Commun. Math. Phys. 146, 259-275 (1992) Communications in

Physics

© Springer-Verlag 1992

Nonlinear Scattering with Nonlocal Interaction

Hayato Nawa!* and Tohru Ozawa?

! Department of Mathematics, Faculty of Science, Tokyo Institute of Technology, Tokyo 152,
Japan
2 Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan

Received September 11, 1991

Abstract. We consider the scattering problem for the Hartree type equation in R”

with n > 2:
ou 1
i " Au=(VeluP)u,
o 2

2
where V(x)= Y, 4;|x|7%, (44, 4,) #(0,0), A;€IR, y;> 0, and * denotes the convolu-
j=1
tion in R". We prove the existence of wave operators in H%* = {y e *(R");
|x|*y e LR} for any positive integer k under the assumption 1 <y;,y, <2. This
is an optimal result in the sense that the existence of wave operators breaks down if
min(y;,y,) £ 1. The case where 1 <y, <vy,=2 is also treated according to the

sign of 4,.

1. Introduction

We consider the scattering problem for the nonlinear Schrodinger equations of the
form

ou 1 2

lat+2Au (V*|u|*)u, (L.1)
where u is a complex valued function of (¢, x)eIR x IR" with n = 2, A is the Laplacian
in R, V is real function on R", and * denotes the convolution in IR”, The nonlocal
interaction (V*|u|?)u is known as the Hartree type nonlinearity and the evolution
equation (1.1) is derived from a multibody Schrodinger equation in the semi-
classical limit or in the self-consistent field approximation for a quantum field of
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bosons. A typical form of V is given by the sum of two potentials
V=V +V, Vix)=4lx|""

with 4;€R,(4,, 4,) #(0,0)and y, > y, > 0, which we treat in the sequel for simplicity.
Although there is a large literature on the Cauchy problem and on the
asymptotic behavior of the solutions of (1.1) (see [1, 2, 4-13, 15, 20]), there still
remains a gap between the lower bound of y, which ensures the existence of wave
operators for (1.1) and the upper bound of y, for their nonexistence. Up to now the
former is known as % (limit excluded) [6, 7, 10, 13, 30] and the latter as 1 (limit
included) [8, 13]. One of our purpose here is to fill this gap and prove the existence
of the wave operators in the lowest possible case y, >y, > 1. To state our results
more precisely, we introduce the following notations.
. 0 0 it i|x|?
Notations. 0, P 0 ox U=U() exp<2A), M = M(t) exp( > ), Jy
J()=U@)x U(—t)=x, +itd, = M@t)(ito )M (—1t), J =(J 4,.. .,J'{,), V=(0,,. o 0,);

(Un)(t)=U(®)o(t), (U™ "0)(t) = U(= 1)), (Je0)(0)=Ju(t)o(0), J“=k1:[ Ji xt= k]:[ X

for multi-index a = (a4, . .., a,); L denotes the Lebesgue space L”(]—R") or LR ® C"
with the norm denoted by |- || ,; H™* denotes the weighted Sobolev space defined by

H™ = {YeL"; |Y | ns= 11+ |xPy2(1 = A2y, < 0}, m,seR,

where &’ denotes the space of tempered distribution on R” (-, ) denotes the scalar
product in L? and various pairing of dual spaces of functions.
We now state our main results.

Theorem 1. Let 1 <y, <7y,<2 and n=2. When y, =2, assume in addition that
A,20and n23. Let keN ={1,2,...}. Then:

(1) For any ¢, e H** there exists a unique ¢ H** such that
IU(=0u(®)— ¢+ llg,—0 as t— oo, (1.3)4

where u is the unique solution of
t
u(ty=U(t)p — i_f Ut —1)(V*|u|Pu(t)dr, teR, (1.4)
0

with U~ 'ue C(R; HO¥),

(2) For any ¢_eH"* there exists a unique ¢peH®* such that
1U(=0u()) = $_llo,»0 as t—— oo, (1.3)_

where u is the unique solution of (1.4).

Remark 1. (1) Theorem 1 extends the previous results (see [6, 7, 10, 13, 20]) and is
optimal in the sense that if y, < 1, then for any nontrivial solution u, U(— t)u(t) has
no strong limit in L2 as t — + oo (see [8, 13]).

(2) By Theorem 1, the wave operators W, :¢ . — ¢ are well defined maps from H*
into itself for any keIN.
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Theorem 2. Under the assumption of Theorem 1, the wave operators W, are
continuous injection from H** to H**. Moreover, W ,. are isometric in the sense that
for any yeH®!,

Wl =¥, (1.5)

Remark 2. In the case of repulsive interactions 4;2 0, combining the result in [10]
and Theorem 2, we see that the scattering operators S:¢ _+— ¢, is well defined as
a map from H%?! into L? and isometric in the L? norm, i.e., || Sy ||, = || |, for any
YeH!,

In the case where y, = 2 and 4, < 0, we construct scattering theory in H%* with
small data.

Theorem 3. Let 1 <y, <v,=2,1,<0, and n= 3. Let Q be a nontrivial solution of
the elliptic equation

40 - Q=2(V,*1Q1*)Q (1.6)
such that

1QI3="inf {IWIZIVYIS+Vaxlyl?1y?) <0}

yeH(R™)
v#EO

Iy 121 vy 112
—_— . 1.7
verr®n (V2 x [y 1%, [¥]%) (7
V£EO

Let keNN. Then:

(1) For any ¢ eH®* with | ¢4 |, < Qll, there exists a unique ¢peH* satisfying
(1.3) 4 with the unique solution of (1.4) and | ¢l =+,

(2) Suppose in addition that A, = 0. Then for any ¢cH* with || ¢ |, < ||Q||,, there
exist unique ¢ . €L* such that || ¢, = | ¢+ |, and

[U(=u(t)— ¢4+ 1,-0 as t— =+ oo,
where u is the unique solution of (1.4).

(3) Suppose in addition that A, = 0. Then for any ¢cH®* with || ¢ |, < | Q|l,, there
exist unique ¢, eH®* satisfying (1.3), with the unique solution u of (1.4) and

Ipllz=1¢+ 1>

Remark 3. (1) Equation (1.6) is a time-independent version of (1.1) and arises in
various domain of physics. See [15-17] for the existence of positive solutions of
(1.6) and for the associated minimization problems. The existence of nontrivial
solutions of H*:° for (1.6) with (1.7) is proved by the same method as in [18]. The
standard argument shows that Qe.%.

(2) Theorem 3 clarifies the size of the ball where scattering theory for (1.1) is
constructed in the critical case y, = 2. In the case of Cauchy problem in the energy
space H'° for the nonlinear Schrédinger equation with the critical power
nonlinearity, the use of stationary solution in the description of the size of data can
be traced back to Weinstein [21]. See [15, 19, 22] for related results.

(3) The condition | ¢|l, < | Q| in part (3) is optimal. If ¢ = Q, then ¢e ) H**

k21
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and u(t) = "2 ¢ is the unique solution of (1.4), while U(—t)u(t) = ¢"/?U(—1t)¢ has
no limit in L? as t — + co.

(4) Let 4, =0. B,={yeH** ||, < Q|,}. By Theorem 3, the wave operators
W, :¢.+—¢ and the scattering operator S =W e W_:¢ _+—>¢, are well defined
maps from B, into itself for any kelN.

Theorem 4. Let A, =0, 1, <0, y, =2 and n = 3. Then the wave operators W, and
scattering operators S are homeomorphisms from B, to B,. Moreover W, and S are
isometric in the sense that for any Y€ B,

Wl =S¢l =¥ .. (1.8)
We consider the small data scattering in L.

Theorem 5. Let 1, =0, 1, #0, y, =2 and n = 3. Then there exists a constant g, >0
with the following properties. Let B(eo) = {WeL* ||, <é&o}.

(1) For any ¢peB(e,) there exists a unique solution u of (1.4) such that ue C(R; L*)
L2HEMR; L2+ 4 and |u(t)||, = || @ || . Moreover the map ¢+ u is continuous from
B(go) to L*(R; L*) L2+ @/m),

(2) For any ¢, €B(e,) there exists a unique ¢ € B(e,) such that
IU(=0u(®) = ¢4+ l2>0 as t— + oo, (1.9)+

where u is the unique solution of (1.4) given by part (1). For any ¢ _ € B(e,) there exists
a unique Q€ B(g,) such that

IU(=tu(t)—¢_l,—-0 as t——oo, (1.9)-
where u is the unique solution of (1.4) given by part (1).

(3) For any ¢eB(e,) there exists unique ¢ 4 €B(go) satisfying (1.9)+, where u is the
unique solution of (1.4) given by part (1).

(4) The wave operators W, :¢ . — ¢ and the scattering operator S= W e W_ are
homeomorphisms from B(g,) to B(e,) and isometric in the L* norm.

Remark 4. (1) The assumption on V is weakened as follows. It suffices to assume
that V is a real function on R” satisfying |x|? VeL>.
(2) If the initial datum ¢ takes the form ¢ = U(+s)¢ , , for some y , eL* with s >0

. . 4
sufficiently large, then |U(")¢ | (R, ;.- are sufficiently small, where ¢ =2 + -, so

that the solution u of (1.4) exists on R, (see [3] and the proof below). "
(3) There are related results for small data scattering for (1.1) in the spaces strictly
smaller than L?, see [13, 20].

Remark 5. Theorems 3,4 and 5 are optimal in the sense that the L? scattering theory
for (1.1), even restricted in the small data, is impossible in the case where A, =0,
A, <0and 0 <y, <2. Indeed, let Q satisfy

40— Q0 =2(V,xQI*)Q

and let ¢ (x) =¢'*""72Q(ex) for £¢>0. Then u,t)=e**/?¢, solves (1.1) and
u (), =€~ Q|l,—0as e~ 0, while U(—t)u,(t) = e***/? U(—t)¢, has no limit
inL?>as t— + oo.
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In Sect. 3 we prove Theorems 1 and 2. The main point of the proof is to solve
the integral equations
+

u)=U@t)p, +i _fw Ut — 1)V *|u|P)u(r)dr, teR, (1.10)

for given data ¢, at infinity. We solve (1.10) near ¢t = + oo by a contraction
argument. For this purpose we define a suitable function space and a metric in order
that the right-hand side of (1.10) defines a contraction map on that space. The choice
of suitable function spaces depends on how the solutions of (1.10) should behave in
the space and time, which is measured by the space-time integrability. We have
found the best possible choice of the admissible pairs for indices [1] for the space-
time integrability. With this choice, the space-time estimate of Strichartz type work
well to play a crucial role. We then extend the solution of (1.10) to the whole time
interval by the standard continuation procedure.

In Sect. 4 we prove Theorems 3 and 4. We make use of the pseudo-conformal
identity to obtain decay estimates of solutions to (1.4). The assumption | ¢ ||, <
| @1l leads to a priori estimates for || Ju(t) || ,. The method here is comparable with
that of Weinstein [21].

In Sect. 5 we prove Theorem 5. The nonlinearity in the assumption proves to
admit a special function space where (1.10) is solvable globally in time by a simple
contraction technique without any continuation argument.

2. Preliminaries

We collect here some preliminaries. Following [1,3], we say that a pair (o, p) of
indices is admissible if

| =
S | ==
|-
IIA
N =

and

QN

= 4(p).

[\S R
S

Lemma 2.1. (1) For every ¢cL? and for every admissible pair (o, p), the function
t—U(t)¢ belongs to C(R; L?) N L°(R; I?) and satisfies

UGN Lor;n = Cll @2,
where C is independent of ¢peL?.

(2) LetI beaninterval I = R and let t,el. Let (x, 0) be an admissible pair and let ve L'
. 1 1 1
(I L"), where — 4+ — = 7 + i 1. Then, for every admissible pair (o, p), the function
. K K
t— [ U(t — 1)o(t)dr = (Go)(t) belongs to C(I; L*)~ L°(I; L) and satisfies
to

16Ol o1 = Cllo ]l e

where C is independent of ve L (I; L%).

(I;L%)>
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(3) Let 1 =(ty,0) with tyeR. Let (x,0) be an admissible pair and let ve L (I; I%).

Then, for every admissible pair (o,p), the function tl—»fU(t—‘c)v(r)dt—(G)(t)
belongs to C(I; L*)n L°(I; I?) and satisfies

“ GU “L”(I;L”) é C H v ”L"'(I;L”')’
where C is independent of ve L' (I; LY).

For Lemma 2.1, see [1, 3, 14,23].
We now consider the Cauchy problem for (1.1) in the weighted L* spaces.

Proposition 2.1. (1) Let 1<y, <y, <2 and n22. When y, =2, assume in addi-
tion that 4,20 and nz3. Let keN={1,2,...} and toeR. Let ¢peL?* satisfy
U(—to)peH*. Then there exists a unique solution u of the integral equation

t
U(—tu(t) = U(—=to)¢p — i | U(=t)(V*|ul*)u(z)dr 2.1)
to
such that ueC(R;L*)nL; (R;L?) for every admissible pair (o,p) and that
“lueC(R; H**). Moreover, u satisfies

lu@l2=ll¢lls teR, 2.2
1Ju@) 115 + 2V *[u@)? [u@)?) = [ Ju() 15 + s*(V *|u(s) %, [u(s)|?)

+4jz(f/*\u(r)12,|u(r)|2)dr, t,seR, (2.3)

where v=V+%x-VV. Furthermore, the map ¢r>u is continuous from H,
to C(R; H*Y), where #,={pel* U(—to)peH**} with the norm ||¢||,=
NU(=to)@llo -

(2) Let 1<y, <y,=2,4,<0and n=3. Let Q be as in Theorem 3. Let keIN and
toeR. Let peL? satisfy U(—to)peH* and || ¢ |, < || Q|l,. Then there exists a unique
solution u of (2.1) such that ue C(R; L*)n L?. (R; I?) for every admissible pair (a, p)

loc

and that U~ 'ue C(R; H®*). Moreover, u satisfies (1.2) and
I Ju@)I5 + 2V #|u(@) %, [u@®)]?) = | Juls) |5 + s> (V| u(s)%, |u(s)]?)

+4[ oV +lu(@) u@)P)dr, tseR,  (2.4)

where 171 =V, +3x'VV,. Furthermore, the map ¢+ u is continuous from H, to
C(R; H*), where #' = {peL* U(—to)peH*X, | $l, < | Q|l2} with the norm ||| =
“ U(_to)d’ ”0,k'

Proof. Part (1) can be proved in the same way as in the proof of Theorem 5 in [11]
if we use the space-time estimate in the most general situation, as described in parts
(1), (2) of Lemma 2.1. We shall prove part (2). By the standard method we obtain a
unique local solution u of (1.1) such that ue C(I; L*) n L°(I; L*) for every admissible
pair (o, p) and U ~'ueC(I; 1%), where I = [t, — T,t, + T] for some T > 0 depending
only on || ¢||l,. Moreover, we see that u satisfies (1.2) and (1.4) on I. In order to
extend u to the whole time interval, we need a priori estimates for u. In a way similar
to [6], we see that || U(—t)u(t) ]|, is bounded uniformly for tel in terms of ||| ¢ |||,
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and sup || U(—8)u(?) |lo,,. Therefore we are reduced to obtaining from (2.2) and (2.4)
tel

on I the following a priori estimate
sup IU(=0u®)llo,, < CUlISM,)- (2.5)

By (2.2) and (2.4) on I and (1.7), we have
1Ju@ 13 = 1xU(=to)@ |15 + t3(V*|u(to) 12, |u(to) 1)

— (V| M(=tu(®) %, IM(—tu(t)|*) + 4jr(?1*|u(t)|2,|u(r)|2)dr

to

2
<|lpl2 + I'I'Z'['linxv(—tow 124 CloI4 " [xU(=to)p 132"
2
2
A2y sy 1z 4 chg s Loy
TIE

+4f1(171*|u(z)[2,|u(z)|2)d1, tel\{to},

so that, for any ¢ >0
II¢II§> 2 ( ll¢ll§> 2 4= 91,2 91)2/2 = )
1— J <|o4t¥l2 C Y1p2-n ”n
< TIE [Ju@®; = +||Q||§ Nells+ (Clellz™ "™ ™)
+CE @55 )7 e | Ju®) 113

+4 } t(Vyxu(@)|?, |u(@)P)dr,  tel\{to}. (2.6)

to

Thus the required estimate (2.5) can be obtained in the same way as in the proof of
Lemma 3.5 in [11]. The remaining statement follows by the standard method.

3. Proof of Theorems 1 and 2

Proof of Theorem 1. We shall prove part (1) only. One can prove Part (2)
analogously. We first consider the case k = 1. Let p; and 0; satisfy

1 1 /1 11
) ';e(V ) _>, (31)
p; 0; \2 n2

J

1—-y) 1 1
pp = Lty (.2)

n p; 0
Let ¢; and ; satisfy

2 2
—=0(p;), —=4(0)),
o K

j J

where 6(q) = g — g Then (o}, p;) and (k;, 0;) become admissible pairs.



266 H. Nawa and T. Ozawa

For R>0and T = 1, we define

X= {ueC([T o) [2)n ﬂ LT, 00; L), JueC ([ T, o0); ) A ﬂ LT, o0; L),

j= j=1
2
9]l oo, 0322y F 1| o, co; 12 F Z Nl pojer. s Loy + NIl Losr, 5 10) = R}'
j=1

Then X is a complete metric space with respect to the metric d given by

2
AW, 0) = =0l por o2y F 2, 18— 0llpoyr 0107 U VEX. (3.4)
j=1

For ¢, eH%! and ue X we define ®@(u) by

(@w))=U@t)p, +1i j Ut —t)(V*|uPu(t)dr, t=T. (3.5)
t
2 : 1 1 1 1 1
Let p; and g; satisfy — =2 — Y <— + —) and —=1- (—— + —). By the Holder
j n i Pi 4; 0; Pé‘ :
inequality and the Hardy—Littlewood—Sobolev inequality with —=—+1 -~
Dj 4; n
| Vylulull, < 1 Vilull, lull,, < Cllul2 lul,,. (3.6)
1 1 1 1 . .
We see from (3.2) that — — — < — < —. Therefore we use the Gagliardo—Nirenberg
p;

inequality to obtain
lull,, < CIIVM(—=tull5%) | M(—tju|2 2@
= Ct 9P ” Ju ”g(pl) ”u”é a(pj)
< CRt~%09, a7

1

1 1
By Lemma 2.1, (3.6), (3.7) and the Holder inequality with — = — — —,
Vi K G

” (D(u) ”Lm(T 0;L2) + Z ” Q(u) ”L"J(T o0; Ley)

l/x;
(I (V% ul*)u H"Jdt>

1/vj [/ © 1/a,
(fll“”zv"dt> (illu”gdl)

SClgsla+C ) T 2R3, (3.8)

i=1

=Cllg.l.+C

~.
[

) ||M~ ||[\/]m|

=Clg+llz+C

-

|
where we note that (3.2) implies —>2—220 and 2v;6(p;) > 1. Putting ¢;=
Vj Vi
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1
20(py) — - > 0, one can rewrite (3.8) as
j

J

2 2
I @@ wer,miry + 2 1 PO esroon SClls 2+ C Y RPT™%. (3.9)
ji=1 =1

Next we have
J((V*|u?u) = M(&)@V) (V% | M(—t)u|*(M(—t)u)
= 2V, *(3(@Ju)))u + (Vx| ul)Ju,

and therefore in the same way as in (3.6),

1TV ulP), S 20V S@I gy el + Vw1, 1 ul,,

< Clul2 1 Jull,,. (3.10)
1 1 -1 1 1 1 1
where we note that (3.1) implies ___>y,_>0 and that ———= <—+—> -1+
” 0, pj 2 0, p; \p; b
> 0. Letting J act on (3.5), we proceed as in (3.8) and obtain from (3.10)
n
2 2
1T @ | e mizny + & 1TPU ] osr iz S Clxdal+C Y RPT™5. (311)
j=1 1

j=
Let u,veX. As in (3.10), we have
I(Vixlul®yu = (Vix[o*)oll,

S Vi@ =Dl g 1D, + V@ =0y T,
+IVixlolll, lu—oll,
SC(luly, +lolZ) v —wll,,, (3.12)

so that in the same way as in (3.8),

2

I @) — PO Lxr,00:12) T ; | @) — PO Los7, ; Ly

2 o " 1/vj © 1/vj
=C} <<I ||u||p:’dt) +<j ||U||,2;,v1dt> >'||“_v”w<r,oo;w)
i=t\\T1 T

2
SCR*Y T™¥|lu—v I o5t o0 103y
=1

R 2 1
We choose Cll¢ |, , gi and CR? Y, T‘”igi, we see that @:ur—>®(u) is a

j=1
contraction on X and hence @ has a unique fixed point u. u satisfies

u@®)=U(t)p +ioj9 Ut —1)(V+uPuk)dr, t=T, (3.14)
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which implies as before
IU(=0)u®)— ¢+ Il + I x(U(—)u(®) — ¢.) I,
=[u@® - U@+ |2+ I Ju@®) — U@®)x¢. ||

t — 1)V *|u|?)u(t)dt t — )J((V*|u|>)u)(t)dt

2 2

2

SCR®Y t7%-0 as t— +oo.
j=1

Moreover, it follows from (3.14) that for all t = T,
t
U(=t)u(t) = U(— T)u(T) —i | U(—1)(V *|u|*)u(r)dx. (3.15)
T

Since U(— T)u(T)eH®!, Proposition 2.1 proves that the solution u of (3.14) extends
to all times and satisfies (3.15) for all teR with U~ 'ue C(IR; H®').

We now prove the uniqueness. It suffices to prove that if u satisfies (1.4),
U 'ueC(R; H*'), and

IU(=u®)— ¢+ llp,, >0 as t—oo, (3.16)

then ue X for some R, T > 0. By (3.16) we have u, Jue L*(T, co; L?) for T sufficiently
large. As in (3.7) we see that for any t > T,

||“||,,j S Ct™%0IC | Ju |32 | u|;~ %) < CRe =207, (3.17)
2

which implies ue ﬂ L°i(T, oo; L#%). By Proposition 2.1, Jue () L (IR; L*?) and for
any t> T, =1 =1

Ju(t)=U(t — T)Ju)(T) —i i Ut — )J((V *|u|?)u)(z)dx.
T

In the same way as before, we obtain from (3.17),
2 2

Z 1Tt oser 109 = CIJu)T) 2 + C Z T Jull Lojer g Losy>

j=1 j=1

and therefore for T large enough

2
Z “ Ju ”ij(T,;;uj) .§ C “ Ju(T) “2,

j=1
2

where C is independent of t. By the Fatou lemma, Jue (1) L°(T, oo; L#%). This

proves ue X and hence the required uniqueness. =1
We next consider the case k = 2. For R>0and T = 1, we define

2
X, = {“EC([T, ), LA () L°HT, co; LF);
j=1

2
JueC,([T, o) L*) () LT, co; L), |a| S k,

j=1
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2
Z <” J%u ”L‘”(T,oo;Lz) + Z ||J"u ”L"f(T,oo;ij)) é R}_
la| Sk j=1

Then X, is complete with respect to the metric d given by (3.4). For ¢, e H** and
ue X, we consider @(u) given by (3.5). We prove that @:ur> @(u) is a contraction
on X, for some R and T. Let « satisfy |a| =1 < k. We have

TV *|ul?yu)(z) = (V *|ul2)%u + (V +@T*u))u + (— DAV = “u)u

(__ l)lanla! _
+ Y (VM)

t+aztas=
“enaasra |1 !
j=1
so that in the same way as in (3.10),

15V |l *)us) ly = Cllull, I Joull,,, + Ca +a2+a . FT=ull,, 1 T2ull,, 1 T*u -
lau,ai,a:;;a

(3.18)
By the Gagliardo—Nirenberg inequalities, for f with || <1—1,
a(p)
I T%ull,, < Cllull,‘,j’“"”< > 1J7u II,,J.> gl#1 = 1alB), (3.19)
IyI=1
b(B)
1 J%ull,,, < Cllul ;,;W)( Y 1% n,,,.) g1 =100, (3.20)
IyI=1
where
18l
n
a(p)= l —
—+1-— ﬁ -
n 2n 2p; 20;
and
n n 2p;
b(B) = J J
(B) ] 3 1

We note here that a(f), b(B)e[0,1) if |f| <1—1 and that a(x;) + a(a,) + b(as) =1

if oy +a,+az|=1 and |o,|,]a,],|az] £1— 1. Collecting (3.7), (3.18), (3.19) and

(3.20), we have

X IV lulPll, < Cllull, 3 177u],, < CR* 720D 5 || Jul|, . (3.21)
J lvl=1

el =1 lyl=1

This leads to

2
Z ( ” Ja@(u) ”L°°(T,oo;L2) + 'Zl ” Ja(p(u) ”Ll’j(T’oo;Lﬂj)>
j=

lal sk
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2 o 1/vi / 1o,
=< C||¢+ ”0,,‘ + CR? Z Z <j’ t—Zvjé(PJ)dt> <j' ”Juu ”Zjdt>
T

j=1lalsk \T

2
SClesllo+CR> Y T75.
j=1

J

Therefore @ maps X, intzo itself and is a contraction in the metric d provided

R 1 .
Cloilors ) and CR* ) T™% < 3 This shows that @ has a unique fixed point
j=1

uin X,. Exactly as in the preceding estimate, we have

2
NU(=u@®) =4 o, SC Y 17950 as t—co.

j=1
The remaining statement of the theorem follow in the same way asin the case k = 1.

Proof of Theorem 2. We consider the + case only, since the other case can be
treated similarly. We first prove that W, is injective. Let ¢,y eH®* satisfy
Wo(¢p+)=W_, ()= ¢. Let u be the solution of (1.4). Then

[@+ —¥allop S NU—ul) — 4 llo,
+IU(=tu(®) =¥+ o, =0 as t—oo0.

This proves ¢ ¢ =, as required. We next prove that W, is continuous from H%*
into itself. Let ¢,y ,eH%* and let p=W_ ¢, y =W, . Let u and v be the
corresponding solutions of (1.4) with initial data ¢ and i, respectively. By the
argument in the proof of Theorem 1, there exist T = 1 and R > O such that u, ve X,

Jut)=U(t)x*¢, + iof Ut — )J*((V *|u>)uw)(r)dt, |a| <k,
Jot)=U@)x™ ;. +1i T Ut — 1)J*((V *|v|>)u)(t)dz, |a| <k,

Subtracting the equations above and estimating the resulting equation in X, in the
same way as in the proof of Theorem 1, we obtain for any t = T,

2
Z <”Ja(u - U) ”Lm(g,w;Lz) + Z “ Ja(u - U) ”Laj(,,oo;uj)>
lal <k i=1

2

SCles —¥illop+CR? Y 3 791U =0l o000 (322)

lal =k j=1

By (3.22) there exists to = T such that

j=

2
Z <|| J*u —v) “Lw(ro,oo;LZ) + Z [ J*(u — v) ”L"J(to,oo;LPf)>
j=1

lal <k
<2C1¢s e o (3.23)

Proposition 2.1 and (3.23) imply that W, is continuous from H%* into itself. We now
prove (1.5). Let yeH®?, let ¢ = W,y and let u be the solution of (1.4). Then
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lu@®1l; = ll ¢, for any teR. By (1.3),

@l — Il =11U(=0u@ ], — 1]
SIU(=u®) =y ll,»0 as t—oo,
which proves (1.5).

4. Proof of Theorems 3 and 4

271

In view of Proposition 2.1, part (1) of Theorem 3 follows in the same way as in the
proof of Theorem 1 and part (2) follows in the same way as in [10]. We shall prove
part (3) of Theorem 3 and then Theorem 4 in the + case. The other case can be
proved analogously. Let ¢ H%* satisfy || ¢ |, < || Q|l, and let u be the solution of
(1.4). We shall show that J'ue L*(R . ; L) n L’(R , ; L°) for all o with |a| < k, where

4
oc=2+-.
n
We note here that

2 5.
g

By Proposition 2.1, u satisfies
lu®)ll, =1l  teR.
1Ju@) 13 + (Vo x[u@) P, [u@®)?) = x5, teR.
By (1.7), (4.1) and (4.2), we obtain
[Tu@® 13 = 1 x¢ 13 + (Vo * | M(—t)u(®)?, IM(—tu(z)|?)
13

<lx¢l3 +mllJu(t)|I§, t#0,

and therefore
112
1ol

. 2
As in (3.7), for any qe<2,—nz:| we have by (4.1) and (4.3),
n —

-1
[ Ju@) |3 < <1 ) Ix¢|2, teR.

lu@)l, < Ce7%9, 1>0.

.11 1 .
Since - — - < — <2, as in (3.21), we have
n o

2 NIV uPw)ll, < Cllul? Y 1%l
k

la] <k laj =

1 1 1 1
where - =-——+
p 2 n n+2

. By Lemma 2.1, (4.4) and (4.5), we estimate

Ju(t) = U(r — T)(J*w(T)) — ii Ut — s)J*((Vy *|u|?)u)(s)ds
T

4.1)
4.2)

4.3)

4.4)

4.5)
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in L®(T, t; L)~ L*(T, t; L°) for t > T > 0 to obtain

Y (It ey + 18l i)

lal <k
t 2/(n+2)
=C Z (” Jw(T)ll, + <§ s_(n+2)6{d)ds) | Jou "u(r,;;u))
lal sk T
SC Y (IJUuT)|l,+ T2 Jou| o ) (4.6)
lal Sk

Choosing T > 0 large enough, we have

Y Ul o ipzy + 180 e ii) S C X 1TUT) 5. 4.7

|al <k lel <k

Since the right-hand side of (4.7) is independent of ¢ > T, the Fatou lemma proves
that J%ueL*(T, oo; L*) N L*(T, c0; L°) for all a with |a| < k and therefore our claim
follows. In the same way as in the proof of Theorem 2, it follows that for any a with
|| £ k the map ¢+>J° is continuous from H°* into L*(R , ; L>)nL°(R ,; L°). By
(4.6), we have for t > T > 0,

[U(=1u(r) = U(=Tu(T) llox
S C| IZ<k I x*(U(—u(r) = U(=Tu(T))
<Cc Y
lal Sk

< CT 2= 1itn+2) z ”Jau”L"(T,oo;Lﬂ)—)O as T — 0. 4.8)

lal <k

jU&—@ﬂ«hﬂMﬂm@M

2

This implies that there exists a unique ¢, e H** such that
[U(=tu@®)—d4ll,,,—0 as t—+ oo, 4.9)
which in turn shows that Range (W)= H%* Moreover,
¢+ =U(—tyu(t) —i [ U(=1)(Vo*|ulPu(r)dr. (4.10)
t
Since ¢+ J%u is continuous from H°* into L°(R , ; L?) " L°(R . ; L°) for any a with

|oe| £ k, we see from (4.10) that ¢+ ¢ .. is continuous from H*into itself. This proves
that W, is a homeomorphism from H%*into itself. Therefore (1.8) follows from (1.5).

5. Proof of Theorems 5

4 . .
Let 0 = 2 + — as in the preceding section. For Ry = R > 0 we define
n

Y ={ueCIR; L) N L°(R; L7); |t || oo, 2 < Ros 14 o1y < R}

Then Y is a complete metric space under the metric d(u,v) = |u —v|| LeR:L) FOT
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¢el? and ueY, we consider @(u) given by

t
(@) (@)= U(t)p —i [ Ut — 1)(Vo*|u|*)u(r)dr. (5.1)
0
As in (3.6), we have
I(VaxlulPul, < Cllullllul,
SCllul3~ @ u M+t < CREM u| M T, (5.2)
1 —
where1 = L1 + —1—, where is decomposed as — = 2 + ! 2/n‘ By (5.1)and (5.2),
p 2 n n+2 p no 2
we have

I @) | oqrsry < N D12 + CHV2* 0]t Lo,
SHglz+ CRE™ M lulLr
< ll, + CRZ~ MR *&m (53)
and
| P orsrey S NUCIP Nl ooy + C V2 # 4Nt ]| o,y
< ” U()d’ "L"(]R;L") + CR%“W"’RI +(4/m). (5.4)
For u,veY, as in (3.2) and (5.2), we have
(Vo *|ul®)u— (VaxloPoll, = Clul? + ol llu—vll,
< CR3™ (| ull#" + o)) |u— 0] (5.5)
By (5.5),
| @(4) — PO or; 1oy
SNV *ulPyu— (Vox o)l Lo,y
< CRE™“M(lullfhtmois + 101 2R o) 18— 0l ooty
< CR(Z, =(4/m) R4/n lu—v "U(R;La)‘ (5.6)

R 1
We now choose || ¢ ||, < 39 and CR}~#MR*" < 5 with R €(0, R,) sufficiently small.

R
U LomiLe) = > it follows from (5.3), (5.4) and (5.6) that @:u+> @(u) maps
Y into itself and is a contraction in the metric d. By Lemma 2.1, the condition
R
TUC)S | Lomiz = 5 is always accomplished by choosing || ¢ ||, to be small enough.

We have thus proved that for any ¢eL? with | @], sufficiently small, @ has a
unique fixed point u in Y. Similarly, we see from (5.6) that ¢+ u is continuous
from a small L? ball centered at the origin into L*(R;L?)nL°(R;L°). By
approximating ¢ by sequence in H' in the same way as in [1, 14], we conclude
from the continuous dependence above and from the L? conservation for the
corresponding H' solutions that | u(f)||, = || ¢|l,. This proves part (1). We next
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prove part (3). Let ¢ and u be as above. Fort ¢t > s, we have
t
U(—tu(t) = U(—s)u(s) — i [ U(—1)(V,*|u|*u(t)dr, (5.7

and therefore by (5.2),

1U(=tju(®) — U(=s)u(s)ll2 = iU(t —1)(Vox[ul*)u(s)ds

2

t 1-0
éclld’llﬁ_w"’(III u(f)ll§d1> -0 as t>s—oo.
s (5.8)

This proves part (3). We proceed to part (2). We treat the + case only. The other
case can be proved similarly. For ¢ , €L? and ue Y we consider

(W) =U(t)p + + i}o U(t — 1) (V| ul?)u(t)dx. (5.9

In the same way as in the proof of part (1), we find that @ has a unique fixed
point in Y if | @, ||, is small enough. As in (5.8), that solution u satisfies (5.7) and
the wave operator W, is given by

G=W.d. = ¢, +i] U—)(VyxluP ). (5.10)
(4]

This proves part (2). Part (4) follows in the same way as in the proof of Theorems 2
and 4.
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