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Abstract. We show that solutions to the modified Dirac—Klein-Gordon system in
standard notation

{( — iy 0, + M)y =0
(= O +m*)o=gOy"yy
in two space dimensions with complex-valued initial data (0, x) € L*>(IR?; C*),
real valued ¢ (0, x) e W*2(IR?) and ¢,(0, x) e L?>(R?) have regularity

YO = Y11 + [Wal? — [sl? — [Yal* € #ioe (R?),

@eLis(RY;L*(R?)).

Here L, (IR3) denotes the (local) Hardy space, and g(t) is assumed to be in C*(RR)
and g(0) = 0. Consequently nonlinear terms ¢y which appear in the classical
coupled Dirac-Klein-Gordon system (with the modification g = g(t) e C' and
g(0) = 0) can then be defined in LZ, (R%; L (IR?)). We hope these results will be

useful in establishing the existence of weak solutions to the classical coupled
Dirac-Klein-Gordon system in the framework of compensated compactness.
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1. Introduction

We are interested in establishing the global existence of weak solutions to the
Cauchy problem of arbitrary initial data for the (classical) coupled Dirac—Klein—
Gordon system of equations

(=0, + MY =goy (M,g>0),
_ 62 (1)
(= O+m¥)e=gyy <D=A—ﬁ,m>0>.

Here ¢ is a real scalar, i belongs to a complex four-dimensional space in three
space dimensions. i is such that i* = — 1. {y#}2_, are Dirac matrices. = y'°,
where Y denotes the complex-conjugate transpose of  and y° is a diagonal 4 x 4
matrix with diagonal entries 1, 1, — 1, — 1. Later, we will be more specific on the
notations which are consistent with our references.

The Cauchy problem for system (1) is well-posed in short time for arbitrary
initial data and globally well posed for small smooth initial data (see [1, 15, 19]). In
[7], Chadam and Glassey found a special set of global solutions in three space
dimensions. Bachelot [2—4] recently proved, among other things, global existence
of solutions for initial data being perturbations of the special solutions found in
[7]. One of the main difficulties in the global existence theory with arbitrary initial
data in two or three space dimensions is that the energy estimate for the system is
not positive definite. In one space dimension, Chadam [6] established the global
existence of a classical solution with arbitrary initial data by a boot-strapping
method in Sobolev spaces. A similar boot-strapping method does not seem to work
in two or three space dimensions. In two space dimensions, however, the method is
borderline (i.e., involves critical Sobolev exponents). By employing the Hardy space
A1, we hope to make the boot-strapping method work within the framework of
compensated compactness [22] where the energy estimate is not necessary. We
shall address some successful applications of # ' and BMO of bounded mean
oscillation on harmonic maps at the end of this introduction.

There is a conservation of charge

[1¥|*dx = const. in time )

for the DKG system (see [13], for example). Inverting the coupled KG equation
with zero initial datum, we find

sup [lo|?dx < Cr,, ©)

0=<t=T

for all 1 < p £ 2 in two space dimensions, and for p = 1 in three space dimensions.
The nonlinear term @y would be defined in L® ((0, T'), L' (R™)), n = 2 or 3 if ¢ were
in L*((0, T); L*(R")). We prove that ¢ is indeed in L*((0, T), L*(R?)) if we let
g depend on t smoothly and g(0) = 0 provided that Yy is in #L.(R3) in two
space dimension (Theorem 2). By applying the quantified compensated compact-
ness of Miiller [17] and Coifman, Lions, Meyer and Semmes [8], we show that Y
isindeed in # (R} ) if ¢ satisfies the homogeneous Dirac equations (Theorem 1).

We have not been able to show that y i is in # L. (R 3. ) if i satisfies the coupled
Dirac equations. Instead, what we have done is the regularity of weak solutions to
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the following modified DKG system:
(—iy*0, + M)y =0
(— O +m’)o=g)dy 4
Yli=o = Yo(xX), @li=o = @o(X); Peli=0 = @1(x) ,

where Vo (x) € L?(IR?2), ¢, and ¢, are assumed smooth, and g(t) is as stated above.
In view of the full system (1), the assumption yo(x) e L*>(IR?) is natural and
appropriate compared to better assumptions such as o € W 2(IR?), since the
energy estimate involving the derivatives of y are not positive definite, as men-
tioned earlier. We believe that the assumptions yo(x) € L?(IR?), ¢, and ¢, are
smooth should be sufficient in establishing the global existence of a weak solution
for system (1) by the compensated compactness method. The regularity of
Yy eHL (R3)and ¢ € L*((0, T); L*(IR?)) that we obtain here for (4) should be
useful in obtaining a priori estimates for the full system (1) by a boot-strapping
method.

It is worth mentioning that our approach here does indeed yield global
existence of weak solutions (Theorem 3) for the full system (1) in one space
dimension with weaker assumptions on the initial data than Chadam [6].

Finally we point out that # ! and BMO have been successfully used in some
borderline problems of harmonic maps. F. Hélein [12] showed that any weakly
harmonic mapping from a two-dimensional surface into a sphere is smooth. Soon
afterwards, L.C. Evans [9] generalized Hélein’s result to higher dimensions, assert-
ing in effect that a stationary harmonic mapping from an open subset of R" (n = 3)
into a sphere is smooth, except possibly for a closed singular set of (n — 2)-
dimensional Hausdorff measure zero. The key ingredient of their proofs is that the
right-hand side of the equations

— du = |Vul*u

belongs to the Hardy space # * (R") when u is constrained to a sphere |u| = 1. This
fact and Wente’s earlier work [24] on inverting the Poisson equation

— Au=fe #(R?)

imply immediately that u is continuous, and therefore smooth in the case of the
harmonic map. For n = 3, Evans noted additionally that certain monotonicity
inequalities provide bounds for ¥ in BMO and Fefferman’s [10] duality theorem
(##1)* = BMO was then used.

2. Preliminaries

In this secrtion we recall the definitions of various spaces and the relevant basic
facts which will make our subsequent presentation clearer.

2.1. Localization of #*(R"): # L. and h*. Let h be in C® (R"), with support in the
unit ball and [h = 1. For any fe L*(R"), we set

o= s [Lirom(22)a.

w0 >r>0 r
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The Hardy space # ! (IR") is defined to be
H#'(R")={fe L'(R")|f*e L' (R")}
with norm
Iflles mny = 1L/ * Lt memy -

Observe fe # 1 (R") implies j .fdx = 0. This makes it nontrivial to localize
H# 1 (IR") onto a subset of R", as compared to the localization of L (IR"). We shall
for our purposes define # . as

€ Lloc (Rn)}

If( )h< )dy

Notice in # } the “sup” is taken over 1 > r > 0 only. A more refined version was
introduced by Goldberg [14]. It is the space h!(IR"):

ff( )h< )dy

One of the many properties that A*(R") has is the following duality theorem

xlloc(IR”) = {fE Llloc(IRn) sup

1>r>0

sup

1>r>0

hl(]R")={fe LY(R") el (]R")}

Proposition 1. (h')* = {be BMO|p*be L*(R")} for some ¢ € S (the Schwartz
class of rapidly decreasing functions) such that

If—o*fle <clfllm, Yfeh'. ©)
A sufficient condition for (5) is given by
Proposition 2. If ¢ € S, [ ¢ = 1, then (5) holds.

Proposition 1 is a direct quotation from Goldberg [14]. Proposition 2 is from
Lemma 4 of the same paper restricted to the case p = 1, and one uses the fact that
|| £ N =0 from the proof of the lemma.

In the next proposition we present a local version of a result of R.R. Coifman,
P.L. Lions, Y. Meyer and S. Semmes [8] on # * (R") spaces. For completeness, we
also present a proof which follows from one of the ideas introduced in [8].

Proposition 3. Assume be L?>(R", R"), divh € L*>(IR") and Be W'2(R"). Then
b+ VB e h'(R") and

b VBl < c(Ibllf2 + [divb |z + | Bl§2), (6)
where c is a constant independent of b or B.

Proof. We follow the idea of [8] (see also Evans [9]). Fix the h we mentioned at the
beginning of this section. We look at

rl",{,(b'VB)(”h<x—:—y>dy == | [b'V(B—(B)x,,)]h<¥>dy’,

B(x,r)
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where B(x, r) denotes a ball centered at x with radius r and (B), , denotes the
average of B on the ball B(x, r). Upon using integration by parts, we find

L VB)(y)h("—'y)dy{
T R" r

1L [—(divb)(B—(B)x,r)h<¥>

r B(x,r)

+ %(B ~ @b () |

[ (rldivb| +[b])| B — (B, dy-

= nt+1
B

So

sup

1>r>0

rl [ (b VB)(y)h( )dy[
R"

1 .
Sc sup {r,,—ﬂ § (Ilebl+|b|)|B—(B)x,r|dy}'

©>r>0 B(x,r)

2
Chooseany2<p<2*=—n2§ 0 andlet1<qsp%1<2.Then

{ (1divb| + [b])|B — (B)s,.| dy

B(x,r)

1 1/p 1/q
§m< | IB—(B)x,rI"dx> ( J (Idivb|+lbl)"dx>

r B(x,r) B(x,r)

C i/p 1 ) 1/q
érT”—,,,< | IB—(B)x,rI"dx> (m ) (Idlvbl+lb|)‘1dX>

B(x,r) B(x,r)

I\

( 1 d )1/S< ! |divb| + |b|)?d >1/q
C DB|fdx —_ ivb| + |b])?dx s
|B(x’r)|B(£,r)| | IB(xar)lB(i,r)( )

where p = s*, that is, s = o Consequently
p+n

1
sup {r,,—ﬂ | (ldiVbl+,b|)|B_(B)x,r|dy}

©o>r>0 B(x,r)
< C(M(IDBJ*)**(M((Idivb]| + |b])*)*/
< CL(M(IDBP)** +(M((Idivh| +[b]))*],

M(+) denoting the Hardy-Littlewood maximal function. Now |DB|f e L%,
2/s > 1. Thus

[ M(IDBF) |l = C|[|DBF| L2,
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and so
j (M(|DB[))**dx £ C j |DB|? dx
R" R"
Similarly,
[ (M((Idivb| + |b])*)*dx < C | (|divb| + |b])*dx .
R" R"

Consequently we deduce

sup | j(b VB)(y)h( >dy elL!
1>r>0
and
sup |5 I(b VB)(y)h< )dyH‘ <c(lIbllz: + [ldivblZ: + | Bllf2) .
1>r>0

The proof of Proposition 3 is completed.

2.2. The space BMO(R"). Let fe LL.(R"). We set

1 n
If s = SUP{IB( )Imj If(y)—(f)x,rldylxelR,r>0},

x, 1)
where (f),,, denotes the average of f over the ball B(x, r). Then
BMO(R") = {f€ Lioe(R") | [ fll4 < 0 }
with seminorm || f |-
As an example, we mention that log % € BMO(RR") (see Stein [20]). In Sect. 4

we will need

Proposition 4. The function

loglyil, Iy £7,057Z 0,yeR?

B(y,7)=
0 otherwise,
is in BMO(R?); ie., | B|, < .

Proposition 5. Let () € C?(IR') be a bounded function so that

1, <0
Bx) = { smooth and decreasing, 0=<t<1
0, t>1-
Then
I B(y, 7)B(r — to) lls < (o),

where B is given in Proposition 4 and c(t,) is finite for any finite t, > 2.
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The proofs of Propositions 4 and 5 are computational and are given in the
Appendix.
3. An Estimate on Dirac Equations

In the standard notation of [5], the coupled Dirac system is

(O _ s OV 0Us

6t__;?—>;+la ‘67—(M ge)¥,
s s s v

a—:=—gf+i§j a:+(M 90)¥3
\%’%= —g—'if aﬁz"'%b“(M go)os:

For the two space dimensional Dirac system, i.e., when ¥;, ¥/,, Y3, and ¥, do not
depend on x;, the four equations decouple into two similar subsystems, one of
which is

Wy s s
BT o, o, (MO o
By B, O

Lety, = u, + iv, and Y3 = u3 + ivs, we find the subsystem in real variables to be

(Ou, Ou; Ovs
5x_0+5c_1_a_ (M —go)v,

avz 6U3 5u3

e Tox, Tom, - (M —go)u,
1 ous oup  Ov, ©)
3 2
T 2 . (M-
axg | 3%, t o s ( go)vs

21)_3 4+ P2 01)2 auz
L 0xo  Ox; 0%,

=M —go)uy,

where we let t = x, for later simplifications, and we will let x = (x,, X1, X, ) in what
follows in this section.
The conservation of charge in those real variables is

| (u3 + v3 + u3 + v3)dx,dx, = const. in time. (10
RZ
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For simplicity, we shall assume y; = {4 = 0. Therefore the quantity
Vo =101 > + ol — W3 * = [l
will reduce to
YU = o> — s> = u3 + 03 —ud — 3. (11)
We shall prove in this section the following:

Theorem 1. Assume g = 0 in (9) and the (initial) total charge is finite
[ 3+ 03 +ud+0})dxidx;|—9 < . (12)
]RZ

Then u3 + v3 — u3 — v3 e #L(R?) and for any e C*(R3),
I B(u3 + v3 —ui — v3) lnws) = Cpllui + v + uf + V3l wexge=0py, (13)
where Cg is a constant depending on f.

Remark. The system (9) is linear with constant coefficients when g = 0. Weak
solutions exist for all time ¢ € R provided that the initial total charge is finite. It can
be seen that the total charge remains finite for weak solutions for all time ¢ € R.

We prove Theorem 1 by first establishing a lemma. In this lemma we will use
the Fourier transform, which we take in the form

@)= [ f0gem= s dx

for all f(x) e L*(IR3). And the related inverse Fourier transform of a function
g(&) e L*(R?3) that we shall use is

g¥(x)= [ g(&)e*™ede-
]RZ!

The properties that we shall use are listed below. For a convenient reference we
refer the reader to Stein and Weiss [21].

(1) (/)" =fae. if f(x) e L2(R?).

Q) f(&) =fY(&) if f(x) is real valued. Over-head bar denotes complex conju-
gate from now on.

(3) [fg = [ f4 for f, g € L*(Plancherel Identity).

@) <g> = 2mi¢;f*

J

for any

r k+a
Pi(x) \" _ Pi(x) . _ Nk, nj2 —a 2
(5) (|x|k+n-—¢> - k,a|xlk+a with yk,a—(_l) n k+n—oc
r 2
homogeneous harmonic polynomial P,(x) of degree k =1 and 0 <a <n
(see Stein [20], p. 73. The difference between the y, , here and that of Stein



Regularity of Weak Solutions

75

[20] results from different forms of Fourier transform used). In particular,

we shall use in R 3,

(éo

P

i 0

Xo
[x[?

A
) ="71,2

T 20%

(1)

(14)

Lemma 1. We assume (u,, v,, us, v3) satisfies the assumptions of Theorem 1. For any
BeC2(R3) and ge CF(IR3), g = 1 on the support of B, we have

—A4np(u3 + v —ui —v3) =
where

g1 = (uz, uz, —v3)p,

a <| |) tad)* a(

g2 = (v2, V3, u3) B,

0
= (2a)* (l l) (vsa)* (l l)

g0=(u3;u2,02)ﬁ.( axmaxnaxz){

1

= (uzq) x|

Eh

+(U3,U2’ uZ)ﬁ.(aan _axn axz){| I

Proof. For & = (&, ¢&4,¢,) #+ 0, we define

g1°VF1 +g2°VF, + go ,

0
>+ (Usq)*a—xz<

(15)

1

|x]

).
o (1)

Muvsq + (us, uz, v3)* V‘I]}

1

x|

*[Musq + (v3, 02, — uz)* Vq]}

60 0 61 - 62
So <2 ¢1
0(&) = — 16
O 7 6 a e o (1o
—& & 0 -3
which is a symmetric orthogonal matrix. For any 7(x) € C2 (R ?), we let
A E (€ 42q (&)
A4, 2, — 0(&)- U/zﬁ (9] U/zil (©) (17)
A3 23 usn (&)  —usq ()
A Z, 53 (&) — 034 (9)

It follows that

~ TN =< N~

oM 12 + D20 " D2 — W37+ tad — Dol * Dad = Ay
By Plancherel identity, we obtain

[(W3+03—uf—oD)ngdx= [ (421 + 4225+ A2y + AsZa)dE .
R R

T+ Ay, 4+ A2y + A2, .

(18)
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Multiplying the first equation in (9) by n and recalling g = 0, we find
i(u )+—a—(u )——(z—(v )= Muvyn + (uz,u v3)* Vi (19)
%0 21 %, 3f %, 3n) = 21 2, U3, 3 n.

Applying the Fourier transform, we obtain

2i(EotiaN + ik — Ex03) = MU + (s, u3, — v3)" V)" .
Hence, the first term on the right-hand side of (18) is

- 1 -~ -~ ~ S -~
j A2 dE= I —5‘(50”2’7 + &iusn — Eyv3m)” (éouzq C1usq + Lpv3q)dS

R3 ]R3| |

<]

1 ~
=%ﬂ£3(M0211+((u2’u3, —v3) V™)
éo —~ é — 5
(Ig,z Uzq — |£,2 usq + |é|202q>d5
1
=%ﬂ§3 (MDZ”“I“((Uz, Us, —03). Vn)/\)

6 v ‘fl v =2 v
<W( 29) |6|2(u3q) +lél 5(v39) >

1
=2—_. j (Mvyn + (uz, u3, —v3)* V)

<|§‘|’2 «(quz) — mz (qu3)+|§|2 (qv3)> x

1
=i j (Mvyn + (up, us, —v3)° Vi)
]R3

-<i<1) «(quz) — (1) (qus) + - <1>*(qv3))dx
N N % U]

— 0
=—4?1 n(uy, uz, —v3)* V(a—<ﬁ>*(quz)

g <|l|> (qus) + 50 ( ) (qu))dx,

where we used (19) in the last equality.
Similarly

— 1
| A, 2,dE = in | (= Muyn + (vz, v3, u3) Vi)
R3 TC]RS

( a <|x|> (av2) = ax1<| |> (av) = <| |>*(q“3)>
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-1 0
=_4n_]i£371(02’v31u3).v< <| I) (qu)

0 0 1
“5}7(1 1) *4os) - <1 |> “’“”)d"

For the third term on the right-hand side of (18), we multiply the third equation
in (9) (with g = 0) with g and use the Fourier transform to find

2mi(&oqus + E1quz + &403) = — Mvy + [(us, uz,02)* Va1 .
If we set
I3 = — Mqvs + (u3, u, 02)* Vg
temporarily, we then have

— 1 — — —< =< i
23 =—(&oqus + & quy + Erqu,y) = =
3 |‘f|( oqus 19Uz 2qv2) 2n|£|1]3 -277:|€|H

Therefore

nga A3Z3d€ Jlfl fo“aﬂ + 51“2’7 + fzvzﬂ)z H ;" dé

¢
HE lil2 11

(e )i (giems” )b + (s ) Ja
() o
() () e
22 npon
<ai< ) H3>(”2”)+< a <| |>*H3>(”2'”]

1 0 (1 0 1

j Ay, dE —yﬂi(a;(m)"dh)(l’sﬂ) —< <| I)*’L)(”zﬂ)
J (1

+ (o) e Jom J

ush +-—= “/271 + =3 Uz”l) 3 de

(-
4l
(
<
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where
I, = Mqus + (v3,v,, —uy)"Vg-+
Since n € CQ is arbitrary, we find

— 4nq(u3 + v3 — u —v3)

= (uz, u3, —v3) V( ¢ <| |> (quz)
- e ) 2 () )
0 0 1
B (=) L e () LR o )

1
+ (u3a Uz, 02).( axoa axn axz)<<| I) (_ Mqv3 + (u3a Uy, 172)' Vq))

+(v3,vz,u2)’(0m, _axnaxz)((l |> (Mqu3+(v3,1)2, _uZ) Vq))

Multiplying the last identity by 8 on both sides, we complete the proof of Lemma 1.

Proof of Theorem 1. From Lemma 1, we have
1
| (3 + v3 —uf — U%)ﬁ“hl(ms) = 4—7;(”91 *VFEy |+ 192" VE2 e + llgollnt) -

We see easily that g,, g, € L*(R?), and
divg; = MPv, + (uz, u3, —v3)* VBe L*(R?),
divg, = — MBu, + (v, 03, u3)* VBe L*(R?) .
By simple elliptic (potential) theory, we find
| Fy ”W"z(]R3) < Cll(uz, u3, v3)q ||L2(1R3),
| F2llwr2wey < Cll (v, v3, us)q [l 2w -
From Proposition 3, we find
g1 VFillm + 1927 VF2 Il < C(llg1 122 + | divgy |22 + | Fy [l
+ g2 122 + lIdivg 122 + | F2 [172)
< C(llu3 + v3 + uf + 03l w2) -
where C depends on f and M. For g, it can be seen that

llgollze = [I(us, uz, v2) B c2

[x]
<| |*[M‘1u3+(03,”2, “2)‘7‘1]>
L6

(——*[ Maqv; + (us, uy,v5)" Vq])”
L6

+ [ (v3, vz, u2) Bllr2
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< Cll(uz, v, u3, v3) l22w2) (| — Mqus + (us, uz, v2)* Vqllr2wr2)
+ | Mqus + (03,02, — ) Vgll2m?) < Cll (2, v2, u3,03) | 7Rz -

Let R > 0 be so large that the support of § is contained in the ball B(0, R — 1). And
let M (g)(x) denote the Hardy-Littlewood maximal function of g. Thus we have

1 M . xeBO.R),
r?f%@—y)h(%)dy <{ (lgo])(x), x € B(O,R)

lil,lfo ~ (0, otherwise .
So,
llgolln(r3) =] sup i3.[90(36 - J’)h<X) dy
1>r>0|7 r LY(R?)
= 1M (1go (X)Lt @0, r)
< CIIM(Igol) () | 32B(0, R)
=< Cligo Loz (r?)-
Therefore

(@3 + v3 — u3 — v3)Bllnwrs) < Calluz + v3 + u3 + 031w -

The proof of Theorem 1 is completed.

4. An Estimate on the Klein—-Gordon Equation

Consider
{¢tt_¢x1x1 _(px2x2+m2(p =f(t’ x19x2) (20)
¢0,x) =¢,(0,x)=0.
Suppose fe h*(R3) and f= 0, t < 0. We show next
Theorem 2. The solution ¢ of (20) satisfies the estimate
Lot )2z < Crll fllzirexgo, e 1S In ) 1)
forallte [0, T], T>O.

Proof. Without loss of generality, we assume m = 0. Introduce u(t, x, x,) such
that

t
Uy — ux1x1 - uxzxz = F(ta X1, x2) = jf(sa X1, XZ)dS
0

U(O, x) = u,(O, X) =0. (22)

We observe that
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The idea is to obtain the L*-estimate on u, which will follow as an energy
estimate of the new Eq. (22) for u. To do so, we need an L*-estimate on u.

Step 1. L*-estimate on u. We have formula

u(t, x) = f {f —————y)dydr

ollzr T2 —Iy?

j F_(t_—_t’_x__y_)dr)dy

z<|yr VT =1yl?
[ [ Fie— r,x-y)d<1og’—+———— M)]dy

|y

t+,/12—]y|2)’
[yl

(F(t —1,x — y)log

vl

T [ log /T Z VP V’zl“‘y‘zf(t— T x — y)dr

Iyl l

| I—
&

t /2,12
=f ff (t—r,x—y)log—iﬁ—l“ﬂ—dydr
Oyl

= ,,{;f(t — X — Y)Wy 1)t —t)dydr,

where we used that f(¢, x) = 0 for t < 0, f(r — t)is as in Proposition 5, and W(y, 1)
is

T+ /PP
log———, £7,0517< @
0, otherwise .

Now W can be split into two parts: W = B + Z, where B is as in Proposition 4 and

IyP?
T RIS
Z(y7) = 1°g< 1-25 ), plsn0st<oo

0, otherwise ,

so that | Z||;= < log2. Hence Wp(t — t) is in BMO(IR3) and L'(R?®) for any
t > 0, and therefore, ¢ (W) e L™ for g € S, [ ¢ = 1. By Goldberg’s local version
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[14] of Fefferman’s duality theorem [10], we find

fu(t,*)le=mwz) < CE) I flln (w3 -

Step 2. Multiplying (18) by u, and using integration by parts, we find

E]RZ

Integrating in the ¢-direction and using the initial condition, we obtain
1 t
— [ w2 +|Vu?)dx= [ F(t,x)udx — [ | fudxds
2 ]RZ IRZ 0 ]RZ
S lut ) lzew2y I f Il2:(r2x 0, 1))

+ sup [lu(s, ) llzer2)* | fllLir2x(, 1)

0=<s=t
S Gl Sflnrws) 1 f Iz w2 x©, ¢ -
Thus
It )z < Coll fllnrre) 1 I w20, )
for all t = 0. As a consequence, we find
lo@ )= Cll fllnwrs) -
The proof is completed.

Remarks.
(1) The result is sharp, as can be seen by taking

f=06(x1).

fis not in h'(IR3), but only slightly so. And a solution of (20) with m = 0 is

S
@ —1xP).
which is not in LZ((0, o0 ), LZ(R?)).
(2) Similar method works to prove ¢ € L®(0, T; L?(R?)) for
Op=0
@li=0=0
Pele=0 =f(x) e B (R?),

(p:

and

le@ )l = Cell fllnrm, VieR.

d
(luf +lqu|2>dx=£ | F(t,x)u(t,x)dx — | f(t,x)udx .
2 2 dt ]RZ IRZ
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(3) Forrelated L? — L?estimates on KG equations, we refer the reader to Peral

[18] and Marshall etc. [16].
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5. Some Remarks

(i) Existence of weak solutions in 1-D. In one space dimension, the Dirac-Klein—
Gordon system takes the form:

e
% S—Zj= — (M —go)u,
% 2—2= —(M —go)vs
%?+§—Z=(M—g<p)us

Pt — Pxyx, + mZ(P = g(u% + U% — u% — U%) .

As mentioned before, Chadam [6] proved that there exists a global unique
solution to its Cauchy problem with initial data (u,, v,, us, v3)|,=o € H*(R') and
¢(0,x)e H', ¢,(0, x) € L2. We can now prove

Theorem 3. There exists a global weak solution to the Cauchy problem of the 1-D
DKG system with (uy, v,, u3, 03)|,=0 € L?(R1), ¢ (0, x) € H! and ¢,(0, x) € L.

Sketch of proof. We mollify the initial data to find a sequence of exact classical
solutions {¢*, u, v%, u%, v4 }2 | from Chadam [6] with the estimates

sup ” (u’éa Ul%y ug: Ug) ”LZ(IRZ) é C
0<t=T

and

sup || @* |l =r2) = Cr.
0=<t=T

Therefore
” (pk(vg’ uga Ug, u’;) ”Lf“(ma) é C.

By Tartar’s [22] compensated compactness, (u%)? + (v%)% — (u%)* — (v%)* is
weakly continuous. We therefore have no difficulty to pass the limit through this
term. The other nonlinear terms @*u} etc. are also weakly continuous since { ¢* } is
compact in L2 (R 3) (see e.g. Peral [18]). The sketch of proof is completed.

(ii) 2-D classical coupled DKG system.

To investigate the difficulty of establishing the existence of weak solutions of
nonlinear equations, it is a common technique (see some papers of DiPerna, Lions
and Majda) to see how the nonlinear terms of the equations behave with respect to
weakly convergent sequences of exact solutions in a suitable space naturally related
to the equation. The question of how to produce approximate solutions with the
estimates that are satisfied by the exact solutions can be handled in a much easier
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way in most cases than that of how to deal with the passage of the limit through the
nonlinear terms. Here for our system (1), we shall similarly assume that we have
a sequence of exact solutions { ¢ y*}X ; which satisfies the natural estimate

sup J' [Y*|?dx < Cr .

0<t=<TR?

For {¢*},, we depend on the KG equation to give its estimate. For simpli-
city, we shall assume ¢* = 0 and ¥ = 0 at t = 0. We obtain

sup [ |@*|Pdx < Cpr, Vp<2.

0<t<TR?
Furthermore, we assume
Yy*—y in LZ (R 3?) weakly,

p* > ¢ inL? (R3),Vp<2.
The strong convergence of {¢*} follows from the WLP(R?3) estimate for some
0 < o < 1 (see Peral [18], for example).

In order to define { ¢, Y} to be a weak solution, we need @y to be defined in
Lis.(R?). For this purpose, it is sufficient to have estimate |7 || *||z2(r2)dt < Cr.
Further, we need {p*y/*};%; to be compact in Wy,d*2(R?) in order for {y/*y*} to
be weakly continuous by the standard compensated compactnesszgf Tartar [22]. In

terms of the LP-estimate, we need {¢*}i>; to be in L?((0, 7), L2-7»(IR?)) for some
p>$£. Unfortunately, artificial examples (with f=yye #L. (R3) N
L*((0, T); L' (R?)) in problem (20)) show that {¢*} ; need not lie in that space.
However, since we know {y*y*} =, is actually in L®((0, T); L*(IR?)), we hope
that a modified version of Tartar’s compensated compactness will require only that
{@"y*}i=1 be compact in L*((0, T); Wil-?(R?)).

If this is the case, we need only

¢ e L'((0, T); LP(R?))

for some p > 2. Along this line we observe that the estimate

sup “§0”L3'°"(]R2) S Crll f oo, :rr2y

0Zt=T
for problem (20) is probably true and sharp. L* ® denotes the weak L3 space.

In conclusion, to establish existence of weak solutions to system (1) we may need
to prove an estimate of the form

sup [l@llrwz) £ Cr sup | fllziry

0StsT 0<t=T

for some p € [2, 3) for problem (16), and establish a modified version of compen-
sated compactness of Tartar so that only {@y} ecompact set of L*((0, T),
Wiee 2 (IR?)) is required for {{y} to be weakly continuous.
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Appendix
In this appendix we shall prove Propositions 4 and 5.

Proof of Proposition 4. We prove this proposition by verifying that for any cylinder
Q < R3 centered at any point (y,, 7o) with middle cross section B(y,, to; R) and
height 2R, there exists a number a4 (not necessarily the mean of B over Q) such that

sup — f |B—agldydt < C. (A1)
e 1015

For the equivalence of this condition to the aforementioned definition of BMO, we
refer the reader to Torchinsky [23], Stein [20] or Fefferman and Stein [11].

. . . . 1
Before we get involved in heavy computation, we notice that log 7 € BMO(R")
T

and logﬁeBMO(]Rz) (see Stein [20], for example) and therefore logi—lle

BMO(IR?). But none of the functions ﬂglogm and ﬁ(glogm,

where fy
denotes the characteristic function for the cone
¢={(y1)eR*|y| <1}

is in BMO(IR?3).

We verify (A1) by considering each of the cases:
Case (i). 7o = 0. In this case we take ay = 0. Notice B = 0 and suppose R > — 1,
(the case R < — 1, is trivial). Then the right-hand side of (A1) becomes

1 1
— | Bdydr < Bdydz
ng IQl%n{r!R+ro}
1 R+10 R+10
< Bdrtrdr2n
= 27R?3 g f

1 R+10 1
=—{ j’ [(R+ro—r)log;+(R+ro)log(R+1:o)
0

— (R + 19) —rlogr + r:|rdr}
= F{ jto {(R + ro)rlog% +r2 4+ r[(R + 1) log(R + t9) — (R + ro)]}dr
0

2 _
Case (ii). 79 > 0, | yo| > 10, R = M. We also take ayp = 0. Then

B <log2 in Q.
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This is because Q does not intersect with the 7 axis. More specifically, log H takes

its maximum in Q at the corner (|yo| — R, 7o + R) and the maximum is an

2|yol — o At R =2|yo| — To

increasing function of R in | 0, , we have

T0+R _
|yol — R

b
SO

[Bdydr <log2.

IQl
2 —
Case (iii). 79> 0, |Vo| > 7o, R > ﬂ’%J So R > % We take a, = 0 again.
Similarly to (i), we find
1 1 0+ R
— | Bdydt £ — Bdydz
gy Bdvasig 1 1

1/ ) _16
= — — <——
12<1 +R> =3

Case (iv). 79 > 0, 7o/2 < |yo| < 79, R < 7¢/4. Similar to (ii) we find

logﬁ <C inQ.
Case (v). 10 > 0, 7¢/2 < |yo| < 79, R = 10/4. Similar to (iii), we have
1 3125
Bdydr < 1
IQIj ydv = 12( R ) 12

Case (vi). 1o > 0, | yo| < 70/2, R < 10/4. In this case we have

Qcé.
So
sup — le agldydr < ||log— ! + “log—
o 1Qlg I7}{lsmO(RY) [y1lBMO(R?)

Case (vii). 70 >0, |yo| <7To/2, R = 1/4. It is similar to (i). So the proof of
Proposition 4 is completed.

Proof of Proposition 5. We verify that

IQII | Bf — (BB)gldydr = C(to)

for any cylinder Q with cross section B(y, To; R) and height 2R.
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Case (1) R > %. We have

IlBﬁ (BP)gldydr = = IIBBIdydr

1015 1212

0+ R

< 11{3 [ | Br—to)log— dydr

0 |yls< I |

8 tot+1
== { log—dydr
T o lyse VI

= C(to) .

Case (ii). R < 3%, 19 > 1. So 7 — R > 4. We have

|Q|I|Bﬂ (BP)o|dy du

dydr

Blog—, + Blogt — (ﬂlogI ,) — (Blogr),

’“°g|11 (’“ o8] I)

— (B <103

IQg

dydt + 2log?2

1:
,Blogly ) 'dy dt + 2log?2

1 1
/3log|——| .- ﬂ(logm) + |ﬂ<log[—y—|>Q

) ’)dydt + 2log2
Q

1
1 -
<°g| |>
CR

=C+——— log dy + 2log2
|B(J’0’T0,R)l'f |

=C.

|yl

<C +——j |B —(B)o|dydr

+ 2log?2
ol g

Y. Zheng

Case (iii). R <4 and 1o < 1. Thus R + 15 < 2. This case is then covered by

Proposition 4. The proof of Proposition 5 is completed.
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