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Abstract. In this paper, we formulate a generalization of the classical BRST
construction which applies to the case of the reduction of a Poisson manifold by
a submanifold. In the case of symplectic reduction, our procedure generalizes the
usual classical BRST construction which only applies to symplectic reduction of
a symplectic manifold by a coisotropic submanifold, i.e. the case of reducible "first
class" constraints. In particular, our procedure yields a method to deal with
"second-class" constraints. We construct the BRST complex and compute its
cohomology. BRST cohomology vanishes for negative dimension and is isomor-
phic as a Poisson algebra to the algebra of smooth functions on the reduced
Poisson manifold in zero dimension. We then show that in the general case of
reduction of Poisson manifolds, BRST cohomology cannot be identified with the
cohomology of vertical differential forms.

1. Introduction

Classical BRST cohomology has a long history in the physics literature, e.g. [1].
Although its origins are in the context of quantum field theory, it is now known
that classical BRST cohomology is a cohomology theory that contains all of
the information of the symplectic reduction of a symplectic manifold by a closed
and embedded coisotropic submanifold [2, 3]. In the language of Dirac [4],
this corresponds to symplectic reduction arising from (possibly reducible) "first
class constraints." The classical BRST complex is constructed using only purely
algebraic properties of the Poisson algebra of smooth functions on the original
(unreduced) symplectic manifold and some of its ideals. Furthermore, since
the classical BRST complex is a Poisson superalgebra and the differential a
Poisson derivation, classical BRST cohomology inherits the structure of a Poisson
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super-algebra. Classical BRST cohomology is isomorphic (as Poisson algebras) in
zero dimension to the algebra of smooth functions on the symplectic reduction [2].
When the (symplectic) normal bundle of the coisotropic submanifold is a trivial
bundle, classical BRST cohomology in nonnegative dimension is isomorphic to the
cohomology of vertical differential forms with respect to the null foliation [5], The
results in [2] and [3] show that this is the case even if the normal bundle is not
a trivial bundle.

In this paper, we transcribe the procedure of the reduction of a Poisson
manifold (M,P) by a closed and embedded submanifold into the language of
Poisson algebras. Inspired by this example, we give an algebraic definition of the
reduction of a Poisson algebra by an ideal. In the case of a Poisson manifold,
our algebraic definition gives rise to a notion to the reduction of ^{M) by
any ideal, whether this ideal arises as the ideal of functions which vanish on a
closed and embedded submanifold or not. In particular, we show that for certain
special ideals ("coisotropic ideals"), we can generalize classical BRST cohomology.
Our construction has some important applications. Consider the case of the
reduction of a symplectic manifold by an arbitrary closed and embedded submani-
fold. In the language of Dirac, the ideal of functions which vanish on this submani-
fold / is generated by a collection of first class constraints and second class
constraints. Our method tells us how to construct the classical BRST complex
in this general case. The idea is to replace the original collection of constraints
by a new set of "first class constraints." Although this new set of constraints
is guaranteed to exist, our method does not explicitly construct them, in general.
However, in the case where the submanifold of the symplectic manifold is itself
a symplectic manifold (i.e. / is generated by only second class constraints), there
is a method to explicitly construct the new set of constraints which would, in
applications to field theory, preserve any Lorentz covariance type properties of
the original collection of constraints. An interesting consequence of our generaliz-
ation is that classical BRST cohomology is not generally isomorphic to the
cohomology of vertical differential forms although it is isomorphic as Poisson
algebras to the algebra of smooth functions on the reduced Poisson manifold in
zero dimension.

This paper is organized as follows. In Sect. 2, we transcribe the procedure of
reduction of a Poisson manifold by a submanifold into purely Poisson algebraic
terms. In Sect. 3, we review the Koszul-Tate resolution. In Sect. 4, we show that in
the special case of symplectic reduction by a symplectic submanifold, our proced-
ure results in infinitely reducible constraints. In Sect. 5, we construct the space of
BRST cochains and show that it forms a Poisson superalgebra. In Sect. 6, we
construct the BRST charge inductively. In Sect. 7 we compute the cohomology
explicitly. In Sect. 8, we explain why BRST cohomology is not vertical cohomol-
ogy. Finally, Sect. 9 contains some concluding remarks as well as some possible
avenues for future research.

2. Reduction of Poisson Manifolds

In this section, we review the reduction of a Poisson manifold by a submanifold. It
is a procedure which becomes, in the case where the Poisson manifold is a symplec-
tic manifold, symplectic reduction by a submanifold. This reduction is done by
transcription of this geometric procedure into the language of Poisson algebras (see



Generalized Classical BRST Cohomology 157

[5] and [6]). The algebraic formulation generalizes the geometric one since it can
be applied to cases where the reduced Poisson manifold is not smooth.

Let (M, P) be an m-dimensional Poisson manifold, i.e. M is a smooth m-
dimensional manifold and P is a bivector in Λ2(TM) such that the Schouten
bracket of P with itself vanishes. Given a Poisson manifold, the Poisson bracket of
two smooth functions on M, / and g, is given by

lf9g1 = P(df9dg). (2.1)

Since P is in Λ2(TM\ the Poisson bracket is antisymmetric. Furthermore, since the
exterior derivative acts like a derivation on C^iM), we have

lf,ghl = lf,glh + glf,K] (2.2)

for all/, g, h in C™{M). Finally, the fact that the Schouten bracket of P with itself
vanishes is equivalent to the Jacobi identity, i.e.

*] + [ft [/, *]] (2.3)

for all/ ft A in C°°(Af). In other words, C^iM) forms a Poisson α/0e&rα, i.e. C°°(M)
is an associative and commutative algebra with unit with respect to pointwise
multiplication, a Lie algebra with respect to the Poisson bracket, and the two
operations intertwine via Eq. (2.2). The Poisson algebra C^iM) completely charac-
terizes the Poisson manifold (M, P). Furthermore, all Poisson structures on C™(M)
arise from endowing M with a suitable Poisson structure.

Given a Poisson manifold (M, P), there is a map P#: T*M -> TM given by

P#α = φ ) P (2.4)

for all α in Γ*M and points m in M where i(α) is the interior product. P # allows us
to define the hamiltonίan vector field associated to a function f in C^iM) by
Xf = PΦ (df). In terms of Poisson algebras, this definition is equivalent to
xf = [/ *] since Eq. (2.2) insures that [/ •] is a derivation with respect to
pointwise multiplication in C°°(M) and, hence, a vector field on M. Furthermore,
(2.3) implies that

Xif9β] = lXf9XJ (2.5)

for all/, g in C^iM), where the bracket on the right-hand side is the Lie bracket. In
other words, the map f\-*Xf is a Lie algebra homomorphism from

Consider the closed and embedded submanifold i: MO

S:-^(M,P) which has
codimension k. The submanifold Mo is completely characterized by its associated
algebra of smooth functions C°°(Mo). Let us denote the ideal of functions in C*(M)
which vanish on Mo by /. Since Mo is a closed and embedded submanifold of M, we
have the isomorphism of (associative) algebras

,2.6,

given by [/]I->/|MO This m a P is certainly well-defined. It is injective since the
elements in C^iMyi which give rise to the zero map on Mo are those which vanish
on Mo and it is surjective since any smooth function on Mo arises from the
restriction of some smooth function on M. We can do a similar construction with
vector fields. Any vector field on Mo arises as the restriction of some vector field on
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M. However, the restriction of a vector field on M to Mo is not, in general, a vector
field on Mo since it need not be tangent to Mo. The space of all vector fields on
M which restricts to a vector field on Mo is given by

Jί{I) = {Xe Γ(TM)\X(ί) e I Vi e /} . (2.7)

Of course, two vector fields in Jf(ΐ) may restrict to the same vector field on Mo.
This happens only if their difference vanishes on Mo. Since vector fields in Jί{ΐ)
which vanish on Mo are precisely the elements in lJf{I\ we have the isomorphism
of Lie algebras and of C™(M)/I ^ C°°(M0)-modules

(2.8)

via the map pf]ι—•X|Mo. Equation (2.8) has an algebraic interpretation, as well.
Vector fields on M and Mo can be identified with the derivations on C^iM) and
C°°(Mo), respectively. The isomorphism C00(M0)-^->C00(M)// tells us that deriv-
ations on C°°(Mo) should be induced from derivations on C^iM). The Lie subal-
gebra Jί(ΐ) consists of precisely those derivations in C™(M) which respect the ideal
/ and, hence, induce derivations on C°°(M)//. The ideal IJfiJ) consists of those
derivations in Jί(ϊ) which induce the zero map on C°°(M)//.

The hamiltonian vector fields on M are just the inner derivations of C00 (M). It is
natural to ask when a hamiltonian vector field restricts to a vector field on Mo.
Suppose that Xf restricts to a vector field on Mo then Xf must belong to ^V(I).
This means that Xf(ί) = If i~] must belong to / for all i in I. In other words,
functions whose hamiltonian vector fields when restricted to Mo are vector fields
on Mo are those functions in the normalίzer of I denoted by

N(I) = {fe C*[M)\U> Q e/ Vie/} . (2.9)

Notice that N(I) forms a Poisson subalgebra of C^iM). It will play an important
role in what follows.

Under certain conditions, Mo has an associated involutive distribution such
that the space of leaves of its associated foliation inherits the structure of a Poisson
manifold. Let us describe this situation in more detail.

Denote the pullback of TM and Γ*M to Mo via the inclusion map by ΓXTM
and i" 1 Γ*M, respectively. The Poisson structure P on M can be pulled back via
the inclusion map to an element in Λ2^'1 T*M) which we shall also denote by P to
avoid notational clutter. It allows us to define a rank k subbundle of i" 1Γ*M
whose fibers consist of 1-forms which vanish when evaluated on vectors tangent to
Mo called the annίhilator bundle (or the conormal bundle) of Mo It is denoted by
Ann(TM0) -* Mo and its fibers are given by

Annm(ΓM0) = { α e i ^ T Ϊ M I φ ) = 0 VveTmM0} (2.10)

for all points m in Mo. At every point m in Mo, let us define

TmM^ = P# Annm(ΓM0) = {P#α|α e Annm(ΓM0)} . (2.11)

Let us assume that TMQ has constant rank so that TMQ forms a subbundle of
i~xTM. The null distribution of Mo is given by m ι—• Vm for all m in Mo, where

Vm = TmMonTmMk. (2.12)
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Let us assume that Khas constant rank so that V forms a subbundle of TM0. We
will show that the null distribution is an involutive distribution over M o .

Let us begin by recalling several facts. First of all, given any i in /, di\Mo belongs
to Γ(Ann(ΓM0)) since for all {vj e jr(I)/ur(I\ di(v) = v(ΐ) which belongs to / by
the definition of Jί(ΐ) and, therefore, vanishes when restricted to M o . Furthermore,
the exterior derivative of an element in I2 always vanishes when restricted to Mo.
Therefore, we have the well-defined map

I/I2 -=-• Γ(Ann(ΓM0)) (2.13)

given by [i] i—• dί\Mo. This map is readily seen to be an isomorphism by showing the
isomorphism locally and then globalizing it by using partitions of unity. Thus, all
sections of TMQ are restrictions to M o of hamiltonian vector fields of elements in /.
Since the sections of the null distribution are the sections of TM0 n TMQ and N(I)
consists of all functions on M whose hamiltonian vector fields when restricted to
M o are vector fields on M o , all sections of TM0 n TMQ are restrictions to M o of
hamiltonian vector fields of elements in

Γ = N(I)nI. (2.14)

Notice that Γ is naturally a Poisson subalgebra of N(I) and, therefore,

lXtι9XtJ=X{iul2] (2.15)

for all iί9 i2 in /'. This proves that V is an involutive distribution on M o .
By the Frobenius theorem, associated to the involutive distribution V there

exists a foliation of M o by maximal connected submanifolds (called leaves) such
that the tangent space to each leaf is the restriction of V. Let us denote the space of
leaves of the foliation by M. Let u^ assume, furthermore, that conditions are such
that the projection map π: Mo -> M which takes each point on M o and projects it
into the leaf containing it is a smooth map. In this case, we will show that M has an
induced Poisson structure P. We will construct P by inducing a Poisson algebra
structure on C^iM) from the Poisson algebra structure on C^iM).

The functions in C°°(M) which induce smooth functions on M are those which,
when restricted to Mo are constant along each leaf of the foliation. Since each leaf is
connected and has tangent vector fields which are restrictions of hamiltonian
vector fields of elements in /', a function/in C^iM) induces a function in C^iM) if
and only if &Xif\ M0 = 0 for all i in /'. Equivalently,/induces a smooth function on
M if and only if/belongs to N(Γ, /), where

N(Γ, I) = {/€ C°°(M)|[/ Π e /, VΓ 6 /'} . (2.16)

Furthermore, all functions in^C°°(M) are induced from functions in JV(/;, /) since
any smooth function / on M, can be extended to a smooth function π*f on
M o which projects to it. Since two functions in N(Γ,J) restrict to the same function
on M o and, therefore, induce the same function on M if and only if they differ by an
element of /, we have the isomorphism of associative algebras

/ ) . (2.17)

This is not obviously an isomorphism of Poisson algebras since N(I\ I)/I does not
appear to naturally inherit the structure of a Poisson algebra from ^(M) as it
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stands. In order to obtain a Poisson algebra for the right-hand side of this equation,
we need to delve deeper into the algebraic structure of N(Γ91).

Suppose t h a t / i s an element of N(Γ9I)9 then for all V in /, df(Xr) = [i'9f]
belongs to / and, therefore, vanishes when restricted to M o . In other words, we
have

df\Mo e Γ(Ann(ΓM0 n TMft) (2.18)

since all sections of the null distribution are given by restrictions to M o of
hamiltonian vector fields of elements in /'. However, it is a general fact from linear
algebra that if V is a (finite dimensional) vector space and Wγ and W2 are subspaces
then

n W2) = A n n ( ^ ) + A n n ( ^ 2 ) . (2.19)

We can see this as follows. Consider α in Ann(PFi) and β in Arm(W2) then α + β
certainly lies in A n n ( ^ n W2) so that A n n ( ^ ) + Ann(J^2) c A n n ( ^ n W2\ The
equality follows from some linear algebra and by counting dimensions. Therefore,
we obtain the result

df\Mo G Γ(Ann(ΓM0)) + Γ(Ann(TM^)) . (2.20)

Since Γ(Ann(ΓM0)) consists of the restriction to M o of the exterior derivative of
elements in /, there exists an i in / such that

(df- dΐ)\Mo e Γ(Ann(ΓMi)). (2.21)

Let us use another fact. Consider α in Annm(ΓMo) = Annm(P#(Ann(77M0))),
where m i s a point in Mo then α(P# β) = 0 for all β in Annm(ΓM0). However,
0 = α(P# β) = P(β, α) = - P(α, β) = - β(P# α) for all β in Annm(ΓM0) means
that P # α must belong to TmM0. In other words, P # Annm(ΓMo) ^ TmM0 for all
m in M o . Applying P # to both sides of Eq. (2.21) yields

X ( / _ 0 | M O G Γ ( Γ M 0 ) . (2.22)

This tells us that / — / belongs to N(I). In other words, / belongs to N(I) + /.
Combining this result with (2.17), we get

- * Nil) + /
C00 (M) - ^ y } . (2.23)

However, the right-hand side is still not obviously a Poisson algebra. This can be
remedied by using a basic fact from linear algebra. Given two subspaces W1 and
W2 of a vector space V9 there is the canonical isomorphism

>wΓKW ( 1 2 4 )

W2

>wΓKW2

defined by \wx + w2] ι-̂  [wx] for all Wi in W1 and vv2 in fΓ2 Using this fact on the
right-hand side of Eq. (2.23), we obtain the isomorphism C^iM)—±+N(I)/Γ. The
right-hand side is naturally a Poisson algebra since iV(/) is a Poisson subalgebra of
C^iM) and Γ is a Poisson ideal ofN(I), i.e. Γ is an ideal with respect to both the Lie
bracket and multiplication operations in N(I). We use this isomorphism to endow
C°°(M) with the structure of a Poisson algebra thereby completing the process of
inducing a Poisson structure P on M from the Poisson manifold (M, P). Therefore,
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this isomorphism induces a Poisson structure P on M. We have just shown the
following result.

Theorem 2.25. Let i: M0^-+(M, P) be a closed and embedded submanifold of a
Poisson manifold. Assume that TMQ and the null distribution have constant rank.
Furthermore, let us assume that the canonical projection map of a point in Mo into the
leaf that contains it, π: M o -• M, is a smooth map. In this case, we have the
isomorphism

~ s Nil)
M)^>-jr, (2.26)

where I is the ideal of functions vanishing on Mo, N(I) is the normalizer of I in
C^iM), and Γ = N(I) n /. Since the right-hand side is naturally a Poisson algebra,
the isomorphism defines a Poisson structure P on M. The Poisson manifold (M, P) is
said to be the reduction of the Poisson manifold (M, P) by M o .

This theorem shows that the process of reduction of a Poisson manifold by
a submanifold is essentially an algebraic one. This leads to the following purely
algebraic definition.

Definition 2.27. Let ^ be a Poisson algebra, J be an ideal of 0>, N(J) be the
normalizer of J in 0>, and J' — N(J) n J. We say that the Poisson algebra N(J)/J' is
the reduction of the Poisson algebra 0> by the ideal J.

The reduction of the Poisson algebra of functions on a Poisson manifold by the
ideal of functions which j/anish on a submanifold is well-defined even if the
projection map π : M 0 ->M is not smooth. Therefore, this algebraic definition of
reduction generalizes the geometric one. Also, notice that Γ given in the above
definition is generally nonzero since

I2 <= /' . (2.28)

Consider the special case where the Poisson manifold (M, P) is, in fact, a sym-
plectic manifold. This occurs when P is a nondegenerate bivector. Its inverse, ω, is
a 2-form on M which is closed because the Schouten bracket of P with itself
vanishes thereby making (M, ω) into a symplectic manifold. Let us call the Poisson
algebra C^iM) a symplectic algebra if (M, P) is a symplectic manifold. There is, in
fact, an algebraic characterization of this fact, i.e. C™(M) is a symplectic algebra if
and only if the kernel of the map from C^iM) -• Γ(TM) given by/h-> If ] consists
of the locally constant functions.

The symplectic reduction of (M, ω) by the submanifold Mo is precisely the
procedure of the reduction of the Poisson manifold (M, P) by M o . Notice that here
TMQ is the usual symplectic normal bundle to TM0 and the null distribution on
M o arises as the null space of the pullback via the inclusion map of ω to M o . There
are two extremes to symplectic reduction. The first is when M o is a coisotropic
submanifold of (M, ω), i.e. TmMo c TmM0 for all m in M o . In this case, the null
distribution is just TMQ. Let / be the ideal of functions of C^iM) which vanish on
M o . If Mo is coisotropic, sections of TMQ belong to the space of sections of TM0.
However, all sections of TMQ are restrictions of hamiltonian vector fields of
elements in / to M o . Since N(I) consists of all functions on M whose hamiltonian
vector fields when restricted to M o are sections of TM0, we have / s N(I). This
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is equivalent to the statement that the ideal / forms a Poisson subalgebra of
C^iM), i.e.

[ / , / ] £ / . (2.29)

It is clear that M o is a coisotropic submanifold if and only if Eq. (2.29) holds. In this
case, the symplectic reduction of (M, P) by Mo, is algebraically given by

(2.30)

The geometric procedure inspires the following algebraic definition.

Definition 2.31. Let 9 be a Poisson algebra, J an ideal, and N(J) the normalίzer of
J in $P. The ideal J is said to be a coisotropic ideal ofSP if and only if J is a Poisson
subalgebra of £P.

Clearly, if J is an ideal of C™(M) then J' is a coisotropic ideal of C™(M).
The other extreme occurs when M o is a symplectic submanifold of (M, ω). In

this case, since i*ω is already nondegenerate, the null distribution vanishes, i.e.
TmM0 n TmMo = 0. However, Γ(TM0 n TM^) are hamiltonian vector fields of
elements in Γ restricted to M o, therefore, for all i in /' we have Xt | M0 = 0. However,
Xi = P#di and PΦ is an isomorphism since (M, P) is a symplectic manifold.
Therefore, we have di\Mo = 0 for all i in /'. However, the elements in / which satisfy
di\M0 = 0 a r e J u s t tne elements in J 2, therefore, /' c I2. Combining this with Eq.
(2.28), we conclude that M o is a symplectic submanifold of the symplectic manifold
(M, P) if and only if

Γ = I2 . (2.32)

Therefore, if (M, Ω) is the symplectic reduction of (M, ω) by the symplectic sub-
manifold M o then we conclude that

a, N(T)

C™{M) >—Y-. (2.33)

Classical BRST cohomology is a cohomology theory which performs the
reduction of the Poisson algebra C^iM) of smooth functions on a Poisson
manifold (M, P) by the ideal / of functions which vanish on a submanifold in the
case where / is a coisotropic ideal of C™(M). However, one might expect to able to
perform the classical BRST construction for the reduction of the Poisson algebra
C^iM) by a coisotropic ideal / whether it is the ideal of functions vanishing on
some submanifold or not. We will show that the reduction of a Poisson manifold
by an arbitrary submanifold can always be thought of as the reduction of Poisson
algebras by a suitable coisotropic ideal.

Following [7], let us restrict ourselves to certain interesting ideals.

Definition 2.34. Let J be an ideal in the Poisson algebra 0*. J is said to be an
associative ideal in 0> if and only if

/ 2 e J = > / e J . (2.35)

Notice that if / is the ideal of functions which vanish on a submanifold M o in
a Poisson algebra C™{M) then / is an associative ideal since if f(p)2 = 0 then
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/(p) = 0 for all points p in Mo. Associative ideals are interesting because of the
following result from [7].

Proposition 2.36. Let ^ be a Poίsson algebra and J an associative ideal. Further-
more, let J' = N(J) n J, where N(J) is the normalizer of J. IfN(Jf) is the normalizer
of J' then

N{J) = N{Jf) . (2.37)

Proof Suppose that/belongs to N{Jf) for J an associative ideal of C00 (M) then for
all i in J, we have the equality

[ P 2 , / ] . / ] = Ά.UΩ2 + 2 i [p,/] ,/] . (2.38)

Since i2 belongs to J2 ^ J', [r2,/] belongs to J ' which in turn implies that
CO2,/],/] belongs to J' c J. In other words, the left-hand side of Eq. (2.38)
belongs to J. Since in addition 2/[p,/],/] belongs to J, Eq. (2.38) implies that
[i,/] 2 belongs to J but since J is an associative ideal, this means that [i,/] belongs
to J. In other words,/belongs to N(J) thereby proving that N(J') e N(J).

Conversely, suppose that/belongs to N(J\ then [/ Γ] belongs to J for all i' in
J'. We need only show that [/ i'] belongs to N(J') for all i' in J' to establish that
N(J)^N(J'). Notice that for all i in J and i' in J, we have [[/z'],ϊ]
= [ [ / Q, *'] + [/ lΛ ί']] but [/ i] belongs to J and [i, i'] belongs to / therefore,

we conclude that/belongs to N(J). This proves Eq. (2.37). •

Therefore, if SP is a Poisson algebra and / is an associative ideal, then the

reduction of 9 by / is — — which is naturally a Poisson algebra since /' is

a Poisson ideal of N(Γ). In other words, we have shown that the reduction of & by
an associative ideal / is the same as the reduction of 9 by the ideal coisotropic /'.

In the case where (M, P) is the reduction of the Poisson manifold (M, P) by
Mo and / is the ideal of functions which vanish on Mo then we have the
isomorphism of Poisson algebras

- « N(Γ)
^ (2.39)

The usual classical BRST construction occurs when (M, P) gives rise to a sym-
plectic manifold and / is the ideal of functions which vanish on a closed and
embedded coisotropic submanifold of M. In this case, /' = / and I is generated by
a collection of so-called "first-class constraints" with respect to which the classical
BRST complex is constructed.

The program that we wish to follow is now apparent. We will replace the role of
/ by Γ in doing the classical BRST construction. It differs from the usual classical
BRST construction since Γ is not generally the ideal of functions which vanish on
some submanifold of M. Since Γ is a coisotropic ideal in C00 (M), we expect many of
the usual constructions in classical BRST to generalize. Although satisfactory from
a purely homological standpoint since the role of generators for / is just replaced by
generators in /', it may not be satisfactory in certain physical applications. After all,
in physical applications, we are usually given constraints which generate / and not
Γ and, in general, there is no natural way to get from a collection of constraints in
/ to a collection of constraints in Γ. Furthermore, it is often desirable to continue
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working with the constraints in / because these constraints might possess some
desirable covariance property that one is trying to preserve. However, things are
not quite as bad as they might seem. For example, in the case where (M, P) gives
rise to a symplectic manifold and Mo is a symplectic submanifold, then we have the
isomorphism

i V ( ^ \ (2.40)

In this case, a collection of generators for /, say Φ = (φl9 . . ., φk)9 naturally gives
rise to a collection of (first class) constraints in I2 namely {φiφj\ί ^ί^jf^ k}.
These generators for I2 would preserve any "Lorentz covariance" type properties
of the original constraints. However, we will see that the constraints which generate
I2 will be infinitely reducible. We will be careful to take this into account.

3. The Koszul-Tate Resolution Revisited

The Koszul-Tate resolution is a complex which has nontrivial homology only in
zero dimension where it is isomorphic to ^(Myj, where J is any ideal in C^iM).
This complex performs the first step in the reduction of ^(M) by an ideal J -
namely going from C^iM) to C™(M)/J. The Koszul-Tate resolution is a generaliz-
ation of the Koszul resolution due to Tate [8] which is performed by adjoining
additional variables to the space of Koszul chains. These additional variables will
turn out to be the antighost sector of the "ghosts for ghosts" in the BRST complex.
Of paricular interest is the case where J = Γ for some ideal / of functions which
vanish on a closed and embedded submanifold of a Poisson manifold (M, P). In the
next section, we will see that when (M, P) is a symplectic manifold and / is the ideal
of functions which vanish on a closed and embedded symplectic submanifold
Mo then Γ = I2 is always generated by infinitely reducible constraints. In this
section, we follow [2] in the construction of a Koszul-Tate complex but for general
ideals J in C^iM) placing special emphasis upon the case of infinitely reducible
constraints.

Let us review the construction of the Koszul-Tate complex. Let J be an ideal of
C^iM) generated by the elements Ψ = (ψl9 ψ2> > Ψm0) (called constraints). The
usual Koszul complex [9] is constructed by introducing a free CGO(M)-module
Vγ with a basis given by {b^Mo = 1,. . ., w0} whose elements are called the
antίghosts of level 0. In other words, V± consists of elements of the form
ΣΓ0°= i fa° h«!> where/*0 belongs to C00 (M) for all a0 = 1,. . . , m0. The free module
VΊ is given a subscript 1 to indicate that its elements are assigned a Z-grading
1 called the antighost number. The space of Koszul chains is given by
jf(θ) _ Sfcn{m{y^ the symmetric superalgebra over Vx. In other words, Jf(0)

cosists of all polynomials with coefficients in ^(M) over the antighosts where we
regard these antighosts as being anticommuting variables. Another way to put it is
that Jf(0) = φ ^ = o ^ ί O ) forms a commutative and associative superalgebra with
unit graded by antighost number b freely generated by the antighosts. The Koszul
differential is defined to be a C°°(M)-linear graded derivation δ^'.Jfi0^ ->Jf£0)

such that

^ o (3-1)
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The homology of this complex, i ί (J f ( 0 ) ) , is C™(M)/J in zero dimension.
We say that the constraints Ψ are irreducible if λao belongs to C™{M) and

mo mo

Σ λ°°ψao = 0 => λ"° = Σ yaob°K> Vα0 = 1,. . ., m0 . (3.2)
αo = 1 bo = 1

for some yαoί>o in C°°(M) antisymmetric in its indices. If Ψ are irreducible, then
Ψ forms a regular sequence in C°°(M) and, therefore, the homology of the Koszul
complex vanishes for nonzero antighost number. However, if Ψ are not a set of
irreducible constraints, then we say that the constraints Ψ are reducible. In this
case, there will be nontrivial cycles at nonzero antighost number.

If Ψ are a collection of reducible constraints then there exists a collection of
functions on M, Z ( 1 ) ^ (for a0 = 1,. . ., m0 and a1 = 1,. . ., m1 for some πiι\ which
do not belong to J\0 such that

Σ Φao = 0 (3.3)
αo= 1

for all aί9 and, for all functions λao, we have

Σ ^ α o = o = > Λ * ° = Σ
α o = 1 αi = 1

for some functions p α i and χaobo antisymmetric in its indices. If Z{1)a

a\ exist which
satisfy Eq. (3.3) then H x ( j f ( 0 ) ) is nonzero since it contains homologically nontrivial
cycles of the form

mo

Σ Z^bfSS (3.5)
α o = l

for all fli = 1, . . ., mi. Furthermore, Eq. (3.4) means that the space of all nontrivial
cycles in Jf(

1

0) are generated by such elements. We shall now utilize the method of
Tate [8] to remove the nontrivial cycles in JΓ[0 ). Introduce a free C°°(M)-module
V2 which has a basis {ft^lfli = 1> •> m i } τ h e elements in this basis are called
antighosts of level 1 and are assigned antighost number 2. A new space of chains is
constructed from the old by adjoining these new antighosts. We define
J Γ * 1 ) = Sfc»w){Vi®V2 ), where ^ ( ^ ( ^ l θ ^ ) is the symmetric superalgebra
over the free C°°(M)-module ( K i φ F 2 ), i.e. Jf ( 1 ) consists of all polynomials with
coefficients in C^iM) over the commuting variables b^ and the anticommuting
variables b^. This makes Jf ( 1 ) = ® ^ ° = 0 ^ 1 ) i n t 0 a commutative and associative
superalgebra with unit freely generated by the antighosts graded by antighost
number. The new differential, <5(1): J f ^Λ -> X £ υ is a C°°(M)-linear graded deriv-
ation which extends <5(0) by mapping b^ into the nontrivial cycles in Eq. (3.5), i.e.

= Σ z^ί JC. (3-6)
αo= 1

Equation (3.3) insures that δ(1)2 = 0. These new antighosts kill off the nontrivial
cycles in JΓj 0 ) while leaving the homology in zero dimension unchanged, i.e.
ϋ o p f ( 1 ) ) = C°°(Af)/J and H 1 ( X ( 1 ) ) = 0. However, there may be nontrivial cycles
in j f (

2

X) either because they were there to begin within the Koszul complex or
because we have introduced them by choosing overcomplete Z{1)a

a\.
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This procedure can be carried out for higher antighost numbers [2]. Suppose
that there exists a collection of functions Z ( l )2|- ι which do not belong to J\0 where
i = 1,. . ., L and a{ = 1, . . ., mf that satisfy Eqs. (3.3) and (3.4) as well as the
equations

f % (3.7)
• aj-i = l

and

ntj-i ntj

(3.8)

all) = 2,. . ., L and α,- = 1, . . ., rrij. The number L is called the order ofreducibίlίty
of this system. It is defined to be the last i for which Z(i)*;~* is nonzero. It is possible
for L to be infinite, but let us assume that L is finite for now.

Suppose that we have constructed the Koszul-Tate resolution up to level
i where i < L. That is, for all 7 = 0,. . ., i, we have introduced free C°°(M)-modules
Vj+1 which are assigned antighost number j + 1 and are spanned by the antighosts
of level;, {b%\aj =1,. . ., mj, such that the space of chains is Jf ( 0 = ^ C W ^ ( O ) >
where V ( ί ) = ® } = 1 Vj. Furthermore, we have defined the differential
(5(ί): jrjl>+1 - tfψ by Eq. (3.6) and

aj-i = l

for al l ; = 1, . . ., I The homology of the complex δ(i): Jf^+1 -• Jf ί0 vanishes for
antighost number b = 1, . . ., i since, by construction, we have removed all of the
nontrivial cycles up to antighost number i. The nontrivial cycles in Jf/ ϊ i are
generated by

where M ( ί ) α. has antighost number i + 1 and contains only antighosts of level less
than i. As before, M ( i + 1 ) β i + 1 is arbitrary up to a boundary. We introduce a free
C°°(M)-module Vi+1 which has antighost number i + 2 and a basis
{b<t+1\b{2 + \ . ., ftίίΓ+J}} L e t u s d e f i n e t h e l e v e l * + 1 Koszul-Tate chains by
Jίr(i+1) = yc«>(M)(Vii+1)) The differential on this complex is a C°°(M)-linear
graded derivation δ(i+1): jTftP -+ J f £ + 1 ) which extends δiV> via

= Σ Z < ί + 1 > - + 1 ^ + M ^ 1 ) α i + 1 , (3.11)

for some M ( i + 1 ) β | + 1 consisting of antighosts with level less than i such that
δii+1)2b£ι*ί

1) = 0. It is easy to verify that any such differential must have

i+1 = M(i+1)a.+ι up to a δ{ΐ) boundary [2] and, therefore, its homology satisfies

H0(Jfii+ί)) = Cco(M)/J and H 5 ( J f ( ί + 1 ) ) = 0, V£> = 1,. . ., i + 1 . (3.12)

In other words, any differential <5(i+1) which satisfies (3.11) and agrees when acting
upon lower antighosts with δ(ΐ), is a bona fide Koszul-Tate differential, i.e. its
associated homology satisfies (3.12). We will use this result later when constructing
the BRST charge.
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This construction proceeds until i reaches the level L. At this point, the complex
jfiL) = ̂ C» ( M )(V ( L )) with differential δ{L): Xf\ 1 -> Jt{

b

L) forms an acyclic resolu-
tion of C°°(M)/J.

In the case where the system is infinitely reducible, this procedure is iterated an
infinite number of times introducing an infinite level of antighosts. This gives rise to
the space of Koszul-Tate chains Jf(oo) = «5^c«(M)(V(00)) and the differential
<5(oo): i f £+\ -> JΓ^00) is a graded derivation which acts upon each antighost via Eq.
(3.11). The Koszul-Tate complex still forms an acyclic resolution C^iMyj since all
of the nontrivial cycles at any given antighost number have been removed by the
same construction.

4. Infinite Reducibility

Let i: M o °> M be a closed and embedded submanifold of codimension k where
k ^ 2 and / be the ideal of functions in C^iM) which vanish on M o . In this section,
we present a particular collection of elements which generate I2 (essentially the
collection of products of constraints) that are necessarily infinitely reducible. This is
of particular interest in the case where M o is a symplectic submanifold of M, e.g. it
arises as the zero locus of a collection of so-called "second class constraints." In this
case, we recall that Γ = I2 is a coisotropic ideal of C00 (M) - the ideal with respect to
which we would construct the Koszul-Tate complex and, eventually, the BRST
complex.

Let us begin with a special case Let i: Mo ^ M b e a closed and embedded
submanifold of codimension 2 and / be the ideal of functions which vanish on M o .
Let us assume that / is generated by the irreducible constraints Φ = (φl9 φ2\ i.e.
Φ are irreducible constraints and

I = {φ1f+φ2g\f,geC«(M)}. (4.1)

In this case, the ideal I2 is generated by the elements Ψ = (ψl9 ψ2> Ψ3)

l

} (4,2)
o = l J

We will show that Ψ are necessarily infinitely reducible.
Suppose that

λ1φ2

1+λ2φίφ2 + λ3φ2

2 = 0 (4.3)

for some functions λao then λ1φ\ belongs to the ideal generated by φ2. We would
like to conclude that λ1 = pxφ2 for some function p 1 . As usual, this is done first
locally and then extended globally.

Definition 4.4. Let i: Mo -• M be a closed and embedded codimension k submanifold
of an n-dimension manifold M such that Mo is the zero locus of a map
Φ = (φί9 . . ., φk): M ->• Rfe. A regular coordinate chart x: U -> Rw ofM0 in M with
respect to Φ is a coordinate chart x.U-^lR" such that UnM0^Φ,
x = (φi,...,φk,yi,..., yn-k), and y = [yu . . ., yn-k): MonU^> Rn" f c is a coor-
dinate chart for U nM0.
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Let W = {Ua, M\M0} be a cover of M, where {xa: Ua -> RM} is a collection of
regular coordinate charts of M o in M with respect to Φ and let {σα, σ'} be
a partition of unity subordinate to this cover. In the regular neighborhood ϊ/α, the
fact that λ1φl belongs to the ideal generated by φ2 implies that λ1 = haφ2 for some
ha in C°°(£/α). This is the case since the φt are 2 of the coordinates of Ua. We can
extend ha to a function on M by using partitions of unity, i.e. p 1 = Xα^ασα + hV,
where h! is any function on M\M0 so that A1 = pxφ2 globally. Actually, this result
is nothing more than the fact that Φ forms a regular sequence in C™(M).

Similarly, (4.3) tells us that λ3φ2 belongs to the ideal generated by φί and,
therefore, λ2 = p2φ1 for some function p 2 . Plugging this into (4.3), we obtain
ΦiΦi{p2φ\ + Λ2 + P1Φi) = 0. Working in a regular cover and globalizing the
result, we conclude that λ2 = - p2φ1 — p1φ2 and we define

= -φu

= - φ 2 9 Z™2 = φ l 9 (4.5)

which satisfies λao = ^ = x Z
(1)«? pα i for all a0 = 1, 2, 3. Since Z(1)£> do not belong

to /2\0 and they satisfy'(3.3) and (3.4), this concludes the analysis of reducibility at
level one.

What of the second level? Suppose that ^ = χ λai Z(1)2? belongs to /2\0 for all
α0 for some functions λai. Plugging in a0 = 1, we see that λ1φ2 belongs to I2 and,
therefore, λ1 must belong to /. Similarly, plugging in a0 = 3 implies that λ2 belongs
to /. Finally, if λ1 and λ2 both belong to / then the equation which results from
setting a0 = 2 is automatically satisfied. In other words, there exists a collection of
functions pa2 where a2 = 1, . . ., 4 such that

λ1 = pίφ1+p2φ2 and λ2 = P

3φ1+p*φ2. (4.6)

Let us now define a collection of functions Z ( 2 ) ^ , where a2 = 1, . . ., 4 which do
not belong to /2\0 (but belong to /) via

Z^\=Z^l = φu Z<a>i = Z<a>ϊ = φ 2 , (4.7)

where all others vanish. Equation (4.6) is then λaι = Z{2)a

a\ρa2 and this completes
the analysis of reducibility at level two.

A similar computation for level three gives us the Z ( 3 ) ^ , where a3 = 1,. . ., 8
are given by

Z<3> \ = Z ( 3 ) I = Z<3 ) I = Z ( 3 ) f = φ2 , (4.8)

and all other Z ( 3 ) ^ vanish. This pattern continues for an infinite number of levels.
The Z ^ j - 1 (for i ^ 2) will be a collections of functions where ax = 1,. . ., 2' and
α - i = 1, . . ., 2 ί " 1 which belong to / but not to /2\0 given by

= . . . = Z(O2;-i = 0 2 ) ( 4 9 )

and all other Z^SJ"1 vanish. This concludes our proof of the infinite reducibility of
Ψ.

Let us now consider the more general case where i: Mo °> M is a closed and
embedded submanifold with codimension fc, where fe> 2 but where / is still
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generated by a collection of irreducible constraints Φ = (φl9. . ., φk). In this case,
I2 will be generated by the collection of elements Ψ = {φiφj\i ^j = 1,. . ., k}.
Since Ψ contains {φ\9 Φ1Φ2, Φί] a s a subset and we have shown that subset is
infinitely reducible, Ψ is itself infinitely reducible. After all, the introduction of the
additional generators does not remove the reducibility of the original set of
generators.

Let us now relax the assumption that / is generated by irreducible constraints.
If / is generated by the reducible constraints Φ = (φl9φ2, . . ., φι) for some I > k,
then I2 will still be generated by the elements Ψ = {φiφj\ί ^ j = 1,...,/}. The fact
that Φ are reducible will only mean that there are more relations between the
various elements in φiφj9 not less. Therefore, Ψ will still be an infinitely reducible
set of constraints. Another way to see this is that about every point in M o , there
exists an open neighborhood in M containing it, U, such that a subset of k elements
in Φ are regular constraints in C°°(l/). These regular constraints are locally
infinitely reducible following the argument given above. Suppose it were true that
these constraints are globally finitely reducible then this would imply that the
constraints would locally be finitely reducible which would be a contradiction.

We have just shown the following theorem:

Theorem 4.10. Let ί: Mo <+ Mbea closed and embedded submanίfold of codimension
k^.2. If I is the ideal of functions which vanish on Mo generated by elements
(Φi, Φi> • > Φk) then the collection of elements which generate I2 given by {φtφj\
i ^j = 1,. . ., fc} is necessarily infinitely reducible.

5. The BRST Complex

In this section, we construct the BRST complex extending the Koszul-Tate
complex through the introduction of ghosts. We show that the space of BRST
cochains forms a Poisson superalgebra which is graded by an integer called the
ghost number. The BRST differential is exhibited as an inner derivation by an
element with ghost number 1 called the BRST charge. Therefore, the associated
cohomology inherits the structure of a Poisson superalgebra graded by ghost
number. If J is a coisotropic ideal of C^iM) then we will see that BRST cohomol-
ogy is isomorphic as Poisson algebras in zero dimension to N(J)/J.

Let J be generated by elements φao9 where a0 = 1,. . ., m0. Furthermore, let us
assume that this system has order of reducibility L. Suppose that the Koszul-
Tate complex has been constructed up to level i < L, i.e. we have introduced the
free C°°(M)-module graded by antighost number ¥ ( 0 = 0 ^ } Vj9 where VJ+1 is
spanned by {bψ.la^ = 1,. . ., m }̂, the antighosts at level j . Let the dual free C^iM)-
module of ¥ ( 0 be denoted by V(0* = @)t\ Vf9 where each Vf+1 has a basis dual to
the antighosts at level j called the ghosts at level j which will be denoted by
{cft\aj = 1,. . ., mj}. In other words, if <•,•>: ¥ ( ί ) * 0 ¥ ( i ) -> C™(M) is the dual
pairing then

<c&,6g> = W (5.1)
for all j , I = 0,. . ., i, α,- = 1, . . ., mj9 and dx = 1, . . ., mx. There ghosts have their
own Z-grading called the onumber. The c-number of cfy is defined to b e ; + 1 and
the c-number of bψ is defined to be 0. This is similar to the antighost number,
which we will now call the fc-number, since the b-number of bj/? is; + 1 and we will
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define the ft-number of cfy to be zero. Finally, the ghost number is a Z-grading
defined to be the difference of the onumber and the fr-number. We will often denote
the ghost number of an object u by \u\.

The grading by ghost number makes V ( i )0V ( i )* into a Z-graded free C^iM)-
module. Consider ^c°°(M)C^(ί)ΘV(i)*), the associative and commutative superal-
gebra (graded by ghost number) freely generated by the ghosts and antighosts over
C^iM). It can be endowed with the structure of a Poisson superalgebra where
the Poisson bracket statisfies [α, b~] = — ( — ) |α | | fc | [b, a] for all a and b in
^ ( V ( O 0 V ( i ) ) with definite ghost number. This Poisson bracket extends the
Poisson bracket on C^iM) via the dual pairing i.e.

i<th>n = u>zn = o, (5.2)
-] = δ)δ% (5.3)

for all;, / = 0, . . ., i9 aj = 1, . . ., mj9 dt = 1, . . ., mh and/in C^iM) as well as the
intertwining relation

[α, be] = [α, b]c + ( - \fmb{_a, c] (5.4)

for all a,b,c in ^c»(M)(V ( 0ΘV ( ί )*) with definite ghost numbers. This bracket
preserves the ghost number grading but does not preserve the (c, b)-number
bigrading. Therefore, ^cβ(M)(V ( i )φV ( i )*) is a Poisson superalgebra graded by
ghost number.

Let us think of <9V>(M)(V(ί)©Y(ί)*) as the space of polynomials with coefficients
in C^iM) in the Z2-graded variables {&<£, cfa\j = 1, . . ., i; as = 1, . . ., m,}. The
space of BRST cochains of reducibility level i with ghost number g9 K(i)

β

9 consists of
the space of all infinite formal sums with coefficients in C^iM) over the Z2-graded
variables {b(jj9 c$ \j = 1, . . ., ί; aj = 1, . . ., m7} which have ghost number g. The
BRST cochains at various ghost numbers for a certain reducibility level i assemble
into K{i) = @9ez K(i)

9

9 i.e. finite sums of elements at different ghost numbers. K{i) is
endowed with the structure of a Poisson superalgebra which naturally extends the
one defined above for ^c°°(M)(^(ί)ΘV(ί)*). K(i) forms a Poisson superalgebra graded
by ghost number but the Poisson bracket does not preserve the (c, ft)-bigrading.
For a system of reducibility level L9 the total space of BRST cochains is given by the
Poisson superalgebra K{L) graded by ghost number.

The reason that we allow certain infinite formal sums in the space of BRST
cochains is so that the BRST differential can be given as an inner derivation by an
element Q with ghost number 1. In the case of finite reducibility, Q must be the sum
of an infinite number of monomials. Furthermore, imposing that K(i) consists of
only finite sums of elements with different ghost number insures that in the
infinitely reducible case, K(aD) has a well-defined Poisson bracket. For example,
consider the Poisson bracket of infinite sums of elements at different ghost number,
e.g.

oo nij oo ntj

Σ Σ [/ϋ>βi)^.(/(«.-,)^]=Σ Σ (/° βJ)ί/ϋ..,) + [/ϋ "ί)»?(«.«]*S?<έ)
j = 0 aj=l j = 0 α / = l

The first term on the right-hand side need not converge. Therefore, K(oQ) would not
form a Poisson algebra if all infinite formal sums of elements at different ghost
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numbers were allowed. This problem does not arise if we define K(o0) to consist of
only finite sums of elements at different ghost numbers. Of course, it may be
possible that K(oo) could be allowed to contain some subset of infinite sums of
elements at different ghost numbers. After all, the first term on the right-hand side
of (5.5) will converge for certain choices of functions fu'aj) and <7(j,do), e.g. it may be
possible to redefine the space of BRST cochains to be the completion of
^ c» ( M )(V ( ί )0V ( O*) with respect to some norm. This resulting space, if it can be
shown to respect the constructions of this paper, would then be a possible space of
BRST cochains. However, for our purposes, it is sufficient to consider the case
where the space of BRST cochains is a finite sum of elements at different ghost
numbers.

Let K{i)

c'b be the set of all elements in K(i)

c~b which have the correct (c, b)-
number bigrading. In fact, we can think of elements in K{ί)

9 as infinite formal sums of
elements in K(i)

c'b, where c — b = g. As stated before, K(i)

9 forms a Poisson algebra
graded by ghost number but the (c, Z?)-number bigrading of K{i) is not respected by
the Poisson bracket. Nonetheless, this bigrading does provide an additional struc-
ture. We can define a filtration of K{i) by FpK(i) = ©c^p,fc^o^(oc'b s o

K { i ) = F ° K ( i ) 2 F 1 ^ => F 2 K { i ) Ξ> F 3 K { i ) = > . . . . (5.6)

Since our Poisson bracket satisfies [FpX ( ί ), F
qK{i)~\ ^ Fp+qK{i) and similarly for

the associative multiplication, K(i) is a filtered Poisson superαlgebrα. Let us denote
the space of elements in FpK(i) with ghost number g by FpK{i)

9.
Suppose that there exists a sequence of maps

Dd) Dm 0(0 Dm

• >K{i)

9~' >K(i)

9 >K(i)

9 + 1 > . (5.7)

These maps naturally break up under the filtration degree into
D® = <5g> + δψ + δf + - - , where δf: K(i)

c>b -• Ktf+s "*'-1 for all; ^ 0. We will
find this decomposition to be useful in the next section.

It remains to introduce the BRST differential D: K(L)

9-> K{L)

g+1 which is
a certain Poisson derivation, i.e. D should satisfy

D [w, v ] = [ D o , ! , ] + ( - 1)'"' [w, Dv] , (5.8)

where u and v are elements in KiL) with definite ghost number. The reason that this
property is desirable is that such a differential insures that the BRST cohomology
HD forms a Poisson superalgebra graded by ghost number. It can be shown [5]
that any Poisson derivation on K(L) which increases ghost number by 1 is an inner
Poisson derivation, i.e. there exists an element Q e K{L)

ι such that D = [Q, •]. The
fact that D2 = 0 is equivalent to asserting that [β, Q] lies in the center of K(L). The
BRST charge is a particular element Q in K{L)

γ which satisfies [Q, Q] = 0 such that
its associated cohomology in zero dimension is isomorphic as Poisson super-
algebras to N(J)/J. We will construct Q in the next section.

6. Construction of the BRST Charge

In this section, we construct the BRST charge using a refinement of the methods in
[3] and [10]. It is a BRST cochain Q with ghost number 1 which satisfies

[β, Q\ = 0 . (6.1)
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The BRST differential D(L): K(L)

9 -• KiL)

9+1 is given by the inner derivation by this
element

D ( L ) = [ & • ] . (6.2)

Notice that D(L)2 = 0 because of Eq. (6.1) and the Jocobi identity. The BRST
differential D{L) will often be denoted by D for short.

The main result of this section can be summarized by the following.

Theorem 6.3. Let J be a coisotropίc ideal ofC00 (M), Ψ = (ψί, . . ., φmo) be elements
which generate J, and K{L) be the space of BRST cochains with respect to these
constraints. There exists an element β in K^1 satisfying Eq. (6.1) such that

Q= Σ <®)K+Σ Σ "'£ c^Z'^ - ' C ί ' + etc, (6.4)
ao=l ί = 1 ai = 1 ύi - i = 1

where etc. consists of terms with at least two ghosts and one antighost or terms with at
least two antighosts and one ghost. Furthermore, we can replace Q\-^Q + δ^λfor
any λ in K(L)

2 and still satisfy Eqs. (6.1) and (6.4), where δ^ is the Koszul-Tate
differential.

Let us begin by observing that the filtration of K(i) defined in Eq. (5.6) is
unbounded, in general. Any element x in K(if can be written as the sum
x = Σ/Lo Xj, where Xj has c-numberj. In particular, we can decompose the BRST
charge, if it exists, into the (possibly infinite) sum

β = Go + β i + Qi + (6.5)

We will construct β inductively by constructing the β ί + 1 from β 0 , . . ., β t . Let us
begin with the definition.

β θ = Σ ^ Ά α o , (6.6)
ao= 1

then we see that βo belongs to F2K(0)

2 since

Ql= Σ ΛoΛo°)40)^o, (6.7)
Jo,fco,/o=l

where the structure functions fjoko

ι° are defined by

for all jo,fco = 1,. . ., m0.
The right-hand side of this equation looks like the image under the Koszul

differential of the βi-term in the BRST charge for irreducible constraints. This
observation forms the basis for the inductive construction of β that follows.

Suppose that β 0 is defined as above and there exists QjG KU)

j+lfj for all
j = 1,. . ., μh where r, = min(f, L) such that

j ( J \

Qj = Σ <$ Σ ZWa4-' C ί' + M(J)aj + Nj (6.9)
\ /
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such that NjβKfj-^ contains at least two c's and the MU)a. are the same ones
which appear in Eq. (3.10) and which contain at least two b's. Furthermore, let us
suppose that for all j = 0, . . ., i, we have

lj-]eFJ+2KU)

2, (6.10)

where

Rj=ΣQι (6- 1 1)
1 = 0

Define D(i): K(μ.f -• K(fli)

9+1 by D ( ί ) = [jRf, •] and decompose it by c-number, i.e.

00

D ( ί ) = £ δW , (6.12)

where <5f: K ( μ i )

c ' b-^iC ( μ i )

c + J ' '& + J '- 1 . In particular, we have

j

Σ ίc®, iφao+Σ Σ [ca. ]( Σ
«o = 1 j = 1 flj = 1 \ αj - i = 1

, ) (6.13)

This implies that

= 0 and δti>bj» = ̂  (6.14)

for all αi = 1, . . ., m{; / = 0,. . ., μ{; and

Wbί»= Y ZM°tti->b(J-» + MU)aj, (6.15)
aj-i = l

for all αj = 1, . . ., nij and j = 1,. . ., μt. It is just the level μt Koszul-Tate differen-
tial acting upon K{r) extended to act trivially upon the ghosts. From the construc-
tion of the Koszul complex, we have a differential complex for each c-number and
for all values of j = 0,. . ., L given by

. . . . v c,b+l . jf c,b . v c,b-l . . . . (fiΛfλ

whose homology H(KU)

C'% δ^) satisfies

Iΐj = L then we have the acyclicity condition

In order to avoid annoying factors of two which will otherwise arise, define for
elements O in K(L) with odd ghost number

O2 = \\O9σ\, (6.19)
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then D{i)R2 = [#;, #?] = 0. However, Eq. (6.12) implies that

δ®Rf = - δψR? - δfRf - δfRf - . (6.20)

Since R2 is in Fί+2K(i)

2 the filtration degrees of the δf which appear on the
right-hand side of Eq. (6.20), imply that

(6.21)

Let Xi e K(i)

i+2'1 be the piece of Rf which belongs to K{i)

i+2Λ then the previous
equation implies that

δ®Xt = 0. (6.22)

Since Hi(Kir)

i+2>% δ^) = 0, there exists an element Yt in K(i)

i+2>ί+1 such that

Xt = -δ®Yt. (6.23)

Of course, we notice that the Yt which we have chosen is hardly unique. In fact, Eq.
(6.23) is invariant under the shift F̂ i—• Yt + Ui9 where C/f is a δ® closed cycle in
τs i + 2,i+l

There are two cases to consider here, The first case occurs when μf = L. In this
case, since Ut is a δ® closed cycle in K(L)

ί+2'ί+1 and δ® is just the level L
Koszul-Tate differential, Eq. (6.18) implies that Uι must be a δ$ boundary. Define

Qi+i = Yi (6.24)

keeping in mind that it is arbitrary up to a δ$ boundary L .̂ Since Yt belongs to
K(L)ί+2'i+1 but only contains c's (ghosts) of level less than or equal to L, it must
contain at least two ghosts and an antighost. Similarly, the fact that the b-number
is i + 1 > L insures that each monomial in Ut contains at least two antighosts and
one ghost.

The other case occurs when μt = i. In this case, we cannot define Qi+1 = Yt as in
the previous case if we are to satisfy Eq. (6.4) for j = i + 1. However, the inclusion
K(i) c* K(i+1) and Eq. (6.23) implies that

X,= -δ§+1>Yt. (6.25)

Although Yt does not satisfy Eq. (6.4), the previous equation is invariant under the
shift Yi \-+Yt+ U'i9 where JJ[ is any <5#+1) cocycle in K(i + ί)

i+2>i+1 so the question
arises as to whether £/• can be chosen so that Yt + U satisfies the boundary
conditions. Since the general form for δ%+1) cocycles in Kii+1)

i+2'ι+1 is given by
Eq. (3.10) and we must satisfy the boundary conditions in Eq. (6.9), we conclude
that

" ( ) (6.26)

As in the previous case, the Qi+1 is arbitrary up to δ$ boundaries and each
monomial in Yt contains at least two ghosts and one antighost. Also, each
monomial in M ( ί + 1 ) β ί + i contains at least two antighosts since M ( ί + 1 ) β ί + 1 belongs to
K°'i+1 and only contains antighosts b{j\ where) ^ i — 1. Therefore, βi+i is of the
form

Qt+1= Σ Φ\) Σ z < i + υ t , *ί? + M(i+1)aιtl + etc. , (6.27)
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where etc. consists of terms with at least two antighosts and one ghost or at least
two ghosts and one antighost.

This takes care of the induction for Eq. (6.9) but we still have to perform the
induction on (6.10). That is, we need to show that R?+1 belongs to Fi+3 Kii+ί). Let
us begin by noting that the definition of Xt and Qi + ί yields

Rf + a j i + 1 ) & + i ^ ί + 3 V £ Fi+3K(i+1)

2. (6.28)

Since

= - Qhi + R? + ^ + 1 ) β ί + i + δ« + 1)Qi + 1 + a(2 + 1)Qi + i + , (6.29)

and Eq. (6.28) holds, we need only show that

- e? + i + ί? + 1 ) β ι + i + #* + 1>Qi+1 + eFi + 3Kii+1) . (6.30)

First of all, it is easy to see that δ{[+1)Qi+1 + <55> + 1 ) β i + i +••• belongs to
Fi + 3K(i + ί) using the fact that Qi + ί belongs to Fι + 2K{i+1) and the filtration
degrees of <5ji+1) for all j > 0. Furthermore, Qf+1 belongs to Fi+3K{i+ί) since the
monomial in Qf+1 with the lowest c-number arises by taking a Poisson bracket of
a level i ghost with a level i antighost in computing Qf+ x resulting in a term in
Qf+1 with c-number 2(ί + 2) - (i + 1) = i + 3. (The reason that the commutator of
a level i + 1 ghost with a level i + 1 antighost does not appear in computing Qf+1 is
that there are no level i + 1 antighosts in βj+i ) Therefore, we conclude that
Qi + 1 belongs to Fi+3Kii+1).

This concludes the construction of the BRST charge.

7. Classical BRST Cohomology

In this section we will show that classical BRST cohomology vanishes for negative
ghost number and is isomorphic to the E2 term in the spectral sequence associated
to the filtration by c-number by constructing the explicit isomorphism extending
the one given in [10]. Furthermore, at zero ghost number, we will show that
classical BRST cohomology is isomorphic as Poisson algebras to N(J)/J, where
J is the coisotropic ideal with respect to which the BRST complex was constructed.
We will discuss BRST cohomology at positive ghost number in the next section.

Let us begin by stating the basic result of this section.

Theorem 7.1. Let C°° (M) be a Poisson algebra, J be an associative ideal generated by
elements Ψ = (ψί9 . . ., φmo)9 and K be the space of BRST cochains constructed
relative to the constraints Ψ and D: K9 -• K9+1 be the BRST differential given by the
inner derivation D = [β, ], where β is the BRST charge. Let D be decomposed by
c-number

D=Σδi9 (7.2)
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where δt: Kc>b -• Kc+Ub + i~K IfHD(K) is BRST cohomology then there is an isomor-
phism of associative algebras

H9D{K) = \HI(HUK)) far It O ( 7 3 )

If 9 ^ 0 and [x] is an element ofH9

D then the isomorphism χ: H9

D{K)_±^H9

δι{Hl{K))
is given by

(7.4)

1 x0 is the component ofx in K9'0, < x 0 ) is an element in Hδo, and [<Xo>] is an
element in Hδi(Hδo(K)). In particular, at zero ghost number

(7.5)

The isomorphism in Eq. (7.3) can be used to define a Poisson superalgebra structure on
Hδι(H°δ0(K)) which agrees with the Poisson algebra structure of N(J)/J at zero
ghost number.

Before starting with the proof, note that D2 = 0 is equivalent to the string of
equations

Σ Wp-i = 0, (7.6)
t = 0

for each p ^ 0. In particular, plugging in p = 0 and 1, we obtain

<5o2 = 0 (7.7)

and

M i + M o = 0 . (7.8)

We know that δ0 is just the Koszul-Tate differential from the construction of the
BRST charge in the previous section of Eq. (7.7) is not too surprising.

Equation (7.3) arises from the fact that the BRST complex is a complex
filtered by c-number (see (5.6)). This filtration has an associated spectral
sequence whose Eo term is just the Koszul-Tate complex so that the Ex term
is just Hδo(K). However, the E2 term in the spectral sequence is the cohomology
of the complex Hδo(K) with the differential induced by δx which we shall
also denote by δv 'Therefore, EΫ is just Hc

δi(Hb

δo(K)). The spectral sequence
degenerates at this point because of the acyclicity of the Koszul-Tate complex.
Notice that if b > 0 then E%b vanishes because of the acyclicity of the Koszul-Tate
complex. If the constraints Ψ are irreducible, then the filtration is bounded since
the BRST complex is finite dimensional. In this case, we know that the E2 term is
isomorphic to HD and the fact that Ec

2'
b = 0 for b > 0 implies that Hg

D = 0 for all
g < 0. However, in the case where Ψ are reducible constraints, this filtration is no
longer bounded and, therefore, it is not immediately clear if the E2 term is
isomorphic to HD. We will first show that HD vanishes for negative ghost number
directly and then show that the map (7.4) between HD and the E2 term is, in fact, an
isomorphism.
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Let us now assume that x is a BRST cocycle in Kβ

9 where g < 0. We can
decompose x by onumber to get x = Σi*U x» w ^ e r e χι belongs to KιJ~9. Decom-
posing the equation Dx = 0 by onumber yields

Σ δjxi-j = 0 (7.9)
j=o

for all i ^ 0. Plugging in i = 0 and 1, for example, yields

<5o*o = 0 , (7.10)

and

0. (7.11)

We will show that there exist a y in K1'9 such that x = Dy. We decompose y by
c-number to get y = Σ™=0 yu where yt belongs to Ku * ~*+< for all i ^ 0. Decompos-
ing the equation x = Dy by c-number tells us that such a y exists if and only if there
exist yt in κiΛ~9+i which satisfy

xP= Σ %/>-; (7.12)

for all p ̂  0.
The existence of such yt is a consequence of the acyclicity of the Koszul-Tate

complex. For example, Eq. (7.10) tells us that x0 is a <50 closed cycle and, therefore,
<50 exact from the acyclicity of the Koszul-Tate complex since x0 has antighost
number of at least one. In other words, there exists y0 in K0Λ~9 such that
*o = ̂ o^o which is just Eq. (7.12) where p = 0. Similarly, Eqs. (7.11) and (7.8)
implies that

0 = (5o*i + δ1x0 = δoXί + ̂ i^o^o = δo(x1 — δχy0) . (7.13)

The acyclicity of the Koszul-Tate complex tell us that there exists y1 in K1'2'9

such that x1 — διy0 = δoyx which is just Eq. (7.12) with p = 1.
The construction of the higher terms in y proceeds by induction. Suppose that

there exists yθ9 yl9 . . ., yt satisfying Eq. (7.12) for all p = 0, . . ., ί then

/ i + l \ £+1 I

δo[ Xi+i ~ Σ δjyi+i-j ) = δo*i+ι + Σ Σ διδj-ιyi+i-j u s i n g (7-6)
\ j = l / 7=11=1

i+ί i+ί

= δoxi+i + Σ Σ διδj-ιyi + i-j
ι = i j=ι

ί+l i+ί-l

= δoxi+1 + Σ δι Σ δsyi+i-s-ι
1=1 s=0

i+l

= δoxi + 1 + Σ διχi+i-ι from induction hypothesis
1=1

ί+l

= Xδ,x l + 1 _, = 0, (7.14)
1 = 0

where we have used that fact that x is a D cocycle in the last step. Since
xi + ί — Σ j =i yt + i-j i s a ^o closed cycle with antighost number i + 1 — g > 0, the
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acyclicity of the Koszul-Tate complex tells us that there exists ayi+1mKi + i'2~9+i

such that

i+l i+l

*i+i = Σ δjyi+i-j + δoyi+i = Σ ^-tt+i-j (7.15)
7=1 J=0

This completes the induction. Therefore, BRST cohomology vanishes for negative
ghost number.

Let us now assume that g ^ 0. We will show that the map (7.4) is an isomor-
phism of associative algebras. We first check that the map is well defined. Consider
any y e K9 for g ^ 0 then we have the decomposition y = y0 + yx + , where
yiSK9+Ui for all i ̂  0. In this case, Dy belongs to K9+1 and the component
of Dy in K9+ί'° is given by (5ijμo + <Wi We see that χ(lDy}) =
( [ ^ I ^ O + <5O>Ί]> = ( P i y o D = 0 a n d , therefore, the map is well-defined.

Is χ injective? Consider xe K9 which decomposes into x = x0 + xλ + x2 + ,
where xieK9+i'i such that χ([xj) = <[x ? ] > = 0. We need to show that there exists
yeK9'1 such that x = Dy. Decomposition of the previous equation is equivalent
the existence of yt e K9~x + iJ such that for all p ^ 0,

p+l

XP= Σ δiyP+i-i ( 7 1 6 )
ί = 0

The fact that <[x o]> = 0 implies that [x 0 ] = δ^yoj with some y0 e K9~U0 or
{x0 — δ1yoj = 0. Therefore, x0 - ^ y o - ^0^1 = 0 for some yx e KgΛ. In other
words,

*o = δoyi +<5i)>o (7.17)

for some y0 and yx. This is just (7.16) for p = 0. We now proceed to show (7.16) by
induction. Suppose that there exist yteKg~1 + Ui ϊor all ί = 0, . . ., r which satisfy
(7.16) for all p = 0, . . ., r — 1, then a similar argument to Eq. (7.14) yields

Therefore, there exists an element yr+1e K9+r'r+1 which satisfies

xr = 'Σδjyr+i-j. (7.19)
7=0

This completes our induction. The proof of the surjectivity of χ proceeds similarly.
Finally, it is clear that χ is an isomorphism of associative algebras since if x e K9

and yeKh which decompose into sums of xt e Kg+Ui and y^e Kh + U\ respectively,
then χ([x] [y]) = χ([xj;]) = φ o y o p = χ([x])χ([>]) We can endow
Hδι(Hδo(K)) with the structure of a Poisson superalgebra by defining the Poisson
bracket on elements x, y e Hδi(Hδo(K)) by

(7.20)

8. Vertical Cohomology is not BRST Cohomology

In this section, we show that in the case of the reduction of a Poisson manifold by
a submanifold, BRST cohomology is not generally isomorphic to the cohomology
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of vertical differential forms with respect to the null foliation. We prove this by
looking at a simple counterexample.

Let AT be a smooth manifold and 3F -• N be a smooth involutive rank k sub-
bundle of the tangent bundle TN -• N. Let us denote the space of leaves of the
associated foliation by N and the canonical projection map, which need not be
smooth, by π: N -> N. The vectors in 3Fn for all points ninN are called the vertical
vectors at n with respect to the foliation π: N -* N, e.g. if π is a smooth map then
&Fn are the vectors in TnN in the kernel of π*. The space of vertical differential forms
with respect to the foliation π: N -• N9 Ω#(N)9 is defined to be sections of the bundle
Λ!F -* N. There exists a natural map ΩP(N) -• Ω^{N\ denoted by y i—• y, by restrict-
ing γ to act upon only vectors in &. This map is surjective. A consequence is that
the exterior derivative d: ΩP(N)-+ ΩP+1(N) induces a derivative operator (called
the vertical derivative) d^\ Ω£(N) -> Ωξ?(N) via d^y = dγ. The vertical derivative
dp is well-defined if 3F is involutive [11]. This is the case because the kernel of the
above map ΩP(N) -• Ω£(N) forms a differential ideal in Ω(N). The cohomology of
this complex H^(N) is called the cohomology of vertical differential forms with
respect to the foliation π: N -> N.

Let (M, P) be the reduction of the Poisson manifold (M, P) by the submanifold
M o then the space of vertical vectors at m in M o with respect to foliation M o -^ M
is just Km = TmMon TmMo. Clearly, V^ M o forms an involutive subbundle of
TM0 and we have d κ : Ω£(Mo)->Ω£+ 1(Mo), the complex of vertical differential
forms with respect to the foliation π: M o -• M. (Notice that π need not be smooth
here.) More explicitly, the vertical derivative is given by

(dvf)(X) = X(f)9 (8.1)

(dva)(X9 Y) = X(a(Y)) - Y{a{X)) - α([X, 7]) , (8.2)

and

dv(ω Λφ) = (dvω) A ψ + ( - l ) | ω | ω Λ (dvψ) (8.3)

for all/in C°°(Mo), X, Yin Γ(TMQ\ OC in Ωy(M0)9 and ω, ̂  in ΩV(MO) with definite
degree. The cohomology of this complex is denoted by HV(MO).

Let us now consider the special case where (M, P) is a symplectic manifold and
/ is the ideal of functions in C°°(M) which vanish on M o . Recall that
Γ(V) = Γ(TMQ n TM0) consists of the restriction of hamiltonian vector fields of
elements in /' to M o . In other words, there is a surjective homomorphism of lie
algebras ΐ -> Γ(V) given by ΪΊ->X/|M O Furthermore, this map has a kernel since
0 = χ.\Mo = P#di\Mo but P#: Ann(M0) -• TMQ is invertible since (M, P) is sym-
plectic. Therefore, di\Mo = 0 but di\Mo is a section of the annihilator bundle of M o .
The isomorphism in Eq. (2.13) implies that i must be an element of I2. In other
words, we have the isomorphism of Lie algebras

~^Γ(V) (8.4)

which is also a C°°(M)/I = C^iMo) module isomorphism. Therefore, we can make
the identification
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where Λc<°(M)/i(I'/I2)* consists of all alternating C°°(M)//-linear p-forms from / to
C°°(M)//. The vertical differential in this setting can be identified with

ί, (8.6)

{*vβ){<Φi>, < Φ 2 » = ίίΦΛ, JS«Φ2»] - ίlΦiί, β{<Φi»] - j8«[Φi, Φ 2 ] » ,

(8.7)

for all j? in (/'/J2)*, [/] in C°°(Aί)// and <(/>!>, <φ2> in /y/2 and then extending it
via derivation to ylθ(M)/i(J'/J2)* This algebraic formulation of vertical cohomol-
ogy can also be extended to the case of the reduction of Poisson manifolds by
defining #(/) = {i e Γ\ [ί, g] e J, V# e C™{M)} and then replacing I2 by #(/) in the
above since #(J) contains all of the elements i in Γ such that Xi\Mo = 0. Such
a complex is well-defined for any ideal J in C^iM). Let us call this algebraic
complex δv\ Λp

c^{M)M{J)(Jrβ{J)Y ^ AlilM)M{J)(J'/^{J)Y the vertical complex of
C^iM) with respect to J. Let us call the cohomology of this complex Hδv the vertical
cohomology ofC^iM) with respect to J.

In the very special case where (M, P) is the symplectic reduction of the
symplectic manifold (M,P) by the coisotropic submanifold M o then we have
/' = / and ^(/) = I2. In other words, the cochains in vertical cohomology
are given by ΛC<»(M)/J(Γ/I2)* and δv is still given by the formulas above. This
gives rise to yet another algebraic cohomology theory. Let J be a coisotropic
ideal in C°°(M) then we can define the complex δ: Λ%*iM)/J(J/J2)^
Λ<C"(M)/J(J/J2)> where the differential δ is defined by Eqs. (8.6) and (8.7) (where
δv is replaced by δ) and then extended as a graded derivation. Let us denote
the cohomology of this complex by H$. H$ is an example of Rinehart
cohomology [12].

How does all this relate to BRST cohomology, HD? We showed in the previous
section that HD is isomorphic to Hδl(Hδo) which is isomorphic to HV(MO) in the
case of the reduction of a symplectic manifold (M, P) by a closed and embedded
coisotropic submanifold M o provided that the normal bundle of M o is trivial
[5,13,10]. The results of [2] and [14] shows that this is the case even if the normal
bundle is nontrivial. However, it is not true that for the case of reduction of
a general Poisson manifold, BRST cohomology can be identified with vertical
cohomology. Consider the example where (M, P) is a Poisson manifold with the
trivial Poisson structure P = 0 and M o is a closed and embedded submanifold of
M. In this case, Γ(TMQ) = 0 by definition so that there are no vertical vectors so
that ΩV(MO) = C°°(Mo). Let J = / be the ideal of functions of C™{M) which vanish
on M o . Let us furthermore assume that / i s an ideal generated by a collection
of irreducible constraints Ψ = {\j/u . . ., φmo). In this case, the BRST operator
is given by

mo

β = Σ cioAt. ( 8 8 )
ί = l

then the BRST differential is given by
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which is precisely the Koszul differential, i.e. D = δ0 and δt = 0 for all i > 0.
Therefore, BRST cohomology is given by

ϊorg<0
l 0 Γ 9 = ϋ

where Ki is the m0-dimensional free C°°(M)/7 module of level zero antighosts
and ^^(Mί/jί^i)* is the space of ghost number g elements of the symmetric
superalgebra over Vί. Therefore, it is not correct to identify vertical cohomology
with BRST cohomology here. However, it would still be correct to make the
identification

H9

D^H9s (8.11)

if g ^ 0 since if J is generated by irreducible elements Ψ, then by Eq. (3.2), J/J2 is
a free m0-dimensional module over C^iMyj so that Ac«iM)/j(J/J2)*

s >-^c°°(Af)/j(t/i)*- Of course, this isomorphism is true since Sf is the symmetric
superalgebra which is, in this case, an exterior (nonsuper) algebra since elements in
Vx have antighost number 1.

The question then arises as to whether this correspondence holds in general.
That is, if HD is the BRST cohomology associated to the reduction of the Poisson
algebra C"°{M) by a coisotropic ideal J then is it true the isomorphism in Eq. (8.11)
holds? This correspondence is certainly true in the case of symplectic reduction of
C™{M) by a coisotropic ideal J = I of functions which vanish on a coisotropic
submanifold as well as for the simple example given above. It remains to be seen
whether it is true in general.

9. Conclusion

In this paper, we have generalized classical BRST cohomology to the more general
framework of the reduction of a Poisson algebra C™(M) by a coisotropic ideal.
This setting encompasses the reduction of Poisson manifolds. Let us make a few
remarks.

First of all, it is not known what classical BRST cohomology computes for
positive ghost numbers, in general. It is isomorphic to this cohomology theory of
Rinehart?

Secondly, many of the constructions in this paper extend to the case where
0> is a Poisson algebra which is a Noetherian ring under associative multipli-
cation, i.e. when all ideals of 9 are finitely generated. This is not the case,
for example, when 9 is the Poisson algebra of smooth functions on an infinite-
dimensional poisson manifold. An extension of classical BRST cohomology to
this case would be enlightening especially in applications to classical field
theory.

Thirdly, BRST cohomology has a version which appears in quantum theory,
usually in the context of Lie algebra cohomology [15,16,17]. There has been much
work relating quantum BRST cohomology to classical BRST using methods of
quantization inspired by geometric quantization, e.g. [18, 19, 20, 21, 22, 23]. An
extension of the results in this paper to the case of geometric quantization is in
progress [24].
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Finally, an extension of these techniques to the case of the reduction of
a Poisson supermanifold would be useful in certain physical applications, e.g. the
covariant quantization of the superstring.
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