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Abstract. We show that two natural approaches to quantum gravity coincide.
This identity is nontrivial and relies on the equivalence of each approach to
KdV equations. We also investigate related mathematical problems.

1. Witten's Conjecture

1.1. Two-Dimensional Gravity (ies). Quantum gravity, although not well-de-
fined, looks like integration over the (infinite-dimensional) space of rieman-
nian metrics on manifolds modulo diffeomorphisms. There are at least two
mathematically consistent approaches to two-dimensional gravity.

The first one was developed by [KB, DS, GM] and can be called "enu-
meration of triangulations." Any triangulation of the surface determines
some singular metric obtained from the arrangement of equilateral triangles.
One can imagine that when the number of triangles tends to infinity these
singular metrics approximate "random metrics" on surfaces. Thus we are led
to the problem of finding the asymptotics of the number of triangulations of
surfaces of fixed genus into the given growing number of triangles. It was
shown (using Feynman diagram techniques) that this problem together with
some modifications is equivalent to describing the asymptotic behaviour of
the integrals Jexp(tr P(X)} dX, where X runs over the space of hermitian
N x TV-matrices, N -»oo and P is a polynomial depending (in some way) on
N. These integrals were evaluated using orthogonal polynomials. It turns out
that discrete Toda lattice equations hold. In the limit the Korteweg-de Vries
equation arises. The partition function of the two-dimensional gravity for
this approach is a series in an infinite number of variables and coincides with
the logarithm of some τ-function for KdV-hierarchy.

Another approach is to choose some specific action. Using supersymmetry
the integral over the space of all metrics reduces to the integral over the finite-
dimensional space of conformal structures. The last integral has a cohomolo-
gical description as an intersection theory on the compactified moduli space of
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complex curves (see the next subsection for precise definitions). Again some
series in an infinite number of variables arises. All number related to surfaces
of genus less than or equal to 3 were computed using algebraic geometry.

E. Witten conjectured [Wl] that the partition functions for both approaches
coincide. The reason for this conjecture is an irrational (for mathematicians)
idea, that gravity is unique.

Our way to compute the partition function for the second approach (and
thus to check Witten's conjecture) uses Feynman diagram techniques and
matrix integrals but in another way. Our matrix integral does not look like
the standard matrix integral from the first variant of gravity. The coincidence
of the two integrals is a nontrivial identity and was proven (in several ways)
using the equivalence of noth integrals to KdV equations.

1.2. Notations. Let g and n be integers satisfying the conditions

0^0, n>0, 2 - 2g - n< 0.

Denote by M^n the moduli orbispace (for this notion see Appendix A) of
smooth complete complex curves of genus g with n distinct marked points
Xι,...,xn9 and Λg^n the Deligne-Mumford smooth compactification (see
[M], footnote on page 285). It is the moduli orbispace of complete connected
curves C with n distinct marked points xt satisfying the following conditions:

(1) all singularities of C are ordinary double points,
(2) the marked points are smooth,

(3) the Euler characteristic of any connected component of C\(Sing(C)u
{%!,..., xn}) is negative and the sum of these numbers is equal to 2 — 2g — n.

Both spaces Jtg^ and M9tlΛ will be endowed with the usual (Hausdorff) topol-
ogy of an analytic space.

Let <gi9 / = ! , . . . , « be line bundles on M^n. The fiber of J^ at (C;
*ι , . . . , xn) is the cotangent space 7̂ * C.

Introduce the infinite sequence of indeterminates τ 0 ,τ l 9 . . . . Let dl9...,dn

be non-negative integers satisfying

Σ di = dwic^g.n = 3g - 3 + n.
t = l

Denote by <τdl . . . τdn) the intersection index

ί Π

For example, <τ0τ0τ0> = 1, <T!> = -L (see [Wl]). By Arakelov's theorem all
the numbers <τdl . . . τdn> are non-negative ([M]).

We set <τdl . . . τdn) equal to zero if the "genus" g, defined by the formula

0 = τ Σ rf,-/ι+
3\ί=ι

is not an integer or if n = 0. In this way we have defined a linear functional
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The generating function proposed by E. Witten is a formal series in another
sequence of indeterminates t0,t1 , . . . :

F(t0,tl9...) = exp ttτ = Σ <^τk^ > Π
\ \ί = 0 ) I (k) i = Q Ki\

Witten's conjecture asserts that the series F coincides with the partition
function in the standard matrix model theory and, in particular, obeys the
Korteweg-de Vries hierarchy, the first equation of which is the classical KdV
equation

dt1 dt0 12

Recently E. Witten proposed a generalization of this conjecture (see Sect.
4.3).

1.3. Statements. Let A be a positive definite hermitian N x N matrix. Denote
by dμA(X} the probability measure on the vector space of hermitian NxN
matrices given by the density

^/2
I VA + *. J. Λ. I Ί -

CΛ exp - —^— dX,

The constant CΛ is chosen so that the condition j dμΛ(X} = 1 is satisfied.
Define functions ti9 i = 0, 1, . . . of the matrix Λ:

where (2i - 1)!! = 1 - 3 . . . - (21 - 1).

Theorem 1.1. The formal series F(t0(A), t± (A), . . . ) is an asymptotic expansion of

logί jexpί^—trJ

when Λ~l ->0.

The proof of this theorem is contained in Sect. 3.2. For any fixed size of
matrix A the functions ti(Λ), for / = 0, . . . , TV — 1 are algebraically indepen-
dent. So, to obtain from Theorem 1.1 the terms in the series Fup to any fixed
order, we have to take the integral over the space of matrices of sufficiently
large size.

Using Theorem 1.1 we prove

Theorem 1.2. The series Qxp(F) in variables 7^ ί + 1:= t i / ( 2 i + 1)!! is a τ-func-
tionfor the KdV-hierarchy.

It follows from Theorem 1.2 that Witten's conjecture is true. At the mo-
ment we know at least 3 different proofs of Theorem 1.2. The shortest proof
is contained in Sects. 4.1 and 4.2. Other proofs (see [K2, W2]) are more com-
plicated.

One can easily deduce from Theorem 1.1 that for any n ̂  0 the integral

S (tr X3)" dμΛ(X)

is a polynomial in variables tt. The following theorem generalizes this fact:
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Theorem 1.3. There exists a linear map

such that for any positive definite hermitian matrix A and for any
P £ Q [*ι •> X3 •> - ] one has

This theorem is proven in Sect. 3.3. Some conjectures concerning 7 are
presented in Sect. 3.4.

2. Reduction to the "Combinatorial" Problem

2.1. Strebel Differentials and Ribbon Graphs. In this section we will describe
an equivalence, due to R. Penner, J. Harer, D. Mumford and W. Thurston be-
tween the "decorated" moduli space of algebraic curves and the moduli space
of ribbon graphs (see Th. 2.2). We choose here the version of this equivalence
based on conformal geometry and results of K. Strebel.

A quadratic differential φ on a Riemann surface C of finite type is a holo-
morphic section of the line bundle (Γ*)®2. A nonzero quadratic differential
defines a flat metric on the complement of the discrete set of its zeroes accord-
ing to a formula in a local coordinate z:

I φ (z) I I dz 1 2 , where φ = φ (z) dz2.

A horizontal trajectory of a quadratic differential is a curve along which
φ(z)dz2 is real and positive. Jenkins-Strebel quadratic differentials are those
for which the union of nonclosed trajectories has measure zero.

Nonclosed trajectories of a JS differential decompose the surface into the
maximal ring domains swept out by closed trajectories. These ring domains
can be annuli or punctured disks. All trajectories from any fixed maximal
ring domain have the same length, the circumference of domain. In late 60's
K. Strebel proved the following theorem:

Theorem 2.1. For any connected Riemann surface C and n distinct points
*!,..., xn ε C, n > 0, n > χ (C) and n positive real numbers p±,..., pn there
exists a unique JS quadratic differential on C\{x1 ? . . . , xn] whose maximal ring
domains are n punctured disks Dt surrounding points xt with circumference pt.

This theorem is essentially Theorem 23.2 (for n = 1) and Theorem 23.5 (for
n ^ 2) in [S]. The reader can also see a recent exposition of StrebeΓs theory in
[Z]. In this section we consider only compact surfaces.

The union of all nonclosed trajectories and zeroes of a JS differential φ is
a finite graph (= 1-dimensional CJΓ-complex) Γφ embedded in the surface.
A vertex of Γφ which is a zero of φ of kth order has valency k + 2 ̂  3. The
complement to Γφ consists of open disks, hence we obtain a cell decomposi-
tion of C. The graph Γφ carries two additional structures

(1) for each vertex a cyclic order on the set of germs of edges meeting this
vertex is fixed, (we say that Γφ is a ribbon graph),

(2) to each edge is attached a positive real number, its length (a metric on the
graph).
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graph surface
Fig. 1

Fig. 2

In the reverse direction, for any (connected) finite ribbon graph Γ with
metric whose valency at each vertex is greater than or equal to 3 we can con-
struct JS differential.

The first step is to replace vertices by small disks, replace edges by orient-
ed open ribbons and glue them at each vertex according to the cyclic order
chosen for this vertex (see Fig. 1). In this way we obtain an oriented non-
compact surface on which the graph is drawn. We can divide this surface into
rectangles, where each rectangle is homeomorphic to the product of the cor-
responding edge of the graph by [0, + oo). Endow each rectangle by the stan-
dard flat metrics of the semistrip with width equal to the length of the corre-
sponding edge of Γ. After isometrically gluing together all these rectangles we
obtain a surface with a flat metric defined almost everywhere. The surface is
glued from a finite number of infinite tubes (see Fig. 2). It is easy to see that
there exists a unique complex structure on this surface compatible with the
metric. This surface is a compact Riemann surface C minus a nonempty sub-
set [xι,..., xn} a C. There exists a unique quadratic differential on C whose
trajectories restricted to the semistrips are the standard vertical intervals.

Hence we have proved the following result:

Theorem-Notation 2.2. Let Jί™™* denote the set of equivalence classes of con-
nected ribbon graphs with metric and with valency of each vertex greater than or
equal to 3 such that the corresponding noncompact surface has genus g and n
holes numbered by !,...,« (numbered graphs). The map JigtH x R+ -> ̂ ™mb

which associated to the surface C and numbers Pi, ...9pn the critical graph of
the canonical ^-differential (from Theorem 2.1) is one-to-one. D
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We can endow the spaces ^/,°π

mb with some natural topology and orbispace
structure (see Appendix B). The isomorphism from Theorem 2.2 is an isomor-
phism of orbispaces.

The combinatorial type of the underlying ribbon graphs defines a stratifica-
tion on J?l°™b with the dimension of a stratum equal to the number of edges.
The open strata corresponds to the 3-valent graphs and have dimension equal
to 6g — 6 + 3«.

Remarks. Probably D. Mumford was the first who noticed that the stratifica-
tion of the moduli space arises from Strebel theorems, see [H]. R. Penner [PI]
described a stratification of JίgtΛ x R+ using hyperbolic geometry. In his pic-
ture simplicial coordinates on strata arose and lead to another homeomor-
phism Jίβtn x R"+ -> M^'.

Both stratifications are combinatorially equivalent, but geometrically they
are different. R. Penner uses the name "fatgraph" for ribbon graphs. He calls
"the decorated Teichmuller space" the universal cover of Jί9tH x R+ .

Example, g = 0, n = 3. Recall that JίQ^ is the one point set. There are 7 num-
bered graphs (see Fig. 3). M™™* consists in 3 copies of R+ and 4 copies of
R+. The map ^c

t°
mb->R+ given by the triple ( P ι 9 p 2 9 p 3 ) of perimeters of

tubes is a homeomorphism. The "central" 3-dimensional stratum corresponds
to the triples satisfying strict triangle inequalities.

Notations. For a ribbon graph Γ, denote by X(= XΓ) the set of edges of the
graph together with a choice of orientation. Let SQ and s^ be two permutations
of X: s{ is the operation of changing orientation and s0 permutes cyclically
all oriented edges with a common source. The set X0 = X/(s0y is canonically
equivalent to the set of vertices of Γ and the set X1 = X/s1 is equivalent to
the set of edges. Denote by s2 the permutation S Q I S I . The set X2 = X/(s2y
is equivalent to the set of 2-cells of the cell-decomposition associated with Γ
(see Fig. 4). Later we will use the following notation: [x]i9 / = 0,1,2 is the
image of x e X under the projection map X->Xt. The length of an edge eeX1

is denoted by l(e).
It is easy to see that there is an equivalence between

(1) ribbon graphs without isolated vertices,
(2) triples (X, SΌ, s^) where X is a finite set, SO,SIE Aut(Z), Si is a free involu-
tion,
(3) cell decompositions of closed oriented surfaces which have no components
of the type S2 = D°vD2.

2.2. Polygon Bundles. For each integer N let us denote by 517(1) |°jj?b the set
of equivalence classes of all sequences of positive real numbers / 1 ? . . . , 4 ,
1 ^ k ^ TV, modulo cyclic permutations. This set carries a natural topology:
when /; -> 0 for some / then the limit is obtained by removing the z t h term.
Each sequence has as automorphism group a finite cyclic group. This provides
5ί/(l)|°yb with an orbispace structure. Define BU(l)comb to be the direct limit
of£f/(l)!7boverall7V.

In other words 5C/(l)comb is the moduli (orbi) space of numbered ribbon
graphs with metric whose underlying graphs are homeomorphic to the circle.
There is an S1-bundle over this orbispace whose total space EU(l)comb is an
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Fig. 3

Fig. 4

sox



8 M. Kontsevich

ordinary space. One can check that the space EU(ί)comb is contractible. This
fact explains our notations. The fiber of the bundle over the equivalence class
of sequences ^ , . . . , lk is a union of intervals of lengths /i , . . . , 4 with pair-
wise glued ends, i.e. a polygon.

The moduli space of ribbon graphs with metric Jί™™b maps in an obvious
way to BU(\)comb (if we fix /, 1 g / g Λ): the iih boundary component of a
ribbon graph with metric is a polygon.

Theorem 2.3. The map JtβtΛ x R"+ -> (JBt/(l)comb)li, which is the composition of
the isomorphism Jίθtn x R"+ ^ Jί™™b and maps to BU(ί)comb described above,
extends continuously to Mg%n x R+. The inverse images of ' S] [ -bundles are natu-
rally ίsomorphίc to the circle bundles associated with the complex line bundles

The proof of this theorem is quite technical (see some information in
Appendix B).

Let us now compute the first Chern class of the circle bundle on
£t/(l)comb. The points of £I/(l)comb can be identified with pairs (p,S) where
p is a positive real number and S is a nonempty finite subset of the circle
R/pZ. Here p is the perimeter of the polygon, edges of the polygon are con-
nected components of R/pZ\S. Denote by 0 ^ φί< - - - < φk< p representa-
tives of points of S. The lengths of the edges of the polygon are

li = φi+1-φi (i= ! , . . . ,&- 1), lk = P + Φι-Φk

Denote by α the 1-form on ET/(l)comb equal to

Σ Itlpxdfalp).
i = l

It is easy to check that α is well-defined and that the integral of α over each
fiber of the universal bundle £[/(l)comb^£t/(l)comb is equal to - 1. The differ-
ential dα is the pullback of a 2-form ω on the base £t/(l)comb,

ω = Σ

So, ω is obtained by transgression from α and we have proved the following
result:

Lemma 2.1. 77z£ pullback ω, of the form ω under the / th map Jίg^ x R + -»
BU(ί)comb represents the class ^(J^). D

Denote by π : Jί™™b -» R + the projection given by the sequence of perime-
ters of tubes. We have the following formula for intersection numbers:

... τ d n >= f Πωf ' ,
π-Γ(p*) i=l

where p+ = (p1,..., pn) is an arbitrary sequence of positive real numbers. The
only problem with this formula is to describe the orientation of open strata in

arising from the complex structure.



Intersection Theory on Moduli Space of Curves 9

3. Matrix Integrals

3.1. Main Identity. Denote by Ω the two-form on open strata of Jl™™* equal
to the sum ΣP?ωί The reason for this choice is explained by the obvious

Lemma 3.1. The restriction of the form Ω to the fibers ofπ has constant coeffi-
cients in the coordinates (l(e)), e e X±. Ώ

One can check that Ω is nondegenerate along the fibers of π and defines
some orientation compatible along the codimension one strata (see Lemma 3.2
in Sect. 3.3 and Lemma C.I in Appendix C).

Denote by d the complex dimension of JίgtΛ9 d=3g -3 + n. The volume
of the fiber of π with respect to Ω is

π-^(p*) d\ d\ π-Γ(p*)

^ JL Pidί ,
= sgn x Σ= Π -̂ y x <τdl

 τdn> -

The symbol sgn equals ± 1 and denotes the ratio of the orientation com-
ing from the complex structure and the orientation cominmg from the symplec-
tic structure. Recall that <τ d l . . . τdn> ^ 0, so by the positivity of the volume
sgn = + l.

Let λi9 ι = l, . . . , n be real positive numbers. The Laplace transform of
volumes of fibers of π is

oo oo n

J J Π dPi x exρ(-Σ λiPt) x vol(π l

= Σ
d*:Σdi

= Σ
dφ:ίdi = d i=l "f I

Let us write the left-hand side of this equality in the following form:

L.H.S.= f b ρxexp(-ΣA ί j P i )x Π \dl(e)\,
Jt^b eeXi

where ρ is a positive function defined on open cells, ρ is equal to the ratio of
measures:

i \ x Π \ d l ( e ) \ .
ί=l

From Lemma 3.1 it follows that ρ is locally constant and depends only on
the combinatorial type of a 3-valent graph. It is shown in Appendix C that

ρ = 22n + 5g~5 = 4d 21'9 = 2d +*X l~**°

The integral

Σ Λ * Λ ) x Π \dl(e)\

is equal to the sum of integrals over all open strata in ̂ °w

mb.
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For an edge e = [x]1eXί denote by λ(e) the sum λ([x]2) + λ ( [ s 1 x ] 2 ) ,
where λ is considered as a function λ:x2->R+. For any ribbon graph

-Σ*,A) = exp(- Σ /(Mι)Λ(M2))= Π exp(-/(*)*(*))-
\ xeX / eeAΊ

Let us denote by Gg^n the set of equivalence classes of 3-valent graphs with
numbering X2 = {1,...,«} from ^c,°M

mb. Now we can compute the integral:

= Σ
ΓeG g ) «

π —
.e..,, # Aut Γ «*, JΓ(e) '

After multiplication by an appropriate power of 2 we obtain the main
identity :

Λ (24 -I)" 2-**°

Example, g = 0, « = 3. G0,3 contains 4 graphs, all of which have no nontrivial
automorphisms (see Fig. 3). The main identity for this case is

λ2) (λ,

αi
5.2. Matrix Model (the Proof of Theorem 1.1). Let /I = diag(Λ1? . . . , /1N) be
a positive diagonal hermitian matrix. Denote (as in Sect. 1.3) by ti(A) the
expression

Let us take a formal sum over all g, n of the main identity from the prev-
ious section:

F(t0(Λ)9 x - x

=
Aut Γ

_
, λ(e) '

In the last term GN denotes the set of equivalence classes of connected
nonempty 3-valent ribbon graphs together with maps c: X2 -> {1, . . . , N} (col-
orings of X2 in N colors), λ^x]^ = Λc([xW + Λ([Sljc]2)
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Fig. 5

Elements of GN are all connected nonempty graphs obtained by glueing
special vertices (see Fig. 5) in such a way that corresponding indices on glued
edges coincide. By Feynman diagram techniques (see [BIZ]) the last series is
an asymptotic expansion for

log (j exp (^ tr X^ dμ(Λ} (X)J,

where dμ(Λ}(X) is a gaussian measure on the vector space of hermitian matrices
such that

J XuXkl dμ(Λ)(X) = δtlδjk -^—^ .

This is exactly the measure dμΛ(X) introduced in Sect. 1.3. Thus, Theorem 1.1
is proven.

Remark. The idea to apply Feynman diagram techniques and matrix integrals
to the topology of the moduli space of curves appears for the first time in
R. Penner's computation of the Euler characteristic of Jί9tn ([P2]). The first
computation of the same number by J. Harer and D. Zagier [HZ] also uses
gaussian integrals over the space of hermitian matrices. Recently we found a
simple argument which reduces the integral to the case of one variable and
simplifies radically the analytic part of the computation (see Appendix D).
There are now proofs also without matrix integration, see [IZ2].

3.3. The Proof of Theorem 13. Fix a positive number n and a sequence of
nonnegative integers m^,m^,..., mt = 0 for all sufficiently large /. Denote by
Jίm^n the moduli orbispace of connected numbered ribbon graphs Γ with
metric, such that # X2 = n and Γ have mf vertices of valency 2 / + 1 and
no vertices of even valencies. If mt = 0 for / Φ 1 then Jtm^n is the union of
all open strata of ^°n

mb for some g. The form Ω from Sect. 3.1 defines a
symplectic structure on fibers of the map π: JPm^n->R"+. The volume form
exp(Ω) Λ dpi Λ Λ dpn defines an orientation on all components of Mm^n.
I will leave without proof the following simple lemma.

Lemma 3.2. The map Jtm^n-+(BU(\yom*)n from the orbίfold Jtm^n endowed
with the orientation described above defines a cycle with closed support on
(BU(l)comb)n. D



12 M. Kontsevich

One can integrate over this cycle any cohomology class with compact
support on (BU(ί)^fb)H for sufficiently large N.

Denote by <τdl . . . τd n>m o > m i j... the rational number

J lWχ[R+],
^,ni=l

where [R+] e /Γ"omp(R+) is the fundamental class with compact support.
We can repeat the computations from Sect. 3.1 using the formula (Ap-

pendix C)

ρ = 4d21-', d:=-(άimJίm^n-n), g:= genus of Γ for any Γ eJίm^n.

One can introduce a series in an infinite number of variables of two types:

, / ι , . . . ; * o , Sι, ) = exp( Σ <**... τd n>m o,W l t... Π —. Π s
\«*,m* i=o nι\ j=o

The same arguments as in Sect. 3.1 show that Z(t*(Λ), s%) is an asymptotic
expansion of

( oo trX2j+1\
V^T .Σ (- 1/2)' ί, 2y+1 j dμΛ(X),

where Λ~l ->0 and s^ is a fixed sequence of real numbers, Sj = 0 for almost
all/

Consider Z(t^,s^) as a series in indeterminates s^. Its coefficients are poly-
nomials in t. This gives a proof of Theorem 1.3.

3.4. Some Conjectures. We start from two "dual" conjectures concerning the
series Z(t^,s^) from the previous section. We are not fully confident in these
conjectures.

Conjecture 3.1. Z(t^9s^) is a τ-function for KdV-hίerarchy in variables T2i+1: =
t i / ( 2 i + l ) l \ for arbitrary s* .

Conjecture 3.2. Z(t^,s^) is a τ-function for KdV-hierarchy in variables 7^ ί+1: =
Si/(2ί + \)for arbitrary t#.

A new conjecture of E.Witten (see [W2]) can also be formulated using
series Z:

Conjecture 3.3. There exists a linear isomorphism 7: Q - — , - — , . . . ^

Γ 8 8 Ί Γ d Ί L ° ~"
Q d7'δ7"' such that V P e Q aΓ' ' '
jj = O/ory Φ l .

In other words, for any rf0,ί/l5 . . . there exists (?) a nonhomogeneous poly-
nomial Pd^(X} = Pd,(tr X,trX3,...)of degree Σ (2i + 1) </i such that

d d

= J Pd.(X) exp(tr
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The last conjecture concerns cycles on M~n arising in the proof of
Theorem 1.3. If ra0 = 0 then Jίm^n lies in Jί™n, for some g, in an evident
way. One can check that Jim^n is a cycle with closed support on Jl^n x R+.
Using the isomorphism

rrclosed/ ~Zι v p« \ ^ ττ ( ~J/ \
n* \^g,n X K + ; = t**-n(.Λlg,n)

andJPoincare duality with rational coefficients we obtain cohomology classes
on Mg^n. They are even-dimensional; for any k we obtain p(k) classes in degree
2k, where p(k) is the number of partitions of k.

Conjecture 3.4. All these classes can be expressed through Mumford-Mίller
classes (see [M, H]).

Recently R. Penner [P3] proved that the cycle ^o,4^-7 + 2«,o,. . . ,« is Poin-
care dual of the first Mumford-Miller class k±.

4. Airy Functions

4.1. The Classical and the Matrix Airy Functions. The classical Airy function

A(y) =

is the unique (up to scalar factor) bounded solution of the differential equa-
tion

We define the matrix Airy function to be

3 - XY)) dX,

where X, Y are hermitian N x N matrices for some N. The function A(Y) is
well-defined as a distribution. It obeys an elliptic equation

zM(7) + tr Y A(Y) = 0,

where A is the Laplacian. Hence A is a smooth function.
The asymptotic expansion for A(Y) as 7-> + oo is the sum of terms cor-

responding to the critical points of the function tr(Z3/3 — XY) (the method
of stationary phase) . Suppose that all eigenvalues of Y are distinct. Then the
critical points are all 2N square roots of Y and the corresponding summands
are

nearΓ 1 / 2

f exp (y^T tr C3f 3/3 - X Y) dX
/2

= J exptv^T tr((JT + 71/2)3/3 - (X + 71/2) Y)) dX
near 0

= exp -IV^trF3/2 x J
nearO
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The asymptotic expansion for the last integral is given essentially by Theo-
rem 1.1 (the fact that A = 2^7- 1 71/2 is not hermitian is not a serious ob-
struction) . We obtain the formula

tr Γ3/2 x det ^—- (Y1/2 ® 1 + 1 ® 71/2)
I \ — v ,

x Qxp(F(^(Yi/2))), (1)

where ζ(F1/2) = 2~(2ί'+1)/3 (2ι- 1)!! tr r~'~1/2 and the square root of the matrix

^- (71/2® 1 + 1 ® F1/2) is chosen to have eigenvalues with positive real
7Γ

parts.
We recall the formula of Harish-Chandra (see [HC]):

Lemma 4.1. If Φ is a conjugacy invariant function on the space of hermitian
N x N-matrices> then for any diagonal hermitian matrix Y,

1 J Φ(D) e'^1 "DY V(D) dD,

where the last integral is taken over the space of diagonal hermitian matrices D,

, . . . , XN)) : = Π (Xj ~ Xi) = det (Xj~ l)

is the Vandermonde determinant.

This formula was recovered several times (see [IZ] and [Mh]). We apply
the formula of Harish-Chandra to the case Φ(X) = exp(^/— 1 tr Z3/3). Some
difficulties arise because integrals are not absolutely convergent. Nevertheless
we obtain that the exact formula, Y = diag(Fl5 . . . , YN):

We use here the obvious fact that

4.2. The τ-Function Related with the Airy Function. Recall that τ-functions
for the KP-hierarchy (see [SW]) are functions (or formal series) in an infinite
number of variables T± , T2 , . . . satisfying a certain infinite system of nonlinear
differential equations of infinite order (Hirota bilinear equations). A τ-func-
tion for the KdV-hierarchy is a τ-function which does not depend on vari-
ables 7j , T2 , . . . . The logarithm of such a τ-function satifies the KdV-equa-
tion (see Sect. 1.2) with respect to the variables 7j and Γ3.

The definition of the τ-function is the following:
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Let FidC((z)) be an infinite dimensional linear subspace with a base
/ι>/2> •••>/; = z~l(\ + 0(1)), for almost all / (V belongs to Sato's Grass-
manian). For an infinite sequence of formal variables T{ denote by

the operator of multiplication by the function expί Σ Ttz
 l / i \ . The τ-func-

tion associated to the subspace V is v= 1 /

+ 00

τ f (Tyj = \M (-/jj{) ( * ' ' Λ J 3 Λ J 2 A J ι) ΛZ ΛZ ΛZ Λ . . . J ! /\ Z .
i= — oo

This function depends (up to a multiple) only on the subspace V. For-
mally τA(T;) = 0 iff M(ΓJ (F) n C [[z]] Φ 0.

We will use the following "explicit" formula for τ-functions:

Lemma 4.2. Letfl,f2,... e C((z)) be formal Laurent series, ft = z~l(ί + o(l)).
Then, for any N ^ 0, the following symmetric series in n variables zv, ..., ZN

(1) det(/;.(z,.))/det(zr'), ^ N

* * * ' * k i=ι

coincide. All τ-functions such that τ(0,0,. . .) = 1 cαw fee obtained in this way.

Sketch of the proof. First of all, note that

N

exp Σ
/ = l

Hence (formally) τ^CTKzJ, ^(zj, . . . ) - 0 iff

FnΠ(l-Z;/z)C[[z] ]φO.
i = l

Any nonzero element in this intersection is a nontrivial linear combination of
functions /1?/2, . . . ,/#, which vanishes at points z l 5 . . . , ZN. We conclude that
τft(T1(z^)9 T2(zJ, . . .) is divisible by det(//(zj))/det(z7"

/) F°r reasons of de-
gree this ratio is a constant.

Any subspace transversal to C[[z]] admits a base ft with ft =
D

Let us now return to Airy functions. It is easy to see that there exists an
asymptotic expansion for derivatives of the (ordinary) Airy function :

3/2

A(j~l\y)~ Σ const- y~^ e 3 *
±Vy

for some series /7 (z) = z~J + e Q((z)). Substitution of the last formula to
(2) gives

Σ const x exp -
y l / 2
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Proof of Theorem 1.2. We can compare asymptotic expansions (1), (2), and (3)
and obtain that F(t^) is a τ-function for KdV-hierarchy in variables

The class of τ-functions is stable under the change of variables TJi-^c'T] for
any constant c. We set c : = 2~2/3 . D

Remark. With any τ-function T we associate (under appropriate convergence
conditions) a function on matrices of arbitrary size:

T(X):=T(trX, tr JT2/2, . . .).

The transform X -> Tk : = tr Xk/k is called the passing to Miwa's coordinates.
One can try to combine Lemma 4.1 and Lemma 4.2 and obtain examples

of (matrix) τ-functions such that their Fourier transform is again (up to a
simple factor and some change of variables) a matrix τ-function. The matrix
τ-function associated with the subspace

is exp(^/— 1 tr Ar3/3). Other examples are the higher Airy functions (see the
next section). They were proposed independently by M. Adler and P. van
Moerbeke ([AvM]) and by a Moscow group of physicists ([KMMMZ]). The
last group also considered a generalization to the case of Fourier transforms
of functions of the form exp(tr(F (%))), where F is arbitrary function in one
variable.

Morally, the combination of Lemma 4.1 and Lemma 4.2 means that Fou-
rier transform preserves the class of matrix τ-functions. We will discuss trans-
formations of matrix τ-functions elsewhere ([KM]).

We propose the following generalization of the Conjecture 3.1 :

Conjecture 4.1. Let T be any formal τ-function for the KdV-hierarchy consid-
ered as a matrix function. Then J T(X) dμΛ(X) is a matrix τ-function for the
KdV-hierarchy in A.

4.3. Higher Airy Functions. Define the higher Airy function for d ̂  2 to be

At(y) = f exp(y^T(xd+1/(rf + 1) - xyft dx.
-oo

We can also define a higher matrix Airy function. The same arguments as in
Sects. 4.1, 4.2 give an asymptotic expansion for the higher matrix Airy func-
tion in terms of some τ-function for KP-hierarchy. This τ-function does not
depend on the variables Td, T2d, T3d . . . (this is connected with the dth analog
of the KdV-equation) and homogeneity degree of each monomial is divisible
by d + 1 . One can compare this function with the solution of some modifica-
tion of the standard matrix model, called chain of matrices or (d — 1) matrix
model or Wd-graυίty. It turns out that these τ-functions coincide (we use for-
mulas from [KS]). Recently E.Witten proposed the following algebro-geo-
metric description of corresponding higher gravity:
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Denote by '̂, „,,.,, for 0 ̂  r ^ , . . . , rn ^ d- 2, the moduli space of stable
complex curves C of genus 0 with n distinct marked points xl9..., xΛ9 with
a line bundle ?̂ on C and with an isomorphism

i = l

where K is the canonical bundle (= cotangent bundle for smooth curves) and
G(Xi) is_the line bundle whose sections are functions with a possible pole at xit

On JtgtS,r* one gets a vector bundle iΓ with fibers equal to /f0(C,^). De-
note by cΓ(ιO its top Chern class (= Euler class). If d = 2 then dimiΓ = 0,
cr(f) = 1. For an infinite sequence of indeterminates τk(Ur), r = 0,1,...,
d — 2, n = 0,1,.. ., define brackets

1 r 1 n *n d9 - i = 1

The generating function for these numbers is

Conjecture 4.2 (E.Witten, [W3]). exp(^) coincides with the τ-functίon for the
(d — 1) matrix model.

One can hope that it is possible to connect Feynman diagrams arising from
the higher matrix Airy functions to the topology of Jt'g^r^

Appendix A. Orbispaces

W. Thurston proposed several years ago the term orbifold for a space which
looks locally like a factor space of a manifold modulo an action of a finite
group. Before W. Thurston, I. Satake used the term V-manifolds.

If an infinite discrete group acts properly discontinuous on a manifold then
the factor space is an orbifold. For example the moduli space of curves Jί9tn

is an orbifold because it is the factor space of Teichmuller space modulo the
action of the mapping class group. The Deligne-Mumford compactification
Jίg>n is the example of an orbifold which has no global covering manifold.

We will use the name orbispace for the extension of the notion of orbifold
to the nonsmooth case. Roughly speaking the structure of orbispace on a to-
pological space X is a semicontinuous way of attaching to each point x e X a
finite group Γx defined up to an inner automorphism. Locally this family Γx

must look like the following basic example: If a finite group G acts on a to-
pological space Y then with each point x E X: = Y/G one can associate an iso-
morphism class of group Stab^ for any point y from the orbit x. Moreover,
for any two points y,y'ex, there is a natural isomorphism Stab^StabJ,
defined only up to a multiplication by an inner isomorphism.

We will not give a precise definition of orbispaces, (it uses nonabelian
cohomology), say only that an orbispace is a particular example of a stack,
see[M].
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The moduli space of ribbon graphs from Theorem 2.2 carries the natural
structure of an orbispace, because the automorphism group of any ribbon
graph with metric is finite.

One can extend many usual notions to the world of orbispaces, for ex-
ample, vector bundles, homotopy type, differential forms. The cohomology
groups of an orbispace with rational coefficients coincide with the cohomol-
ogy groups of its underlying topological space. For an orientable compact
orbifold X the fundamental class as an element of H^ (X, Q) is defined.

Consider for example the orbifold {point}/G, where G is a finite group
acting trivially on the one-point space. Vector bundles on this orbispace are
representations of G, the homotopy type is the Eilenberg-Mac Lane space
K(G, 1) and the fundamental class is I/*G e Q ̂  H0({pomi}, Q).

Appendix B. More about Topology on

For a ribbon graph Γ, denote by Jίτ the set of functions /: 1^-^R^o such
that there is no nontrivial cycle e l 5 . . . , en with /(e f) = 0 for all z ; denote by
Jlτ the set of functions / ̂  0 such that any boundary component contains an
edge e with /(e) > 0.

MY a MY are open subsets of R|\) , we endow them with the induced to-
pology. If a ribbon graph Γ' is obtained from Γ by the contraction of some
edge e e X1 which is not a loop, then there are natural embeddings :

Mτ> c» MY, Jtτ> c» MY (pose l(e) = 0).

Let us consider the following category Γ9tn:

- objects of Γgtn are connected numbered ribbon graphs without vertices of
valencies 1, 2 such that the corresponding surface has genus g and n holes,
- morphisms of Γ g t t t are maps of abstract graphs generated by isomorphisms
and contractions of edges preserving numbering.

MY and Mτ can be considered as contravariant functors from Γg,n to the
category of topological spaces. Define Jί™™b and M™™* to be the limits of
functors M and M. Any point of M™™* has a unique (up to an isomorphism)
representative (Γ, /) such that l(e) > 0 for all edges e. Hence we obtain the
same set as in the definition in Sect. 2.1.

Spaces M^° and Jtffl" are locally compact, and the perimeter map

is proper._The map ^°mb-> (J5ί/(l)comb)" (see Theorem 2.3) extends continu-
ously to ̂ Γb

We will need a detailed description of points of Jf™™b.
Let us call a stable graph a ribbon graph Γ together with some additional

data:

(1) a subset S of X0 containing all vertices of valency 1 and 2;
(2) an equivalence relation ~ on S;

(3) a function g: S/~ -> Z^0
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This data must satisfy the following conditions:

(1) for each equivalence class S' a S the inequality 2 — 2g(S') — $S' < 0
holds,
(2) the abstract graph obtained from Γ after the identification of vertices by
~, is connected.

One can show that Jlg^ is the set of equivalence classes of numbered stable
graphs with metric such that

2-2g-n = %X0-%X1-2$S+ Σ (2 - 2flr(S'))
S'eS/~

An analytic analogue of Jt™™* is a certain ^factor space Jt'g,n of M9tn.
Consider the following equivalence relation on J^>π: two stable curves with
marked points (C, xl9..., xn) and (C", x[,..., x£) are equivalent if there
exists a homeomorphism φ:C^C' such that for any iφ(xί) = x'i and φ_ is
complex analytic on all components containing marked points. Define Jl'g,n

to be the factor space of MQ^n modulo the closure of this relation.
Using Strebel results (Theorem 2.1), for the noncompact case one can con-

struct a natural bijective map

~jύ comb ~7f i y OH
^g^n ~^ f/l/ig,n Λ IV+

The main technical point, which will be omitted here, is that this map is
continuous. From this fact and the facts that Jt™™* is proper over R+ and
Jt_g^n is compact, one deduces immediately that Jtg*™* is homeomorphic to
JKgtn x R+ and (as the consequence) Ji^^0 is homeomorphic to Jtβtn x R+.

Appendix C. Computation of the Constant ρ

Let Γ e Jtm^n be a connected ribbon graph which has no vertices with even
valency. Consider the following complex of free abelian groups :

C1' = 0, / ^ 0 or / ^ 5,

with differentials defined by the formulas

d 2 ( [ x ] ι ) = Σ (-l)J[^]ι+ Σ
7=1 .7=1

We can identify C* ® R with the complex

Here jS is a 2-vector field with constant coefficients on Jim^n given by the for-
mula for d2 .
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The following simple lemmas describe the geometry of β. The (straightfor-
ward) proofs are omitted.

Lemma C.I. The kernel of β coincides with the image of Γ*π. The map Γ*π is
injective. D

Hence the symplectic fibers of β coincide with fibers of π and complex
C* ® R is acyclic.

Lemma C.2. The symplectic form on fibers of π coincides with the restriction of
β/4. D

We have the canonical (up to sign) volume form on each term of the acy-
clic complex C* ® R: the Lebesgue measure.

One can easily define the canonical isomorphism

for any finite dimensional complex A*. Applying this isomorphism to C* ® R,
we obtain a measure on R. This measure is the product of the Lebesgue mea-
sure by a positive real number called the torsion of the complex C* ® R.

From Lemma C.2 it follows that the torsion is equal to 4dρ. The canonical
measure on C*®R has the property that vol(C*® R/C*) = 1. One can de-
duce easily that

l/2

Theorem C.I. Let C be the closed surface associated with Γ. There is an iso-
morphism Hl(C*) ^ Hl~2(C, Z/2Z).

Corollary, ρ = 4 d x 2 1 ~ Λ

The proof of Theorem C.I presented here is not nice, but we don't know
any other proof.

Lemma C.3. For any k and any ξ e C fe, if dkξ = 0 then there exists ηeCk~^
such that dk-^η = 2ξ.

Proof. If k = 1 and dv ξ = 0 then ξ = 0, because all valencies are odd.
In the case k = 2 we can use Lemma C.2 to construct η explicitly.
Let us choose for each boundary component beX2 some element f (b) e b.

For any x e X denote by υ(x) the minimal integer /, 1 gj / ^ # [x]2 such that

If ξ E C\ ξ - Σ ξ(e) - e and dξ = 0 then define η ε C2, η = Σ η(e) e
by the formula eeXl eeXi

i=2 ί=2

If ξ e C4, ξ = b for some boundary component, then

= Σ



Intersection Theory on Moduli Space of Curves 21

An eftsy consequence of the statement of Lemma C.3 is the fact that
C* can be decomposed into a direct sum of complexes of types Z — > Z and
Z-^ Z. The cohomology groups Hl(C*) are vector spaces over the field F2.
Let τ, = dimF2 #'(C*), then dimF2 H

l(C* ® Z/2Z) = τ, + τ f _ 1 . Hence we need
to compute dimensions of H*(C* ® Z/2Z).

The complex C* ® Z/2Z is obtained by glueing the two complexes

A* : 0 -» Ff 2 A> Ff1 -̂  Ff ° -> 0 and

#* o -> Ff ° A Ff J -®* Ff 2 -> 0.

Λ* is the chain complex and J5* is the cochain complex with F2 coefficients
for the cell decomposition of the surface C determined by the graph Γ.

The differentials of C* ® Z/2Z are dl = d2,d2 = dξd1 ,d3 = df.

Let us compute the dimension of H3(C* ® Z/2Z):

Lemma C.4. 1) Codim Im dί = 1, 2) Ker <3g c Im δx .

Proof. Part 1) is evident.
It is easy to see that Ker <5$ consists in two elements - 0 and

Σ v = dt Σ e. D
t eΛΓo eeX\

From Lemma C.4 it follows that the space Im d^d1 is a subspace of codi-
mension 1 in the space Im δ$ . Hence

dimF2 H
 3(C* ® Z/2Z) = dimF2 //2(C,F2) + 1 = 2g + 1,

and T! = 0, τ2 = 1, τ3 = 20, t4 = 1. Thus Theorem C.I is proven. D

Appendix D. A Short Computation

For integers g ^ 0 and n > 0 denote by χβtn:= 2 - 20 - n the Euler charac-
teristic of open curves of the corresponding type. Let us consider the follow-
ing formal series :

:= Σ
, n\

Here ι(Jίg^ denotes the Euler characteristic of the moduli space of curves
considered as an orbifold. For example, the coefficient of t~l in X(t) is

— °'3 + χ(^ι,ι) = - + -TΓ- = — . We can rewrite X(f) as a sum over the
Ό o 12 12

set of all equivalence classes of connected ribbon graphs with valencies great-
er than 2 using the stratification (Theorem 2.2) . The codimension of the
strata correspoding to any graph Γ from Jί^ is equal to 6g -6 + 3n -
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Φ X± = Φ ^0(mod2). Hence the contribution of the graph Γ is equal to

(_ i)#*o t*χ0-#xίm We see that Xφ is an asymptotic expansion of
#AutΓ

We take in this formula the integral over an arbitrary sufficiently small
neighbourhood of 0, the asymptotic expansion when t -> + oo does not de-
pend on the choice of the neighbourhood. Further we will identify functions
differ by a function rapidly decreasing at + oo. The integral in the formula
above is equal to

f exp(ί(x + log(l -*)))Λc = f(l -jc)V*Λc = e' J y* e~ty dy
near 0 near 1

Using the asymptotic expansion for the factorial we obtain the formula

This formula is well known, it is the specialization of Penner's model to the
case of 1 x 1 -matrices, see [P2].

Notice that χ(^iΛ+1) = χ(Λβtn)χgtn9 χg,n+1 = χg,n - 1, hence

Denote by AQ(t) the function / log(Y) - t and by Av(t) the series

We can express ^(ί) using the function A(t):

^ (0 + ^1 (0/2! + ̂

= J A(x)dx-t\ogt + t-

...)- AQ(t) - A'0(t}/2
log /

—
2π

So, function A(t) satisfies the equation

One can check that the function A(x):= - - x + x — \ogΓ(x) is a solution
Δt dX

of this equation. From the asymptotic formula for logΓ(jt) we can deduce
immediately the Harer-Zagier formula
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