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Abstract. The role played by the BRST-charge in isolating the physical states in
a classical first-class constrained system is analysed. Contrary to popular belief, the
cohomological argument used to characterize the physical observables in such
a system does not extend to the classical states. It is shown that, in order to recover
the physical states, the BRST-charge must be augmented with a new charge, of
ghost number minus one, constructed out of a set of gauge fixing conditions for the
original constraints. The relevance of this construction to the quantum theory is
discussed.

1. Introduction

In recent years the use of ghost variables has been extended from a diagrammatic
trick to maintain unitarity in one-loop calculations [1], to a general procedure for
isolating the physical observables in both quantum and classical first-class con-
strained systems [2-7]. Although assigning ghost variables a classical role may, at
first sight, seem rather surprising, their use in classical dynamics can be given
a precise mathematical meaning which, in turn, supplies an important theoretical
underpinning to their applications in the quantum theory.

The aim of this paper is to use such a classical analysis to investigate the role of
ghost variables in directly isolating the physical states of a constrained system (all
constraints in this paper will be first-class). This is motivated by the observations
[8-10] that in the quantum theory the natural definition of physical states (ghost
number zero states that are BRST invariant but not the BRST transform of
another state) does not yield a satisfactory result (indeed, such states generically
have zero norm). We shall show that this apparent complication should come as no
surprise since it is also there in the classical theory. We shall also see that there is
a straightforward solution to this problem of isolating the classical physical states
that can be applied directly to the quantum theory.
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We are interested in the situation where we have a phase space P (finite
dimensional, of dimension 2n, and usually a cotangent bundle with associated
canonical symplectic structure) and a set, φΛ, of k ( ̂  ή) independent, smooth
functions on P. These are the constraints; being first-class implies that
{Φα> Φβ} = ClβΦγ, for some structure functions Clβ. For simplicity we restrict
attention to systems where the constraints can be identified with the generators of
some Lie-group G acting on P9 hence the structure functions are actually the
structure constants of the group. The first-class nature of the constraints implies
that the constraint surface K a P is not itself a phase space: the true degrees of
freedom being the quotient K/G, a phase space of dimension 2(n — k). The smooth
functions on K/G, C°°(K/G), are the physical observables for this system.

The aim of any constrained formalism is then to isolate the physical dynamics
from the dynamics on some extended - although more accessible - phase space.

In Dime's approach [11] to this problem the physical observables are identified
with the sub-algebra of C°°(P) consisting of equivalence classes of weakly invariant
functions on P, where two functions are said to be (weakly) equivalent if they are
equal when restricted to K.

In the approach initiated by Batalin, Fradkin and Vilkovisky (BFV) [12, 13],
the physical observables are identified as a subalgebra of a graded extension to
C^iP)- the new variables being the ghost and conjugate ghost variables. It will be
useful to recall the main steps in this construction.

The graded extension to C^iP) needed in the BFV approach can be identified
with Λ(P)= C^iP) <g> Λ(g ® g*)9 where g (g*) is the Lie-algebra (dual) of G and
A(g Θ g*) denotes the exterior algebra over these vector spaces. The ghost vari-
ables, ηa, and their conjugates, pα, are then the generators of this exterior algebra,
and the natural pairing between g and g* (along with the Poisson algebra on
C°°(P)) allows us to define a Poisson bracket on this graded algebra such that

{ia,Pβ} = {pβ,ria}=-δaβ.
There are various ways to grade the functions in A(P), the most important of

which is with respect to ghost number i.e., the number of ghosts minus the number
of conjugate ghosts occurring in the functions. Given a function $F e A(P\ of ghost
number r, we define b$F9 a function of ghost number r + 1, by

{J, #-} , (1.1)

where Ά is the BRST-charge given by

£ = Φ«t + \ciβη«ηβpy. (1.2)

Since {J, =2} = 0, we have that δ2 = 0 and hence we can construct the cohomology
groups Hr(δ) - those functions of ghost number r that are BRST closed but not
exact. Then H°(δ) can be identified with the physical observables C°°(X/G), and
hence we have a constrained formalism.

As it stands, both of the above approaches (Dirac and BFV) seem to have only
given us half of the information we would require in order to have a complete
description of the physical dynamics; we would also like to recover the physical
phase space, K/G, of the system. As we will discuss in more detail in Sect. 2, the
reason why we are usually content just to describe the physical observables is that
it contains the subalgebra of observables that vanish at infinity, C^K/G), This can
be extended into a commutative C*-algebra and hence the phase space K/G can be
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recovered as the pure states on this algebra. So, in principle, all we need is a way to
pick out all the physical observables in order to describe the physical dynamics. In
practice, though, this is not a satisfactory procedure since we are usually only
interested in one observable, the Hamiltonian, and thus would like a more direct
route to the physical states of the system.

Within Dirac's approach there is a straightforward way to isolate (at least
locally) the physical states from all the states on P. This is done by introducing a set
of gauge fixing conditions χα, whose zero set gives a slice for the action of G on the
constrained surface K. Hence the physical states can be locally described by the
2fc-conditions φΛ = 0 and χα = 0 on P.

Things are not quite so clear in the BFV approach. If we argue in analogy with
what is suggested in the quantum theory, we should start with all states on the
graded phase space and let the BRST-charge act on them in some natural manner.
Then we would expect the physical states to emerge as the BRST-invariant, ghost
number zero states that are not the BRST-transform of some other states. Clearly
there are various steps in this proposal that need to be elaborated on. In particular,
we need to make clear what is a state on a graded phase space, and then determine
how the BRST-charge should act on it.

The bulk of this paper will concern itself with providing a sensible definition of
states when one is dealing with a graded manifold. We will then see, through simple
examples, that the above proposal does not work. Although this is an unexpected
result, it really should not come as too much of a surprise since, at heart, the BFV
and Dirac approaches have a lot in common. Thus it would be surprising if the
BFV description of physical states could be done without the use of gauge fixing, as
this was central to Dirac's method. What we shall see is that in order to directly
isolate the physical states within the BFV formalism, gauge fixing is needed to
construct a (symplectic) dual, J , to the BRST-charge. The physical states will then
be the Ά and J" invariant states on the graded phase space.

The plan of this paper is as follows: After this introduction, in Sect. 2, states and
graded states, on a graded manifold will be defined. This will be achieved by
carefully translating the definition of A(P) - the graded extension of the algebra of
functions on P, into an algebra of functions on a superspace, in the sense of Rogers
[14]. We will then show how our definition of pure states on this superspace
recover the body manifold, and how the graded pure states recover the superspace
itself; thus giving us confidence that we have a reasonable definition of states. In
Sect. 3 we shall show, through simple examples, that the physical states are not
picked out using the BRST-charge Ά. Then, in Sect. 4 we shall present a method for
isolating the physical states from the graded states using the BRST-charge & and
an additional charge J". In the conclusions we will discuss the relevance of this
classical construction to the quantum theory.

2. States and Graded States

In this section we shall start by reviewing the relationship between functions on
a manifold and the manifold through the use of pure states. This construction will
then be extended to the graded case and we shall give a definition of states and
graded states on a supermanifold. We will show that the states on such a manifold
can be identified with the body of the supermanifold, while the graded states recover
the supermanifold itself; thus giving us confidence that these are sensible definitions.
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Given a smooth manifold M, C^(M) is the set of smooth functions on M
that vanish at infinity. On C^M) we can define a norm || H^, where ||/||oo =
sup{|/(x)|: xeM}. The completion of C^M) with respect to this norm is the
abelian C*-algebra, C0(M\ of continuous functions which vanish at infinity. On
such a Banach algebra there are various ways to characterise the states and, in
particular, the pure states (see, for example, ref. 15). The most convenient for us is in
terms of the characters of C0(M). A character is a non-zero linear map, ω, of C0(M)
into R such that

ω(fg) = ω(f)ω(g) (2.1)

for all functions/and g in C0(M). The spectrum of the C*-algebra C0(M% which we
denote by spec(C0(M)), is defined to be the set of all characters. It is straightfor-
ward to see that the spectrum is just the original manifold M. Indeed, we can use
the Riesz representation theorem to write

<o{f)=\fdμa,
M

where dμω is a regular Borel measure on M. Being a character then implies that

J fgdμω = J fdμω J gdμω .
M MM

As this must be true for all/and g, we conclude that the measure can have support
at only one point of M, i.e., ω(f)=f(a\ for some aeM. Thus spec(C0(M))
contains all points of M, as claimed.

Note that in (2.1) we can take the functions/and g to be smooth since, as we
have already stated, C^iM) is dense in C0(M) and the character is continuous.

Following the discussion in the introduction, we now want to investigate how
this type of argument can be extended to the situation where the commutative
normed algebra C^(M) is replaced by a graded commutative algebra of the form

As

o0(M):=CO0(M)®Λ(W). (2.2)

The problem we face is that, since this does not look like the algebra of functions on
some space, it is not clear what we should mean by a character on this algebra. To
proceed we need to first of all show how the graded algebra Λ^ (M) can be viewed
as the algebra of functions on a supermanifold Jί. Heuristically, a supermanifold of
dimension (m, 5), is a space in which the local coordinates can be decomposed into
m even coordinates and s odd ones. To make this precise we follow the approach
taken by Rogers [14], which we now summarize.

Given a positive integer L, BL is the Grassmann algebra defined over the reals
with generators 1, βx, . . . , βL and relations

lβi = βil=βi i = l , . . . , L ,

βiβj=-βjβi y = i , . . . , L .

An economic way to represent the elements of BL is to follow Kostant [16] and
let ML denote the set of sequences which includes the empty sequence, denoted by
0, and the finite sequence of positive integers μ = (μ l 5 . . . , μr) with
1 ^ μλ < < μr ̂  L. Then, for each μ in M L , we define



Classical States and the BRST Charge 165

and

A typical element b of BL can then be written as

μeML

where the coefficients bμ are real numbers.
On BL a norm is defined by

II ft 1 1 = Σ I * Ί , ( 2 . 3 )
μeML

which makes it a Banach algebra. In fact, BL is a Z2-graded algebra:
BL = (BL)0 0 (BL)1, where (£ L ) 0 is the even part and (£L)i the odd part. Bψs is then
defined to be the Cartesian product of m copies of (BL)0 and s copies of (BL)1.
A typical element of B™s can be written as (x1, . . . , xm; θ1, . . . , θs\ or simply
(x; θ), where the x coordinates are even and the θ coordinates are odd.

There are various classes of superdifferentiable functions <F\ B™s -> BL. Since
both B™'s and BL are Banach algebras we can define C ° ° ( # L ' S , BL) (which we also
write as C°°(£™'5) when it is clear what target space we are dealing with) to be the
smooth functions between these Banach spaces. This class of functions, though, is
too large for our application to ghost variables. What we need is a class of functions
on B™'s that is insensitive to the replacement of R m by B™'°. In order to define such
functions we need some additional definitions:

The augmentation (body) map ε: BL -+ IR is defined by ε(b) = b°. Acting on
W£s we have εm, s: Bΐs -> R m with

εmjx\ . . . , xm; θ\ . . . , θs) := (ε^ 1 ), . . . , ε(xm)) .

We write xB = sm,s(x; θ). Complementary to the augmentation map is the (soul-)
mapping s: BL^> BL given by s(b) = b — ε(b)l. Since BL ~ R © N, where N is the
subspace of BL consisting of nilpotent elements; the mapping s simply picks out the
nilpotent part of b.

life C°°(Rm), we define z(f):Bf°-+BL by

ε(xm)))s(xψ

(2.4)

The mapping z has various nice properties that follow from its similarity with the
Taylor series; in particular, it preserves products of functions i.e.,

z(fg) = z(f)z{g) . (2.5)

Following [14], we now define, for L > s, two important sub-algebras of
C°°(β£'s). The H^iBΐ8) functions are the smooth functions & on Bΐs for which
there exists fμ e C°°(Rm) such that

&(x;θ)= Σ ^U)M f l μ (2 6)
μeMs
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The H^{Bΐs) functions are defined in a similar way with them's now elements of
C0 0(Rm). The important observation for us is that the algebra of H^ functions is, in
fact, a normed algebra over the reals with norm

1 1 ^ 1 1 : = Σ IIΛII o o . ( 2 . 7 )
μeMs

We denote the completion of this algebra by H 0 (BL' S )> which is now a Banach
algebra.

In [14] it was shown that Hm(Bΐs) ~ C°°(Rm)(χ) Λ(RS), so clearly
Hao(Bΐ's) ~ C00{WLm)®Λ(lRs). What we shall now show is that, as the notation
suggests, H0{Bΐs) ~ C 0(Rm)(χ)Λ(R s) In the proof of this last isomorphism we
shall exploit the Banach algebra structure on Ho functions to define pure states. In
doing this we want to follow as close as possible the account given earlier.
However, there are two technical obstacles to directly defining pure states as
characters on HQ(B™S). The first is that we have not yet determined what the
elements of HO(B™-S) look like - at present they are simply the completion of
Hoo(Bΐ's)' But, as was noted after the discussion following (2.1), it is sufficient to
define the action of the pure states on a dense sub-algebra of the Banach algebra;
this suggests that we identify the pure states as characters on the sub-algebra of H^
functions. This, though, still leaves us with the second technical problem; that is, we
want the action of ω on #" e H^B™8) to be given by

Σ ω(z{fμ))ω(θ") .

But we note that θμ is not an element of H^B™8), rather it belongs to
C°°(5JL'S, BL). SO we want the characters to be defined on the whole of
C«>(B?a

9BL).
This discussion motivates the following definitions.

Definition 2.1. A character on C^ίβΐ8) is a non-zero linear map, ω, o/C00^™'5) into
IR such that

ω( J ^ ) = ω(^)ω(0) (2.8)

for all 3? and % in C°°(^' s).

Definition 2.2. A pure state on the graded Banach algebra H0(B™'s) is to be identified
with the restriction of a character of C^iBΐ3) to H^B™8). The spectrum of
H0(BL'S), which we also denote by spec(H0(BL' S )), is the set of all such pure states.

Note that these two definitions combine to identify the pure states on i f o (#Γ s )
with the characters on this algebra.

From these definitions we can deduce the following result:

Proposition 2.1. spec(f/0(^L's)) = ^ m

Proof The pure states ω are homomorphisms from a graded algebra into R -
which has no grading. So clearly its action on odd elements is restricted. Indeed

= ω(θΨ)
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Hence ω(θίθj) = 0, which in turn implies ω(θί) = 0 since IR has no nilpotent
elements. Therefore, acting on H^B™*8) we must have

= ω(z(f0))

Then condition (2.8) becomes

ω(z(fo)z(go)) = ω{z(fo))ω(z(go))

for a l l ^ and g0 in C 0 0(Rm). Using (2.5) this tells us that ω°z is a character, and
hence pure state on C0(IRm). Thus spec(H0(Bΐ'8)) = R m by our earlier argument.

The algebra H0(B™' °) is, in fact, an abelian C*-algebra (this is easy to see since,
on the dense subspace of J^-functions, | | # " 2 | | = \\fl\\aQ = \\fo\\l> = | | # Ί | 2 ) . Now
any abelian C*-algebra is isomorphic to C0{M\ where M is the spectrum of the
algebra. Thus, by our previous result, H0(Bΐ' °) ~ C0(lRm). The mapping taking us
from an element of H0(Bΐ'°) to a continuous function on R m being the Gelfand
transform 3F -• §* where

(2.9)

for allωespec(iίo(β£' 0 )).
When 5 + 0, the Gelfand mapping (2.9) is clearly not an isomorphism. The

kernel of this map is the radical of HO(B™'S)\ hence we see that the Banach
algebra HO(B™'S) is not semi-simple. However, it is clear from (2.6) that
H0{Bΐs) ~ H0(B^°)®A(W\ Thus we can extend the Gelfand mapping to the
whole of JF/ 0 (^L' S ) by requiring it to be the identity on the Grassmann algebra

). So we have shown the following result:

Proposition 2.2. HO(B^S) ~ C 0 (R m ) ® Λ(W).

The previous two results show that Definition 2.2 gives a sensible class of pure
states on / / 0 ( 5 L ' S ) However, just as the pure states allowed us to recover the
manifold M from the algebra of functions C0(M\ we would also like to be able to
recover the superspace B™s from some generalised states on the graded algebra
HO(B™'S). This motivates the following definitions (recall the discussion preceding
Definitions (2.1) and (2.2)):

Definition 2.3. A graded character on C°°(l?£'s) is a non-zero linear map, ωg, of
C™{Bΐ>s) into BL such that

g($) (2.10)

for all & and <S in C°°(^' s ).

Definition 2.4. A graded pure state on the graded Banach algebra HO(B™S) is to be
identified with the restriction of a graded character of C^iB™'8) to H^(Bΐs). The
graded spectrum ofΉ0(BL'% which we denote by g-spec(H0(Bΐ's)\ is the set of all
such graded pure states.

It is easy to see that B^s cz 0-spec(#o(#L's)): indeed for all aeB%'s,
δa^:= $F(a) is a graded character and hence a graded pure state of HO(B™'S). To
show that all graded states are of this form we argue as follows: If we call ε ° ωg the
body of the graded state, then it is clear that the body is a state, and hence
concentrated at some point aB e Rm. So all that needs to be determined is the
action of ωg on the nilpotent parts of the H^ functions. Since ωg is a character, all
we need is its action on s(x) and Θ. We must have ωg(s(x)) = (as)0 and ωg(θ) = (as)ι
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for some even (odd) element (αs)0 ((αs)i) of BL. Hence ωfl = δa where ε(α) = αβ and
s(a) = (as)0 + (as)1. Thus ^-spec(i/0(^L's)) ^ ^ L ' S and hence we have proven

Proposition 2.3. g-spQc(H0(B£s)) = Bfs.

Various operations can be defined on the #°° functions in much the same way
as for C0 0 functions. In particular, the even and odd derivatives are defined by

/ 7 ^ ( x ; f l ) = Σ z(djμ)(x)θμ (2.11)
0 X μeMs

and

-^^(x;θ)= Σ <f,W\ (2-12)

where θμla = ( - I / " 1 . . . θμt-ιθμt+1 . . . θμr ii oc = μt for some ί, 1 ̂  ί ^ r, and
θμ/oc = 0 otherwise.

Supermanifolds over BL are then topological spaces that locally look like B™s.
So a if00 supermanifold Jt will have a chart ((7, ̂ ) of open sets Ua and homeomor-
phisms ψa: U -+B™tS such that φβ

oφa1 is a if00 mapping of ιl/a(Ua n L̂ )̂ onto
ΨβiUa^ Up). This definition is, however, too general for our applications. Instead
we follow DeWitt [17] and use a coarser topology on B™'s - the DeWitt topology.
Now a subset V of Bfs is open if and only if V = ε~/s( JF) for some open set W of
Rm. Then a DeWitt /ί0 0 supermanifold is a i ί 0 0 supermanifold such that for each
element of the chart, φa(Ua) is open in B™s in the DeWitt topology.

Given a DeWitt #°° supermanifold ^# then an equivalence relation ~ can be
defined on Jί by pί ~ p2 if there is an open set Ua from the chart such that p1eU(X

and p2 6 Ua and also

Then M = B{Jί) = Jί/ ~ is a m dimensional real C0 0 manifold called the body of
Jί, If 3F e H^{Jt) then on an open set ί/α we have

where Jμ G C°°(εm>s(ί7α)). Thus, with the obvious extension of notation, on a DeWitt
if00 supermanifold Jί the elements of Hco(Jί\ or //^(M), can be represented by

ir(x;0)= £ zt£)0μ, (2.13)

where^ G C™(B(Jί)\ or fμe C^{B{Jί)).
Definitions 2.1-2A can then be directly extended to the Banach algebra H0(Jί).

Also the arguments used in Propositions 2.1-2.3 can be extended to this algebra
since the DeWitt topology implies that in patching results together the only
complications come from the structure of the body manifold - where Riesz's
theorem already characterizes the pure states. Thus we have the following result

Theorem 2.1. If Jί is a DeWitt Hm supermanifold with body M then
(1) spec(tfo(^0) = M;
(2) H°°(Jί)>.
(3) flf-s

The proof of (2) can be found in [14]. Again we note that if Ji is (m, 0)-
dimensional then H0(Ji) is a C*-algebra and the Gelfand theorem in conjunction
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with (1) tells us that HQ(Jί) ~ C0(M). Then, as before, we can use this to directly
prove the version of (2) appropriate to Ho functions.

3. States and the BRST Charge

In this section we start by constructing the BFV formalism on a super phase space
defined over the phase space P. The action of the BRST-charge on the graded pure
states will then be investigated and it will be shown that a cohomological charac-
terization of the physical states is not possible.

The extended phase space P upon which the constraints are defined is a smooth
2n dimensional manifold. Thus P can be identified as the body manifold of an
(2n,2k) dimensional DeWitt #°° supermanifold &. Recall that i f / G C ° ° ( P ) then
z(f) E if°°(^). On such functions we define the Poisson bracket {,} by

{z{f),z(g)}=z{{f,g}). (3.1)

In particular, for the constraints φa on P we get constraint z(φa) on 0> which are
still first class since

= z(Clβ)z(φγ) .

If the structure functions are actually constants then this last expression is
Clβz(φγ).

Generic elements of H"°(βP) can be written as in (2.13) with 5 = 2k. We now
relax our notation and write the element of/f°°(^) corresponding t o / e C°°{P) by
the same symbol; thus, as long as there is no confusion, we write z(f) = / . In
keeping with the BFV formalism, we also divide the odd coordinates into two
subsets: the ghosts ηa and conjugate ghosts pα (α = 1 . . . fe). The Poisson bracket
defined above is then extended to the whole of H°°(^) by requiring that the only
new non-vanishing bracket is {ηa, pβ) = — δa

β, and that it acts as a (graded)
Poisson bracket should. (For a more geometric account of this see [18].)

From (1.2) we see that the BRST-charge J is a H°° function of ghost number
one on ^ , which satisfies the Poisson algebra; {J, 1} = 0. The BRST-operator δ is
then defined to act on H°°(^) by

δ& = {J, &} . (3.2)

Using the super-Jacobi identity, and the abelian nature of the odd charge J , it
follows that δ2 = 0. The physical observables for this system can then be identified
with the zeroth cohomology group associated with this operator.

Given a (graded pure) state ωg on 0> we define δωg, the BRST transform of
cog, by

(3.3)

for all homogeneously graded functions 3F where this makes sense. Then it is clear
that acting on the state ωg we have δ2 = 0.

We note, though, that δωg is not a state. Indeed, for homogeneous !F and ^ we
have
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so δωg is not a character on H^iβP). In this context it is probably best to think of ωg

as a (point) distribution on 0>, then δωg is another distribution on 0> with the stated
properties.

We now need to determine what are sensible conditions to impose on ωg in
order for it to be a physical state ω£hy. Clearly functions of the form bSF are
unphysical for all functions on 0>. Thus we require ω p h y to satisfy ωψ*(b3F) = 0, for
all such <F. That is

δωfy = 0. (3.4)

Now if ωg = Sao'1, for some acceptable distribution ω ~ \ then δωg = 0. But this
implies that ωg(^) = ωg

1{δ^) would be zero on all physical observables $F. Such
states should not be thought of as physical.

This argument suggests that the physical states are defined as those states on
@> that are BRST-invariant, but not the BRST transform of some other allowed
distribution. Note that ghost number is not used in the definition. Also we have
been vague about what types of distributions are allowed. To make this more
precise, and to investigate whether this does indeed recover the physical states, it is
best to study in detail a simple example.

The paradigm example of a constrained theory is the system with extended
phase space P = R 2 " and pure momenta constraints pa = 0. If we use the canonical
coordinate system (qA, pA\ A = 1, . . . , n, on P, where the constraints are just the
first k momenta, then the true degrees of freedom are parameterized by the
coordinate functions {qk + \ pk + i), i = 1, . . . ,n — k.

The BRST-charge is thus

1 = paη« , (3.5)

and acting on functions

*-- '•£-*"£• (3 6)

The pure states on R 2 " can be usefully represented by delta functions. So the
pure state concentrated at the point (qA, pA) in IR2" can be written as

- PA)dqΛdpA

It is straightforward to see how gauge fixing within the Dirac formalism extracts
the physical states from these. Indeed, taking the gauge fixing condition to be
qa = 0, we require the physical states to be such that ωp h y(pα) = ωphy(gα) = 0.
Which implies the correct result that the physical states are associated to the delta
functions on R 2 n of the form

δ(q")δ(Pa)δ(qk + i - qk + i)δ(pk + i - pk + i) •

It will be useful to develop a similar representation for the graded pure states on 0*.
In order to do this we need to discuss how to integrate on the superspace 0*.

Over the odd variables integration is purely formal and we use the Berezin rules
\dθ = 0; \θdθ = 1. Thus on Bfs we take dθμ = i^'^^dθ1 . . . dθs and use the odd
delta function

^ - θμ):= po-wφ1 -θ1)... (θs - θs). (3.7)
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Over the even variables more care is needed to define integration since some
remnant of the measure theoretic aspects on integration on the body manifold IRm

should survive. Thus we follow DeWitt [17] and define jf(x)dx in terms of the
body measure dxB and a section σ: R m -• B™' ° such that ε ° σ is the identity
mapping on Rm. Given these, and a smooth test function / on Rm, the integral
\z(f){x)dx is defined to be equal to

ί z(f)(σ(xB))dσ(xB) . (3.8)

Clearly this expression is independent of section σ used.
Similarly, we can define δ(x) on Bΐs by pulling back the delta function from R m

using (2.4), i.e., δ(x):= z(δ)(x). Extending this construction we define the even delta
function to be

δ{xj-χj)= £ * (dγ... di?δ(xi, - xl))

ί i = 0 ι1. . . . ιm.

x six1 - xψ . . . s(xm - xmy™ , (3.9)

where, as usual, δ(xj

B — xJ

B) is actually the product of delta function

Then for / e C ° ° ( r )

lz(f)(x)δ(x-x)dx:= J z{f)(σ(xB))δ(σ(xB) - x)dσ(xB) (3.10)

is also independent of section σ. Exploiting this we take σ(xB) = xB + s(x) to get

\z{f){x)δ{x-x)dx= J z(/)(xB + s(x))δ(xB - ε(x))dxB

= z(f)(x) .

So the even delta function behaves as it should.
Hence^on the super phase space ^ , the graded pure state ωg concentrated at the

point (x; θ) = (qA, pA; ήa

9 pα) can be represented by the expression

Λ

9 PA, r\\ P«)δ(qA - qA)δ(pA - pA)

- pa)dqAdpAdη«dPθί . (3.11)

Therefore, using (3.3) and (3.6), we see that the action of the BRST-operator δ on
states is simply given by the action of δ on the delta functions representing the state.

The condition δωg = 0 then implies that pa = 0 and ήa = 0, i.e., ωg corresponds
to the distribution

δ(q« - qa)δ(pa)δ{η*)δ(pa - p α )ω p h y , (3.12)

where ω p h y is the physical state represented by

ω^ = δ(qi + k - qί + k)δ(pi + k - pi + k) .

However, such a state can always be written in the form δωg1, where
(ug1 corresponds, for example, to the distribution

- j*»-D/V • ηkθ(qι - q1) Π ^ ~ Q3)HPa)Hp« - P.)ω^ . (3.13)
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Hence, allowing such distributions implies that the BRST cohomology is trivial
and hence that there are no physical states within the BFV approach.

It is clear, though, that for this distribution, δω~ι (#") is not identically equal to
zero for all physical observables #", since, in general, this is equal to ω ~ 1(δ$F) and
a surface term arising from the step function in (3.13).

Thus we find that the BRST-charge only isolates states of the form
(3.12) - which include the physical states. What is lacking is a natural way to
impose the additional conditions that q" = 0 and pα = 0.

4. Gauge Fixing and Physical States

In this section we introduce explicit gauge fixing into the BFV formalism through
the introduction of a dual charge Ϊ2 of ghost number minus one. It is shown how
this allows us to directly isolate the physical states of the system.

We saw in our analysis of the simple constrained system on R 2" that in the
Dirac approach a set of gauge fixing conditions, q* = 0, was needed to reduce to the
physical states. Geometrically, the gauge fixing conditions determine a surface in
the phase space P that, on its intersection with the constraint surface X, slices the
orbits of the "gauge group" IRΛ There is a clear duality in this set-up. One could
just as well have started with the first class constraints qa = 0 and then impose the
gauge fixing conditions pa = 0 to reduce to the true degrees of freedom.

Motivated by this duality, and extending it to the ghost variables, we define
a dual BRST-charge, J, for this system (in this gauge) by

! = *V«. (4.1)

This is a H 0 0 function on 0* that has ghost number minus one and is abelian.
Repeating the discussion presented in Sect. 3, we get a dual BRST operator δ

whose action on states is given by

*--*h+9-k (42)

Now, in addition to the condition (3.4), we require that the physical pure graded
states should satisfy

δω*hy = 0 . (4.3)

Then, following the argument leading up to (3.12) we deduce that on 0> the states
satisfying both (3.4) and (4.3) correspond to delta functions of the form

ωPhy . (4.5)

These graded pure states are actually pure states and hence have a spectrum given
by the body of the superspace Blin~k)'°. Hence they are the correct physical states
on 0>.

There are two directions in which this argument needs to be extended: first we
would like to see how to construct δiox more general gauge fixing conditions and,
secondly, we would also like to be able to deal with more general, first-class,
constraints. In both of these generalizations we must ensure that the resulting
physical states are equivalent to the ones described in (4.5).

The appropriate concept of equivalence in this phase space formalism is that
induced through canonical transformations. Thus we initially need to shoW how to
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construct kn even canonical transformation on & such that the BRST-charge (3.5)
is preserved while the symplectic dual (4.1) is transformed into an H™ function of
the form

l = χ V « + (4.6)

with the χα's a more general set of gauge fixing conditions.
In (4.6) we cannot expect to the gauge fixing conditions to be arbitrary since Ά

must still be abelian. However, given this caveat, the ability to do such a trans-
formation is discussed in detail in [18] and will not be repeated here. Similarly, the
rescaling of the BRST-charge can be achieved through canonical transformation,
as discussed in [18].

The final result from this analysis is as follows

Theorem 4.1. The physical states associated to the first-class constraints φa = 0 on
the extended phase space P can be identified with those graded pure states on the
super phase space & (of dimension (In, 2k) and body P) which satisfy the conditions

δωfy = δωfy = 0 ,

where δ and δ are the Hamίltonian vector fields corresponding to the BRST-charge
and dual charge introduced above.

5. Conclusions

In Sect. 2 a definition was given for pure and graded pure states on a supermani-
fold. These definitions were motivated by the analysis of pure states on an ordinary
manifold. The usefulness of these definitions was shown by the results that the
spectrum of pure states could be identified with the body manifold, while the
graded spectrum of graded pure states recovered the original supermanifold.

This analysis was then applied in Sect. 3 to the super phase space approach to
constrained systems, developed by Batalin, Fradkin and Vilkovisky. The main
conclusion from this analysis was that the BRST-charge could not be used to give
a direct cohomological description of the physical states of the system. In Sect. 4,
though, it was shown how gauge fixing could be used to supplement the BFV
formalism; allowing us to construct a dual to the BRST-charge. The physical states
could then locally be identified with those graded pure states that were both BRST
and dual-BRST invariant.

It is clear that in this presentation the dual-BRST charge has been introduced
in a purely pragmatic way - it solved the problem. What one would like to see is
a more geometric account of why it is needed. This should have some overlap with
the geometric discussion of the physical observables to be found in [19].

It should be noted that the dual to the BRST-charge used here is quite distinct
from the anti-BRST charge used in the literature (see for example [20]). Indeed for
the simple abelian system discussed in Sects. 3 and 4, the anti-BRST charge would
just be given by pαpα. Requiring states to be both BRST and anti-BRST invariant
would then set pa = ήa = pa = 0, but not fix the value of q*.

As discussed in the introduction, in the quantum theory the use of the BRST-
charge to directly isolate the physical states has been problematic. Many parallels
can be drawn with the problems encountered there and the classical analysis
presented here. In particular the cohomological argument is seen to break down in
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both situations and one is forced to include states that are formally trivial (being

coboundaries) yet do not give trivial results on physical observables since the

BRST-charge is not self-adjoint on this class of functions (see [9] for the quantum

construction, the discussion following (3.13) in this paper gives the classical point of

view where self-adjoint is taken to mean that the action of the BRST-charge on

observables and states is the same).

In [21] it was shown that in the quantum theory the correct way to characterize

the physical states was to impose the two conditions £\ψ} = 0 and M\ψy = 0.

(Although in the analysis presented there the classical role of M in isolating states

was not discussed). In [18] a path integral quantisation of these systems was

performed with the result that unitarity could be shown to hold when the physical

observables were of the form H^{{ = Hphys + {=2, J } . Such an observable satisfies

the conditions δHeίί = 0 and δHe{ί = 0; hence, we now see that it would also

preserve the classical physical states isolated by the BRST-charge and dual charge.

Thus the classical analysis presented here can be seen to supply support for the

apparently ad-hoc prescriptions used in these two approaches to the quantum

theory.

The author wishes to thank Brian Doland and John Lewis for helpful conver-

sations, and the referee for pointing out a technical error in the original version of

this paper.
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