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Abstract. The theory of the partially U(1) compactified scalar massless field on the
compact Riemann surface with Nambu-Goto action is defined. The partition
function is determined completely by a choice of the finite-dimensional approxi-
mations. The correlation functions are the only correctly defined objects of the
theory. The averages of the correlation function asymptotic values provide the
amplitudes. For the compact Riemann surfaces of any genus the usual bosonic
string amplitudes are the special cases of the above amplitudes.

1. Introduction

Let M be a compact orientable surface of genus g endowed with the Riemannian
metric g;{(x), i, j=1, 2. In the bosonic string theory the Nambu-Goto action for the
scalar massless fields X*(x), u=1,...,D on the surface M is given by
D oxX* ox*
() Y 1/2 ij

S0 = —1/202 | dyxdetgy ) S ¥ 1057 57 (1)
where g¥(x) is the inverse matrix for the metric matrix g;(x). It was shown [1, 2]
that in the partition function

Z= ZOI Dg;(x)DX*(x) exp [S(X*)] 2

4=
for the space dimension D =26 the integration over the metrics g;(x) is reduced to
the integration over the complex structure parameters of the Riemann surfaces M.

The bosonic string amplitudes are the special correlation functions defined in the
following way [3, Vol. 1, Sect. 1.4.2]:
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where (k, X(x))= Z k*X*(x) and a vector k is a D-dimensional momentum. For

g=0,1the amphtudes (3) are known [3]. For the fixed compact Riemann surface
of higher genus the correlation functions (3) for the fields X*(x) compactified on a
torus and for the vertex operators with v(x)=1 are computed in [4].

The action (1) is invariant under the shift X*— X* + a* for a constant vector a*
and therefore, the integral (2) with respect to X*(x) diverges. The finite part of this
integral [1, 2] is not uniquely defined. In order to calculate the integral (2) let us
consider the fields X*(x) taking values in the circle of radius R or in the quotient
group R/2nZ, where R is the group of real numbers and Z is the group of integers.
Hence we consider the functions X*(x) and X*(x)+2nRn(x) as equivalent. The
integer value function n(x) is smooth if it is constant. Thus to consider the smooth
functions X*(x) with the same action (1) it is necessary for the field X*(x) to belong
the quotient group C®(M)/2zRZ, where C*(M) is the space of the smooth
functions on the Riemann surface M and 2nRZ is the group of the constant 2nRZ-
valued functions on the Riemann surface M. Therefore, the field X*(x) takes values
in the quotient group R/2nRZ at an arbitrary but fixed point of the Riemann
surface M. Such field is called of the partially U(1) compactified. Let us compute
the auxiliary integral for the integrals (2) and (3)

D

) exp [i ¥ (YHXH)+S(X ")] DX*(x), 4
(C®(M)/2rRZ)* D p=1

where the inner product of the functions on the Riemann surface M

(P, w)= 1{4 P(x)p(x)(detg;{x))'/*d*x )
and for every u=1, ..., D the function Y*(x) satisfies the condition
(Y, 1)eR™'Z. (6)

Here 1 is the function equal to 1 everywhere on M. The condition (6) provides the
invariance of the integrand (4) under the shifts X*— X*+2nRn*, n* € Z. In other

D

words the condition (6) provides exp|i Y (Y% X “):l to be a character of the
quotient group (C®(M)/2nRZ)*>. w=t

For an arbitrary lattice gauge theory with an abelian compact gauge group the
non-gauge invariant correlation functions are identically zero [5]. The definitions
of the partition function and the gauge invariant correlation functions allow the
generalizations to the lattice gauge theories with non-compact abelian gauge
group [5]. The simplest non-compact abelian group is the group of real numbers
R. By using de Rham idea [6] it is possible to transfer the definitions of the lattice R
gauge theory to the definitions of the partition function and the correlation
functions of the R gauge theory on the Riemann manifold [7]. In particular, the
correlation functions of the scalar massless field theory on a Riemann surface with
the action (1) were calculated [7]. The partition function of this theory is
meaningless since it depends on a choice of the finite-dimensional approximations.

In the next section it will be proved that for the partially U(1) compactified
scalar massless field theory (1), (4), (5), (6) on the Riemann surface the non-gauge
invariant correlation functions with (Y*,1)%0 are identically zero. The gauge
invariant correlation functions with (Y*, 1)=0 and the partition function coincide
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with the correlation functions and the partition function of the R-gauge scalar
massless field theory on a Riemann surface [ 7]. Hence the partition function or the
integral (4) with Y#*=0 is completely determined by a choice of the finite-
dimensional approximations of the integral (4). The special choice of the finite-
dimensional approximations gives the result of [1,2]. Therefore, the statistical
theory (1), (2), (3) with U(1) compactified zero mode is meaningless. The only
correctly defined object is the correlation function of the theory (1), (4), (5), (6) for
the fixed Riemann surface M. This correlation function for the vector function
Y*(x) satisfying the conditions (Y*(x), 1)=0 is given by

exp [ —a?/2 L, (Y00, YO)G(x, y)(detg; 1)) (detg (y)" 2dzxdzy] (O

D
where the inner product (Y(x), Y(y))= Y. Y*x)Y*(x)Y*(y) and G(x,y) is the
n=1

Green’s function for the Laplace-Beltrami operator on the Riemann sur-
face M. The amplitude (3) corresponds with the vector function Y*(x)

=(detg;)~'/? Z k#d(x, x;). The substitution of this vector function into the

expression (7) glves the diverging integral. Usually the finite part of (7) inserted into
the integral (3) provides the amplitude. Because of conditions (Y*,1)=0, or
N

Y. k'=0in our case, it is possible to replace the Green’s function G(x, y)in (7) by a

1=1

function G(x, y)+ f(x)+ g(y), where the functions f(x) and g(y) are arbitrary. Thus
the finite part of the correlation function (7) is not connected in general with the
geometry of the Riemann surface M. For example, the simplest amplitude
corresponding the Riemann sphere CP! is usually computed by using the Green’s
function for the Laplace-Beltrami operator on the complex plane C. Our definition
of the amplitude is similar to the integral (3) but it has a simple geometrical

interpretation. Under the assumptions Z kt=0, p=1,...,D, (k,k)=mZ, ...,
i=1,..., N this definition provides the followmg N-point amphtude

Mi N <zl=—l1 vx;)(detg; ,(xz))1/2d2x1> exXp [ —o? i;j (ki, k)G(x;, x ,)] . ®)

Now the space dimension D =26 is not preferred and the masses m; are arbitrary.
The last property is physically natural since we investigate the scattering
amplitude in the Euclidean space and the particle masses usually are fixed in the
Minkowski space. The integral (8) is convergent because of the smoothing
functions v,(x;). By means of the regularization procedure in the integral (8) we
obtain the generalized function on the space M *¥ x T,, where the point of the
Teichmiiller space T, corresponds with the complex structure of the Riemann
surface M. It is possible to prove the modular invariance of the amplitude (8). For
the analytic regularization in the parameters (k;, k;) the amplitude (8) has the pole
singularities similar to those of the Veneziano amplitude.

If we choose the special coupling constant %, the masses m; and the smoothing
functions v,(x;) in the amplitude (8) for the genus g=0 we obtain the N-point
amplitude for the closed bosonic strings of genus zero [3, Vol. 1, formula (1.4.13)].
Another choice gives us the Koba-Nielsen amplitude for the open bosonic strings
of genus zero [3, Vol. 1, formula (1.5.11)]. If we integrate the amplitude (8) for the
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genus g =1 with the special measure with respect to the parameter of the complex
structure of the torus and if we choose the special coupling constant «?, the masses
m; and the smoothing functions v(x;) we obtain the N-point amplitude for the
closed bosonic strings of genus 1 [3, Vol. 2, formula (8.2.17)]. Another choice of the
measure, the coupling constant, the masses and the smoothing functions provides
the N-point amplitude for the open bosonic strings of genus 1 [3, Vol. 2, formula
(8.1.55)]. For higher genus g> 1 the substitution of the special coupling constant,
the masses and the smoothing functions in the amplitude (8) gives us the expression
similar to the amplitude obtained in [4] for infinite radius of the compactification
torus.

In the next section we study the partition function, the correlation functions
and the amplitudes of the partially U(1) compactified scalar massless field theory
on the compact Riemann surface. The third, fourth, and fifth sections are devoted
to study the Green’s functions for the Laplace-Beltrami operators and the
amplitudes for the compact Riemann surface of genus: g=0, g=1, and g>1,
respectively.

2. Correlation Functions and Amplitudes

Let M be a compact smooth connected orientable surface endowed with a

complete Riemannian metric g;{(x), i, j=1,2. An element of the quotient group

(C*(M)/2nRZ)*? is called a partially U(1) compactified field on the surface M. For
2

. . . 0 .
these fields we introduce the differential operator dX*(x)= Y F X*(x)dx', where
i=1

x!, x? are the local coordinates on M and the differential 1-form d X*(x) depends
only on the equivalence class [X*(x)]e(C®(M)/2nRZ)*P. The Nambu-Goto
action (1) may be written in the following form:

S(X¥)= —1/2a2 il @x*,dx"), )

2 2
where the inner product of the differential 1-formsa= Y adx’and f= ¥ Bidx‘is
i=1 i=1
defined by

i=

2

@p=1 % gx)o(x)B ) (det g, () x . (10)

i, j=1

Here the matrix {g¥(x)} is the inverse for the metric {g;{x)} on the surface M.

Definition 2.1. For the partially U(1) compactified scalar massless field theory with
the action (9) a correlation function for a vector function Y*(x)e C*°(M), u=1,...,D
satisfying the condition (6) is defined in the following way

W(Y*)= lim 1/Z,
L,—~(C®(M)/2nRZ)* D >

X 1! exp[ 21 [i(Y*, X*)—1/203(d X", dX")]} a[x+], @1
n n=

where L, is a n generator subgroup of the quotient group (C*(M)/2rRZ)*" and
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d[X*] is any Haar measure on the group L,. The normalizing multiplier is given by
D
Z,={ exp[—1/2oc2 Y. (dX*, dX“)] darx+]. (12)
L, p=1

The partition function of the partially U(1) compactified scalar massless field theory
with the action (9) is defined as a limit

Z= lm  Z,. 13)
(C*(M)/2rRZ)* D

Let d* be the adjoint operator of the differential operator d with respect to the
inner products (5), (10). The operator d* sends a differential 1-form into a function
on the surface M. The operator 4 =d*d is called the Laplace-Beltrami operator on
the functions on the surface M. A function ¢ is said to be harmonic if A¢ =0. The
Hodge theorem [6, Sect. 31, Corollaire 4] implies that on the compact smooth
connected orientable surface endowed with a Riemannian metric any harmonic
function is constant. We use H to denote the orthogonal projector on the one-
dimensional space of the harmonic functions in the Hilbert space of the functions
on the surface M with the inner product (5). The operator G on this space is called a
Green operator for the Laplace-Beltrami operator on the functions on the surface
M if it satisfies the relations

AG=GA=I—-H, GH=HG=0. (14)

Proposition 2.1. For the partially U(1) compactified scalar field theory with the
action (9) the partition function (13) is determined completely by a choice of the
subgroups L,e(C*(M)/2nRZ)*® and the Haar measures on them. The correlation
function (11) is independent of a choice of the subgroups L, and the Haar measures
on them. If for some u=1,...,D the relation (Y*,1)%0 holds then the correlation
function

wW(Y")=0. (15)
If for all u=1,...,D the relations (Y*,1)=0 hold then the correlation function
D
W(Y”)=exp[—a2/2 T (Y GY”)], (16)
p=1

where G is the Green operator for the Laplace-Beltrami operator on surface M.
Proof. Let n=(ny,...,np)eZ” and L, be a subgroup of quotient group
(C*/2nRZ)*P generated by the linear independent for every u=1, ..., D functions
Xh(x)=1, X¥(x), j=1,...,n,—1. An arbitrary element of the subgroup L, has a
form

n,—1
l:ru + j;l tqu}‘:l ’ (17)

where 0<r,<2nR, t; eR, j=1,..,n,—1, u=1,...,D. The addition of the two
elements of the form (17) is defined by the usual addition of the corresponding real
numbers t;, and by the addition of the corresponding numbers r, as the elements
of the quotient group R/2nRZ, namely r,wr,=r,+7r, if r,+r,<27R and r,wr,
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=r,+r,—2nR otherwise. Let us introduce the Haar measure on the group L,,

d[rﬁ""z thj‘(x)] -1 [(27:R)-1dr,, <"'ﬁldt,.,‘)]. (18)
i=1 n=1 j=1

Two Haar measures on the group L, differ from each other by a constant multiplier
only. The substitution of the expressions (17) and (18) into the integral (12) gives a
Gauss integral. As a consequence we obtain

Z,= [ [~ (et (dXE, X)) 71, (19)

The differential 1-forms dX¥%, j=1,...,n,—1 are hnearly independent. In fact,
otherwise there exist the real numbers such that Z 4dX"%=0. The kernel of the
differential operator d coincides with the space of the constant functions on the
surface M. Thus there exists a real number 1, such that‘ Z 4;X*%(x)=0 which

contradicts the assumption that the functions X¥%(x),.. J _,(x) are linearly
independent. Therefore the expression (19) is not zero. We may choose the
functions X%(x), ..., X,» _ 1(x) in such a way that the expresswn (19) takes any given
nonzero value. For example, let us assume that o®>=(27)"", (X4, X%)=0 for
] 1 u —1and det{(X X“)}l j=0,...,ny —-1—1 Then dCt{(X X )}l j=1,..,n,—1
—(X’&, X‘(;) ! and the definition of the Laplace—Beltraml operator 1mpl1es

_ B (det{(X AXDY o m=1 )T o
Zp= 11 (det{(X XY )},,,J_l ..... -1 ) (X XE1 0

The constant function XY is a zero mode of the Laplace-Beltrami operator on the
functions. Hence the limit (13) of the expression (20) coincides with the
result [1, 2].

The substitution of (17), (18) into the right-hand side of the definition (11) yields

2nR

1/Z, H(ZnR)“ [dr, [ dtexplir/(¥*1)]

w1
xexp[ z £ (Y X% —1/202 z tiuted XY, dX;:)]. (21)
k=1

If one of the numbers (Y*,1)e(R) ™ 1Z is not equal to zero the integral (21) equals
zero and the relation (15) is proved.
Let (Y*,1)=0for all u=1,...,D. Then for all u=1, ..., D the first equation (14)

implies that
Yt=d*dGY*. (22)

Substituting the equalities (22) and (Y*, 1)=0 into the integral (21) and computing
integrals with respect to the variables r, we have

D

1/Z, T1 [ [ am~ 1texp[ Z t”,(dG Y¥dX%)—1/262 Z tmtk,,(d dXﬁ)]] .
pu=1| Rru-1

By using this integral in the definition (11) we obtain the definition of a correlation

function from the paper [7]. Due to [ 7] the correlation function is independent of a

choice of the subgroups L, and the Haar measures on them. It is equal to (16) [7].
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Thus for the partially U(1) compactified scalar massless field theory with the
Nambu-Goto action (9) the correlation functions (16) are the unique correctly
defined objects. The amplitude must be constructed from the correlation functions
(16). The correlation function (16) has a simple geometrical meaning. Let D?(T*M)
denote the space of the smooth differential p-forms on the surface M. If a function
Y(x) on the surface M satisfies the equation (Y, 1) =0 the relation (22) implies that
Y(x)=d*w(x), where w(x) is a differential 1-form on the surface M and d* is the
adjoint operator of the differential operator d with respect to the inner products
(5), (10). Let us establish the following relation:

(Y,GY)= inf (0,). (23)
weDI(T*M)

d*o=Y
Hence the left-hand side of the relation (23) is the minimal “length” of a differential
1-form whose “boundary” coincides with the function Y(x) on the surface M. To
prove the relation (23) we introduce the differential operator d: D'(T*M)

. 0 0

~D*(T*M) in the following way d(z oc,(x)dxf) = <a—j§ — 5%) dx! Adx?. Let

J
us define on the space D*(T*M) the inner product

(@p=1 o15(%)B12(x)(detg(x))~ 2dx. 24

Let d* be an operator on the space D*(T*M) which is adjoint of the differential
operator d with respect to the inner products (10), (24). The operator 4 =d*d + dd*
is called the Laplace-Beltrami operator on the differential 1-forms on the surface
M. The differential 1-form w is said to be harmonic if it satisfies the equation
Aw=0. Due to the Hodge theorem [6, Sect. 31, Corollaire 4] for a compact
smooth connected orientable surface provided with a Riemannian metric the
dimension of the space of the harmonic 1-forms coincides with the number of the
generators of the homology group H,(M, R). Any harmonic 1-form belongs to the
space D'(T*M) [6, Sect.29, Corollaire 1]. Let H denote the orthogonal with
respect to the inner product (10) projector on the space of the harmonic 1-forms.
Let G be a linear operator on the Hilbert space of the differential 1-forms endowed
with the inner product (10) and G satisfy the equations of the form (14). Gis called a
Green operator for the Laplace-Beltrami operator on the differential 1-forms on
the surface M. The definitions of the operators 4 and G imply the decomposition
of the differential 1-form

w=dd*Go+d*dGw+Ho . (25)

By [6, Sect. 26, Théoréme 20] any harmonic 1-form « on the surface M is closed
and co-closed, i.e. do=0 and d*a=0. Since d>=0 and (d*)>=0 all terms in the
decomposition (25) are orthogonal to each other. The operators G and d* are
commuting [6, Sects.31,33]. Now the decomposition (25) implies the
equality (23).

Let h(x, y) be a smooth function of the variables x, ye M. We assume that for
every ye M, (h(, ), 1)=1. In order to construct the amplitude we choose a set of
the momentum vectors k4, j=1,...,N, u=1,..., D, satisfying the conditions

N
3 k=0, p=1,...D. (26)
P



334 Yu. M. Zinoviev

Instead of the function v,(x,)...vx(xy) in the integral (3) we introduce a smooth
distribution function f(x,...,xy) which vanishes with all its derivatives when
xi=x]-.

Definition 2.2. The scattering amplitude of N tachyons with the masses my, ...,my
and the distribution function f(x,, ...,xy) on the surface M is the following limit:

Ly AKX () llfl! (detg,(x))'*d’x,

= lim f <ﬁ (detgi,{x,))”zdzx,)

h(x,y)=(detgi;(x)) ~ 1/25(x,y) M*N \I=1

x f(x)exp [a2/2 .gl m3(h(s, x;), Gh(.,x,.))] W<§: k}‘h(-,x,-)), (27)

N
where W< y kj-‘h(o,x,-)) is a correlation function (16) of the partially U(1)
j=1

compactified scalar massless field theory on the surface M and G is the Green
operator for the Laplace-Beltrami operator on the functions on the surface M.

The last two equations (14) imply that (h(e,x;), Gh(s,x))=((h(s,x)—(1,1)7"),
G(h(s, x)—(1,1)~1)). Now the relation (23) provides a geometrical meaning of the
complementary multiplier which distinguishes the expression (27) from the integral
(3) for the fixed surface M.

We assume that the Green operator for the Laplace-Beltrami operator on the
functions on the surface M is an integral operator

Golx)= [ Glx, )o(y)(detg;(y)'d?y. (28)

The kernel G(x, y) of the Green operator is called the Green’s function.

Proposition 2.2. Let for a compact smooth connected orientable surface M endowed
with a Riemannian metric a Green’s function G(x,y) be a continuous function on
M x M except for the diagonal points where it has the singularity —1/2nlog|x — y|.
Then the scattering amplitude (27) of N tachyons with the masses m, ..., my and the
distribution function f(xi,...,Xy) on the surface M equals

O l:f (kj,k])>m12, j=1,...,N,
j A (29)
o if (kykp<m;, j=1,..,N.
If
(kpk)=m?, j=1,..,N, (30)

then the scattering amplitude (27) equals

N
[ f (x)( [T (detg;fx,)" 2d2x,>
M*N 1=1

= 1<

ﬂ.s N (exp[—4nG(x;, x )]y **4 - (31)
i<js

Proof. The distribution function f(x,, ..., xy) vanishes with all its derivatives when
x;=x;. Now taking into account the expressions (16), (27) and the explicit form of
the singularities of the Green’s function G(x, y) it is easy to prove the equalities
(29), (31).
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Remark 2.1. The amplitude (31) has the same form for all masses my,...,my.
Therefore, it is possible to consider the expression (31) as a scattering amplitude for
N particles in the Euclidean space. The analytic continuation in the momentum
variables &/ of the expression (31) gives a scattering amplitude for the N particle in
the Minkowski space.

Remark 2.2. The amplitude Ap(ky, ..., kylX4, ..., Xy) in (31) has the singularities of
the form |x;—x;|*, where x;, x; are the two-dimensional vectors. In the spherical
coordinates these singularities have the form x% , where x is the norm of the vector
x;—x;. When the variables are rightly chosen in the integral (31) allows the
continuation for the functions f(x, ..., xy) which do not vanish when x;=x;. One
of these continuations is the analytic continuation in the variables (k;, k;). Due to
[8, Chap. 1, Sect. 3.2] the generalized function x* is a holomorphic function of the
variable A except for the points A= —k, k=1,2, ..., where it has the simple poles
with the residues (—1)(k—1)!)~16% Y(x). Applying this result it is easy to
compute [8, Chap. 1, Sect. 3.8] the poles and the residues of the beta function
B(4, ) and consequently of the Veneziano amplitude. It seems reasonable that the

amplitude (31) has in the variables (k; k;) similar singularities.

Remark 2.3. The amplitude (31) is constructed from the functions
exp[ —4nG(x, y)]. These functions have simple geometrical meaning [9]. Let us
introduce the complex structure on the surface M. With the local coordinates
(x!,x?%) and with the Riemannian metric the following function

Wz)=p(x" +ix*)=(811 — 822 +2i815)(811 + 822+ 2811822 —832)") ™" (32)

is related. The function f is said to be holomorphic if it satisfies the Beltrami
equation

of of
=D Z- (33)
By [10, Chap. 1, Theorem 4.3] Egs. (32) and (33) define the structure of a Riemann
surface on the smooth connected orientable surface M endowed with the
Riemannian metric. A Riemann surface is a one complex dimensional connected
complex analytic manifold M with a maximal set of charts {U,, z,},., on M. The
set {U,},c4 constitutes an open cover of M and a map z,:U,—»C is a
homeomorphism onto an open subset of the complex plane C such that the
transition functions z, 0z, ': zy(U,nUy)—z(U,nU) are holomorphic whenever
U,nU,;+0. Let n: E—M be a linear holomorphic fibre bundle over the Riemann
surface M [11, Chap. 1, Definitions 2.1, 2.2]. Let a function & define a hermitian
metric on the fibre bundle n: E—~M [11, Chap. 3, Definition 1.1]. The hermitian
metric induces a canonical holomorphic connection D compatible with this metric
[11, Czlhap. 3, Theorem 2.1]. The curvature form 6(D) of this connection is equal to

= %5.55 loghdz A dz [11, Chap. 3, Theorem 2.1, Proposition 2.2]. The first Chern

form for the linear fibre bundle n: E—M endowed with a connection D is the
2

2-form ¢, (E, D)=(i/2m)0(D)=(1/2mi) é—ja—z_ loghdz A dz [11, Chap. 3, Definition 3.4].

By the relations (32) and (33) in the holomorphic coordinates the Riemannian
metric has the following form: g,,=0, g,,=g,,=¢>0. Now using the inner
products (5), (10) it is easy to calculate explicitly the Laplace-Beltrami operator on
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2

0
020z
equations for the Green’s function G(z, ®) [see (28)]:

The equations (14) are equivalent to the following

the functions: 4= —4p !

4 Gz, w)= 8z, w)— (dotgyfz) (vl (M) 1,

020z
420 e )= oz, ) (et gy ) 0l (M)

(34)

| G(z, w)(detg;£2))"/%(i/2)dz AdZ=0,

[ Glz, w)(detg,(w)(i/2)dw A d =0,

M
where
vol(M)= { (detg,(z))""2(i/2)dz A dZ. (35)
M

Choose the right-hand side of the first equation (34) multiplied by the 2-form
(1/2i)dz A dz as the first Chern form. Comparing this first Chern form with the first
Chern form c¢,(E,D) we obtain that the function exp[—4nG(z,w)] defines a
hermitian metric on the linear holomorphic fibre bundle over M satisfying the
third equation (34) and having a zero of order two at the point z=w. [We assume
that the Green’s function G(z, w) has the singularity —1/2nlog|z —w|.] Therefore,
the function exp[ —4nG(z, w)] defines a hermitian metric on the sheaf @(w). The
sheaf O(w) is determined by its local sections. If the open set U contains the point
we M the local sections O(w)(U) are the functions analytic on U except for a
possible pole of first order at w; otherwise the local sections O(w)(U) are the
functions analytic on U.

The topological model of a compact connected orientable surface M is a two-
dimensional sphere or a polygon whose sides are identified according to
A,B,AT'B71...A BgAg !B, 1, g=1,2,... [12, p. 17]. In the former case we say
that the genus of M iszero and inthe latter case we say that the genus is g. The sides
of the polygon give a basis for the homology group H,(M,Z) [12, p. 18]. Due to
[13, Sect. 0.4] the intersection number of two cycles on the Riemann surface is
defined in the following way. If two cycles A and B intersect transversally at the
point P the local intersection number (4 « B)pis equal to +1 if the tangent vectors
for A and B provide the basis for the tangent space at P € M. In the case of inverse
orientation (A« B)p= —1. If the intersection of the cycles A and B is not
transversal at the point P the local intersection number (A4 ¢ B)p=0. The
intersection number A « B is the sum of the local intersection numbers. In the case
of a compact Riemann surface of genus g the cycles 4,,...,4,, By, ..., B, have the
following intersection numbers [12, p. 54]:

Ai.Aj=Bi.Bj=0’ A,.B=5

J ij-

(36)

In the forthcoming sections we study the Green’s functions and the amplitudes
(31) for the compact Riemann surfaces of arbitrary genus.
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3. Riemann Sphere

Every compact simply connected Riemann surface M is conformally equivalent to
the Riemann sphere CP' =Cu o [12, Theorem 4.4.1]. It is homeomorphic to the
unit sphere $>CR3. The Euclidean metric on R* and the stereographic projection
$2\{(0,0,1)} onto C induces the Riemannian metric on C

ds? =(n(1+|z1**)~ Y(dx* +dy?). 37
It is invariant under the substitution z—z~! and, consequently, induces the
Riemannian metric on CP*. The coefficient in (37) is chosen in such a way that

vol(CPY)=1 [see (35)].
Proposition 3.1. The function

G(z,w)= —1/2nlog|z —w|
dz, ndz,
(1 +(z, %)
dz, AdZ, Adwy AdW,
(1 +1z, 2)2(1 +|wy?)?

satisfies Eqs. (34) on CP! endowed with the Riemannian metric (37). The first term in
the right-hand side of the equality (38) determines the singularity of the function
G(z,w).

Proof. By using the substitution z—z~! it is easy to show that
| (loglz)(1+|z|*)~2dz A dz=0. (39)
CP!

+i/(2m)? cnjn (loglz—z;]+logjw—z,))

(38)

+1/2n)* [ (loglzy—wyl)
(CP )xZ

Applying this relation it is possible to prove the following equalities
Gz L, w )=G(z,w), (40)
G(z™',w)= —1/2nlog|1 —zw|
dz, ndz,
(1 +1z, %
dz, Adz; Adw, AdW,
(A 1z, (1 +wy?)?

The relations (40), (41) imply that the function G(z,w) is defined on CP! x CP.
Two first equalities (34) for the CP* follow from the equality

+i/2m)* | (log|1—zz,|—log|l —wz,|)
CP1

(41)

+1/@n)* [ (logll—zyw)
(CP1)x2

2

0

4 0z0z

The last two equalities (34) are verified immediately. The singularity of the
function G(z, w)is defined by the first term in the right-hand side of the equality (38)
since the subsequent terms are continuous functions of the local coordinates z, w.
Thus the Green’s function (38) satisfies all conditions of the Proposition 2.2 and

it is possible to define the scattering amplitude (31) for CP'. To compare the
obtained amplitude with the usual one we need to choose the parameters and a
distribution function f(x,, ..., xy) such that three terms except for the first in the

log|z —w|=2nd(z — w)dé(z — W). 42)
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right-hand side of Eq.(38) are compensated. The first term in Eq. (38) is the
Green’s function for the Laplace-Bertrami operator on the functions on the
complex plane C.

We assume a?=n and introduce a function

dw A dw
Pulihends 43
e
It follows from the relations (26), (30), (37), (38), and (43) that the expression for the
scattering amplitude (31) may be rewritten as

c i <n ®,(z)(i/2)dz; A dZ ) f@
(cph)xw

j=1

®,:(z)=(n(1+1z]*)?) " L exp [im2/41t cf (log|z—wl)
Pl

[<'[ N |z;—z;| ko k2 (44)

It is easy to verify that
Bpalz™ 1) =2* "2 @,(2). (45)

Hence the function @,.:(z) on the Riemann sphere CP! is smooth only for
m? =0, 4, 8. The relation (45) implies that ®y(z)x|z]™* and ®,(z)~|z] "2 as z— 0.
Now the Proposition 3.1 shows that for m}=0,4 the last multiplier in the
integrand (44) has the non-integrable singularity at the point z;=co. Thus the
unique possibility to remove the functions @,,:(z;) in (44) by means of a choice of
the distribution function f(z,, ..., zy)is to fix the tachyon masses m; =...=my=8.

However, if now the function f(z,,...,zy) [] ®g(z;) is taken to be constant the

integral (44) diverges since the integrand (44) is 1nvar1ant under the linear fractional
transformations of CP! with the complex coefficients. The linear fractional
transformation which leaves fixed three distinct points of the Riemann sphere CP*
is the identity transformation. Let us fix the points z; =0, z, =1, z; = o0 and take a
function

F@)=01)0E,)0z,— )3, — Dole; oz ) (n %(z;-)) )

in the integral (44). Then we obtain the scattering amplitude for the closed bosonic
strings [3, Vol. 1, formula (1.4.13)].

To obtain the scattering amplitude for the open bosonic strings we need to
restrict the integration over the Riemann sphere in (31) to the integration over
the real axis. A simple restriction to the real axis gives the generalized functions
of the type |x;— x;|*. Due to [8, Chap. 1, Sect. 3.3] the generalized functions |x|*
and x* have the dlfferent pole singularities. Therefore, taking into the amplitude
31) for CP! the coupling constant o> =2r, the tachyon masses m?=... =m%=4
and the distribution function

£2) =8z )3(E )0z, — 1)0(E, — 1)0(z5 105 ( il 4>8(z,.)) -
N N-1
x (J.ll 5(}’1')) B(x4) (jll B(xjt 1 _xj)> 61 —xy),

where z;=x;+iy;, we obtain the N-point Koba-Nielsen generalization for the
Veneziano amplitude [3, Vol. 1, formula (1.5.11)].



Scalar Massless Field on a Compact Surface 339

4. Torus

Every smooth compact connected orientable surface M of genus 1 is
homeomorphic to the parallelogram whose sides are identified according to
ABA™'B~! [12, p.17]. In particular, all vertices of the parallelogram are
identified. Using the common vertex as a base point for the fundamental group,
one shows that ,(M) is generated by the closed loops 4 and B subject to the single
relation ABA™!B~!=1. Hence n,(M) is the free abelian group isomorphic to
Z®Z. In view of [12, Theorem 4.6.1] a Riemann surface M is conformally
equivalent to a torus T(1,7)=C/I'(1, t), where the group I'(1, 7) is generated by the
shifts z—z+1 and z—z+ 1, Im7>0. Choose on the torus T(1, 7) the Riemannian
metric

ds? =(Im7)~ (dx? +dy?) @7

and the corresponding canonical 2-form
011, o(2)=m7) " '(i/2)dz A dZ . (48)

Itis quite obvious that vol(T(1, 7)) = 1 [see (35)]. The smooth functions on the torus
T(1,7) are equivalent to the smooth functions on the complex plane C which are
invariant under the transformations from the group I'(1,7). Let D%(T*T(1,1))
denote the space of the smooth functions on the torus T(1,7). The spaces
DX(T*T(1,7)), p=1,2, of the smooth differential p-forms are defined in a similar
way. Let us introduce the mapping o, : T(1,i)—T(1,7) and its inverse mapping

a(x+iy)=x+1y,

. - o 49)
o, '(x+iy)=Im7)” '(Im(t(x —iy))+iy).

Since the functions from D%(T*T(1, 1)) are invariant under the shifts z—z+1 and
z—z+1 there exists the Fourier expansion

P(z2)= me;z)z exp[ —2mi Re[(m, —im,)o; }(2)]1(m). (50)

The differential operator d on the complex plane C induces the differential

operator d on the space D?(T*T(1, 7)). It follows from the definitions (5), (10), and

(47) that the Laplace-Beltrami operator on the functions on the torus T(1, 7) has the
2

form 4= —4(Imt)?az_. Hence the Green operator G satisfying Egs. (14) acts on
the function (50) in the following way: P
_ o Rel i — i (7 OEm)
Go(z)= mE;Z)Z exp[ —2ni Re[(m, —imy)a; *(z)]] Bim,t—myf (51)

m?+m3*0

Proposition 4.1. The Green’s function for the Laplace-Beltrami operator on the
functions on the torus T(1,7) is equal to G(z,w)= G, }(2), o, }(w); 7). For every
variable z,we'T(1,i) the function

Im<t
@n)2lm T —m,|?

Golz,w; 1)= Zzz cos[2n Re[(m, —im,)(z—w)]] (52)

2 2
mi+m;+0
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belongs to Hilbert space of the functions on the torus T(1, i) endowed with the inner
product (5) corresponding to the Riemannian metric (47). For any matrix

a b
<c d> eSL(2,Z) (53)
the function Gy(z, w; t) satisfies the relation
G, (x +iy,u+iv; g%g) =Gy(by+dx +i(ay +cx),bv+du+i(av+ cu); 7). (54)

Proof. 1t follows from the definition (28) and the equality (51) that the Green’s
function for the Laplace-Beltrami operator on the functions on a torus T(1,7) is
Golo, 1(2), o 1(w); 1), where the function Gy(z,w;t) is given by Eq.(52). The
definitions (5), (47), and (52) imply that for every we T(1, 1),

(Imt)?
Go(s, w; 1), Go(e, W; 7)) = —_—
(Gl » Gol ) me;z)2 @) myt—m,|*
m?+m3+0
The series in the right-hand side of this equality is absolutely convergent. The
analogous equality holds for another argument zeT(1,i). To prove the relation

(54) we note that

m at+b
Let+d

(55

_m2

-2 at+b _
Im<c1+d> =|(am; —cmy)t—(—bm, +dm,)| " ?Imt,

< dmz‘bml _ <a b -1 m2

—cmy+am;)  \c d m)’

Now the replacement of the summation variables in the right-hand side of Eq. (52)
yields the relation (54).

In order to study the singularities of the Green’s function we introduce the theta
functions

0(z,t)= Y exp[rin’t+2minz], (56)
neZ
0 [1] (z,t)=explint/4+inz+in/2]0(z+ (1 +1)/2,7), (57

where ze C and 7€ H,. We denote the upper half plane by H,. The function (56) is
called the Riemann’s theta and the function (57) is called the first order theta
function with integer characteristic 1, 1.

Proposition 4.2. The function

f(2)= OB] (z, t)lexp[—n(lmt)“ 1(Imz),] (58)

is invariant under the transformations from the group I'(1,7) and induces a function
on the torus T(1,7). The function
G(z,w)=—1/2rnlog f(z—w)
+1/2n T(i[ ) 011, (z1)(0g f(z—z,) +1og f(z, —w))

- 1/27’5_._(1 J;)x s 011, 0(Z1) A Q’l‘(l,t)(wl)l()gf(zl —wy) (59



Scalar Massless Field on a Compact Surface 341

satisfies Eqgs. (34) for the torus T(1, ) endowed with the Riemannian metric (47). The
function G(z, w) is continuous everywhere on T(1, 1) x T(1, 7) except for the diagonal
points where it has the singularity —1/2nlog|z—w|.

Proof. In view of [12, Chap. 6, formula (1.4.6)] the function (58) is invariant under
the transformations from the group I'(1, 7). Hence it induces a function on the torus
T(1,7). The function (Im z) is locally harmonic on the torus T(1,t). The theta
function (57) is locally holomorphic on the torus T(1, ) and it vanishes at the point
z=0 [12, Proposition 6.1.5]. It follows from the Riemann theorem [14, Chap. 2,

Theorem 3.1] that the point z =0 is the first order zero and the function 6 [i (z,7)

has no other zeros. Now the equality (42) implies that the function (59) satisfies the
first and the second equations (34) for the torus T(1,7) endowed with the
Riemannian metric (47). The function (59) is continuous on T(1, 7) x T(1, 7) except

. 1 . . . .
for the zeros of the function 6 1 (z—w, 7),i.e. the diagonal points, where it has the

singularity —1/2nlog|z—w|. The last two equations (34) for the torus T(1, ) are
verified immediately.

Since every harmonic function on the torus is constant, the solution of Egs. (34)
is unique. Hence the function (59) coincides with the function G(z, w) defined in
Proposition 4.1. Proposition 4.2 shows that the conditions of Proposition 2.2 are
satisfied. Take in the scattering amplitude (31) for the torus T(1, 7) the distribution
function f(e; *(z,), ..., % '(zy); ), where the function f(z,, ..., zy; 7) is smooth and
it has a compact support in the variable 7. We use the change (49) of the variables in
the integral (31) and integrate it over the upper half plane H, with the measure
(Im7)~%(i/2)dt A d7. Then we have

}! (Im7)~2(i/2)dz A dT . { ( ﬁ (i/2)dz; n d2j> Apklz, 1) f(z; 1), (60)
1 (L)*N \j=1

1,7)

1<i<is

AN(kIZ’ T) =exp [ - a2 z N (kia kj)GO(Zi, zj; T)] . (61)

The relation (54) implies that for every matrix (53)

at+b

Ayl k Vs enns YN, ——
N( Ixy +iy, Xy+iyy cr+d)

= Ap(klby, +dx, +i(ay, +cx,),...,byy+dxy+i(ayy +cxy); 7). (62)

The analytic regularization of the amplitude (61) in the parameters (k;, k;) gives the
amplitude satisfying also the relation (62).

The geometric interpretation of the relation (62)is very simple. Due to [12, Sect.
4.7.3] two tori T(1,7,) and T(1,7,) are conformally equivalent if and only if

b . . .
1,=M(g)(t,)= g%, where g is the matrix (53). The group of all such linear
1

fractional transformations of the upper half plane H, is isomorphic to the modular
group SL(2,Z)/{+I}. On the other hand, every matrix (53) defines the
homeomorphism x+iy—by+dx+i(ay+cx) of the torus T(1,i) onto itself. The
equality (62) shows that the amplitudes for the conformally equivalent tori are
related to each other by means of the corresponding homeomorphism of the torus
T(,i).
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The domain F in the upper half plane H, is said to be fundamental for the
modular group SL(2, Z)/{ + I} if for every orbit of this group at least one element
lies into the closure of domain F and two elements of the orbit belong to the
closure of F only if they belong to the boundary of F. It follows from [15,
Chapitre 7, Théoréme 1] that the domain F={ze H,: |z|>1, |[Rez|<1/2} in the
upper half plane H, is fundamental for the modular group SL(2,Z)/{ +I}. In the
integral (60) with the analytically regularized amplitude (61) we take a distribution
function f(z) which does not depend on the variables z,, ..., zy. Since the measure
(Imt)~%(i/2)dr A d7isinvariant under the transformations from the modular group
the relation (62) implies that the integration over the upper half plane in (60) is
reduced to the integration over the fundamental domain F and the distribution
function f{(z) is replaced by the function

MLf1@=1/2 > f(M(g)(z)). (63)
geSL(2,Z)

In order to compare our amplitude (60), (61) with the usual amplitude we
introduce a notion of a modular form. The mapping z— ¢q(z) =exp[2niz] defines a
holomorphic mapping of the upper half plane H, onto the punctured complex
plane C*=C\{0}. Let us denote H,/{M(T)} the quotient space where the group
{M(T)} is generated by the shift M(T)(z)=z+1. The mapping g induces the
analytical isomorphism between H,/{M(T)} and the punctured complex plane C*.
Therefore, the meromorphic function f(z) invariant under the shift M(T) induces
the meromorphic function f, (q) on the punctured complex plane C*. The function
f»(q) is meromorphic at the point 0, if for some integer n the function ¢"f, (q) is
bounded in some neighbourhood of the point 0. The minimal such integer n is
called an order of the function f(z) at infinity. It is denoted by v (f). A
holomorphic on the upper half plane function f(z) is called a modular form of the
weight k if a function f(z) is meromorphic at infinity, i.e. v ( f) < 00, and for every
matrix (53) the following relation satisfies

f(“”” ) —(cz+dff(@). (64)

cz+d

A modular form f(z) is said to be parabolic if v (f)<0. As an example of a

1 .
parabolic modular form we consider the function 6,(z|t)= — 6 { (z,7). In view of
[14, Chap. 1, Proposition 14.1]

0,(el)=2(q(e) " sinnz [] (1—a(e)
X ﬁ1 (1—2(q(x))" cos2nz + q(v)*"). (65)

The function (65) is called the Jacobi theta function [3, Vol. 2, formulae (8.A.2),
(8.A.6), (8.A.7)]. It follows from the equality (65) that the function 6(0|r)

= 5Et91(z|t)lz=0 has the form

01(0lr)=2n(q(z))"® ,.ljl (1 —q(@). (66)
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Hence the order at infinity of the function (0(0|r))® equals —1. By [3, Vol. 2,
formula (8.A.25)] the function (#,(0]7))® satisfies Eq. (64) for k=12, iec. it is a
parabolic modular form of the weight 12. The Green’s function (59) is not changed
if we replace the function (58) by the function

A(zlt)=2mexp[—n(Im7)~*(Im2)*1|0,(z|7)| |0,(0l7)| =" . (67)
Now if we take in the amplitude (31) for the torus T(1,7) the coupling constant
a?=m, the tachyon masses (k; »kj)=4, j=1,...,N and the distribution function
(Imz,)" exp [ -2 '21 n lj )QT( 19w logx(z j—Wl’t):I zy, 1), (68)
J= T

and if we integrate the obtained expression over the fundamental domain F with
the differential 2-form

ue)=(Im/2)~ 3\6,(01e)*/2m|~ (i 2)de A dF, (69)

then omitting the constant multiplier we have

juo_ | ( [1 (/2dz;ndz )[ 0, Ge—zo)s=] . 10
F DX N-D\ j=1 151 2SN

The expression (70) coincides with the N-point scattering ampiitude for the closed

bosonic strings corresponding to the tori [3, Vol. 2, formula (8.2.17)]. Note that

due to (66) the coefficient of the différential 2-form (69) increases exponentially as

T—00.

To obtain the amplitude for the open bosonic strings corresponding to the tori
we reduce the integration over the torus T(1,7) in (31) to the integration over the
unique real side {0,1] of the parallelogram related with the torus T(1,t). We
choose now in the expression (31) the coupling constant a®=27x, the tachyon
masses (k; k;)=2,..., j=1,...,N, and the distribution function

zn =1

N
f(xl,...,xN)=exp[—22 ] 91(1,,>(W)10gx(x,~—WIr)]
j=1 Td,?)

/N-1
x 0<x1)(1131 0<x,+1—x,)) ey —1).

Then the integration of the obtained expression with respect to the variable 7 along
the pure imaginary semiaxis [i,ico) with the differential 1-form

-2 e
(f/i)”eXp[ —2mir™? ]((9 O1)%/2m) ** (1/9de (71)
provides the N-point amplitude of the open bosonic strings for D-dimensional
space [3, Vol. 2, formula (8.1.55)].
5. Higher Genus Riemann Surfaces
A compact Riemann surface M of genus g is homeomorphlc to a polygon whose

sides are identified according to A,B,;A;'Bi'...A,B,A;'B; ' [12, p.17). If
z=x+iyis alocal complex coordmate on M the dlﬁerentlal l-form f(2)dz+g(z)dz
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is said to be holomorphic when g(z)=0 and a function f(z) is holomorphic. Due to
[12, Propositions 3.2.7, 3.2.8] the vector space of holomorphic 1-forms on a
compact Riemann surface M of genus g has the dimension g and there exists the
unique basis ®; =w,(z)dz, ...,0,= w,(z)dz such that

J w=0j. (72)

A4j
Furthermore, for this basis the complex g x g matrix
[ or=15 (73)

B;

is symmetric with positive definite imaginary part. On the surface M we introduce
the Riemannian metric

g9
ds*=1/g Y (Im7); ' o 2)d[z)(dx*+dy?) (74)
k=1
and the corresponding canonical 2-form

g9
QM=i/2gk Z I(Im‘c)k—‘;lwk/\(DJ. (75)

s J=

It follows from the relations (72), (73), and [12, Proposition 3.2.3] that vol(M)=1
[see (35)]. We introduce a g-dimensional Riemann’s theta function

O0(z,t= 3 exp[2mi[(1/2)(n,tn)+(n,2)]], (76)
ne(Z)¢
where a column zeC? and a symmetric complex g X g matrix t has a positive

definite imaginary part. For ¢, &' € Z? we define the first order theta function with
integer characteristic ¢, ¢’

0 I;:,] (z, 1) =exp[2mi[ (e, 6)/8 + (¢, 2)/2 + (¢, £')/4110((1/2)¢’ +(1/2)re + 2, 7). (T7)

In view of [12, Proposition 6.1.5]

0[;](—2, t)=exp[nic, 8’)]0[2] 7). (78)
The integer characteristic ¢,¢ is said to be even (odd) if (g¢)=0(mod2)
[(e,e)=1 (mod2)].

Lemma 5.1. For every point & of a compact Riemann surface of genus g there exists
an odd integer characteristic ¢, &' € Z? with the property that for some point n

9[8,] (}m> +0, (79)
¢ \z

where a vector w=(wy, ...,w,) is a basis for the space of holomorphic differential
1-forms on a surface M.

Proof. Let the function (79) be identically zero. Differentiating it at the point n=¢&
we have

,i 5%9[:] 0, 7)w&)=0. (80)



Scalar Massless Field on a Compact Surface 345

Let a lattice LCZ?? be given. Let us define an orthogonal lattice
L ={(x;; x,)€ Q? x Q? | exp [27i[(x;, a;) — (x5, a,)]1=1V(a;; a,) € L},
where Q is the rational number field. In particular, (2Z.2%)' =(1/2)Z*¢ or
2729 =4(2Z%%)". 81)
With a symmetric complex g x g matrix t we relate a lattice L, C C? in the following
way: L,={tx+yeC?|(x; y)e L}. Due to [12, Chap. 6, formula (1.4.6)] the theta

function (77) is quasiperiodic with respect to the lattice (Z?9),, namely for any
WU e,

0[;] (z+u +7p,17)
=exp[2mi[ —(u, t)/2— (1, 2) +(W', €)/2— (1, €)/2110 [:] (z7). (82

If y, p’ € 2Z° the multiplier in the right-hand side of Eq. (82) does not depend on the
characteristic ¢, &' € Z9. Therefore, the relation

bazyel2)= ( .0 [:] (,7), ) , (83)

where ¢, ¢ run all 47 pairs of the vectors whose components are equal to 0, 1, defines
a mapping ¢,z : C?/(2Z*%),—~CP*’~!. By the Lefschetz theorem [14, Chap. 2,
Theorem 1.3] the relation (81) implies that the mapping (83) is a holomorphic

imbedding. Hence the vectors aiz :, (0,7) p generate the vector space C?. In

view of Eq. (78) these vectors are nc;n-zero only for the odd integer characteristics.
For every point ¢ of a compact Riemann surface M of genus g the vector
(04(8), ..., (&) is not zero [12, p. 81]. There exists therefore an odd integer
characteristic ¢, ¢ such that the function (79) is not identically zero.

We denote by ¢ a point of a compact Riemann surface M and a corresponding

local complex coordinate on M.

Proposition 5.2. Let a point £ of a compact Riemann surface M of genus g and an odd
integer characteristic ¢, &' € Z? satisfy the condition (79). Then the functionon M x M

o2 (Fo-Tor)

&2 &1 &2 &1
Im<j w;— [a)i>(Imt)i}IIm<j" w;— _[w])] (84)
1 13 3 5 I3

f(€1,62)=

M

xexp[—n_

s J

is not identically zero and it does not depend on a choice of the paths of integration in
(84). The function

G(¢1,&)=—1/2rnlog f(£1,&5) + 1/2711{‘(10gf(€1,'1)+10gf('1,éz))@u(ﬂ)
—1/2n MJ; s (log f (1, m2))em(n1) A em(n2) (835)

satisfies Eq.(34) for a compact Riemann surface M of genus g endowed with the
Riemannian metric (74) and it does not depend on a choice of a point £ € M and an odd
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integer characteristic ¢, & € Z? satisfying the condition (79). The function G(¢y, &,) is
continuous everywhere on M x M except for the diagonal points where it has the
singularity —1/2nlog|&, —¢&,|.

Proof. Let a closed contour homological zero be added to a path of integration
&1
from a point £ to a point &,. Then the integral [ w is not changed since the

¢

holomorphic differential 1-forms w;, i=1, ..., g, are closed [12, Proposition 1.3.8,

Theorem 1.3.11]. Let a closed contour Y (u.A4, + i By), where p, u' € Z°, be added
k

to a path of integration from a point & to a point £,. Then in view of the relations
&y
(72), (73) the vector u’ +tu is added to the vector | w. It follows from Eq. (82) that

g
this addition does not change the function (84). Since the closed loops 4, ..., 4,
By, ..., B, are the generators of the fundamental group of the Riemann surface M
[12, p. 18] the function (84) is independent of a choice the paths of integration
in (84).
Due to vol(M)=1 the function —1/2xlog f(¢,,¢,) in (85) may be replaced by

the function
&2 41
fi(¢y, &)= —1/2nlog 9[:,] <g w— 2 wﬂ)

&1 &
Im<j wi) (Im7);* Im(j coj) .
1 g g

&
The functions Im | w,, ...,i=1, ..., g, are locally harmonic. By the condition (79) a

Ma

i, j

[ 51
locally holomorphic function F(&,, 52)=0[§] ( fo— | o, r) is not identically
4 4

zero. Then [14, Chap.2, Lemma 3.4] implies that there exist 2g—2 points
N1s--sMg—15 {15 - C4—1 € M such that the zeros of the function F(¢,, &,) counting
multiplicities are equal to the sum of the diagonal points {(;#)|ne M} and the
points {n;} x M, M x {;,i=1, ...,g—1. In view of Eq. (78) it is possible to consider
{i=n;, i=1,...,g—1. Hence the function f,(&,, £,) is locally harmonic except for
the singularities —1/2nlog|é,—¢,]; —1/2nlog|é,—nl, —1/2rlog|é,—nl,
i=1,...,g—1. Due to vol(M) =1 the last two sets of the singularities are canceled
out of (85) and the function G(¢,,¢,) has the singularity —1/2zlog|é, —¢&,|. It
follows from Eq. (42) that the function G(¢,, £,) satisfies the first and the second
equations (34) for a compact Riemann surface endowed with the Riemannian
metric (74). The last two equations (34) are verified immediately. If we choose
another point £ M and another odd characteristic & & eZ? satisfying the
condition (79) it is possible to define another Green’s function G(¢,, £,) by means
of Egs. (84), (85). In view of the first equation (34) the function G(¢,, ¢,)— G(&,, &)
is harmonic with respect to the variable £, and, therefore, it is constant [6, Sect. 31,
Corollaire 4]. Now the third equation (34) implies that this function equals zero.
Thus the Green’s function G(¢,, £,) is independent of a choice of a point £ € M and
of an odd characteristic ¢, &' € Z7 satisfying the condition (79).

By the definitions (84), (85) the Green’s function G(£,, ¢,) depends on a basis
®;,...,0, for the space of holomorphic differential 1-forms on the compact
Riemann surface M of genus g. In order to find a symmetry relation similar to the
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relation (54) we introduce due to [16] the Teichmiiller space and the space of
moduli of Riemann surfaces. Let M be a smooth compact connected orientable
surface whose homology group H,(M, Z) is isomorphic to Z?%. Two orientation
preserving homeomorphisms of Riemann surfaces of genus g onto M: f; : M, > M
and f;:M,—M are called equivalent if there is a commutative diagram

M, M,
o0 (86)

M, M,

where ¢ is a conformal mapping onto M, and y is a homeomorphism homotopic
to the identity. The equivalence classes [ f; : M, —» M] are called the points of the
Teichmiiller space T,. For the space of moduli M, a homeomorphism v is not
obliged to be homotopic to the identity. As an example of a space of moduli we
consider the tori M =T(,i), M, =T(,1'), M,=T(1,7), where te H,, ' = M(g)(7)
and g is the matrix (53). Choose in the diagram (86) the mappings f;(z)=o. !(z),
f>(z)=0; }(z), where the homeomorphism o, ! is given by the relation (49). The
mapping ¢(z)=(ct +d)z defines the conformal equivalence of the tori T(1, ') and
T(1, 7) since the system of the equivalence relations z~z+at+d, z~z+ct+d is
equivalent to the system of the equivalence relations z~z+1t, z~z+1. The
mapping w(x+iy)=by+dx+i(ay+cx) [see (54)] is a homeomorphism of the
torus T(1, i) onto itself. It is easy to verify that o f; =f, o ¢ or the diagram (86) is
commutative.

A point of the Teichmiiller space is determmed by a space of holomorphic
differential 1-forms on a surface M and by a basis of the homology group H,(M, Z)
satisfying the conditions (36). In fact, there exists the unique basis w =(wy, ..., ,)
of the space of holomorphic differential 1-forms on M satisfying the condition (72)
[12, Proposition 3.2.8]. The matrix 7 is defined by means of the relations (73). We
call J(M)=C?/(Z**), the Jacobian variety of the surface M. Taking a point Poe M

we define a mapping ¢ : M —J(M), ¢(P)= j ®mod(Z?9),. Due to [12, Proposition

3.6.1] the image of this mapping is a compact Riemann surface of genus g with a
basis (@, ..., w,) for the space of holomorphic differential 1-forms and with a basis
(A4, ..., Ay By, ..., B)) for the hmology group H,(M, Z) which satisfy the conditions
(36) and (72). Thus the point of the Teichmiiller space is determined by the pair of
bases {(4,, ..., A4, By, ..., Bp), (@4, ..., w,)} satisfying the conditions (36)and (72). In
view of [12, Corollary 3. 2 1]fora homology basis(4,, ..., A,, By, ..., B)) thereis the
unique dual basis («y, ..., ,, By, ..., B,) for the space of real harmomc 1-forms on the
surface M. By the Hodge theorem [10, Chap. 6, Theorem 3.4] on a compact
Riemann surface there is the unique harmonic 1-form with given periods. Hence
the relations (72) and (73) imply that

g
o=+ Y 1B, i=1,...8. 87)
=1

Therefore, the pair of bases {(4,B),w} may be replaced by the triple
{(4, B), (o, B), 7}, where (a, B) is the dual basis of real harmonic 1-forms on M for a
basis (4, B) satisfying the condition (36) and 7 is a symmetric g X g complex matrix
with positive definite imaginary part. The space of such matrices is called the
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Siegel upper half space H, of genus g. Choose another basis for H,(M, Z),

()= 96) 9

where a,b,c,d are g x g matrices. In order (4', B') to be a basis for H,(M,Z) it is
necessary

d

A basis (4, B') ought to satisfy the conditions (36). Hence G € Sp(2g, Z)) where the
group Sp(2g, Z) consists of the invertible matrices (89) satisfying the relation

G=<‘C’ b)eGL(2g~Z), detG=+1. (89)

01
t = =
GJoG—Jo, Jo (._I 0). (90)
By using the equality (90) we show that for a basis (4’, B’) the dual basis (o, f’) of
the real harmonic 1-forms on the surface M has the following form:

<Z’> B (_Z —i> <Z’> 1)

A basis o’ =(w), ..., »,) of holomorphic 1-forms on M which satisfy the conditions
(72) for a basis (4’, B)) is given by o’ =((ct +d) ™ !)'w. Now by the definition (73) we
have

v=(at+b)(ct+d)~*. 92)

Therefore, the Teichmiiller space T, is a set of the triples {(4, B), (o, B), 7} with the
equivalence relations (88), (91), (92) where a matrix (89) belongs to the group
Sp(2g, Z).

To study a space of moduli it is necessary to investigate a group AutM of
conformal automorphisms of a compact Riemann surface M of genus g. By the
Schwartz theorem [12, Corollary 5.1.2.2] for a compact Riemann surface M of
genus g>1 a group AutM is finite. Let an automorphism TeAutM and
(4,,...,A,, By, ..., B)) be a basis for the homology group H,(M, Z) satisfying the
conditions (36). Then (T4, ..., TA,, TB,, ..., TB,)is also a basis for the homology
group H,(M, Z) satisfying the conditions (36). Hence two bases are related to each
other by the equality (88) where the matrix G(T) € Sp(2g, Z). By [12, Theorem 5.3.1]
this representation G : Aut M —Sp(2g, Z) is faithful for a genus g > 1. The action of
an automorphism Te AutM on a differential 1-form a=a,dz + a,dZ is given by

To=o (T~ 1(2) <% T 1(z)) dz+a, (% T" 1(z)) dz. (93)

If « is a real harmonic 1-form then Tu is also a real harmonic 1-form. In view of [12,
Theorem 5.3.2] if (4, B) is a basis for the homology group H(M, Z) and («, f) is the
dual basis for the space of real harmonic 1-forms on M then (Tw, Tp) is related to a
basis («, f) by means of Eq.(91) where the matrix G(T) is defined above. The
substitution of the relation (87) into the right-hand side of the equality (75) yields

eu=1/g ¥ tynby. 04
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Since a matrix G(T)e Sp(2g, Z) the equality (91) implies that the 2-form (94) is
invariant under the automorphisms from the group AutM.

The Green’s function G(t, (o, B); &;, &,) is defined by using the substitution of
the relations (87), (94) into definitions (84), (85). Now the relations (93), (91) and the
invariance of the 2-form (94) under the automorphisms from the group AutM
provides the following

Proposition 5.3. Let the matrix

_(aT) b(T)
aﬂ_&@)ﬂﬂ) )

define the above faithful representation G:AutM—Sp(2g,Z). Then for any
automorphism Te AutM

Go(t, (2 B); T~ ¢y, T™1¢5) =Gy, (a(T)—b(T)B, — c(T)ou+d(T)B); &1, ¢5) (96)
Now we establish the following

Proposition 5.4. For any matrix

a b
(c d)eSL(2g-Z) 97

the Green’s function satisfies the relation

Go((at+b)(ct+d) ™, (aa—bp, —ca+dp); &1, ¢2)=Go(t, (@ B); $1,5). (98)

Proof. It follows from the definitions (77), (84), (85) and the relation (87) that the
function G, (o, ); &1, &,) may be rewritten in the form (85) where the function
f(&,,&,) is replaced by the function

T8 p+en

S e ©9)
[a— £OC+8'/2

4

ga

The modified theta function of the variables x,, x, eR? is given by

6 [;‘ 1} (t)=exp[in(x;, 7x,) +in(x;, X,)10(tX; + X5, 7). (100)
2

In view of [14, Chap. 2, formula (5.3')] the function (99) is invariant under the shifts
e—e+2v, & - +2v for v,v' e Z?. We consider therefore ¢,,¢, €(Z/2Z)°. On the
space of vectors (¢y;¢,)e(Z/2Z) x(Z/2Z) we introduce a quadratic form
0((e1; &2))=(g4,8,) (mod2). Let us define due to J.-I. Igusa the subgroup
I ,={GeSp(2g,Z) | Q(Gx)=Q(x)}. It consists of such elements of the group
Sp(2g, Z) which preserve the parity of the integer characteristic of the first order
theta function (77). By [14, Chap. 2, Proposition 5.5] for any matrix

a b
(c d)eng, (101)

=|det(ct+d)|/? 0«[?] @. (102

IG“[_cx2+dx1]((ar+b)(cr+d)_1)

aX2—bx1




350 Yu. M. Zinoviev

In view of [14, Chap. 2, Proposition A.4] the group I , is generated by the

following matrices
0 I a O I b
(-7 o) @ @) o 3) 109

for all ae GL(g,Z), deta= + 1 and for all symmetric b € GL(g, Z) whose diagonal
matrix elements are even. By the Proposition 5.2 the function G(z, («, f); &, &,) is
independent of a choice of an odd integer characteristic ¢, ¢'. Thus the relation (102)
implies that the relation (98) holds for any matrix (103) from the group Sp(2g, Z).
By using the definition (76) we obtain for any symmetric b € GL(g, Z) the following
relation 6(z, 7+ b)=0(z+(b)/2,7) where the components (b); of the vector (b)
coincide with the diagonal matrix elements b;. Now the definition (100) implies
that for any symmetric matrix be GL(2, Z),

A xi+e2 " Xy +¢/2
0 l:xz—;)xl—f-a’/Z] (e+b) =10 [x2+(1/23(8'+ba+(b))}(’)

Since m* =m (mod2) for every integer m it is easy to show that for any symmetric
matrix be GL(2,Z) the quadratic form Q(e; & +be+(b))=0(e; ¢). Hence the
relation (104) and the independence of the Green’s function (85) of a choice of an
odd integer characteristic imply the relation (98) for the third matrix (103) where b
is an arbitrary symmetric matrix from the group GL(g, Z). Due to [14, Proposition
A.5] namely these matrices (103) generate the group Sp(2g, Z).

The Propositions 5.3 and 5.4 imply the following

. (104)

Corollary 5.5. Let for a compact Riemann surface M of genus g> 1 the matrix (95)
define the faithful representation G : Aut M —Sp(2g, Z). Then for any automorphism
TeAutM,

Golt, (%, B); TE,, TE;) = Gol(a(T)r + B(THAT)r+d(T) ™, (@, B); &4, ) - (105)

It follows from the Proposition 5.2 that all assumptions of the Proposition 2.2 are
fulfilled. Then under the conditions (26), (30) the amplitude (31) for a compact
Riemann surface M of genus g>1 has a form

(1 eutep) v 760

N a?(ki, k;
= (,JJI am(z») [ L @xpL—4nGo(z, (o ) 7, 2))) W )Jf(Z)- (106)
The relation (105) implies that for any automorphism Te AutM,

Ap(k| Tz, )= Ap(klz, (@(T)t + B(T))((T)r +d(T)) ™), (107)

where a matrix G [see (95)] defines the faithful representation G:AutM
—-Sp(2g, 7).

To compare the amplitude (106) with the amplitude obtained in [4] we consider
the function (79) of the variables &, n e M. By Lemma 5.1 it is not identically zero. It
follows from [14, Chap. 2, Lemma 3.4] and the relation (78) that there are g—1
points 7, ...,1,_ ; € M such that the zeros of the function (79) counting multiplic-
ities are equal to the sum of the diagonal points {(1,#)|ne M} and the points
{n} x M,M x {n;},i=1,...,g—1. Setting & =, and differentiating the function (79)
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at the point n =#; we obtain (80) at the point &= ni.ZIn view of the relation (78) for
an odd integer characteristic ¢, & € Z? we have 65?9 :, ©0,71)=0,1i,j=1,...,2.
Thus differentiating the function (79) twice and settinjg & =n=n; we show that the
derivative of the function (80) equals zero at the point ¢ =#;. Hence the function
(80) has zero of order two at every point &=n,, i, j=1,...,g—1. Due to [12,
Corollary 3.4.9.2] the coefficients of the holomorphic differential 1-form on a
compact Riemann surface of genus g has exactly 2g —2 zeros counting multiplic-
ities. Let us denote the coefficient (80) by {(£). We have established that {(£) has
g—1 zeros of order two. Therefore, there exists the square root ({(£))*/> which is
locally holomorphic function on the surface M as the coefficient {(&). Let | (2)|
=ds*(dx?+dy®)~! be the multiplier in the Riemannian metric (74). Since the
matrix Imt is positive definite and the vector (w,(z), ..., ,(2)) is not zero at any
point of a Riemann surface M [12, p. 81] the multiplier |g,,(z)| > 0. We substitute
the equalities (84), (85) into the right-hand side of the relation (106) and we assume
that the coupling constant a* =4, the tachyon masses (kk)=2, j=1,...,N and
the distribution function

jf:ll 1)1 lomlz)l ~* exp [ —4] on(w)logf(z;, w)] : (108)

It is easy to show that this function has no singularities. Then the amplitude (106)
has the following form:

c | <f‘v[ (i/z)dz,.Adz-,>
MXN\j=1

- By 2244
1Si<j<N

g Zj Zi z Zi
xexp[—Zn Y )] (ki,kj)Im<j W — jw,,,)(lmr),;,‘ Im(fjw,— jw,) ,
1<i<jsN mT=1 & & ¢ ¢

(109)
E(z,w)= 9[2] (}v o, T) (1063 I () I (110)

The expression (110) is the coefficient of the Prime form [14, Chap. 3b, Sect. 1]. In
our case the path of integration from the point z to the point w passes through the
fixed point £. The expression (109) is similar to the N-point amplitude [4] as the
radius of the compactification torus tends to infinity.

In order to integrate over the Teichmiiller space it is necessary to introduce the
coordinates. A compact Riemann surface M of genus g>1 is topologically a
polygon whose 4g sides are identified according to 4,B, A7 'By'...A,B,A; "B, !
[12, p. 17]. Due to [12, p. 18] the fundamental group n,(M) is generated by the 2g
closed loops A4, ...,4,, By, ..., B, subject to the conditions (36) and the single
relation

g
I 4;B,4; B} ' =1. (111)
i

Thus for g>1 the fundamental group =n,(M) is not abelian. In this case the
holomorphic universal covering space of a compact Riemann surface is the upper
half plane H, [12, Theorems 4.6.1, 4.6.3, 4.6.4]. The group of the conformal
automorphisms of the upper half plane is the group of the linear fractional
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transformations with the real coefficients. It is isomorphic to the quotient group
SL(2,R)/+ I. Consider a set of all faithful representations y:7,(M)—SL(2,R)/+1
such that the group y(n,(M)) acts properly discontinuously on the upper half
plane: for every point ze H, the isotropy subgroup (x(r,(M))), at z is finite and
there exists a neighbourhood U of z which is invariant under all L e (y(r,(M))), and
L(U)uU =0 for all Le y(n,(M))\x(r,(M))),. Two representations y, and y, are
called equivalent if there exists a matrix LeSL(2,R) such that for any loop
C e n,(M) the relation y,(C)=Ly,(C)L™! holds. The equivalence classes of such
representations are called the points of the Fricke space F,[17,18]. It is easy to see
that the Fricke space F, has the real dimension 6g—6. To introduce the complex
structure on a surface M we define a Riemann surface of genus g as the quotient
space H,/x(n,(M)). The Poincaré metric ds>=y~%(dx?+dy?) on H, is invariant
under the linear fractional transformations with the real coefficients. It induces
therefore the Riemannian metric on H,/y(n,(M)). By means of the relations (32),
(33) this metric defines the complex structure. Due to [18, Chap. 1, Sect. 5,
Theorem] the Fricke space F, is homeomorphic to the Teichmiiller space T;. The
Fricke coordinates are simplest ones on the Teichmiiller space. Nevertheless, the
holomorphic differential 1-forms ,, ..., w, are unknown as the explicit functions
of the Fricke coordinates. Therefore, the Green’s function (84), (85) and the
scattering amplitude (106) are unknown explicitly.

The quadratic holomorphic differentials provide another coordinates on the
Teichmiiller space. A quadratic holomorphic differential is an invariant under the
conformal mappings form ¢(z)dz?, where z is a local complex coordinate on a
Riemann surface M and the function ¢(z) is holomorphic. In view of [12,
Proposition 3.5.2] the complex dimension of the space of the quadratic
holomorphic differentials is 3g—3. By the norm of the quadratic holomorphic

differential ¢(z)dz*> we mean the integral [ |¢(z)|(i/2)dz A dz. The unique ball with
M

respect to this norm in the space of the quadratic holomorphic differentials is
homeomorphic to the Teichmiiller space [18, Chap. 1, Sect. 5, Theorem]. By using
a basis in the space of the quadratic holomorphic differentials and a basis in the
space of the holomorphic differential 1-forms on a compact Riemann surface it is
possible to define a canonical form on the space of moduli [19]. This form induces
a canonical measure on the space of moduli. In the paper [20] by means of a choice
of the special basis for the space of holomorphic differential 1-forms on a compact
Riemann surface the canonical form and measure are calculated explicitly. It is
possible to integrate formally the amplitude (106) with this canonical measure over
the space of moduli.

Acknowledgement. 1 would like to express my gratitude to Prof. S. P. Novikov for fruitful dis-
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