remark 3A. Proposition 3.1 is not restricted in dimension. The subsequent restriction
to n < 3 comes from the fact that the available approximate dynamics yields θ0 < 1 in
(3.3) for n = 2 and a stronger condition in higher dimensions (see Lemmas 3.1 and 3.2
below). Proposition 3.1 also holds in dimension n = 1 with however a restriction on
r (or δ) of the type δ0 < δ < 1/2. This comes from the fact that δ, δ' < 6(oc) = 1/2.
For instance the condition (3.18) holds with δ, δ' = 1/2, p = 3, the rest of the proof
being identical. This result allows in particular to extend the admissible range of θ to
1/4 < θ < 1 for n = 1, as compared with 1/2 < θ < 1 obtained in [17].

We now come back to the main problem. We shall apply Proposition 3.1 by taking
for v the function v2 defined by (2.28). From (2.22) it follows immediately that (3.2)
holds with c ^ = | | ί l + | | o o . We now turn to (3.3). The function / is defined by (3.4).
The most obvious choice for S consists in taking [cf. (2.31)]

dtS = g(t~n\ύ+\2), (3.23)

which in the special case g(\u\2) = A^l^"1 yields

S = S(t,ξ) = h(t)\ύ+(ξ)\p-1 (3.24)

with
h(t) = λ [ ^ - 1 ) n / 2 - ' - 1] [{p - l)n/2 - I]" ι (3.25)

for (p- l)n/2φ 1, and
h(t) = λlnt (3.26)

for (p - l)n/2 = 1, the only relevant case. With that choice of 5,

| | / | | 2 = (\/2)t-2\\ΔtxV[-ιS]ύ+\\2. (3.27)

We note for future reference that

Δ exp[-iS]ύ = exp[-z5] (Δύ - UVu VS - IUΔS - u\ VSf). (3.28)

We shall consider separately the case n = 2, where the choice (3.24) is adequate,
and the case n = 3, where S thereby obtained is too singular and a regularization is
needed. The relevant estimate for n = 2 is given in the following lemma.

Lemma 3.1. Let n = 2 and p - 1 = 2/n = 1. Let u+ e H°>2 and let S be defined by
(3.24), (3.26). Then the following estimate holds for all t > 0:

(3.29)
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In particular f defined by (3.4) with υ = v2 defined by (2.28) and S defined by (3.24),
(3.26) satisfies the condition (3.3) for any To > 0 and θ0 < 1.

Proof With S defined by (3.24) and dropping the subscript + for brevity, we obtain

VS = h(t) (p - 1) \u\p-3 Re ϊiVu , (3.30)

ΔS = h(t)(p- l){

Substituting (3.30), (3.31) into (3.28) yields

\Δexp[-ιS]u\ <

\Vu\2) + (p - 3) . (3.31)

(3.32)

For n = 2,p = 2, (3.29) follows from (3.32) and Sobolev inequalities. QED

For n = 3 and p — 1 = 2/n = 2/3, the previous choice (3.24) would yield

\Δexp[-iS]u\ < \Δu\ + C\ \nt\ (\u\~x/?>\Vu

+ C(\nt)2\ύ\ι/3\X7u\2,

2/3\Δu\)

(3.33)

which is inadequate because of the term with negative power \u\ ]/ 3. In order to
circumvent this difficulty, we choose instead

Sμ(t, ξ) = λ(ln t) (t~μ + I ύ+(ξ)\2)ι/3 (3.34)

for some μ > 0 to be chosen later. One can then prove the following estimates.

Lemma 3.2. Let n = 3 and p - 1 = 2/n = 2/3. Let u+ e H0'2 and ύ+ e Lι (for
instance let u+ e Hs'° Π H®2 for some s > 3/2). Let Sμ be defined by (334) for some
μ > 0. Then the following estimates hold for t > 0:

\\(dtSμ - g(ί-n\ύ+\2))u+\\2 <

C\ lnί| (|!

(μ/3) I lnί|) ||

!l2/3 + t^6\\xu+\\ι

2

/2\\x2u+\\l/2)

i particular for μ = 4/3

l 6/9(l|fi+ | l! / 2 + ||ιz+;ff°'2||2)

\nt\)2Γ2(\\u+;H^2\\ + \\u+<H^2

and (3.3) holds for any θ0 < 7/9.

Proof We compute (dropping again the subscript + for brevity)

dtSμ ~ 9(') = λt~l{(t~μ +

(3.35)

(3.36)

(3.37)

|2Λ-2/3 (3.38)

From the inequality

(α < Min(α l / 3

; ( l/3)αδ" 2 / 3 )

<• αl/3+2σ/36-2<τ/3
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valid for 0 < σ < 1, we obtain with σ = 3/8, a = t μ, and b = \ύ\2,

β |2/3 ) β | < r7μ/12|fi|l/2 ;

while obviously

(3.39)

(3.40)

Taking the L2-norm of ΦtS — g( ))ύ and using (3.39), (3.40) yields immediately
(3.35).

In order to prove (3.36), we compute

ΔSμ = (2/3)(λlnt)(t~μ + ύ\2y2/3(ReύΔύ+\X7ύ\2)

- (8/9)(λlnt)(£-μ + | ί l | 2)- 5 / 3(Re "

Substituting these expressions into (3.28) yields

\Δexp[-iSμ]ύ\ < \Δύ\-

( 4 / 3 ) ^ +

(4/9)(λlnί)2 (3.41)

Omitting the regularization t μ in all terms where no negative power of u arises and
using the elementary inequality

\u\2r tμ/β

we obtain [compare with (3.33)]

\Δexp[-iSμ]ύ\ < \Δύ\ + (2/3) |Λlnt| {\ύ\2/3\Δύ\

+ (13/3)tμ/6\Vύ\2} + (4/9)(λ\nt)2\ύ\[/3\Vύ\2 (3.42)

from which (3.36) follows by taking the L2-norm and using Sobolev inequalities.
Finally (3.37) follows immediately from (3.35) and (3.36) in the special case

μ = 4/3. QED

The previous two lemmas will enable us to apply Proposition 3.1 by choosing for
v the asymptotic dynamics v2 defined by (2.28). We shall also be interested in using
the asymptotic dynamics υ{ and v3 defined by (2.27) and (2.34). For that purpose,
it will be necessary to show that the differences vi - υ- belong to the spaces X(T)
defined by (3.1). This will be achieved by the use of the following lemma.

Lemma 3.3. Let vt (i = 1,2,3) be defined by (2.27), (2.28), (2.34) with u+ e H°>2

and S sufficiently regular. Then for all q, r with 0 < 2q = δ(r) = δ < n/2, δ < 2, the
following estimates hold for all t > 0:

\v2-υ3'9L
q([t,oo),Lr)\\ <Ct-ι\\x2u+\\2

c),Lr)\\ < CΓθ\\tθ'xx2

(3.43)

t, oc),L2)| | (3.44)

for all θ > 0 for which the last norm is finite.
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Proof. For 2 < r < oo we estimate

\\v2(0 - v3(t)\\r = \\U(M-1 -l)u+\\r = \\iVΓ]U(M-{ -l)ujr

< C\\(-Δ)δ/2M-]U(M-] -l)u+\\2

by the Sobolev inequality (2.8)

... = Ct~δ\\\x\δ(M-{ -l)u+\\2

by (2.6),
. . . <Ct-{δ+σ)\\\x\δ+2σu+\\2

for 0 < σ < 1. Taking the norm in Lq([t, oc)) we obtain

provided 6 + 2σ > 0, from which (3.43) follows by taking δ + 2σ = 2. Similarly we
estimate

-l)exp[-ιS\u+\\r

< C\\(-Δ)δ/2hΓιU{M-χ -I)exp[-zS'J?i+||2

= Ct~δ\\ \x\δ(M~x -

< CΓ{δ+σ)\\ | .τ | ό +

< Ct-(δ/2+θkθ-[\\x2 exp[-ιS]u+\\2

by taking δ + 2σ = 2. Taking the norm in Z9([£, oo)) yields (3.44). QED

It follows in particular from (3.43) that v2 - v3 e Xθ,r(T) for all T > 0, all θ < 1
and all admissible r. Furthermore for θ < 1,

11̂2 ~~ V3 > -^θ r (-̂ )ll — CT . (3.45)

Similarly if in / as given by (2.31) the contribution of the term x2 exp[-iS]u+

satisfies the condition (3.3), then υ{ - υ2 e Xθ^r(T) for all T > To, all θ < θ0 and
all admissible r. Furthermore for θ < θ0,

\\v{ - v2; XθΛ.(T)\\ < CTΘ~Θ° . (3.46)

In space dimension n = 3, Lemma 3.2 will enable us to apply Proposition 3.1 by
choosing for v the asymptotic dynamics υ2 defined by (2.28) with S replaced by the
regularized function S defined by (3.34) with μ = 4/3. We shall also be interested
in using the more natural unregularized dynamics z\ (i = 1,2,3) associated with the
function

KV(O|2/3 (3-47)

For that purpose, it will again be necessary to show that their differences with the
regularized ones belong to the spaces X(T) defined by (3.1). This will be achieved
for i = 1,2 by the use of the following lemma.

Lemma 3.4. Let n = 3 and let vιμ and v% (i = 1,2) be defined by (2.27), (2.28) with
S defined by (3.34) and (3.47) respectively, with u+ G i/ 0 ' 2 and ύ+ E Lι. Then the
following estimates hold for i = 1, 2 and all t > 0 :

vιμ - v%\\6 < Cf- ' -"/ 3 { |λ lnί | | | .ru+ | | 2 + (λlnί) 2 | |a :u + | |2 / 3 | |a ; 2 u + | |y 3 } . (3.49)
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In particular for 0 < 2/q = δ{r) = δ < 1,

\\vιμ - vτ\ Lq([t, oc),L r)| | < C|λ lnί | (1 + \\\nt\δ)Γ{μ/3+δ/2Hχ-δ)μ/A), (3.50)

where C depends only on \\u+\\x and \\u+\ H°'2\\. In particular for μ = 4/3,
viμ ~vte Xθr(T)for all θ < 7/9, all r with 0 < δ < 1 and all T > 0.

Proof For all r with 2 < r < oc, we estimate

\\υ2μ - v2\\r = \\UM-ι(exp[-iSμ] - exp[-iS])u+\\

< C\\(-Δ)δ/2M-[UlVΓ\zxp[-ιSμ]-exp[-ιS})u+\\2

by adding a unitary factor M~ι and using the Sobolev inequality (2.8)

. . . - CΓδ\\ \x\δ(exp[-ιSμ] - exp[-ιS])u+ | |2 (3.51)

by (2.6). The same estimate holds for υλ with exactly the same proof. For r = 2
(where actually (7 = 1), we estimate

IKexpt-zS' ] - Qxp\-ιS])u+\\2 <

by (3.39). This proves (3.48). For r = 6 or equivalently (5 = 1, we have to estimate
in L2 (in Fourier space variables)

Now

-iSμ] - Qxp[-iS])ύ+ = (expt-z'S^J - Qxp[-iS])(Vύ+ - i(VSμ)ύ+)

-z5] (V5 μ - V5)τi+ . (3.52)

<(sμ-s, |V5μ ^ - V5| |

( 5 / t - 5 ) | V ύ + | <
(3.53)

\Sμ - S\ \VSμ\ \u+\ = (l/3)(λlnί)2((ί-" + |M 2/3 Λ

(3.54)

|V5μ - V5| |ώ+ | = (2/3) |λlnί| (|«+ Γ4/3 - ( r |ώ+|2Γ2/3)
3 - l % l 2 / 3 )

< ( 4 / 3 ) | λ l n ί | ί - ' ' / 3 | V ΰ + (3.55)

Using (3.53)-(3.55) to estimate (3.52) and substituting the result into (3.51) with δ = 1
immediately yields (3.49).

Taking the norm of (3.49) in L2([t, oc)) yields (3.50) for 6 = 1 (i.e. r = 6), from
which (3.50) for general δ, 0 < δ < 1, follows by interpolation with (3.48). QED

Lemma 3.4 does not cover the case of the asymptotic dynamics t>3 for which a
direct estimate of v3 — υ3 would be less convenient to obtain directly. This is however
immaterial since υ3 is easily compared to υ2 uniformly in the choice of S by Lemma
3.3, esp. (3.43).
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We are now in a position to state the main result of this section.

Theorem 3.1. Let n — 2 or 3 andp— 1 = 2/n. Let u+ £ H°>2 with | | ί i + | | o c sufficiently

small. If n = 3, assume in addition that u+ G Lι. For n = 2, let S be defined by

S(ί,ξ) = \(\nt)\ίι+(ξ)\. (3.56)

for n — 3, let S be defined either by (3.47) or by (3.34) with μ = 4/3, namely

S(t,ξ) = S4/3(Lξ) = Λlntα" 4 / 3 + | f/+(O| 2) 1 / 3 (3.57)

Let vτ (?; = 1,2,3) be defined by (2.27), (2.28), (2.34). Then the equation (1.1), (1.2)

has a unique solution u G (/Γ(IR,L2) such that for any r with 0 < 2/q = δ(r) < 1,

u G Lq

oc(R,Lr) and for any such r, any θ with 1/2 < θ < 1 for n = 2 and

3/4 < θ < 7/9 for n - 3, any i= 1. 2, 3 and any t > 0,

\\u(t) - v7(t)\\2 < CΓΘ . (3.58)

\\u - v%\ Lq([t, oo), / / ) | | < C t " 0 . (3.59)

A similar result holds for negative times.

Proof We prove the result first for ί = 2, and, for n = 3, with the choice (3.57)

for S. It follows from Lemma 3.1 for n = 2 and from Lemma 3.2 for n = 3 that /

defined by (3.4) with v = v2 satisfies the assumption (3.3) for any To > 0 and any

θ{) with ΘQ < 1 for n = 2 and θ{) < 7/9 for n = 3, while in all cases υ2 satisfies

(3.2) with c^ = ||-u+ | | i 3 C. The result for v2 [with the choice (3.57) for n = 31 is then

an immediate application of Proposition 3.1. The result in the other cases follows

immediately from the fact that all other asymptotic dynamics differ from the previous

one by functions which belong to the spaces Xθ r(T) used in Proposition 3.1 for all

the relevant values of θ and r (actually are small in those spaces for large T). For

v3 [and for n — 3, S given by (3.57)] this fact follows from Lemma 3.3, esp. (3.43).

For vx [and for n = 3, S given by (3.57)], it follows from Lemma 3.3 again, esp.

(3.44), supplemented by Lemma 3.1, esp. (3.29) for n = 2 and by Lemma 3.2, esp.

(3.36) for n = 3. For n = 3 and for S given by (3.47), it follows from Lemma 3.4

for ^j and i>2, and finally from Lemma 3.3 again, esp. (3.43) for υ3. QED

Remark 3.5. In the same way as for Proposition 3.1, uniqueness of u holds for any

special choice of θ and r in the allowed range, and the decay estimates (3.58), (3.59)

hold for the common solution u for all θ and r in the allowed range. The smallness

condition on c ^ can be taken independent of θ and r (see Remarks 3.1 and 3.2).

Remark 3.6. As in the one dimensional case [17J, one can derive additional decay

estimates of u from Theorem 3.1. For instance it follows from the fact that

||?;2(£)||Γ < Ct~δ{r) (3.60)

for all ί > 0 and all r, 2 < r < oc, that

\\v2;L
q([ί,oc),Lr)\\ < CΓδ(r)/2 (3.61)

for 0 < 2/q = δ(r) < n/2. Combining this result with (3.58), (3.59) and noting that

6(r) < 1 implies δ(r)/2 < θ, we see that

\\u; Lq([t, oo), Lr)\\ < CΓδ{r)/2 (3.62)

for alH > 0 and for 0 < 2/q = δ(r) < 1.
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Remark 3.7. Although the free dynamics vo(t) = U(t)u+ does not yield the correct
asymptotic behaviour of the full dynamics u(t) in the present situation, it nevertheless
yields the correct behaviour for \u(t)\. In fact, from (3.58), (3.59) with i = 3, from
the fact that \vo(t)\ = \υ3(t)\ and therefore that

\u(t)\ - \υo(t)\ = K 0 | - \v3(t)\ < \u(t) - v3(t)\

it follows that for the solutions obtained in Theorem 3.1 and for all relevant values
of θ and r, the following estimates hold:

\\\u(t)\-\U(t)u+\\\2 <CΓΘ , (3.63)

|| \u\ - \U( )u+\', Lq([t, oo), L r)) | | < CΓΘ . (3.64)

Similarly, in Fourier transformed variables, from (3.58) with i — 1 and from the fact
that \%(t)\ = \ϋ{(t)\, it follows that

|| \ύ(t)\ - | ^ K l l l 2 < \\u(f) - ϋ{(t)\\2 < CΓΘ (3.65)

for the solutions of Theorem 3.1 and for all relevant values of θ.

In the end of this section, we prove that the wave operator Ω+ : u+ —> u(0) defined
through Theorem 3.1 satifies the intertwining property, at least on a suitable subset
of asymptotic states. For that purpose, we define

Y{ρ) = {u+ G H2fi n H0-2: | | β + | | o o < ρ} . (3.66)

Clearly Y(ρ) is invariant under the free evolution for any ρ > 0, namely

U(t)Y(ρ) = Y(ρ) for all t 6 R

by (2.5). In particular Theorem 3.1 applies to any u+ G Y(ρ) as well as to any U(s)u+

for any s eR provided ρ satisfies the smallness condition of that theorem. Let W(t)
be the full non-linear evolution group, namely W(t):u(0) —» u(t), where u is the
solution of the Cauchy problem for the equation (1.1), (1.2) with prescribed u(0). We
can now state the intertwining property as follows.

Proposition 3.2. Let n = 2 or 3 andp— 1 = 2/n. Let ρ satisfy the smallness condition
of Theorem 3.1. Then for any u+ G Y(ρ) and any s G l ,

W{s)ΩJrιι+ = Ω+U(s)u+ . (3.67)

Proof. Let v(t,u+) be any of the asymptotic dynamics considered in Theorem 3.1
and let u(t, u+) be the solution of the equation (1.1), (1.2) constructed in that theorem
for u+ G Y(ρ). That solution is characterized by the fact that

u( ,u+)-υ( ,u+)eXθfr([T,oo)) for some T > 0 (3.68)

for some (equivalently for all) admissible θ and r. Furthermore

Ω+ll+ = 72(0, U+)

and

W(s)Ω+u+ = u(s, u+). (3.69)

Similarly
i? f U(s)u+ = u(0. U(s)u+), (3.70)
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where the solution w(0, U(s)u+) is characterized by the fact that

u( , U(s)u+) - υ(Ί U(s)u+) e XΘ.r([T, oo)) for some T > 0 (3.71)

for admissible θ<r. The intertwining property (3.67) therefore reduces to

u(s. u+) = i/,(0, U(s)u+)

or equivalent, by the uniqueness for the Cauchy problem

u(s + , u+) = u(Ί U(s)u+). (3.72)

It follows from Theorem 3.1, in particular from (3.68) and (3.71), and from (3.72)
that the intertwining property holds provided

v(s + , u+) - v( , U(s)u+) e XΘ.r([T, oo)) for some T > 0 (3.73)

for some admissible θ.r. That property in turns follows from estimates very similar

(3.74)

to those of Lemma 3.4. We choose v = υ{ and both for n = 2 and n = 3,

S(tξ) = (\nt)g(\ύ+\2) = λ(lnt) \u+(ξ)\2/n .

Then

v{(t-\- s. uΛ) — v{(ί, U(s)u+) = U(t + s) (exp[—iS(t + «s)] — exp[ —

By the same estimate as in Lemma 3.4, we obtain [cf. (3.51)]

||i;1(ί + . s ,u + )- t, U(s)u+)\\r < Cr\t + s ~δ

x\δ(Qxp[-iS(t + s)] - exp[-z5(t)l)ϋ+ | | 2

for 2 < r < 00, δ = ό(r). In particular for r = 2,

\\υ{(i + s, t/+) - v{(t, U(s)u+)\\2 < \\(S(ί + s) - S(t))u+\\2

(3.75)

(3.76)

We next obtain by interpolation

|| | | r < Cr\t + s\-δmι~δ\\V(exp[-iS(t + s)] -

for 0 < δ < 1, δ < 1 if n = 2. Now

= ~ι Qxp[-iS(t + s)] (V5(t + s) - VS(t))ύ+

+ (exp[-iS(ί + s)] - exp[-z5(ΐ)]) (Vu+ -

so that by (3.74)

\n(\+s/t)\\\g(\ύ+)\2)ύ+\\2 (3.77)

-sA)|^2/n||%||2 = m- (3 7 8 )

(3.79)

and therefore

| 2 < C\

< C\

s/t)\ (In/,) |

s/t)\ (Q2/" + (lnt)ρ4/n) \\xu+\\2.

(3.80)

(3.81)
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Substituting (3.81) into (3.79) yields

\\v{(t + s, u+) - v{(t, U(s)u+)\\r < C\t + s\~δ\ ln(l + s/ί)\

x ρ2/n\\u+\\ι

2-
δ(l + ρ2/nlnt)δ\\xu+\\δ

2 (3.82)

and (3.73) for v = v{ follows immediately from (3.78) and (3.82) for all θ < 1 and
0 < δ < 1. QED

4. The Hartree Equation

In this section we prove the existence of modified wave operators for the Hartree
equation (1.1) with non-linearity

f(u) = (V * \u\2)u = X(\x\~ι * \u\2)u (1.3)

in space dimension n > 2. As for the case of the NLS equation, the main step of the
argument consists in solving the equation (2.36) for u in a neighborhood of infinity
in time by a contraction method. We use the same Banach spaces Xθr(T) defined
by (3.1) as for the NLS equation. The basic existence and uniqueness result is the
following analogue of Proposition 3.1.

Proposition 4.1. Let n>2. Let k± satisfy 6(k±) = (1 ± rj)/2 with 0 < η < 1 so that
h_ < 2n/(n- 1) < k+. Let To > 0 and let v e f^([T0, oo), L2) Π L°°([T{), oc), Lk+)
satisfy

for ί > T 0 , (4.1)

for t>T0, (4.2)

for some θ0 > 1/4, where

f = (idt + (l/2)Δ)υ-f(υ). (4.3)

Then for c^ sufficiently small (depending only on X and n)for 0 < 2/q — δ(r) < 1
and 1/4 < θ < θ0, the equation (1.1), (1.3) has a unique solution

ue ^(R ;L
2)nLf0C(i,//)

such that u — v = w E Xθ ,Γ(T0).

Proof The main step consists again in solving the equation (2.36) or equivalently
(3.5) for w by contraction in Xθr(T) for T > Γo, T sufficiently large, where / is
now defined by (1.3). We estimate w(0) as before by (3.6), (3.7). We next estimate
the integrand in F(w) for w G X(T). Now

f(v + w) - f(v) = (V * \υ\2)w + (V * 2RQVW)V

+ (V * 2Revw)w + (V * \w\2)v + (V * \w\2)ιυ

= L{ + L2 + Qx + Q2 + /(uθ . (4.4)

where L and Qt, i = 1.2 are the terms linear and quadratic in κ;. By Lemma 2.2
part (2), we estimate

t oo), L2)| | + |F(uO; Lq([ί, -DO), L r ) | |

+ L2; L
1 ^ , oo), L2)| | + \\f(w); L9"K[ί, oo)r L

f )||

+ Q 2 ; L ^ ( [ ί j o o ) , ^ ) ! ! } (4.5)
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for 0 < 2/q[ = δ{r[) = δ[ < 1 (i = 1,2), r[ otherwise arbitrary. We consider the
various terms in the right-hand side of (4.5) successively. We note for future reference
that by the Holder and Hardy-Littlewood-Sobolev (HLS) inequalities,

\\(V Hv,v2))v,\\fJ < \\V*(vλυ2)\\m\\v3\\aj < \\V] ||S| I M U N I S , . (4.6)

provided

n/f' — n/s3 = 6' + δ(s3) = n/ni = n/s{ + n/s2 - n + l Ξ l - δ(s{) — δ(s2)

and n < rn < oc, or equivalently

0 < δ' + δ(s3) = 1 - δ(s{) - δ(s2) < 1 . (4.7)

We first estimate the linear terms in (4.5). Now

||(^*H2HI2<ll^*H2lloclHl2 (4 8)

We estimate

\V * \v\2\ = |λ| ( | xΓ 'χ( |x | < a) * \υ\2 + \x\~ιχ(\x\ > a) * \v\2)

by the Holder inequality,

•• < C H I f c + N * _ (4.9)

by optimizing with respect to a. From (4.8), (4.9) and the assumption (4.1), we obtain
for all ΐ > Γ > Γo,

\\(V*\v\2)w;Lι([t,oo),L2)\\ < Cc^Ww;X(T)\\t~θ . (4.10)

The second linear term is estimated by (4.6) with r' = 2, v{ = v3 = v, s{ = s3 = k,
v2 = w, s2 = 2 as

\\(V*2Reϋw)υ\\2<C\\υ\\l\\w\\2

and (4.7) is obviously fulfilled with δ(k) — 1/2. Taking the L1 norm in time and
using (4.1) and the fact that k_ < k < fc+, we obtain for alH > T > To,

\\(V*2Revw)v,L\[t,oo):L
2)\\ < C(^\\w;X(T)\\re . (4.11)

We postpone the study of the quadratic terms in (4.5) and consider next the cubic term.
Dropping the subscript 1 for brevity, we estimate by (4.6) with υ{ — υ2 = v3 — w
and ,Sj = ,s2 = s3 — s,

\\{V *\w\2)w\\f, < C | H | ^ : (4.12)

provided δ' + 3δ(s) = 1 and 0 < 2δ(s) < I, the latter being automatically satisfied
for 0 < δ' < 1. We next estimate for 0 < δ(s) < 6,

IklL^ll^ll^^lkll^76. (4-13)
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Taking the appropriate norm in the time variable and eliminating δ(s), we estimate
for t > T > 0,

χ ί-0-(\-6/)/δ)θ+l/q/-(l-δ/)/δq

by the Holder inequality in time, provided qδ > q'{\ - δ'), which is equivalent to
1 — δ' < 2qf = 2 — δ' and is therefore automatically satisfied, and provided the final
time integral converges, or equivalently

0 ( 3 - ( 1 - δ ' ) / δ ) > l/q' - ( 1 -δ')/δq = 1 / 2 . (4.15)

From (4.14), from the definition of X(T) and the last equality in (4.15), it follows
that for all t > T > 0,

| | / ( ^ ) ; L ^ , o c ) , I 7 ) | | < C\\w;X(T)\\3Γ(θ+ε) (4.16)

with
ε = 2(θ- 1/4) > 0. (4.17)

The condition (4.15) is automatically satisfied if ε > 0 and δ > 1 — δ'. In particular
all the conditions required on the various parameters are satisfied by imposing (4.17)
and

0 < 1 -δ' = 3(5(5) = δ < 1. (4.18)

We next come back to the quadratic terms in (4.5), omitting the subscript 2 for brevity.
Using (4.6) with v{ = w, s{ = s, with (υ2,v3) being (v,w) and (<s2,.s3) being (A:, ,s)
in the two possible ways, we estimate

ligi + g 2ll f/<ciHi f cH|2 (4.19)

with δ' + δ(k) + 2δ(s) = 1 and provided 0 < 2δ(s) < 1 and 0 < δ(s) + δ(k) < 1.
We next use (4.13) and take the appropriate norm in the time variable to obtain for
t > T > τQ,

,+Q2;L^([ί.oc),Lp')\\ < C C o o | |

1 1/5'

< CCoc\\w; X(T)\\2(l-b(s>/b)\\w; Lq([t, oo), Lr)\\2b(s)/b

χ f-(b{k)+2θ{\-δ{s)/δ))ί\/q -2b(s)/bq (4 20)

by the Holder inequality in time, provided k_ < k < k+, provided qδ > 2q'δ(s)
which is equivalent to δ' + 2δ(s) < 2 and is always satisfied for δ(k) > 0, and
provided the final time integral converges, or equivalently

2Θ( 1 - 6(s)/δ) > \/q' - δ(s) - δ(k) = (1 - δ(k))/2 . (4.21)
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From (4.20), from the last equality in (4.21) and from the definition of X(T), it
follows that for alΠ > T > To,

IIQ! +Q2;L
9"/([ίJoo),Lf/)|| < CcJlw XiTφ-^^ (4.22)

with
ε2 = θ-(l -δ(k))/2. (4.23)

It is natural at this point to choose δ(k) = 1/2, so that in particular k_ < k < k+

and (4.1) can be used. With that choice, δ' + 2δ{s) = 1/2, ε2 = θ - 1/4 = ε/2 and
all the conditions required on the various parameters are easily seen to be satisfied
provided δr > 0 and

0 < 1/2 - δ' = 2δ(s) < δ < 1 . (4.24)

Finally, under the conditions 0 < δ < 1 and (4.17), we obtain from (4.10), (4.11),
(4.22), and (4.16),

\\F(w);X(T)\\ < Ci&llw

+ T-ε\\w;X(T)\\3} (4.25)

for all T > To. In exactly the same way, since in the present case f(v + w) is a
polynomial in w and w, we obtain for w^ w2 G X(T),

\\F(w{)-F(w2y,X(T)\\ <C\
1=1,2

(4.26)
ί

2=1,2

With the estimates (4.25) and (4.26) available, the end of the proof is identical with
that of Proposition 3.1. QED

The previous result calls for the following remarks.

Remark. As in the case of Proposition 3.1, existence and uniqueness for one special
choice of r with 0 < δ < 1 implies uniqueness for any other such choice and existence
of the solution in the intersection over all such r of the spaces Xθ r (see Remark 3.1).
The smallness condition on c ^ has therefore to be imposed for one single value
of δ. It can furthermore be taken to be valid for any admissible θ. Proposition 4.1
then yields uniqueness in Xθ r for any admissible θ, and the solution belongs to the
intersection over all admissible θ of such spaces (see Remark 3.2).

Remark 4.2. The Hartree equation is more regular than the NLS equation. This appears
in the result at two places. First, the (optimal) decay condition on v has to be imposed
only in Lk± instead of L°°, where k_ < 2n/(n - 1) < k+ [compare (4.1) with (3.2)].
Second, the lower bound on θ is θ < 1/4 instead of θ > n/4, thereby allowing for
the result to hold in arbitrary dimension n > 2.

Remark 4.3. As in the case of the NLS equation, the smallness condition on v could
be dropped if the potential V were short range, namely |F(x)| < C\x\~Ί for some
7 > 1. Since however that case has been treated in [16] by more direct methods, we
shall not elaborate on this possibility.

We now come back to the main problem. We shall apply Proposition 4.1 by taking
for v the function v2 defined by (2.28) and we shall need to ensure that v2 satisfies
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the conditions (4.1) and (4.2). We first consider (4.1). If follows from (2.22) that v2

satisfies (4.1) with

C o c = M a x | | £ + | | , ± , (4.27)

provided the right-hand side is finite, which is always the case for u+ £ iT0 '2. We
next consider the condition (4.2). The function / is defined by (1.3), (4.3) and we
take for S the obvious choice (3.23) which in the present case reduces to

+ (4.28)

by an elementary computation. The relevant estimate is given by the following lemma.

Lemma 4.1. Let n > 2. Let u+ e H°>2 and let S be defined by (4.28). Then the
following estimate holds for any t > 0:

+ C(\nt)2\\u+\\2\\xu+\\2\. (4.29)

In particular f defined by (4.3) with v = υ2 defined by (2.28) and S defined by (4.28)
satisfies the condition (4.2) for any To > 0 and any θ0 < 1.

Proof With S defined by (4.28) and omitting the subscript + for brevity, we obtain

VS = (In t) (V * 2 Re ύVύ), (4.30)

ΔS = (lnί)(V*2(Reϋ,Δύ+ |Vu|2)). (4.31)

We substitute (4.30) and (4.31) into the right-hand side of (3.28) and estimate the
various terms in L2. By the Holder and HLS inequalities, we estimate [see especially
(4.6), (4.7)]

provided
0 < δ(k) = n/m = 1 - δ(s) < 1 ,

... < C\\nt\\\Δύ\\η

2\\Vύ\\l-2η\\u\\η

2

with η = δ(k), by Sobolev inequalities,

. . . < C | l n ί | | | ^ ώ | | 2 | | V i z | | 2 | | i z | | 2 (4.32)

by interpolation. We estimate the next term in (3.28) as

||<fi AS| | 2 < 2| In t\ \\u(V * (\ύΔύ\ + | Vά | 2 )) | | 2 . (4.33)

Now

<C\\ϋ,]\l\\Δύ\\2,

provided

0 < δ(s) = n/m = 1 - δ(s) < 1 ,

which is satisfied by δ(s) = 1/2 and m = 2n,

. . .<C| | ' f t | | 2 | |VU| | 2 | |Z\ΰ | | 2 . (4.34)
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Finally

\\ύ(VS)2\\2<4(\nt)2\\ύ\\s\\V^\ύ\/ύ\\\2

m

<C(lnt)2\\ύ\\3

s\\Vύ\\2

2:

provided

0 < δ(s)/2 = n/m = 1 - δ(s) < 1 ,

which is satisfied by δ(s) = 2/3 and m = 3rz,

... < C(\nt)2\\ύ\\2\\Vύ\\4

2. (4.35)

Collecting (4.32), (4.33), (4.34), and (4.35) yields (4.29) immediately. The property
stated for / follows from (4.29) and from the fact that the function / satisfies (3.27).
QED

Remark 4.4. Some parts of the estimate (4.29) can be somewhat sharpened. For
instance, from the fact that

AS = 4π(λ In t) \ύ+12 for n = 3 ,

ΔS = - ( n - 3 ) ( λ l n ί ) ( | ξ | - 3 * \ύ+\2) for n > 4 ,

one obtains for any n > 3,

\\ύ+ΔS\\ < C\ \nt\ \\ύ+\\l* < C\ \nt\ \\xu+\\l. (4.36)

Since one must assume that u+ G H0-2 anyway, this does not result in any significant
improvement of Lemma 4.1.

As in the case of the NLS equation, the previous lemma will enable us to apply
Proposition 4.1 by choosing for v the asymptotic dynamics v2 defined by (2.28). In
order to extend the results to the asymptotic dynamics v{ and v3 defined by (2.27)
and (2.34) we shall as before rely on Lemma 3.3, which does not make any reference
to the specific choice of the interaction / in (1.1).

We are now in a position to state the main result of this section.

Theorem 4.1. Let n > 2. Let k± satisfy δ(k±) = (1 ± η)/2 with 0 < η < I. Let

u+ e H{)-2 with c^ as defined by (4.27) sufficiently small. Let S be defined by (4.28)
and let t\ (i = 1.2.3) be defined by (2.27), (2.28), (2.34). Then the equation (1.1), (1.3)
has a unique solution u G ̂  (M. L2) such that for any r with 0 < 2/q — δ(r) < 1,
u e Lioc(R, Lr) and for any such r and any θ with 1/4 < θ < 1, any i = 1, 2, 3 and
any t > 0,

K 0 - ^ ( * ) | | 2 <CΓΘ, (4.37)

| [ ^ - ^ ; ^ ( U , o c ) , L r ) | | <CΓΘ . (4.38)

A similar result holds for negative times.

Proof. The proof closely follows that of Theorem 3.1. We first prove the result for
i = 2. It follows from Lemma 4.1 that / defined by (4.3) with v = υ2 satisfies the
assumption (4.2) for any To > 0 and any θ0 < 1 while v2 satisfies (4.1) with c^
given by (4.27). The result for v2 is then an immediate application of Proposition 4.1.

The result for vx and v3 follows from the fact that υx — v2 and υ3 — v2 belong to
XOr{T) for all relevant values of r and θ by Lemma 3.3 and Lemma 4.1. QED
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Remark 4.5. In the same way as for the NLS case, uniqueness of u holds for any
special choice of θ. r in the allowed range, and the decay estimates (4.37), (4.38) hold
for all θ. r in that range (see Remark 3.5 and 4.1).

Remark 4.6. As in the NLS case, one can derive additional decay estimates of u from
Theorem 4.1. For instance it follows from the fact that v2 satisfies (3.60) also in the
present case that u also satisfies (3.62) for all ί > 0 and for 0 < 2/q = δ(r) < 1.
Similarly, the free dynamics U(t)u+ yields correctly the asymptotic behaviour of
u(t)\ and Remark 3.7 applies verbatim in the Hartree case.

We conclude this section by proving that the wave operator Ω+ : u+ —> u(0) defined
through Theorem 4.1 satisfies the intertwining property on a suitable set of asymptotic
states. We now define

Y(ρ) = {u+ e H2^ Π F 0 ' 2 :Max | |£ + | | f c ± < ρ} . (4.39)

Clearly Y(ρ) is invariant under the free evolution for any ρ > 0. We still denote by
W(t) the non-linear evolution group W(ί):u(0) —» u(t), where u is the solution of
the Cauchy problem for the equation (1.1), (1.3) with prescribed u(0). We can state
the intertwining property as follows.

Proposition 4.2. Let n > 2 and δ(k±) = (1 ± η)/2 with 0 < η < 1. Let ρ satisfy the
smallness condition of Theorem 4.1. Then for any u+ G Y{ρ) and any s G M,

W(s)Ω+U+ = Ω+U(s)u+ . (4.40)

Proof The proof follows closely that of Proposition 3.2. As in the latter it is sufficient
to show that

v1(,s + ,?x + )- v{( ,U(s)u+) eXθr([T,oc)) for some T > 0. (4.41)

We estimate that difference in L2 by (3.77) followed by (4.8), (4.9) and we obtain

(l + s/t)\ρ2\\u+\\2 = m. (4.42)

We next estimate the same difference in U by (3.79), (3.80) followed by estimates
of the type (4.6) and (4.9) and we obtain

|| | | r < C\t + s)\~δ\ ln(l + s/t)\ρ2\\u+\\\-δ

x (\ + ρ2\nίγ\\xu+\\δ

2 (4.43)

for 0 < b = (5(r) < 1, δ < 1 if n = 2. Then (4.41) follows from (4.42) and (4.43) for
all θ < 1 andO < δ < 1. QED
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