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Abstract. The theory of the partially U(ί) compactified scalar massless field on the
compact Riemann surface with Nambu-Goto action is defined. The partition
function is determined completely by a choice of the finite-dimensional approxi-
mations. The correlation functions are the only correctly defined objects of the
theory. The averages of the correlation function asymptotic values provide the
amplitudes. For the compact Riemann surfaces of any genus the usual bosonic
string amplitudes are the special cases of the above amplitudes.

1. Introduction

Let M be a compact orientable surface of genus g endowed with the Riemannian
metric gf/x), i, j = 1,2. In the bosonic string theory the Nambu-Goto action for the
scalar massless fields Xμ(x), μ = l, ...,D on the surface M is given by

S(X") = - l/2α2 J
M

where giJ(x) is the inverse matrix for the metric matrix gf/x). It was shown [1, 2]
that in the partition function

Z= Σ lDg,Jlx)DX'%x)explS(Xη] (2)
9 = 0

for the space dimension D = 26 the integration over the metrics gt/x) is reduced to
the integration over the complex structure parameters of the Riemann surfaces M.
The bosonic string amplitudes are the special correlation functions defined in the
following way [3, Vol. 1, Sect. 1.4.2]:

- - ' (3)

n*)= j< " " " -
M
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D

where (fc, X(x)) = Σ kμXμ(x) and a vector fe is a D-dimensional momentum. For
μ = l

g=0,1 the amplitudes (3) are known [3]. For the fixed compact Riemann surface
of higher genus the correlation functions (3) for the fields Xμ(x) compactified on a
torus and for the vertex operators with v(x) = l are computed in [4].

The action (1) is invariant under the shift Xμ^Xμ + aμ for a constant vector aμ

and therefore, the integral (2) with respect to Xμ(x) diverges. The finite part of this
integral [1, 2] is not uniquely defined. In order to calculate the integral (2) let us
consider the fields Xμ(x) taking values in the circle of radius R or in the quotient
group R/2πZ, where R is the group of real numbers and Z is the group of integers.
Hence we consider the functions Xμ(x) and Xμ(x) + 2πRn(x) as equivalent. The
integer value function n(x) is smooth if it is constant. Thus to consider the smooth
functions Xμ(x) with the same action (1) it is necessary for the field Xμ(x) to belong
the quotient group Cco{M)/2πRZ, where C™(M) is the space of the smooth
functions on the Riemann surface M and 2π.RZ is the group of the constant 2πRZ-
valued functions on the Riemann surface M. Therefore, the field Xμ(x) takes values
in the quotient group R/2πRZ at an arbitrary but fixed point of the Riemann
surface M. Such field is called of the partially U(ί) compactified. Let us compute
the auxiliary integral for the integrals (2) and (3)

ί expΓi Σ (Yμ,Xμ) + S(Xμ)]DXμ(x), (4)

where the inner product of the functions on the Riemann surface M

(φ, ψ) = j φ(x)ψ(x)(detgij{x))ί/2d2x (5)
M

and for every μ= 1, ...,Z> the function Yμ(x) satisfies the condition

{YμΛ)eR~1Z. (6)

Here 1 is the function equal to 1 everywhere on M. The condition (6) provides the
invariance of the integrand (4) under the shifts Xμ^>Xμ + 2πRnμ, nμeZ. In other

Γ D Ί
words the condition (6) provides exp i £ (Yμ,Xμ) to be a character of the
quotient group (C°°(Λf)/2πΛZ)x D. L μ = x J

For an arbitrary lattice gauge theory with an abelian compact gauge group the
non-gauge invariant correlation functions are identically zero [5], The definitions
of the partition function and the gauge invariant correlation functions allow the
generalizations to the lattice gauge theories with non-compact abelian gauge
group [5]. The simplest non-compact abelian group is the group of real numbers
R. By using de Rham idea [6] it is possible to transfer the definitions of the lattice R
gauge theory to the definitions of the partition function and the correlation
functions of the R gauge theory on the Riemann manifold [7]. In particular, the
correlation functions of the scalar massless field theory on a Riemann surface with
the action (1) were calculated [7]. The partition function of this theory is
meaningless since it depends on a choice of the finite-dimensional approximations.

In the next section it will be proved that for the partially U(ί) compactified
scalar massless field theory (1), (4), (5), (6) on the Riemann surface the non-gauge
invariant correlation functions with (Yμ, l )φθ are identically zero. The gauge
invariant correlation functions with (Yμ, l) = 0 and the partition function coincide
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with the correlation functions and the partition function of the R-gauge scalar
massless field theory on a Riemann surface [7]. Hence the partition function or the
integral (4) with Yμ = 0 is completely determined by a choice of the finite-
dimensional approximations of the integral (4). The special choice of the finite-
dimensional approximations gives the result of [1,2]. Therefore, the statistical
theory (1), (2), (3) with 17(1) compactified zero mode is meaningless. The only
correctly defined object is the correlation function of the theory (1), (4), (5), (6) for
the fixed Riemann surface M. This correlation function for the vector function
Yμ(x) satisfying the conditions (Yμ(x), l) = 0 is given by

exp Γ - α2/2 J" ^ (Y(x), Y(y))G(x, y)(detgf/x))1/2(detgtj(y))1/2d2xd2y~\, (7)

where the inner product (Y(x), Y{y)) = Σ Yμ{x)Yμ{x)Yμ{y) and G(x,y) is the

Green's function for the Laplace-Beltrami operator on the Riemann sur-
face M. The amplitude (3) corresponds with the vector function Yμ(x)

N

= (detg ί/)"1/2 Y kμδ(x,x^. The substitution of this vector function into the
1=1

expression (7) gives the diverging integral. Usually the finite part of (7) inserted into
the integral (3) provides the amplitude. Because of conditions (Yμ, l) = 0, or

JV

£ kμ = 0 in our case, it is possible to replace the Green's function G(x, y) in (7) by a
1=1

function G(x, y) + f(x) + g(y), where the functions f(x) and g(y) are arbitrary. Thus
the finite part of the correlation function (7) is not connected in general with the
geometry of the Riemann surface M. For example, the simplest amplitude
corresponding the Riemann sphere CP1 is usually computed by using the Green's
function for the Laplace-Beltrami operator on the complex plane C. Our definition
of the amplitude is similar to the integral (3) but it has a simple geometrical

JV

interpretation. Under the assumptions £ fcf = 0, μ = l,...,D, (ki9ki) = mf,...,
1=1

i=l,...,N this definition provides the following iV-point amplitude:
(8)f ( Π vJtxd(tetgtfxd)1/2d2x) exp Γ-α 2 Σ (K kj)G(xb x/l.

Now the space dimension D = 26 is not preferred and the masses m{ are arbitrary.
The last property is physically natural since we investigate the scattering
amplitude in the Euclidean space and the particle masses usually are fixed in the
Minkowski space. The integral (8) is convergent because of the smoothing
functions v^). By means of the regularization procedure in the integral (8) we
obtain the generalized function on the space MxNxTg, where the point of the
Teichmuller space Tg corresponds with the complex structure of the Riemann
surface M. It is possible to prove the modular invariance of the amplitude (8). For
the analytic regularization in the parameters (fef, kj) the amplitude (8) has the pole
singularities similar to those of the Veneziano amplitude.

If we choose the special coupling constant α2, the masses mf and the smoothing
functions i;z(xz) in the amplitude (8) for the genus g = 0 we obtain the JV-point
amplitude for the closed bosonic strings of genus zero [3, Vol. 1, formula (1.4.13)].
Another choice gives us the Koba-Nielsen amplitude for the open bosonic strings
of genus zero [3, Vol. 1, formula (1.5.11)]. If we integrate the amplitude (8) for the
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genus g = 1 with the special measure with respect to the parameter of the complex
structure of the torus and if we choose the special coupling constant α2, the masses
m, and the smoothing functions v^xt) we obtain the JV-point amplitude for the
closed bosonic strings of genus 1 [3, Vol. 2, formula (8.2.17)]. Another choice of the
measure, the coupling constant, the masses and the smoothing functions provides
the JV-point amplitude for the open bosonic strings of genus 1 [3, Vol. 2, formula
(8.1.55)]. For higher genus g> 1 the substitution of the special coupling constant,
the masses and the smoothing functions in the amplitude (8) gives us the expression
similar to the amplitude obtained in [4] for infinite radius of the compactification
torus.

In the next section we study the partition function, the correlation functions
and the amplitudes of the partially £7(1) compactified scalar massless field theory
on the compact Riemann surface. The third, fourth, and fifth sections are devoted
to study the Green's functions for the Laplace-Beltrami operators and the
amplitudes for the compact Riemann surface of genus: g = 0, g = l, and g>l ,
respectively.

2. Correlation Functions and Amplitudes

Let M be a compact smooth connected orientable surface endowed with a
complete Riemannian metric g /x), i,j = ί,2. An element of the quotient group
(C°°(M)/2πKZ)x D is called a partially 17(1) compactified field on the surface M. For

2 Q

these fields we introduce the differential operator dXμ{x) = £ -z-j Xμ{x)dx\ where
i = 1 OX

x1,*2 are the local coordinates on M and the differential 1-form dXμ{x) depends
only on the equivalence class lXμ(x)']E(Cco(M)/2πRZ)xD. The Nambu-Goto
action (1) may be written in the following form:

S(Xμ)=-l/2oc2 Σ (dXμJXμ), (9)

2 2

where the inner product of the differential 1 -forms α= £ ocidxiax\dβ = £ βidxHs

defined by

(«,/9=J Σ gy(xMx)j8/x)(detgiJ<x))1/2i2x. (10)
M i,j=l

Here the matrix {gιj(x}} is the inverse for the metric {gij{x)} on the surface M.

Definition 2.1. For the partially U{\) compactified scalar massless field theory with
the action (9) a correlation function for a vector function Yμ(x) e C™(M\ μ = 1,..., D
satisfying the condition (6) is defined in the following way

W(Yμ)= lim \/Zn
L C Γ >Z)

x Jexp Σ [i(Yμ,Xμ)-V2oc2(dXμJXμ)-] |d[JP], (11)
Ln \_μ=ί J

where Ln is a n generator subgroup of the quotient group (Cco(M)/2πRZ)*D and
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d[Xμ~\ is any Haar measure on the group Ln. The normalizing multiplier is given by

£ (dXμ, dXμ)\Zn = ί exp Γ - l/2α2 £ (dXμ, dXμ)\ d[_X^. (12)
Ln L J

The partition function of the partially U(\) compactified scalar massless field theory
with the action (9) is defined as a limit

Z= lim Z n . (13)
(C°°(M)/2πRZ) x D

Let d* be the adjoint operator of the differential operator d with respect to the
inner products (5), (10). The operator d* sends a differential 1-form into a function
on the surface M. The operator A = d*d is called the Laplace-Beltrami operator on
the functions on the surface M. A function φ is said to be harmonic if Aφ = 0. The
Hodge theorem [6, Sect. 31, Corollaire4] implies that on the compact smooth
connected orientable surface endowed with a Riemannian metric any harmonic
function is constant. We use H to denote the orthogonal projector on the one-
dimensional space of the harmonic functions in the Hilbert space of the functions
on the surface M with the inner product (5). The operator G on this space is called a
Green operator for the Laplace-Beltrami operator on the functions on the surface
M if it satisfies the relations

AG = GA=I-H, GH = HG = 0. (14)

Proposition 2.1. For the partially [/(I) compactified scalar field theory with the
action (9) the partition function (13) is determined completely by a choice of the
subgroups Lne(Cco(M)/2πRZ)xD and the Haar measures on them. The correlation
function (11) is independent of a choice of the subgroups Ln and the Haar measures
on them. If for some μ = 1, ...,Z> the relation (Yμ, l) + 0 holds then the correlation
function

W{Yμ) = 0. (15)

If for all μ = l, ...,D the relations {Yμ, l) = 0 hold then the correlation function

W(Yμ) ) = exp Γ - α 2 / 2 Σ± ( ^ G γ μ ) \ >

where G is the Green operator for the Laplace-Beltrami operator on surface M.
Proof. Let n = (nί,...,nD)eZD and Ln be a subgroup of quotient group
(C°°/2πRZ)x D generated by the linear independent for every μ = l,...,D functions
Xg(x) = l, Xμ(x), j = l,...,nμ — l. An arbitrary element of the subgroup Ln has a
form

(17)

where 0^rμ<2πR, tjμeR, j = ί,...,nμ — ί, μ=l,...,£>. The addition of the two
elements of the form (17) is defined by the usual addition of the corresponding real
numbers tjμ and by the addition of the corresponding numbers rμ as the elements
of the quotient group RβπRZ, namely rμwr'μ = rμ + r'μ if rμ + r'μ<2πR and rμwr'μ
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= rμ + r'μ — 2πR otherwise. Let us introduce the Haar measure on the group Lw,

Ϋ ίj^Jίx)] = J l [(2πΛ)" Hrμ Q j dt})jJ . (18)

Two Haar measures on the group LΠ differ from each other by a constant multiplier
only. The substitution of the expressions (17) and (18) into the integral (12) gives a
Gauss integral. As a consequence we obtain

Z n = Π [(2πα2)<""-1)/2(det{(ί/Zf,^)})-1/2]. (19)
μ = l

The differential 1-forms dXμ, j = ί,...,nμ — i are linearly independent. In fact,

otherwise there exist the real numbers such that £ λjdX1- = 0. The kernel of the

differential operator d coincides with the space of the constant functions on the
Πμ,— 1

surface M. Thus there exists a real number λ0 such that £ λjX
fj(x) = 0 which

j = O

contradicts the assumption that the functions X%(x),...,Xn ^x) are linearly
independent. Therefore, the expression (19) is not zero. We may choose the
functions XQ(X), ., ̂ «;-1(χ) i n s u ch a way that the expression (19) takes any given
nonzero value. For example, let us assume that α2 = (2π)~\ (Xμ

),X
μ) = 0 for

j = l , . . . ,n μ - landdet{(Xf ,^^
=(Xg,Xg) * and the definition of the Laplace-Beltrami operator implies

1 / 2

( γ u χμ)ll2 m
{x°'Xo) • ( 2 0 )

The constant function Xg is a zero mode of the Laplace-Beltrami operator on the
functions. Hence the limit (13) of the expression (20) coincides with the
result [1, 2].

The substitution of (17), (18) into the right-hand side of the definition (11) yields

Γl2]R
ί/Znγ{(2πRΓl]drμ f ^-^expQy^l)]

μ=ί 0 R"^-1

x exp \i" Σ ' tjμ(Yμ, XI) - l/2α2 " Σ ' t^t^dX }, dX<£)\. (21)

If one of the numbers (Yμ, l)e(K)~ XZ is not equal to zero the integral (21) equals
zero and the relation (15) is proved.

Let (Yμ, l) = 0 for all μ = 1, ...,D. Then for all μ = 1, ...,D the first equation (14)
implies that

Yμ = d*dGYμ. (22)

Substituting the equalities (22) and (Yμ, 1) = 0 into the integral (21) and computing
integrals with respect to the variables rμ we have

ί/Znf[\ f <PM-i teχpΓi^

By using this integral in the definition (11) we obtain the definition of a correlation
function from the paper [7]. Due to [7] the correlation function is independent of a
choice of the subgroups Ln and the Haar measures on them. It is equal to (16) [7].
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Thus for the partially U(ί) compactifϊed scalar massless field theory with the
Nambu-Goto action (9) the correlation functions (16) are the unique correctly
defined objects. The amplitude must be constructed from the correlation functions
(16). The correlation function (16) has a simple geometrical meaning. Let DP(T*M)
denote the space of the smooth differential p-forms on the surface M. If a function
Y(x) on the surface M satisfies the equation (Y,1) = 0 the relation (22) implies that
Y(x) = d*ω(x\ where ω(x) is a differential 1-form on the surface M and d* is the
adjoint operator of the differential operator d with respect to the inner products
(5), (10). Let us establish the following relation:

{Y,GY)= inf (ω,ω). (23)
ωeDι(T*M)

d*ω = Y

Hence the left-hand side of the relation (23) is the minimal "length" of a differential
1-form whose "boundary" coincides with the function Y(x) on the surface M. To
prove the relation (23) we introduce the differential operator d:D1(T*M)

-+D2(T*M) in the following way dfcoCj{x)dxj\ = (^-^Jdx1 Λdx2. Let

us define on the space D2(T*M) the inner product

(α,/ϊ = j ocί2(x)β12(x)(dQtgij(x))-^2d2x. (24)

Let d* be an operator on the space D2(T*M) which is adjoint of the differential
operator d with respect to the inner products (10), (24). The operator A = d*d + dd*
is called the Laplace-Beltrami operator on the differential 1-forms on the surface
M. The differential 1-form ω is said to be harmonic if it satisfies the equation
Aω = 0. Due to the Hodge theorem [6, Sect. 31, Corollaire4] for a compact
smooth connected orientable surface provided with a Riemannian metric the
dimension of the space of the harmonic 1-forms coincides with the number of the
generators of the homology group H^M, R). Any harmonic 1-form belongs to the
space D\T*M) [6, Sect. 29, Corollaire 1]. Let H denote the orthogonal with
respect to the inner product (10) projector on the space of the harmonic 1-forms.
Let G be a linear operator on the Hubert space of the differential 1-forms endowed
with the inner product (10) and G satisfy the equations of the form (14). G is called a
Green operator for the Laplace-Beltrami operator on the differential 1-forms on
the surface M. The definitions of the operators A and G imply the decomposition
of the differential 1-form

ω = dd*Gω + d*dGω + Hω. (25)

By [6, Sect. 26, Theoreme 20] any harmonic 1-form α on the surface M is closed
and co-closed, i.e. da = 0 and d*α = 0. Since d2 = 0 and (d*)2 = 0 all terms in the
decomposition (25) are orthogonal to each other. The operators G and d* are
commuting [6, Sects. 31,33]. Now the decomposition (25) implies the
equality (23).

Let h(x, y) be a smooth function of the variables x,yeM. We assume that for
every yeM, (h( ,y), 1) = 1. In order to construct the amplitude we choose a set of
the momentum vectors kf, y = l, ...,iV, μ = l, ...,D, satisfying the conditions

Σ *ίf=0, μ = l,...,D. (26)
7 1
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Instead of the function vί(x1)...vN(xN) in the integral (3) we introduce a smooth
distribution function f(xt,...9xN) which vanishes with all its derivatives when
Xt = Xj.

Definition 2,2. The scattering amplitude of N tachyons with the masses mi,...,mN

and the distribution function f{xί9 .> ,XN) on the surface M is the following limit:

lim J ( r Π

x f{x) exp Γα2/2 Σ± * v *;), GΛ( , *;))] ̂  ( Σ

w/tere WΊ Σ fejM ?^) I ί S fl correlation function (16) o/ ί/zβ partially U(ί)

compactified scalar massless field theory on the surface M and G is the Green
operator for the Laplace-Beltrami operator on the functions on the surface M.

The last two equations (14) imply that (/*(•,*,), Gft( ,x</)) = ((Λ( , x i ) - ( l , l ) " 1 ) ,
G(h( 9 Xj)—(1,1)~ *)). Now the relation (23) provides a geometrical meaning of the
complementary multiplier which distinguishes the expression (27) from the integral
(3) for the fixed surface M.

We assume that the" Green operator for the Laplace-Beltrami operator on the
functions on the surface M is an integral operator

Gφ(x) = £ G(x, y)φ{y)mgiJ{y))ll2d2y • (28)

The kernel G(x, y) of the Green operator is called the Green's function.

Proposition 2.2. Let for a compact smooth connected orientable surface M endowed
with a Riemannian metric a Green's function G(x, y) be a continuous function on
MxM except for the diagonal points where it has the singularity — l/2π log |x — y\.
Then the scattering amplitude (27) of N tachyons with the masses mu...,mN and the
distribution function f(xu...,xN) on the surface M equals

0 if (kj,kj)>mj, j=ί,...,N,

too if (kj,kj)<mj, j=i,...,N. K '

If

(kpkj) = nή, j=ί,...,N, (30)

then the scattering amplitude (27) equals

i f(x)( Π (tetgtt.xd)xl2d2x) Π (^pί-4πG(Xi,XjWHk' kβl4π. (31)
MxN y = l / l^i<j^N

Proof The distribution function f{xί9..., xN) vanishes with all its derivatives when
xt = Xj. Now taking into account the expressions (16), (27) and the explicit form of
the singularities of the Green's function G(x, y) it is easy to prove the equalities
(29), (31).
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Remark2.i. The amplitude (31) has the same form for all masses mu...,mN.
Therefore, it is possible to consider the expression (31) as a scattering amplitude for
N particles in the Euclidean space. The analytic continuation in the m o m e n t u m
variables k] of the expression (31) gives a scattering amplitude for the N particle in
the Minkowski space.

Remark 2.2. The amplitude ΛN(ku ..., kN\x1,..., xN) in (31) has the singularities of
the form |xf — Xj\λ, where xi9Xj are the two-dimensional vectors. In the spherical
coordinates these singularities have the form x+, where x is the norm of the vector
Xi — Xj. When the variables are rightly chosen in the integral (31) allows the
continuation for the functions f(xl9..., xN) which do not vanish when xt = xjm One
of these continuations is the analytic continuation in the variables (ki9 kj). D u e to
[8, Chap. 1, Sect. 3.2] the generalized function x\ is a holomorphic function of the
variable λ except for the points λ= — fc, k = 1,2,..., where it has the simple poles
with the residues ( — l)k((k — l)\)~ίδik~1\x). Applying this result it is easy to
compute [8, Chap. 1, Sect. 3.8] the poles and the residues of the beta function
B(λ, μ) and consequently of the Veneziano amplitude. It seems reasonable that the
amplitude (31) has in the variables (k^kj) similar singularities.

Remark 2.3. The amplitude (31) is constructed from the functions
e x p [ — 4πG(x,yJ]. These functions have simple geometrical meaning [9] . Let us
introduce the complex structure on the surface M. With the local coordinates
{xι,x2) and with the Riemannian metric the following function

μ(z) = μ(x 1 + ix 2) = ( g 1 1 - g 2 2 + 2 ι g 1 2 ) ( g 1 1 + g 2 2 + 2 ( g l l g 2 2 - g ? 2 ) 1 / 2 ) - 1 (32)

is related. The function / is said to be holomorphic if it satisfies the Beltrami
equation

By [10, Chap. 1, Theorem 4.3] Eqs. (32) and (33) define the structure of a Riemann
surface on the smooth connected orientable surface M endowed with the
Riemannian metric. A Riemann surface is a one complex dimensional connected
complex analytic manifold M with a maximal set of charts {Ua, za}aGA on M. The
set {Ua}aeA constitutes an open cover of M and a m a p zα:ί7α->>C is a
homeomorphism onto an open subset of the complex plane C such that the
transition functions zao zj *: zβ(UanU β)-+za(UanU β) are holomorphic whenever
UanUβ + 0. Let π: £ - > M be a linear holomorphic fibre bundle over the Riemann
surface M [11, Chap. 1, Definitions 2.1, 2.2]. Let a function h define a hermitian
metric on the fibre bundle π\E-*M [11, Chap. 3, Definition 1.1]. The hermitian
metric induces a canonical holomorphic connection D compatible with this metric
[11, Chap. 3, Theorem 2.1]. The curvature form Θ(D) of this connection is equal to

l h d d [11, Chap. 3, Theorem 2.1, Proposit ion 2.2]. The first Chern
ozaz

form for the linear fibre bundle π.E^M endowed with a connection D is the

2-form Cl(JE, D) = {i/2π)θ(D) = ( l /2πi)4ΊΓ l o 8 h d z Λ dz [11, Chap. 3, Definition 3.4].
ozoz

By the relations (32) and (33) in the holomorphic coordinates the Riemannian
metric has the following form: gxy = 0, gxx = gyy = Q>0. N o w using the inner
products (5), (10) it is easy to calculate explicitly the Laplace-Beltrami operator on
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the functions: A = — 4ρ~' ^-^-. The equations (14) are equivalent to the following
δzoz

equations for the Green's function G(z, ω) [see (28)]:

(34)

= 0,

ίG(z,w)(detgίj<w))1/2(ί72)ίίwΛίiw=0,

where

vol(M) = f ( d e t f t / z ) ) 1 ' 2 ^ ^ Λ dz. (35)

Choose the right-hand side of the first equation (34) multiplied by the 2-form
(ί/2ΐ)dz A dz as the first Chern form. Comparing this first Chern form with the first
Chern form cx(E9D) we obtain that the function exp[—4πG(z,w)] defines a
hermitian metric on the linear holomorphic fibre bundle over M satisfying the
third equation (34) and having a zero of order two at the point z = w. [We assume
that the Green's function G(z,w) has the singularity — l/2πlog|z —vv|.] Therefore,
the function exp[—4πG(z, w)] defines a hermitian metric on the sheaf Θ(w). The
sheaf Θ(w) is determined by its local sections. If the open set 17 contains the point
weM the local sections Θ(w)(U) are the functions analytic on U except for a
possible pole of first order at w; otherwise the local sections &(w)(U) are the
functions analytic on U.

The topological model of a compact connected orientable surface M is a two-
dimensional sphere or a polygon whose sides are identified according to
A1B1Aϊ1Bϊ1...AgBgAg1B~1

9 g = l,2,... [12, p. 17]. In the former case we say
that the genus of M is zero and in the latter case we say that the genus is g. The sides
of the polygon give a basis for the homology group H^M, Z) [12, p. 18]. Due to
[13, Sect. 0.4] the intersection number of two cycles on the Riemann surface is
defined in the following way. If two cycles A and B intersect transversally at the
point P the local intersection number (A B)P is equal to +1 if the tangent vectors
for A and B provide the basis for the tangent space at P e M. In the case of inverse
orientation (A B)P=— 1. If the intersection of the cycles A and B is not
transversal at the point P the local intersection number (A B)P = 0. The
intersection number A Bis the sum of the local intersection numbers. In the case
of a compact Riemann surface of genus g the cycles Al9..., Ag9 Bl9 .,Bg have the
following intersection numbers [12, p. 54]:

4 - ^ = 5, . B j = 0, Ai B^δtj. (36)

In the forthcoming sections we study the Green's functions and the amplitudes
(31) for the compact Riemann surfaces of arbitrary genus.
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3. Riemann Sphere

Every compact simply connected Riemann surface M is conformally equivalent to
the Riemann sphere C P 1

 ΞΞCUOO [12, Theorem 4.4.1]. It is homeomorphic to the
unit sphere S2cR3. The Euclidean metric on R 3 and the stereographic projection
S2\{(0,0,1)} onto C induces the Riemannian metric on C

ds2=(π(l + |z | 2 ) 2 )- \dx2 + dy2). (37)

It is invariant under the substitution z-^z'1 and, consequently, induces the
Riemannian metric on C P 1 . The coefficient in (37) is chosen in such a way that
vol(CP1) = l [see (35)].

Proposition 3.1. The function

G ( z , w ) = - l / 2 π log | z - w |

+ i/(2π)2 f (log|z—z1 | + log |w — zt |) —±-——^
cp1 (H-IZil )

3̂ ι ^ z i Λ dzi A dwί A dwγ ,~~,

(CP 1 ) X 2 * (1+|z x | 2 ) 2 ( l-f fw! ! 2 ) 2

satisfies Eqs. (34) on C P 1 endowed with the Riemannian metric (37). The first term in
the right-hand side of the equality (38) determines the singularity of the function
G(z,w)

Proof By using the substitution z-^z'1 it is easy to show that

CP1

Applying this relation it is possible to prove the following equalities

G(z~\w~1) = G(z,w), (40)

G(z'\w)= -l/2πlog|l-zw|

f (log|z|)(l + |z|2)-2rfzΛdz = 0. (39)
CP1

+ i/(2π)2 f
CP1

The relations (40), (41) imply that the function G(z,w) is defined on C P 1 x C P 1 .
Two first equalities (34) for the C P 1 follow from the equality

V w)(5(z-w). (42)4V
ozdz

The last two equalities (34) are verified immediately. The singularity of the
function G(z, w) is defined by the first term in the right-hand side of the equality (38)
since the subsequent terms are continuous functions of the local coordinates z, w.

Thus the Green's function (38) satisfies all conditions of the Proposition 2.2 and
it is possible to define the scattering amplitude (31) for C P 1 . To compare the
obtained amplitude with the usual one we need to choose the parameters and a
distribution function f(xl9 ...,xN) such that three terms except for the first in the
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right-hand side of Eq. (38) are compensated. The first term in Eq. (38) is the
Green's function for the Laplace-Bertrami operator on the functions on the
complex plane C.

We assume α2 = π and introduce a function

φm2(z) = (π(l + |z|2)2)-1exp im2/4π Π l o g l z - w | ) ^ ^ Z i (4 3)

It follows from the relations (26), (30), (37), (38), and (43) that the expression for the
scattering amplitude (31) may be rewritten as

C f ( f t Φm2(Zj)(i/2)dZjΛdzj)f(z) Π Izi-zfo^2. (44)

It is easy to verify that

Hence the function Φm2(z) on the Riemann sphere CP1 is smooth only for
m2=0,4,8. The relation (45) implies that Φ0(z)«|z|~4 and Φ4(z)&\z\~2 as z-»oo.
Now the Proposition 3.1 shows that for m2 = 0,4 the last multiplier in the
integrand (44) has the non-integrable singularity at the point z7 =oo. Thus the
unique possibility to remove the functions Φmi(z^ in (44) by means of a choice of
the distribution function /(z l 5..., zN) is to fix the tachyon masses mί = . . . = mN — 8.

N

However, if now the function f(zί9 ...9zN) f] Φ$(Zj) is taken to be constant the

integral (44) diverges since the integrand (44) is invariant under the linear fractional
transformations of CP1 with the complex coefficients. The linear fractional
transformation which leaves fixed three distinct points of the Riemann sphere CP1

is the identity transformation. Let us fix the points z1 = 0,z2 = ί,z3 = oo and take a
function

f(z)=δ(zί)δ(z1)δ(z2 - ί)δ(z2 - ί)δ(zς x)δ(zςx) ί Π Φsizjη (46)

in the integral (44). Then we obtain the scattering amplitude for the closed bosonic
strings [3, Vol. 1, formula (1.4.13)].

To obtain the scattering amplitude for the open bosonic strings we need to
restrict the integration over the Riemann sphere in (31) to the integration over
the real axis. A simple restriction to the real axis gives the generalized functions
of the type \x(—Xj\λ. Due to [8, Chap. 1, Sect. 3.3] the generalized functions \x\λ

and x\ have the different pole singularities. Therefore, taking into the amplitude
(31) for CP1 the coupling constant α2 = 2π, the tachyon masses m\ =... =m£ = 4
and the distribution function

f[z) = δ(z1)δ(zί)δ(z2 - ί)δ(z2 - l)<5(z3- M(z7') (Π4 Φs(zj)

ft δ(yj))θ(xJn

where z — Xj+iy^ we obtain the AΓ-point Koba-Nielsen generalization for the
Veneziano amplitude [3, Vol. 1, formula (1.5.11)].
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4. Torus

Every smooth compact connected orientable surface M of genus 1 is
homeomorphic to the parallelogram whose sides are identified according to
ABA'1!!'1 [12, p. 17]. In particular, all vertices of the parallelogram are
identified. Using the common vertex as a base point for the fundamental group,
one shows that nγ(M) is generated by the closed loops A and B subject to the single
relation ABA~1B~1 = \. Hence πx(M) is the free abelian group isomorphic to
Z©Z. In view of [12, Theorem 4.6.1] a Riemann surface M is conformally
equivalent to a torus T(l, τ) = C/Γ(l, τ), where the group Γ(l, τ) is generated by the
shifts z-+z +1 and z-+z + τ, Imτ>0. Choose on the torus T(l,τ) the Riemannian
metric

ds2 = {lmτ)-1{dx2 + dy2) (47)

and the corresponding canonical 2-form
1 (48)

It is quite obvious that vol(T(l, τ)) = 1 [see (35)]. The smooth functions on the torus
T(l,τ) are equivalent to the smooth functions on the complex plane C which are
invariant under the transformations from the group Γ(l,τ). Let D°(T*T(l,τ))
denote the space of the smooth functions on the torus T(l,τ). The spaces
Dp(T*Ύ(l,τ)\ p = l,2, of the smooth differential p-forms are defined in a similar
way. Let us introduce the mapping ατ:T(l,ί)->T(l,τ) and its inverse mapping

(49)
«Γ x(x + iy) = (Imτ)" \lm(τ(x - iy)) + iy).

Since the functions from D°(T*T(l,τ)) are invariant under the shifts z-*z +1 and
z-*z + τ there exists the Fourier expansion

φ(z) = Σ exp[-2πiRe[(m1-ϊm2)ατ-
1(^)]]^(m). (50)

me(Z)2

The differential operator d on the complex plane C induces the differential
operator d on the space DP(Γ*T(1, τ)). It follows from the definitions (5), (10), and
(47) that the Laplace-Beltrami operator on the functions on the torus T(l, τ) has the

form A = —4(Imτ)-r-^-. Hence the Green operator G satisfying Eqs. (14) acts on
όzόz

the function (50) in the following way:
GΦ{Z)= Λ, ^yf^

Proposition 4.1. The Green's function for the Laplace-Beltrami operator on the
functions on the torus T(l,τ) is equal to G(z,w) = Go(oc~ 1(z\a~ 1(w); τ). For every
variable z,we T(l, i) the function

^ ^ (52)
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belongs to Hubert space of the functions on the torus T(l, i) endowed with the inner
product (5) corresponding to the Riemannian metric (47). For any matrix

a b\eSL{XZ) (53)
c dj

the function G0(z, w; τ) satisfies the relation

Go ( x + iy, u + iv; 7 ) = G0(by + dx + i(ay + ex), bv + du + i(av + CM); τ). (54)
\ cτ + aj

Proof It follows from the definition (28) and the equality (51) that the Green's
function for the Laplace-Beltrami operator on the functions on a torus T(l,τ) is
G0(ατ"

1(z),ατ"
1(w)»τ)> where the function G0(z,w;τ) is given by Eq. (52). The

definitions (5), (47), and (52) imply that for every weT(l,τ),

(G0( ,w;τ),G0(.,w;τ)) = ^ (2n)^x-m2\* ' ( 5 5 )

The series in the right-hand side of this equality is absolutely convergent. The
analogous equality holds for another argument zeT(l,/) To prove the relation
(54) we note that

aτ + b

cτ + d \cτ + dj

dm2 — bmΛ (a

— cm2 + am1j \c dj \m}

Now the replacement of the summation variables in the right-hand side of Eq. (52)
yields the relation (54).

In order to study the singularities of the Green's function we introduce the theta
functions

θ(z,τ)= £ exp[πm2τ + 2πmz], (56)
neZ

θ j (z, τ) = exp [ΐπτ/4 + iπz + iπ/2]0(z + (1+ τ)/2, τ), (57)

where zeC and τeH^ We denote the upper half plane by H1. The function (56) is
called the Riemann's theta and the function (57) is called the first order theta
function with integer characteristic 1,1.

Proposition 4.2. The function

f(z)=θ\ \ (z, τ) I exp[ - π{Imτ)'1{Iπiz)2'] (58)

is invariant under the transformations from the group Γ(ί, τ) and induces a function
on the torus T(l,τ). The function

G(z, w)=- l/2π log/(z - w)

+ l/2π J £τ(i,τ)(zi)(l°g/(z~~zi) + l°g/(zi — w))

— l/2π J £τ(i,τ)(zi)Λί?τ(i τ ) ( w i ) l °S/( z i~ w i ) (59)
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satisfies Eqs. (34) for the torus T(l, τ) endowed with the Riemannian metric (47). The
function G(z, w) is continuous everywhere on T(l, τ) x T(l, τ) except for the diagonal
points where it has the singularity — l/2πlog|z — w|.

Proof In view of [12, Chap. 6, formula (1.4.6)] the function (58) is invariant under
the transformations from the group Γ(l, τ). Hence it induces a function on the torus
T(l,τ). The function (Imz) is locally harmonic on the torus T(l,τ). The theta
function (57) is locally holomorphic on the torus T(l, τ) and it vanishes at the point
z = 0 [12, Proposition 6.1.5]. It follows from the Riemann theorem [14, Chap. 2,

Theorem 3.1] that the point z = 0 is the first order zero and the function θ\ (z, τ)

has no other zeros. Now the equality (42) implies that the function (59) satisfies the
first and the second equations (34) for the torus T(l,τ) endowed with the
Riemannian metric (47). The function (59) is continuous on T(l, τ) x T(l, τ) except

for the zeros of the function θ\ \(z — w,τ\ i.e. the diagonal points, where it has the

singularity — l/2πlog|z —vv|. The last two equations (34) for the torus T(l,τ) are
verified immediately.

Since every harmonic function on the torus is constant, the solution of Eqs. (34)
is unique. Hence the function (59) coincides with the function G(z, w) defined in
Proposition 4.1. Proposition 4.2 shows that the conditions of Proposition 2.2 are
satisfied. Take in the scattering amplitude (31) for the torus T(l, τ) the distribution
function /(ατ~

 1(z1),..., a~ 1(zN); τ), where the function f(zί9..., zN; τ) is smooth and
it has a compact support in the variable τ. We use the change (49) of the variables in
the integral (31) and integrate it over the upper half plane H1 with the measure
(lmτ)~2(i/2)dτAdτ. Then we have

J (lmτΓ2(i/2)dτΛdτ f Π (i/2)dzjAdzj)AN(k\z,τ)f(z;τ)i (60)
Hi Ύ(l,τ)*"\j=l )

ΛN(k\z, τ) = exp Γ - α2 £ (ku kj)G0(zh zy, τ)Ί. (61)
L l£i<i£N J

The relation (54) implies that for every matrix (53)

= ΛN(k\by1 + dxί + i(ayί + cx1)9...9 byN + dxN + i(ayN + cxN); τ). (62)

The analytic regularization of the amplitude (61) in the parameters (fcf, kj) gives the
amplitude satisfying also the relation (62).

The geometric interpretation of the relation (62) is very simple. Due to [12, Sect.
4.7.3] two tori Tίl,^) and T(l,τ2) are conformally equivalent if and only if

τ 2 = M(g)(τ1)= — - — j , where g is the matrix (53). The group of all such linear
cτγ+d

fractional transformations of the upper half plane Hί is isomorphic to the modular
group SL(2,Z)/{ + /}. On the other hand, every matrix (53) defines the
homeomorphism x + iy-+by + dx + i(ay + cx) of the torus T(l,i) onto itself. The
equality (62) shows that the amplitudes for the conformally equivalent tori are
related to each other by means of the corresponding homeomorphism of the torus
T(U)
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The domain F in the upper half plane Hί is said to be fundamental for the
modular group SL(2, Z)/{ ± /} if for every orbit of this group at least one element
lies into the closure of domain F and two elements of the orbit belong to the
closure of F only if they belong to the boundary of F. It follows from [15,
Chapitre 7, Theoreme 1] that the domain F = {zeHί: \z\>ί, |Rez|<l/2} in the
upper half plane H1 is fundamental for the modular group SL(2, Z)/{ + /}. In the
integral (60) with the analytically regularized amplitude (61) we take a distribution
function f(τ) which does not depend on the variables zl9...,zN. Since the measure
(Imτ)~ 2(i/2)dτ A dτ is invariant under the transformations from the modular group
the relation (62) implies that the integration over the upper half plane in (60) is
reduced to the integration over the fundamental domain F and the distribution
function /(τ) is replaced by the function

M[/](τ) = l/2 Σ f(M(g)(τ)). (63)
geSL(2,Z)

In order to compare our amplitude (60), (61) with the usual amplitude we
introduce a notion of a modular form. The mapping z^q(z) = exp [2τπz] defines a
holomorphic mapping of the upper half plane Hί onto the punctured complex
plane C* = C\{0}. Let us denote Hί/{M(T)} the quotient space where the group
{M(T)J is generated by the shift M(T)(z) = z + l. The mapping q induces the
analytical isomorphism between HJ{M(T)} and the punctured complex plane C*.
Therefore, the meromorphic function f(z) invariant under the shift M(T) induces
the meromorphic function f^iq) on the punctured complex plane C*. The function
/oo(#) is meromorphic at the point 0, if for some integer n the function qnfaXq) is
bounded in some neighbourhood of the point 0. The minimal such integer n is
called an order of the function f(z) at infinity. It is denoted by vj^f). A
holomorphic on the upper half plane function f(z) is called a modular form of the
weight k if a function /(z) is meromorphic at infinity, i.e. voo(/) < oo, and for every
matrix (53) the following relation satisfies

- ( 6 4 )

A modular form /(z) is said to be parabolic if voo(/)<0. As an example of a

parabolic modular form we consider the function #i(z|τ) = — θ\ Uz, τ). In view of
[14, Chap. 1, Proposition 14.1] L -1

x Π (1 -2(q(τ))n cos2πz + q{τ)2n). (65)
n=ί

The function (65) is called the Jacobi theta function [3, Vol. 2, formulae (8.A.2),
(8.A.6), (8.A.7)]. It follows from the equality (65) that the function 0Ί(O|τ)

= -r-θi(z\τ)\z=o ̂ a s ^ e form
oz

)1/8 Π (l-^(τ)π) 3. (66)
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Hence the order at infinity of the function (0Ί(O|τ))8 equals - 1 . By [3, Vol. 2,
formula (8.A.25)] the function (θ\(0\τ))8 satisfies Eq.(64) for /c = 12, i.e. it is a
parabolic modular form of the weight 12. The Green's function (59) is not changed
if we replace the function (58) by the function

χ(z|τ) = 2πexp[-π(Imτ)-1(Imz)2]|01(z|τ)| |βi(0|τ)Γ1. (67)

Now if we take in the amplitude (31) for the torus T(l,τ) the coupling constant
α2 = π, the tachyon masses (kj,kj) = 4, / = 1, ...,ΛΓ and the distribution function

(lmzN)Nexp - 2 £ f ρT(1,τ)(w)logχ(z,.-w|τ) \δ{zN,τ),
L J=l T(l,τ) J

(68)

and if we integrate the obtained expression over the fundamental domain F with
the differential 2-form

μ(τ) = (Imτ/2)" I3|(^(0|τ))β/2π| ~ \iJΊ)dτ A dτ, (69)

then omitting the constant multiplier we have

J (Yim)dzjAdz)\ Π (Azι-ψΨhkj)l2] • (70)
F T(l,t)MN-i)\ j=1 Jllύ^JύX ]zN = τ

The expression (70) coincides with the AΓ-point scattering amplitude for the closed
bosonic strings corresponding to the tori [3, Vol. 2, formula (8.2.17)]. Note that
due to (66) the coefficient of the differential 2-form (69) increases exponentially as
τ-»oo.

To obtain the amplitude for the open bosonic strings corresponding to the tori
we reduce the integration over the torus T(l, τ) in (31) to the integration over the
unique real side [0,1] of the parallelogram related with the torus T(ί,τ). We
choose now in the expression (31) the coupling constant α2 = 2π, the tachyon
masses (kpkj) = 2,..., 7 = 1, ...,iV, and the distribution function

/(xx,...,x*) = exp -2 Σ ί βTd.τ^logχίx -wlτ)
L ;=1 T(l,τ) J

N-l

1=1
θ(xι+1-Xι))δ(xN-l).

Then the integration of the obtained expression with respect to the variable τ along
the pure imaginary semiaxis p,ioo) with the differential 1-form

{2~D)

^(0fτ)f/2π) *• (ί/i)dτ (71)

provides the JV-point amplitude of the open bosonic strings for D-dimensional
space [3, Vol. 2, formula (8.1.55)].

5. Higher Genus Riemann Surfaces

A compact Riemann surface M of genus g is homeomorphic to a polygon whose
sides are identified according to A1BιA^1Blι...AgBgA~xB~x [12, p. 17]. If
z = x + iy is a local complex coordinate on M the differential 1-form f(z)dz + g(z)dz
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is said to be holomorphic when g(z) = 0 and a function /(z) is holomorphic. Due to
[12, Propositions 3.2.7, 3.2.8] the vector space of holomorphic 1-forms on a
compact Riemann surface M of genus g has the dimension g and there exists the
unique basis ω1=ω1(z)dz, ...,ωg = ωg(z)dz such that

fω* = V (72)
Aj

Furthermore, for this basis the complex gxg matrix

W = τ, k (73)

is symmetric with positive definite imaginary part. On the surface M we introduce
the Riemannian metric

ds2 = ί/g Σ (Imτ^ω^ώ^dx^dy2) (74)

and the corresponding canonical 2-form

QM = iβg Σ (Imτ^ω.Λώj. (75)
k,j=l

It follows from the relations (72), (73), and [12, Proposition 3.2.3] that vol(M) = 1
[see (35)]. We introduce a g-dimensional Riemann's theta function

θ(z,τ= Σ exp[2πi[(l/2)(n,τn) + (n,z)]], (76)
ne(Z)9

where a column zeC9 and a symmetric complex gxg matrix τ has a positive
definite imaginary part. For ε, ε' e Z9 we define the first order theta function with
integer characteristic ε, ε'

θ Γ ' 1 (z, τ) = exp [2πΐ[(ε, τε)/8 + (ε, z)/2 + (ε, ε')/4]]0((l/2)ε' + (l/2)τε + z, τ). (77)

In view of [12, Proposition 6.1.5]

^ J , T ) . (78)

The integer characteristic ε,εr is said to be even (odd) if (ε,ε/) = 0(mod2)

Lemma 5.1. For every point ξof a compact Riemann surface of genus g there exists
an odd integer characteristic ε, ε' e Z? with the property that for some point η

where a vector ω = (ωu ...,ωg) is a basis for the space of holomorphic differential
1-forms on a surface M.

Proof Let the function (79) be identically zero. Differentiating it at the point η = ξ
we have

Σ ^θ\ , (0,τ)α>/£)=0. (80)
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Let a lattice LcZ2g be given. Let us define an orthogonal lattice

L 1 = {(Xί; x2)EQ9XQ9\exp[2π/[(xl5a2)-(x2,aj]] = 1 Vfo a2)eL),

where Q is the rational number field. In particular, (2Z2fir)1 = (l/2)Z2g or

) 1 . (81)

With a symmetric complex gxg matrix τ we relate a lattice Lτ c C^ in the following
way: Lτ = {τx + yeC9\(x; y)eL}. Due to [12, Chap. 6, formula (1.4.6)] the theta
function (77) is quasiperiodic with respect to the lattice (Z2fiF)τ, namely for any

(82)

If μ, μ' 6 2Zg the multiplier in the right-hand side of Eq. (82) does not depend on the
characteristic ε, ε' e Z9. Therefore, the relation

) (83)

where ε, ε' run all 49 pairs of the vectors whose components are equal to 0,1, defines
a mapping φ2{Z)29:C

9/(2Z2g)τ-+CP4r9~ί. By the Lefschetz theorem [14, Chap. 2,
Theorem 1.3] the relation (81) implies that the mapping (83) is a holomorphic

imbedding. Hence the vectors <^— θ\ , (0,τ)> generate the vector space C9. In
(dzj |_εj J

view of Eq. (78) these vectors are non-zero only for the odd integer characteristics.
For every point ξ of a compact Riemann surface M of genus g the vector
(ωί(ξ),...,(ϋg(ξ)) is not zero [12, p. 81]. There exists therefore an odd integer
characteristic ε, ε' such that the function (79) is not identically zero.

We denote by ξ a point of a compact Riemann surface M and a corresponding
local complex coordinate on M.
Proposition 5.2. Let a point ξofa compact Riemann surface M of genus g and an odd
integer characteristic ε, ε' e Z9 satisfy the condition (79). Then the function onM x M

ξl ξl

ω— f ω, τk
— π V Im f ω,— f cϋj (Imτk Im f ω — f ω. (84)xexp

is not identically zero and it does not depend on a choice of the paths of integration in
(84). The function

G(ξl9ξ2)=-l/2πlogf(ξl9ξ2)+l/2π f
M

- l/2π J (log/(^1,fy2))ρM(^1)ΛρM(f/2) (85)

satisfies Eq. (34) for a compact Riemann surface M of genus g endowed with the
Riemannian metric (74) and it does not depend on a choice of a point ξeM and an odd
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integer characteristic ε, ε' e Z9 satisfying the condition (79). The function G(ξu ξ2) is
continuous everywhere on MxM except for the diagonal points where it has the
singularity - l/2πlog | ί 2 -ξi | .

Proof Let a closed contour homological zero be added to a path of integration
ξi

from a point ξ to a point ξγ. Then the integral J ω is not changed since the
ξ

holomorphic differential 1-forms ωh i = ί, ...,g, are closed [12, Proposition 1.3.8,

Theorem 1.3.11]. Let a closed contour £(/44fc + ftA), where μ,μ'eZ9, be added

to a path of integration from a point ξ to a point £ j . Then in view of the relations
ξi

(72), (73) the vector μ' + τμ is added to the vector J ω. It follows from Eq. (82) that
ξ

this addition does not change the function (84). Since the closed loops Al9...,Ag,
Bu...,Bg are the generators of the fundamental group of the Riemann surface M
[12, p. 18] the function (84) is independent of a choice the paths of integration
in (84).

Due to vol(M) = 1 the function — ί/2πlogf(ξl9ξ2) in (85) may be replaced by
the function

ί KFHI--1/2"log

ξi

The functions Im J ωt,..., ί = 1,..., g, are locally harmonic. By the condition (79) a
ξ

locally holomorphic function F(ξl9ξ2) = θ\ - Γ ω— f ω,τ is not identically
Lε J V <? ξ )

zero. Then [14, Chap. 2, Lemma 3.4] implies that there exist 2g —2 points
ηl9..., ηg-15 ζl9..., ζg-i GM such that the zeros of the function F(ξl9 ξ2) counting
multiplicities are equal to the sum of the diagonal points {(η; η)\ηeM} and the
points {ηi} xM,Mx ζi9 i=ί9 ...,g— 1. In view of Eq. (78)it is possible to consider
Ci = rli, i== 1, ...,g —1. Hence the function fι{ξί9 ξ2) is locally harmonic except for
the singularities -l/2πlog\ξ2-ξί\; -l/2πlog|^-^|, -Ί/2πίog\ξ2-ηt\9

i = 1,..., g — 1. Due to vol(M) = 1 the last two sets of the singularities are canceled
out of (85) and the function G(ξuξ2) has the singularity — l/2πlog|£2 — ξx\. It
follows from Eq. (42) that the function G(ξu ξ2) satisfies the first and the second
equations (34) for a compact Riemann surface endowed with the Riemannian
metric (74). The last two equations (34) are verified immediately. If we choose
another point ζeM and another odd characteristic ε,ε'eZ9 satisfying the
condition (79) it is possible to define another Green's function G(ξί9 ξ2) by means
of Eqs. (84), (85). In view of the first equation (34) the function G(ξu ξ2)-G(ξί9 ξ2)
is harmonic with respect to the variable ξt and, therefore, it is constant [6, Sect. 31,
Corollaire 4]. Now the third equation (34) implies that this function equals zero.
Thus the Green's function G(ξu ξ2) is independent of a choice of a point ξ e M and
of an odd characteristic ε, β' e Z9 satisfying the condition (79).

By the definitions (84), (85) the Green's function G(ξί9 ξ2) depends on a basis
ωl9 ...,ωg for the space of holomorphic differential 1-forms on the compact
Riemann surface M of genus g. In order to find a symmetry relation similar to the
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relation (54) we introduce due to [16] the Teichmύller space and the space of
moduli of Riemann surfaces. Let M be a smooth compact connected orientable
surface whose homology group H^M, Z) is isomorphic to Z2g. Two orientation
preserving homeomorphisms of Riemann surfaces of genus g onto M:fί:M1->M
and /i \M^M are called equivalent if there is a commutative diagram

(86)

M2^> M,

where φ is a conformal mapping onto M 2 and ip is a homeomorphism homotopic
to the identity. The equivalence classes [/i: M ^ Λ f ] are called the points of the
Teichmuller space Tg. For the space of moduli Mg a homeomorphism ψ is not
obliged to be homotopic to the identity. As an example of a space of moduli we
consider the tori M = T(U), M1=T(l,τ/), M 2 = T(l,τ), where τeHl9 τf = M(g)(τ)
and g is the matrix (53). Choose in the diagram (86) the mappings /1(z) = ατT

1(z),
/2(z) = αt"

1(z), where the homeomorphism α" 1 is given by the relation (49). The
mapping φ(z) = (cτ + d)z defines the conformal equivalence of the tori T(l,τ') and
T(l,τ) since the system of the equivalence relations z~z + aτ + d, z~z + cτ + d is
equivalent to the system of the equivalence relations z~z + τ, z~z + ί. The
mapping ψ(x + iy) = by + dx + i(ay + ex) [see (54)] is a homeomorphism of the
torus T(l, i) onto itself. It is easy to verify that ψ ofλ =f2 o φ or the diagram (86) is
commutative.

A point of the Teichmuller space is determined by a space of holomorphic
differential 1-forms on a surface M and by a basis of the homology group Hγ(M, Z)
satisfying the conditions (36). In fact, there exists the unique basis ω = (ωί9...,ωg)
of the space of holomorphic differential 1-forms on M satisfying the condition (72)
[12, Proposition 3.2.8]. The matrix τ is defined by means of the relations (73). We
call J(M) = C9/(Z29)τ the Jacobian variety of the surface M. Taking a point PoeM

p

we define a mapping φ: M^J(M\ φ(P) = J ω mod(Z2^)τ. Due to [12, Proposition
Po

3.6.1] the image of this mapping is a compact Riemann surface of genus g with a
basis (ω l 5..., ωg) for the space of holomorphic differential 1-forms and with a basis
(Aί9..., Ag, Bί9..., Bg) for the hmology group HX{M,Z) which satisfy the conditions
(36) and (72). Thus the point of the Teichmuller space is determined by the pair of
bases {(Aί9..., Ag9 Bl9..., Bg\ (ωl9..., ωg)} satisfying the conditions (36) and (72). In
view of [12, Corollary 3.2.1] for a homology basis {Al9..., Ag9 Bl9..., Bg) there is the
unique dual basis (α1?..., ccg9 βl9..., βg) for the space of real harmonic 1-forms on the
surface M. By the Hodge theorem [10, Chap. 6, Theorem 3.4] on a compact
Riemann surface there is the unique harmonic 1-form with given periods. Hence
the relations (72) and (73) imply that

ω ^ ^ H - Jtτtjβj, i=l, . . . ,g. (87)

Therefore, the pair of bases {{A,B\ω} may be replaced by the triple
{(A9 B\ (α, β), τ}, where (α, β) is the dual basis of real harmonic 1-forms on M for a
basis (A9 B) satisfying the condition (36) and τ is a symmetric g x g complex matrix
with positive definite imaginary part. The space of such matrices is called the
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Siegel upper half space Hg of genus g. Choose another basis for Hγ(M, Z),

where a,b,c,d are gxg matrices. In order (A\Bf) to be a basis for H^M,Z) it is
necessary

G=la JeGL(2g Z), detG=±l. (89)

A basis (A', B') ought to satisfy the conditions (36). Hence G e Sp(2g, Z) where the
group Sp(2g, Z) consists of the invertible matrices (89) satisfying the relation

(90)

By using the equality (90) we show that for a basis (A'9 B') the dual basis (α', β') of
the real harmonic 1-forms on the surface M has the following form:

A basis ω' = (ω'ί9..., ωg) of holomorphic 1-forms on M which satisfy the conditions
(72) for a basis (A'9 B') is given by ω' = ((cτ + d) ~ γJω. Now by the definition (73) we
have

τ'^ατ-h&Xcτ + d)" 1 . (92)

Therefore, the Teichmϋller space Tg is a set of the triples {(A9 B\ (α, /?), τ} with the
equivalence relations (88), (91), (92) where a matrix (89) belongs to the group
Sp(2g,Z).

To study a space of moduli it is necessary to investigate a group AutM of
conformal automorphisms of a compact Riemann surface M of genus g. By the
Schwartz theorem [12, Corollary 5.1.2.2] for a compact Riemann surface M of
genus g > l a group AutM is finite. Let an automorphism TeAutM and
(Al9 ...9Ag9 Bί9...9Bg) be a basis for the homology group HX{M,Z) satisfying the
conditions (36). Then {TAU ..., TAg9 TB±,..., TBg) is also a basis for the homology
group HX{M, Z) satisfying the conditions (36). Hence two bases are related to each
other by the equality (88) where the matrix G(T) e Sp(2g, Z). By [12, Theorem 5.3.1]
this representation G: AutM-»Sp(2g, Z) is faithful for a genus g > 1. The action of
an automorphism TeAutM on a differential 1-form α = αzdz + αfdz is given by

I. (93)

If α is a real harmonic 1-form then Toe is also a real harmonic 1-form. In view of [12,
Theorem 5.3.2] if (A, B) is a basis for the homology group H^M, Z) and (α, β) is the
dual basis for the space of real harmonic 1-forms on M then (7α, Tβ) is related to a
basis (α,/?) by means of Eq. (91) where the matrix G(T) is defined above. The
substitution of the relation (87) into the right-hand side of the equality (75) yields

Λ A /_, \-ι Λ, . Q ίC\Λ\
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Since a matrix G(T)eSp(2g,Z) the equality (91) implies that the 2-form (94) is
invariant under the automorphisms from the group AutM.

The Green's function G0(τ, (α, β); ξl9 ξ2) is defined by using the substitution of
the relations (87), (94) into definitions (84), (85). Now the relations (93), (91) and the
invariance of the 2-form (94) under the automorphisms from the group AutM
provides the following

Proposition 5.3. Let the matrix

a{T) b{T))
c(T) d(T)J

(95)

define the above faithful representation G: AutM->Sp(2g,Z). Then for any
automorphism TeAutM

; ξuξ2).(96)

(97)

i,ξ2). (98)

Proof It follows from the definitions (77), (84), (85) and the relation (87) that the
function G0(τ,(α,/?); ζ\Λi) may be rewritten in the form (85) where the function
/(ξ1 ?ξ2) is replaced by the function

G0(t,(α,/?); T-Hi,T-%)=G0Ma(T>-b(W, -

Now we establish the following

Proposition 5.4. For any matrix

tyeSLdg-Z)

the Green's function satisfies the relation

ί — bβ, —coc + dβ); £i,£2) = Go(τ>

ξ2

f
ξ

ξ2
(τ)

The modified theta function of the variables x 1 ? x 2

e ^ f f is given by

(99)

) = exp[ί7φcl5i iπ(xu x2γ\θ(τxί + x2, τ). (100)

In view of [14, Chap. 2, formula (5.3')] the function (99) is invariant under the shifts
ε->ε + 2v, ε'->ε' + 2v' for v,v'eZ*. We consider therefore ε1,ε2e(Z/2Z)*. On the
space of vectors (ε1;ε2)e(Z/2Zfx(Z/2Z)9 we introduce a quadratic form
β((βi;ε2)) = (εi>£2)(m°d2). Let us define due to J.-I. Igusa the subgroup
Γlt2 = {GeSp{2g,Z) I Q{Gx) = Q(x)}. It consists of such elements of the group
Sp(2g, Z) which preserve the parity of the integer characteristic of the first order
theta function (77). By [14, Chap. 2, Proposition 5.5] for any matrix
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In view of [14, Chap. 2, Proposition A.4] the group Γί2 is generated by the
following matrices

0 A (a 0 \ // b
-I OJ' \0 (α')"V' \0 I

- „ . ^n r, (103)

for all a e GL(g, Z), detα = +1 and for all symmetric b e GL(g, Z) whose diagonal
matrix elements are even. By the Proposition 5.2 the function G0(τ, (a,β);ξu ξ2) is
independent of a choice of an odd integer characteristic ε, ε'. Thus the relation (102)
implies that the relation (98) holds for any matrix (103) from the group Sp(2g, Z).
By using the definition (76) we obtain for any symmetric b e GL(g, Z) the following
relation θ(z, τ + b) = θ(z + (6)/2, τ) where the components φ\ of the vector (b)
coincide with the diagonal matrix elements bu. Now the definition (100) implies
that for any symmetric matrix b e GL(2, Z),

Λ + i2 1t' ε+L+&~l ( τ ) (io4)

Since m2 = m (mod 2) for every integer m it is easy to show that for any symmetric
matrix beGL(2,Z) the quadratic form Q(ε; ε' + bε+(b)) = β(ε; ε'). Hence the
relation (104) and the independence of the Green's function (85) of a choice of an
odd integer characteristic imply the relation (98) for the third matrix (103) where b
is an arbitrary symmetric matrix from the group GL(g, Z). Due to [14, Proposition
A.5] namely these matrices (103) generate the group Sp(2g,Z).

The Propositions 5.3 and 5.4 imply the following

Corollary 5.5. Let for a compact Rίemann surface M of genus g > 1 the matrix (95)
define the faithful representation G: AutM-»S/?(2g, Z). Then for any automorphism
TeAutM,

G0(τ,(α, β); Tξl9 Tξ2) = G0((α(Γ)τ + b(T))(c(T)τ + d{T)Y\ (α, β); ξl9 ξ2). (105)

It follows from the Proposition 5.2 that all assumptions of the Proposition 2.2 are
fulfilled. Then under the conditions (26), (30) the amplitude (31) for a compact
Riemann surface M of genus g > 1 has a form

ί

, - . - . . . . . Π (exp[-4πG0(τ,(α,/?);z,,z;)]) *- /(z). (106)

The relation (105) implies that for any automorphism ΓeAutM,

AN{k\Tz, τ)=AN(k\z, {a(T)τ + b(T))(c(T)τ + diT))'1), (107)

where a matrix G [see (95)] defines the faithful representation G:AutM

To compare the amplitude (106) with the amplitude obtained in [4] we consider
the function (79) of the variables ξ,ηeM. By Lemma 5.1 it is not identically zero. It
follows from [14, Chap. 2, Lemma 3.4] and the relation (78) that there are g — 1
points ηl9..., ηg- x e M such that the zeros of the function (79) counting multiplic-
ities are equal to the sum of the diagonal points {(η,η) | η e M) and the points
{^ xM,Mx {*/,}, i = 1,..., g — 1. Setting ξ = ηt and differentiating the function (79)
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at the point η = ηt we obtain (80) at the point ξ = ηt. In view of the relation (78) for

an odd integer characteristic ε,ε'e2? we have θ\ , (0,τ) = 0, i, j = 1,...,g.

Thus differentiating the function (79) twice and setting ξ = η = ηiws show that the
derivative of the function (80) equals zero at the point ξ = ηt. Hence the function
(80) has zero of order two at every point ξ = ηi9 i,j=l,...,g — l. Due to [12,
Corollary 3.4.9.2] the coefficients of the holomorphic differential 1-form on a
compact Riemann surface of genus g has exactly 2g —2 zeros counting multiplic-
ities. Let us denote the coefficient (80) by ζ(ξ). We have established that ζ(ξ) has
g—1 zeros of order two. Therefore, there exists the square root (ζ(ξ))1J2 which is
locally holomorphic function on the surface M as the coefficient ζ(ξ) Let |ρM(z)|
= ds2(dx2 + dy2yί be the multiplier in the Riemannian metric (74). Since the
matrix Imτ is positive definite and the vector (ω1(z),...,ωg(z)) is not zero at any
point of a Riemann surface M [12, p. 81] the multiplier |ρM(z)| >0. We substitute
the equalities (84), (85) into the right-hand side of the relation (106) and we assume
that the coupling constant α2 = 4π, the tachyon masses (kβ kj) = 2, j = 1,..., N and
the distribution function

.Π.Π K W \QM(ZJ)\ - * exp I" - 4 £ ρM(w) log f(zp w)Ί. (108)

It is easy to show that this function has no singularities. Then the amplitude (106)
has the following form:

C J (n

exp - 2π £ £ (ki9 kj) Im ( f ωm - f ωm) (Imτ)"/ Im ( j ω, - J ω,) 1,

(109)

£(z, w) = θ[j,J Q ω , τ) (C(z))" 1/2(«w))" ̂ 2. (110)

The expression (110) is the coefficient of the Prime form [14, Chap. 3b, Sect. 1]. In
our case the path of integration from the point z to the point w passes through the
fixed point ξ. The expression (109) is similar to the ΛT-point amplitude [4] as the
radius of the compactification torus tends to infinity.

In order to integrate over the Teichmuller space it is necessary to introduce the
coordinates. A compact Riemann surface M of genus g > l is topologically a
polygon whose 4g sides are identified according to A^B^γ ιBϊί...AgBgA~ 1B~ *
[12, p. 17]. Due to [12, p. 18] the fundamental group πt(M) is generated by the 2g
closed loops Al9...,Ag9 Bu...,Bg subject to the conditions (36) and the single
relation

U^jBjA^Br^l. (Ill)

Thus for g > l the fundamental group πt{M) is not abelian. In this case the
holomorphic universal covering space of a compact Riemann surface is the upper
half plane H1 [12, Theorems 4.6.1, 4.6.3, 4.6.4]. The group of the conformal
automorphisms of the upper half plane is the group of the linear fractional
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transformations with the real coefficients. It is isomorphic to the quotient group
SL(2, R)/ + /. Consider a set of all faithful representations χ: π1(M)^SL(2, R)/± /
such that the group χ(π1(M)) acts properly discontinuously on the upper half
plane: for every point zeH1 the isotropy subgroup {χ{n1{M)))z at z is finite and
there exists a neighbourhood U of z which is invariant under all L e (χ(π1(M)))z and
L(t/)ul/ = 0 for all Leχiπ^M^χiπ^M)))^ Two representations χ1 and χ2 are
called equivalent if there exists a matrix LeSL(2,R) such that for any loop
Ceπx(M) the relation χ2(Q = Lχ1(C)L~1 holds. The equivalence classes of such
representations are called the points of the Fricke space Fg [17,18]. It is easy to see
that the Fricke space Fg has the real dimension 6g —6. To introduce the complex
structure on a surface M we define a Riemann surface of genus g as the quotient
space //1/χ(π1(M)). The Poincare metric ds2 = y~2(dx2 + dy2) on H1 is invariant
under the linear fractional transformations with the real coefficients. It induces
therefore the Riemannian metric on fί1/χ(π1(M)). By means of the relations (32),
(33) this metric defines the complex structure. Due to [18, Chap. 1, Sect. 5,
Theorem] the Fricke space Fg is homeomorphic to the Teichmϋller space Tg. The
Fricke coordinates are simplest ones on the Teichmϋller space. Nevertheless, the
holomorphic differential 1-forms ωl9...,ωg are unknown as the explicit functions
of the Fricke coordinates. Therefore, the Green's function (84), (85) and the
scattering amplitude (106) are unknown explicitly.

The quadratic holomorphic differentials provide another coordinates on the
Teichmϋller space. A quadratic holomorphic differential is an invariant under the
conformal mappings form φ(z)dz2, where z is a local complex coordinate on a
Riemann surface M and the function φ(z) is holomorphic. In view of [12,
Proposition 3.5.2] the complex dimension of the space of the quadratic
holomorphic differentials is 3g —3. By the norm of the quadratic holomorphic
differential φ(z)dz2 we mean the integral J \φ(z)\(i/2)dz A dz. The unique ball with

M

respect to this norm in the space of the quadratic holomorphic differentials is
homeomorphic to the Teichmϋller space [18, Chap. 1, Sect. 5, Theorem]. By using
a basis in the space of the quadratic holomorphic differentials and a basis in the
space of the holomorphic differential 1-forms on a compact Riemann surface it is
possible to define a canonical form on the space of moduli [19]. This form induces
a canonical measure on the space of moduli. In the paper [20] by means of a choice
of the special basis for the space of holomorphic differential 1-forms on a compact
Riemann surface the canonical form and measure are calculated explicitly. It is
possible to integrate formally the amplitude (106) with this canonical measure over
the space of moduli.
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