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Abstract. We use the notion of the logarithm of the derivative operator to describe
W^ type algebras as central extensions of the algebra of differential operators. We
also provide closed formulae for the truncations of Wx + ^ to higher spin algebras
with s^M, for all M ^ 2. The results are extended to matrix valued differential
operators, introducing a logarithmic generalization of the Maurer-Cartan cocycle.

1. Introduction

The algebra of differential operators on the circle is becoming increasingly import-
ant in two dimensional physics, in particular in the theory of conformal models
with extended (higher spin) symmetries, in the KP hierarchy of integrable differen-
tial equations and more recently in quantum gravity. Central extensions of this
algebra provide a natural generalization of the Virasoro algebra which is generated
by first order differential operators. It also contains the affine 1/(1) current algebra
generated by differential operators of zero order.

The algebra of differential operators on S1 can be viewed as a deformation
of the algebra of divergence-free (or Hamiltonian) vector fields on T*S1. This
relation can be easily understood by applying Leibniz's rule to find the commuta-
tor of two differential operators of order k and /; indeed, the result is an operator of
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order k + I — 1 modulo lower order terms, which correspond to the deformation of
the area preserving diffeomorphism algebra in question. In mathematical terms, the
principal (leading) symbol of the commutator is the Poisson bracket of the
principal symbols of the initial operators. The analogous description in quantum
mechanics, in terms of Weyl ordered differential operators, is known as Moyal
bracket [1].

Central extensions of the algebra of differential operators on S1 have been
considered only recently. In the physics literature the first results in this direction'
were obtained by considering the large JV limit [2] of Zamolodchikov's WN

algebras [3]. The complete structure of W^ which was subsequently proposed
by Pope, Romans and Shen [4] on a purely algebraic basis, has been estab-
lished field theoretically in the context of parafermion models [5]. W^ and
more generally W1 + CX), which includes an additional U(ί) current in the spectrum,
describe a central extension of the algebra of differential operators on S1.
The existence and uniqueness of such central extension was earlier established
in the mathematics literature by various authors [6] thus generalizing the result of
Gelfand and Fuchs for the Virasoro algebra [7]. The explicit coordinate expression
was given by Kac and Peterson in [9].

In this paper we adopt the new concept of the logarithm of the derivative
operator [8], which is very useful for defining the corresponding 2-cocycle and
making the identification with the JV1 + oΰ algebra mathematically elegant. Our
work should be considered in this regard as providing a systematic description
of the mathematical aspects of W^ type algebras in terms of a single object,
namely log/). This notion is introduced in Sect. 2, following [8], using the
calculus of pseudo-differential operators. In Sect. 3 we construct a basis in
the algebra of all differential operators which makes the identification with
Wί + 00 explicit. In this basis the log D cocycle diagonalizes, in the sense that
it is non-zero only when the order of two differential operators is the same.
We also present a closed formula for the truncation of Wί + O0 to W^. These
results are further extended in Sect. 4 to higher spin truncations of W1 + ao

with spectrum 5 ̂  M, for all M ^ 2. In Sect. 5 we consider the generalization
to matrix valued differential operators and the logD generalization of the
Maurer-Cartan cocycle. Finally, in Sect. 6 we present our conclusions together
with some ideas about the algebra of differential operators in more than one
dimension.

The authors are grateful to V.I. Arnold, V.G. Kac, A. Weinstein, M. Wodzicki
and I.S. Zakharevich for fruitful comments. I.B. and E.K. are also grateful to
CERN for hospitality, where part of this work was done.

2. The Logarithm of the Derivative Operator

The ring 0t of pseudo-differential operators on a circle is the ring of formal
series A(x, D) = £ 1 ^ ai(x)D\ where a^x) e C^ (S1

9 k) with fceR, C and D corres-
ponds to d/dx. The multiplication law in 31 is determined by the product of
symbols

A{x, ξ)oB(x, ξ) = Σ π4k )(*> OBik)(x, ξ), (2.1a)
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where

i = — oo i = — oo

and coincides with the usual multiplication law on the subalgebra &+ c 01,
consisting of differential operators which are polynomial in D. The notation used in
Eq. (2.1b) means that (k) is the fcth derivative of ξ* and fof(x) respectively. The law
(2.1) determines the Lie algebra structure on 01,

IA,E] = AoB-BoA. (2.2)

There is also an operation res: 9ί-* C 0 0^ 1) on the ring 01 defined by
res^Γ^D*) = α_i(x). The main property of the residue is Jres|\4, B~\ = 0, for any
A, Be01 (here and below the integration is over the circle S1).

We now consider the formal expression logD. For any pseudo-differential
operator Ae0ί the formal product A°logD, according to Eq. (2.1), where log ξ is
the symbol of log Z>, is certainly not contained in &. The crucial point, however,
is that the formal commutator [logD, A] = log£>°,4 — ,4°logD belongs to 0t.
Thus, we define the action of log D on 01 by commutator, [log D, *] . In coordinate
form it is

[logD, A-] = Σ ( ~ l ) f c ' Aί» D~k . (2.3)

Note that even if A is a differential operator (Ae0t+\ the result [logD, A~\ is in
general a pseudo-differential operator.

Theorem [8]. A non-trivial central extension of the Lie algebra 0t is given by the
2-cocycle

= Jres([L, log/)] °M) = f res ( £ {-^- L?> Z)"k M ) , (2.4)
\ fc^i κ J

"where L and M are arbitrary pseudo-differential symbols on S1. The restriction of this
cocycle to 0t+ gives a non-trivial central extension of

The restriction of this cocycle to the subalgebra of vector fields (i.e., first order
differential operators) is the Gelfand-Fuchs cocycle of the Virasoro algebra. In-
deed,

D, g(x)D) = f res([/(x)A logD] °ff(x)Z>)

= Jres(( -f(x)D° +f"Ώ-'β -f'"Ό-2β + - )g{x)D)

\ (2.5)

which implies the non-triviality of the cocycle on 0t and 0t+.
For the proof, the skew symmetry of #(L, M) follows immediately from the

identities

[log A LAf] = [log D9L]M + L [log D, M] and J res [log D,A]=0, (2.6)
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for any L, M, Ae0l. These identities themselves are consequences of Eqs. (2.1)-
(2.3). The same identities, together with the Jacobi identity on M, allow the
verification of the cocycle property,

[M, N]) = f res([L, log /)] [M, JV] + [ΛΓ, log £ ] [L, M]
cyclic

+ [M,logD][JV,L]) = 0 . (2.7)

The value of ^(/(x)D m , g( c)Z)'1) on the homogeneous generators of 01 vanishes
for n + m 4- 1 < 0, but in general it does not vanish for m + n + 1 ^ 0. The
restriction of this cocycle to differential operators (n, m ^ 0) coincides with the
formula [9,10]

V (f(x)Dm, g(x)D») = ( m ^ " j 1)f ί/(w) 0 ( w + X ) dx . (2.8)

As we mentioned, this central extension of the algebra of differential operators on
S1 is unique [6] (up to a multiplicative constant).

In the remaining part of this section we describe another basis in 0t, in which
the action of [log D, *] becomes simple. For this we recall that the algebra 01 carries
a natural conjugacy operation *: (^.α^x)!)')* = £ . ( — XfO{a{(x). We also recall
that an arbitrary pseudo-differential operator is a sum of self-adjoint and skew
self-adjoint operators. A basis for self-adjoint operators is {Dmf(x)Dm}, where m is
integer, while skew self-adjoint operators have odd degree and can not be written in
this form. For them we consider the same expression Dmf(x)Dm, with half-integer m.
Even though fractional powers of D do not belong to 01, the above expression
defines a pseudo-differential operator. To verify this we only have to rewrite DmfDm

in the canonical form X ^ D 7, applying the commutation relation and observing
that all fractional powers disappear at the end. We also note that log D is
a self-adjoint operator (more precisely, we consider log \D.\ which is an even
function of D) and the commutator [logD, A] changes the parity of A.

If we now consider the value of the logarithmic 2-cocycle on the generators in
this basis, we find that

%(Dmf(x)Dm, Dng(x)D% where m, n are integer or half-integer (2.9)

depends on the sum m + n, but it does not depend on the particular choice of m and
n. Indeed,

Dm, Dng(x)Dn) = J res([Dm/(x)Pw, log D] Dng(x)Dn)

= J r e s φ m [/(*), \ogD~]DmDng{x)Dn)

= f res([/(x), logD]Dm+ng(x)Dm+n) . (2.10)

It also vanishes for m + n + 1 < 0.
In the next section we will describe yet another basis in which the 2-cocycle

becomes diagonal, being non-zero only if the order of two differential operators is
the same. The latter is more natural from the point of view of conformal field
theory, in view of the explicit identification we would like to establish with JVί + Q0.
The definition that one should keep in mind is that the order of a differential
operator is equal to 5—1, where 5 is the spin (conformal dimension) of the
corresponding W-generator.
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3. W1+ao9 Woo a n d l°g^

The starting point in this section is the W1 + (X) algebra whose generators are
denoted by ¥„, with meZ and seZ*. Following [11], it is convenient to introduce
the notation

g?s'(m, n; μ) = ^ ^ Nfs> (m, n), (3.1)

where

Nf(m, «):= Σ ( - 1)Ί T )(2s - I - 2)t[2s' - k - 2 ] I + 1 _ 4

k=0 \ κ J

•[s- l + m ] i + 1 - , [ s ' - l + n]fc (3.3)

and

(a)k:= a(a + ί) • • • (a + k - I), [a]k = a(a - 1) (α - k + 1 ) . (3.4)

Then, the commutation relations of W1 + oo are given by

ίVi, Vfl = ((s' - l)m - (s - 1)«) VtΛ'1 + cs(m; μ)δs,s.δm+n,0

+ Σ 0?r (w, n; μ) F^X5,,' 2 2 r , (3.5)
r ^ 1

with μ = — j . The central term is

l\ (m + s - 1)! 2 2 ( s " 3 ) [(s - I)!]2

~ 2y = C (m-s)\ (2s-l)!!(25-3)ϋ ' ( 3 ' 6 )

The series of subleading terms with r ̂  1 terminates with either F 2

+ w or K +̂M,
depending on whether s + s' is even or odd respectively. This is reflected in the form
of the hypergeometric function (3.2) and the other combinatorial factors (3.3). They
both have zeros (complementing each other), which guarantee the termination of
the series (3.5) at V2 or V1 for μ = —\. W1 + o0 contains the Virasoro algebra as
a subalgebra, generated by {V2}, The conformal dimension of all other generators
Vs is s, as follows from the commutation relations [_V2, V£],

It is more convenient in the sequel to introduce z = eix and work with Laurent
series in z instead of trigonometric functions in x. We will also denote dz by D and
use contour integration for the definition of the log D cocycle. Having set up the
notation, we now consider differential operators {zm+s~ί D5"1} on S1 with me
Z, s e Z + . In order to make the identification between the two algebras explicit, we
introduce the basis

+ S~ M zm + s-fc jv-fc
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where

2 s-3(*-l)! „, (25-fc-l)!

Theorem. 77ιe differential operators (3.7) satisfy the commutation relations (3.5) wiίft
e = 0. 77ιe vαίue of the log D cocycle in this basis is given by

v \ - B{s)2 ( m + s ~ 1 ) !
 Λ a ΠQΪ

This establishes the desired result, the advantage of the basis (3.7) being that the
2-cocycle vanishes unless s = s'.

We note that the diagonal basis so constructed is natural from the point of view
of conformal field theory, since the corresponding local quantum field theoretic
operators Vs(z)'=YjmeZVξιz~m~s are quasi-primary (i.e., highest weight with re-
spect to the SL(2, R) subalgebra of the Virasoro algebra.) Moreover, the SX(2, R)
Ward identities, which reflect the respective in variance of the vacuum, imply that
<Fs(z)Fs'(w)> ~ δSfS>. In this basis, the generators (3.7) are not self-adjoint (as
differential operators) for s ^ 3; if that were the case, the coefficients of the
subleading terms in Eq. (3.5) would be identical to those of the Moyal bracket
algebra, which assumes a hermitian (e.g., Weyl) ordering for the differential oper-
ators. To obtain the value of the cocycle (3.6), we have to multiply ^ by a constant
— c, c being the central charge of the Virasoro subalgebra

\VL Vn = (m - n)Vt+n + ̂ ( m 3 - m)δm+n,0 . (3.10)

Next, we consider the algebra Wm whose generators {Wi; s ^ 2 , m e Z } satisfy
the commutation relations

= ((sf - \)m - (s - l)n) WξXs

n

 2 + cs(m; μ)δSyS> δm+rit0

+ Σ gϊr(™>nιμ)wξι

++s

n~
2-2\ (3.ii)

with μ = 0 and

, m c(m + s - l ) ! 2 2 ( s " 3 ) s ! ( 5 - 2 ) !

2 (m - 5)! (25 - 1)!! (2s - 3)!! ' v ' '

The complete structure of JV^, which arises as the large N limit of Zamolodchikov's
WN algebras [2, 5], was proposed by Pope, Romans and Shen [4]. It resembles the
structure of W1 + o0, but since μ = 0 now, the series of terms with r ^ 1 automati-
cally terminates at W2

+n or W^+n, depending on whether 5 + s' is even or odd
respectively. We also note that the normalization of the central charges (3.12) is
different from (3.6).

The W^ algebra can be obtained from W1 + (Xiby truncation to 5 ̂  2, provided
that Wm are expressed in terms of V^ as

(2s — 21 — ί) (m -4- s — IV
( l j B(s-l) ( m + s - / - l ) Γ m [0'U)
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for all s ^ 2. Of course, from the point of view of the algebra of all differential
operators on S1, the truncation to s ^ 2 can be done automatically, using a basis
that does not contain operators of zero order. We point out, however, that the
logD cocycle will not maintain its diagonal form, if we naively use the basis (3.7),
after subtracting the k = s terms. Therefore, in order to accommodate the commu-
tation relations of W^ into the present framework, we have to construct a different
basis.

In terms of differential operators, the appropriate basis can be found by
combining Eqs. (3.7), (3.8) and (3.13). The result we find is

with

_ (25 - k - 1)!
β _
β*-(S-kγ.(s-k-ty. ( 1 1 5 )

A theorem analogous to the previous one also holds for the W^ algebra (3.11), but
in this case the value of the logD cocycle for the operators (3.14) is

vίuss uss', B(s)B(s+l)(m + s-l)\ z
WiyVm* wn ) = — ^ 7T zr~ <W<Wn,o (3.16)

2(s — 1) (m — s)\
To obtain arbitrary values for the central charge of the Virasoro subalgebra, we
simply have to multiply ^ by the numerical factor c/2.

The general relation between the algebra of differential operators on S1 and W^
has also been addressed by Fairlie and Nuyts [12]. Using the theory of Moyal
brackets they found, among other things, a basis of operators which yield the
structure constants gf of W^. In this regard, some of the closed formulae we have
presented here should be considered as being complementary to theirs.

4. Higher Spin Truncations of W1+ao

The algebra of differential operators on S1 can be truncated from below by
considering only elements with order bigger than or equal to a fixed positive
integer. This procedure leads to higher spin algebras with spectrum s^ M, for all
MeZ+. The truncation from above, on the other hand, is not possible while
maintaining the linear structure of the algebra. A truncation method of the second
type has been discussed by Radul and Vaysburd [13], who proposed a systematic
description of WN algebras as factor algebras of M+ and of its central extension. In
this section we focus on truncations of the first type and construct bases in which
the log D cocycle becomes diagonal for all M. This is a natural generalization of the
results described in the previous section. Such higher spin algebras have been
discussed before in a different context [14] and clearly, for all M ̂  3, they do not
contain a Virasoro subalgebra. Hence, although consistent with the Jacobi identity,
their meaning in quantum field theory is obscure, if these algebras are supposed to
represent all the symmetries of a chiral two dimensional model. They are interest-
ing, nevertheless, from a mathematical point of view. It might also turn out that
these algebras admit a natural interpretation in the framework of higher dimen-
sional field theories, but this point of view is still lacking.
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Theorem. For any MeZ+, the subalgebra of differential operators with order bigger
than or equal to M — 1 admits a non-trivial central extension, given by the restriction
of the log D cocycle. In the basis

(25 - k - 1)! (m + s-ί

k ) \ ( k M l)\{ k 1 Dw ψ (
Wm (s - 1)! m & (s-k)\(s-k-M + l)\{ k -

the log D cocycle is diagonal

In the basis, the commutation relations of the corresponding higher spin
algebra assume the form (3.11), with μ = (M — 2)/2. The series of subleading terms
terminates in the general case with either WM or WM+1 and, of course, the overall
normalization of the central terms also depends on M.

This result implies equivalently a relation between the W generators of the
higher spin algebra with s^M and those of W1 + <*> of the form W^= V^Λ- lower
spin V-terms, which is analogous to Eq. (3.13). We will present this relation in a field
theoretic form, for arbitrary M, using the standard_ realization of W1 + ao [15] in
terms of a complex free fermion φ (and its conjugate φ) in two dimensions. We have

for all 5 ^ M. The higher spin truncations of W1 + oo become obvious in this
realization, since for fixed M, the operator product expansion of any two fields (4.2)
generates in its singular terms only fields with spin bigger or equal than M.

5. Colored W^ and Matrix log D

In this section we consider the algebra of matrix valued differential operators
and study its central extension using a logarithmic generalization of the Maurer-
Cartan cocycle. We will show that for the unitary group U(p\ this extension
reproduces the colored Wξ> algebra [16] and more generally the non-abelian
current version of Wί + 00 [17].

Let ^ be a reductive matrix Lie algebra. In analogy with Sect. 2, we consider the
space of pseudo-differential operators on the circle with matrix coefficients, i.e.,
A(x,D) = Σn

i=_o0ai(x)Di with a^C^iS1, 9). The same multiplication law (2.1)
now includes not only the usual Leibniz rule, but also the matrix product of the
coefficients. These operators form an associative and hence Lie algebra St9. An
operation res: St9 -> CCO(S1

9 9) is naturally defined on this algebra by the trace of
the coefficient of the D " 1 term, res Q] α^x)/)*) = tr[a_i(x)]. The action of log Don
0t<s is given by the same formula

[log D, A(x, D)] = Σ ^ Γ Λ^D-\ (5.1)
fe^ 1 K

as before, but now the symbol of log D is the matrix (log ξ)mly9 where 1^ is the unit
matrix.
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Theorem. For an arbitrary reductive matrix Lie algebra &, the algebra of pseudo-
differential operators 0t<$ has a non-trivial central extension given by the 2-cocycle

V(A, B) = f res([Λ, log D] <> B). (5.2)

The cocycle property of ^(A9 B) can be verified in the same way as in Sect. 2. The
algebra 0t<$ contains the subalgebra of the zeroth order differential operators
{α(x)D0}, which is naturally isomorphic to the corresponding current algebra # . It
is easy to see that the restriction of ^(A, B) on this subalgebra gives the Maurer-
Cartan cocycle Jtr[α'b] and thus defines the corresponding affine
(centrally extended current) algebra # . This remark implies by itself the non-
triviality of the 2-cocycle and that of the central extension of 9ty.

In analogy with the scalar case, we may restrict ourselves to the subalgebra
9t£ of all matrix differential operators, { Σ " = o α ί ^ } a n ^ s h ° w that Sti has
a non-trivial central extension. It turns out that this specific central extension for
&ΰ(p) (differential operators with unitary coefficients) coincides with the colored
W[+ao algebra [17] and with W%> [16], when truncated to spin s ^ 2. It is
straightforward to extend the results of the previous sections to this case and
construct a basis in which the cocycle becomes diagonal and the commutation
relations of the algebra assume the form

Kni = ((sf - \)m - (s - \)n){δabva'+-n2

+ cs(m; μ)δ°bδs>s'δm+n>0 + Σ 0?r'(m, n; μ)(δab

+ 2 Σ g%-1 (HI, n; μ) V*e%+-1" 2r I , (5.3a)

[^o,m, ^ , ' J = ((*' - ί)m - (5 - 1)FI) F α ^ s ; ; 2 + cs(m; μ)<5αO<5ss ^ m + w , 0

+ Σ ^2r(m, n μ) Vs

a^'+~n

2~2r, (5.3b)
r£ 1

with group indices α = (0, α), α = 1,2 . . . p2 — l.fabc are the structure constants of
the SU(p) subgroup of U(p) and dabc is the third order completely symmetric
Casimir tensor (which vanishes for SU(2)). As before, μ = - i for Wf + oo, μ = 0 for
Wn and so on for the colored higher spin truncations of the algebra.

The scalar Wί + 00 algebra is contained in (5.3) as the 1/(1) (trace) part of U{p).
We also note that the truncations of 9t% from below do not contain the current
algebra # and thus, the corresponding restrictions of the log D do not include the
Maurer-Cartan cocycle. One can show, however, that the restriction of the log D
cocycle on any such truncation is still non-trivial [18], as in the scalar case.

6. Discussion

In this paper we have presented the mathematical aspects of W^ type algebras,
using the notion of the logarithm of the derivative operator [8] and its matrix



242 I. Bakas, B. Khesin and E. Kiritsis

generalizations. This notion provides a systematic way to describe central exten-
sions of the algebra of all differential operators on the circle and establish the
isomorphism with W1 + o0.

We would also like to point out that in this context, the connection of the
fPi + oo algebra and the KP hierarchy (see for instance [14]) is not surprising.
For zero central charge, W1 + o0 becomes the pure algebra of all differential oper-
ators, which is dual to integral operators defining the phase space of the KP
equations.

The logD cocycle admits a natural generalization to higher dimensional
compact manifolds M. This was constructed by Radul [19], using Wodzicki's
residue formula [20]. To emphasize the significance of this problem we recall
that for higher dimensional manifolds there is no invariant decomposition
of pseudo-differential operators X into purely differential and integral parts,
X = X+ + X-. Hence, the knowledge of a residue formula is very important
for defining central extensions of the algebra of (pseudo)-differential operators
on Jί. The latter is closely related to the structure of the cotangent bundle
of Jt and to the group of symplectomorphisms of T*Jί, since the principal
symbol of a differential operator naturally defines a Hamiltonian flow in T*Jί.
For any pseudo-differential operator X on Jίy res X, which was originally
introduced by Wodzicki in the framework of spectral geometry, is unique and
defines a trace functional. For Jί ~ S1 the usual residue formula is recovered.
With this ingredient, the logD cocycle is naturally generalized to all compact
manifolds.

The field theoretical aspects of the resulting infinite dimensional algebras have
not been studied for general Jί. This could justify further work on the subject, both
from the physical and mathematical point of view.
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