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Abstract. The signatures of the inner product matrices on a Lie algebra's highest
weight representation are encoded in the representation's signature character. We
show that the signature characters of a finite-dimensional Lie algebra's highest
weight representations obey simple difference equations that have a unique solution
once appropriate boundary conditions are imposed. We use these results to derive
the signature characters of all A2 and B2 highest weight representations. Our
results extend, and explain, signature patterns analogous to those observed by
Friedan, Qiu and Shenker in the Virasoro algebra's representation theory.

1. Introduction

The theory of non-unitary highest weight Lie algebra representations is still
relatively undeveloped. An interesting new approach was suggested by the work
of Friedan, Qiu and Shenker (FQS) who, in one of the foundational papers [1]
of conformal field theory, used the Virasoro algebra's determinant formula [2,3]
to analyse the unitarity of its highest weight representations. They established the
unitarity of a continuum of the representations, and the non-unitarity of all other
representations except for an infinite discrete series. Drawing on evidence from
statistical physics, as well as computation, they conjectured that the representations
in the discrete series are unitary. This was later proven by another method [4].

The relevance of FQS's work to the representation theory of finite-dimensional
Lie algebras is not immediately obvious, since the unitary highest weight
representations of these algebras can be classified simply by studying the induced
representations of the embedded su(2) subalgebras. However, as FQS recognised,
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the emergence of the discrete series suggests very strongly that there are definite
patterns in the dependence of the inner product matrix signatures on a representa-
tion's location amongst the vanishing curves, and that the unitarity of the discrete
series can be understood as a consequence of these patterns. Thus one should look
for results that describe and explain these patterns and hence give explicit expres-
sions for all inner product matrix signatures of all highest weight representations.

Here, we carry this through for the Lie algebras A2 and B2. (These are the
simplest non-trivial cases, since the relevant vector spaces for Ax are one-
dimensional and their inner product matrix signatures are easily calculable.) We
obtain explicit (and intriguingly simple) expressions for these algebras' signature
characters (generating functions in which the inner product matrix signatures are
encoded). Our arguments apply to many other cases of interest, including all finite-
dimensional Lie algebras.

2. Notation and Basic Results

We follow the conventions of Kac and Kazhdan [5] with modifications. Let g be
a complex semisimple Lie algebra of rank r with symmetrisable Cartan matrix
A = (αy), that is, A = DAsym, where D = diag(d1 ?... ,dr), Asym = (a^m) is symmetric
and the dt are non-zero. Let h be a Cartan subalgebra of g\ let {a l 9...,a r} be a
basis of simple roots with respect to h;Δ+ the set of positive roots with respect
to this basis; 4_ the set of negative roots. Define the positive and negative root

ί )ί )
semilattices to be Λ± =< ± £ w ία ί:n ieZ+ >. Let ga be the root subspace of g
corresponding to the root α, and define the subalgebras n+ = £ #α, n_ = £ ga,

aeΔ+ <xeΔ-

so that g = n_ ©/i© n + . We choose a set of generators {£α., E_ α i , H^: l^i^r} for g;
here {ff l 5...5ffΓ} is a basis for h, and E±a.eg±ar The Killing form (,) on g is the
unique symmetric invariant non-degenerate bilinear form on g with the property
that (Hh Hj) = α^Jm. The Killing form, restricted to /z, induces a form on h* which
we also denote by (,). We have (α i5 α,) = α*Jm and atj = 2(αf, <Xj)/(<xh αf). Finally, we
define peh* by (p, αt ) = ^(α f, αf) for αt a simple root. The generators obey the
relations

Denote by (7(α) the universal enveloping algebra of the Lie algebra a. For
*, the Verma module representation V(λ) of g is the representation of g

containing a vector |A> such that

0, Hι μ > = ^ ( α ^ μ > , (2.2)

and such that if x,^G(7(n_) then xμ> = yμ> only if x = y. We have the decom-
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position V(λ) = 0 V{λ)μ9 where

(2.3)

We consider below representations V(λ) for λ such that (αί5 A) is real.
Define an adjoint map f on g to be the unique algebra anti-automorphism

i:g-+g such that {H$ = Hi9(Eaf = £_ α ι and (JEL .̂)1" = Eat, and extend this to an
algebra anti-automorphism on U(g), also denoted by f. The Shapovalov form on
V(λ) is the unique bilinear form <, > such that <Λ, λ} = \ and <xΛ, yi> = <Λ, (x)1")^) =
<(j)fxA, λ) for x, yG 1/(0). We have that < K ( ^ , K(2)v> = 0 if μ Φ v. Denote by Mμ{λ)
the real symmetric matrix defining (in some choice of basis) the inner product

r

restricted to V(λ)μ. For λeh* we write λ = — £ Aιαf.
ι = l

Now the character of K(/ί) can be defined as

l Σ (x 1)μ l-(Xr)μ r . (2.4)

In physicists' notation, defining the fundamental co-weights h^h so that α /̂î ) = δij9

letting xf = exp(-iβf), 0 = (0!, . . . , θr) and H = (hu...,hr), and writing Θ H=Σ ethh

we have I = 1

χ(K(λ)) = TrK ( λ )(e i β | f ) . (2.5)

By analogy, the signature character of V(λ) is defined as
i λ l λ X J^. .ίx.r, (2.6)

μeΛ-

where sig(M) denotes the signature of the matrix M; that is, if M = SDST, where S is
non-singular and D = diag(+ 1,..., + 1,0,...,0, — 1,..., — 1), then sig(M) = tr(D).
This can be rewritten by defining a linear operator P on V(λ) with the property
that if vεV(λ)μ is an eigenvector of (Mμ(λ)) with eigenvalue av then

Pυ = sgn(α>, (2.7)

where the sign function is given by

ίl for t > 0,

sgn(ί) = | θ for t = 0, (2.8)

I - 1 for t < 0.
Then

We shall work with normalised signature characters

σ(λ) = e-iθH{λ)χsig(V(λ)). (2.10)

The fundamental result we shall need is Shapovalov's determinant formula [6,5],

det(Mμμ)) = C Π Π (αα + p ) - π ^ , (2.11)
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where if the weight decomposition of U{n_) is given by 0 L / ( n _ ) μ then

= dim((7(rc_)μ), and C is a non-zero basis-dependent constant. We call the
planes P(n, α) = {λeh*:(oc9 λ + p) = n] the Shapovaloυ vanishing planes of g.

3. General Properties of Signature Characters
for Finite-Dimensional Lie Algebras

For the remainder of the paper we take g to be a finite-dimensional Lie algebra.
Since the matrices Mμ(λ) are real and symmetric, we have that

P(μ)

sig(Mμ(λ))= Σ sgn(ί7 ), (3.1)

where {t1,...,tP{μ)} are the eigenvalues of Mμ(λ). It follows that sig(Mμ(λ)) is
constant on any connected region of h* in which άet(Mμ(λ)) Φ 0, and in particular
that σ(V(λ)) is constant on connected regions R in which det(Mμ(/ί)) # 0 for any
μe/l_ and any λεR. Our first result is the observation that the change of the
signature characters between two such neighbouring regions is given by a simple
difference equation.

We consider a point λoeh* lying on precisely one of the vanishing planes
P(n0, α0). Choose a basis {fcf: l^i^r} for Λ* such that (κi9 α0) = 0 for 1 ̂  ί ^ (r — 1)
and τcr = α0, and define coordinates ( ί l 5 . . . , ίr_ l 5 ε) = (i, ε) for Λe/z* by the equation

λ = Ao -h Σ tiKi + εκr. We write V(L,ε) for F(A) and \t,ε} for |A>, and we adopt

the convention that any vector written in the form w(l, ε) belongs to K(i, ε). Define
the neighbourhood N((5) of Ao as the coordinate region with | i | < δ and |ε| < δ,
and choose δ0 sufficiently small such that N(δ0) intersects no vanishing plane other
than P(no,αo). Shapovalov's formula implies that, for | i | < δ0, the Verma module
V(ί,0) contains a unique descendent highest weight vector ι;(i,0)eK(i,0)πoαo. We
can express v(t,0) as α(i)|i,0>, where a(£)eU(n_) is defined for | i | < δ0. Define the
vectors υ(t,ε)eV{t,ε)πoαo by v(t,ε) = a(t)\t9ε>

If μ + noaoφΛ_ then the inner product matrix Mμ(λ) is non-singular in N(δ0)
and its signature is constant throughout the neighbourhood. Now we consider
Mμ(λ) for μ such that μ + n o a o e/i_. Reducing ^ 0 if necessary, we choose
a^Uin^^ for 1 g ί^ P(μ + πoαo) and ^ G(ί7(π_))μ for
Ϊ ^ P(μ) such that, setting

l^ε) for

the set {^/(i,ε): 1 ̂  i ^ r} forms a basis of K(ί,ε)μ throughout N(δ0).
Now

<ϋi(Lfi),ϋj(Lε)> = O(ε) (3.3)

for 1 ̂  i ^ P(μ 4- noαo) or 1 ̂  ^ P(μ + noαo). Thus in this basis the inner product
matrix Mμ has the form

M' X

Xτ M"
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where

(M'^^Mij for l^i9j^P(μ + n00L0)9

(M'% = M i + p ( μ + B o β o ) J + p ( μ + n o α o ) for 1 S U j ^ P(μ) - P(μ + noao\

and M'(t,ε) and X{L,ε) are 0(ε) in the neighbourhood N(δ0).
For (ί,ε)EJV((50), Eq. (2.11) implies that

det(M(ί,ε)) = A(t)εP{μ+noao) + θ(ε P ( / l + " o α o ) + 1) (3.6)

for some non-zero function A(ί). As M"(ί, ε) = M"(£, 0) -f- O(ε) and det(M(i,ε)) is
non-zero for (ί,ε)eiV(<50) if ε # 0 , M"(i,0) must be non-singular. Hence, again
reducing δ0 if necessary, we can assume M "(ί, ε) is non-singular throughout iV(<50).

Thus there is a new basis in which Mμ has the form

M'-X{M"Γ'XT 0\
0 M 'J

Likewise M'"(t) = lim - M'(ί, ε) must be non-singular. Hence, for sufficiently small ε,
ε-»0 ε

sig(M(t ε)) = sig(M U ε)) 4- sig(M"(ί, ε))

= sgn(ε) sig(M'"(£)) + sig(M"(ί, 0)). (3.8)

Now, the Poincare-Birkhoff-Witt theorem implies that (a^a^ can be expressed
as a sum of products YJrksktk with rkel/(n_), skeU(h) and ίfcet/(n + ). Given such

/c

an expression, we define H^ = ^ sfc. The definition is in fact independent
{k:rk = tk=l}

of the expression chosen, since U(n±) and U(h) are mutually disjoint subalgebras.
Now if aen+ then av(£90) = 0 and so av(t,ε) = O(ε). Hence

(i .α, ε), t / i , ε) > = <»(!, ε), HijV(l, ε) > + O(ε2). (3.9)

Thus

εM"\t) = (υ{uε\ v(L,ε)}Mμ+noao(λo - noao) + O(ε2), (3.10)

where the latter inner product matrix is taken in the basis

Wi\λ0 - n0θί0)Ά ^ i g P(μ + noαo)}

This establishes the following result:

Theorem 1. Let g, h, λ0, be as above. Then, in the notation previously defined

lim σ( ί ,ε)- lim σ(ί,ε) = 2sgn(<ί;(ί,ε),ι;(ί,ε)>|ε = o + )^" i M o θ H ( α o ) σ(/l-n o α o ) .
ε-+0+ ε^O-

(3.11)

This, the main result of the section, we refer to as the signature character
difference equation. We also have, from Eq. (3.8):

Lemma 2. Let g, h, Ao, be as above. Then, in the notation previously defined,

( h' ( ) lim σ(ί,ε) ]. (3.12)
O /
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The next result requires some preliminary notation. Suppose that a formal
power series valued function f\R-*<L[{e~iθ\...,e~iθrY\ is defined on a subset R
of h* that includes almost all the points tp and — tp for real t. Define functions
fa on R by f(λ) = £ fa(λ)jθ'Hia) for λeR. Then we define lim /(A) to be

aeΛ- ^ ° °

Σ lim fΛ(tp)eiθ HM, (3.13)

whenever these latter limits exist. We define lim f(λ) similarly. A partial ordering
λ~* - 00

is defined on Λ_ by setting α < β if β — OLGΛ + .

Theorem 3. Let g be a finite-dimensional Lie algebra of rank r; let h be a Cartan
subalgebra of g\ let R be the subset of h* comprising all points λ for which no
Shapovalov determinant det(Mμ(λ)) vanishes. Let f:R-+<E[[e~iθ\... ,e~iθr]'] be a
power series valued function on R with the properties that

(i) lim f(λ)= lim σ{λ);
λ~> — 00 λ~> — CO

(ii) lim f(λ) = lim σ(λ);
λ~κχ> λ~*00

(iii) if λ0 is a point on precisely one of the Shapovalov vanishing planes P(no,αo),
and (ί,ε) are the coordinates defined above in a neighbourhood N(δ) of λ which
intersects precisely one vanishing plane, then f obeys the equation

lim /(i,ε) - lim /(i,ε) = ± l e ' ^ ^ W o ~ "0^); (3.14)

(iv) Each function fa is constant on the union of any connected components of R that
are not separated by any vanishing plane P(n, β) with nβ < α.

Then f{λ) = σ{λ) for all λεR.

Proof For suppose / φ σ. Let α be such that fa{λ) φ σa(λ) for some λeR and such
that if fβ(λ') φ σβ(λ') for some λ'eN then β ̂  α. We have the component form of
Eq. (3.14):

lim /α(i,β) - lim /β(tfi) = ± 2fa+nojλ0 - noao). (3.15)
ε-^0+ ε-^0"

Now, since lim fa(λ) = lim σa(λ), there must be some point λ0 that lies on precisely
Λ-» oo λ-*oo

one Shapovalov vanishing plane P(no,αo) and such that in the neighbourhood of
λ0 the functions fΛ and σα satisfy Eq. (3.15) with opposite signs on the right-hand
side. Since the same sign holds for all components of / crossing the plane P(nO yαo)
at λ0, and since properties (i) and (iii) imply that fQ(λ) = 1 for all λ, we have that

lim /πoαoU,ε) - lim /noαo(ί,ε) = ± 2, (3.16)
ε-^0+ ε->0-

where the sign on the right-hand side is the opposite to that in the analogous
equation satisfied by σπoαo. So since fβ = σβ for all β < α, we must have that n0oc0 = α,
and that / satisfies Eq. (3.11) across all sections of all vanishing planes P(n, β) such
that nβ < α. Now fa(λ) = σa(λ) asymptotically as λ -> ± 00. Moreover, by definition,
fΛ and σα are constant on any set of regions in R that are not separated by a plane
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P(n, β) with nβ < α. But a well known property of the root systems of finite-
dimensional Lie algebras is that if α and β are positive roots and m and n are
positive integers such that ma = nβ then m = n and a = β. Hence P(n0,oc0) is the
only vanishing plane P(n,β) such that nβ = noao. But now we have established
that fa = σa for all points in R above P(no,αo), and likewise for all points in R
below P(no,αo). Thus fa = σα throughout R, which is a contradiction.

We now obtain explicitly the asymptotic signature characters for all semi-simple
finite dimensional Lie algebras g.

Lemma 4. Let σ(λ) be the signature character of the highest weight representation
V(λ) of the Lie algebra g. Then, with the above definitions,

limσ(Λ)= f ] {l-e~ie'H{β)Yι,

lim σ(λ)= Π ( l + e " 1 ' ^ ^ ) " 1 . (3.17)

Proof. By the Poincare-Birkhoff-Witt theorem, we may take a basis of U(n_)μ

to be lexicographically ordered monomials in the lowering operators of g. Each
monomial corresponds to some ordered partition {/?} = {βi,>> ,βk} of μ in terms
of negative roots. We denote the set of such partitions by Π(μ). Take generators
Eaega. We consider the inner product matrix Mμ(λ) in the basis {vf(A): 1 ̂  i g P(μ)},
where the vector vt corresponds to the /th partition {βί,...,βk} of μ, and

l>ι — I-Jβ\ /3k' ' ' V ̂  ί O /

As λ^> ± co,Mμ(λ) is asymptotically diagonalised, in the sense that

P(μ)

lim sig(Mμ(λ))=Σ lim sgn(Mμ(λ)H). (3.19)
λ-> ± oo i- i λ-> ±oo

Now
lim sgn(<^}(± tp), v{β}(±tp)}) = {±l)ιm\ (3.20)
ί->oo

where the length /({/?}) of a partition is the number of roots which appear in the
partition. Hence

lim sig(Mμμ))= Σ ( ± 1 ) W } ) . (3.21)
λ ^ ± G 0 {β)eΠ(μ)

Thus the signature characters σ(2) obey

lim σ(λ) = Y Y (+ l)ι(Weiθ'H(ji)

λ " " ± 0 0 μeΛ- {β}eΠ(μ)

This completes the proof.

4. Signature Characters of A2

We now use the results of the last section to obtain signature characters for the
highest weight representations of A2. In the notation defined above, the A2 Cartan
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/ 2 — 1 \
matrix is A = ί 1 and the positive root set Δ+ = {α1,α2,α3 = α 1 +α 2 } . The

\ — 1 2 /
A 2 partition function is

Jmin(m+l,H-h 1) if μ= — moci—noc2 for integers m and n ^ 0,

(θ otherwise.

From the Shapovalov formula (2.11), it follows that R splits into a union of
connected subregions:

R= U R(aί9a29a3), (4.2)
(aι,a2,a3)el

where

/ = {(a1,a2,a3):ai non-negative integers with aγ 4- a2 = a3 or a1 -f a2 4- 1 = α3

or aλ = 0 and α2 > α3 or α2 = 0 and «! > a3} (4.3)

and

(4.4)

We set e~iθj = Xj for 7= 1,2. We shall define a formal power series valued
function / : # - • £ [ [ x l 5 x 2 ] ] that is constant on the connected components
R(a1,a2,a3) of R and is asymptotically equal to the signature character σ{λ) of an
A2 highest weight representation V(λ) as A-> ± 00. We then show that / satisfies
Eq. (3.14). It will then follow, from Theorem 3, that f(λ) is precisely the signature
character σ(λ) for λeR.

We define / on R in terms of a function / defined on /, so that

(] 2^%f(^ a29a3y (4.5)
( l - x ί ) ( l - x ^ ) ( l - ( x 1 x 2 ) 2 )

We take

f(aί,a2,a3) = (l +Xi)(l +x 2 )( l + x x x 2 ) - 2 ( x 1 ) α i + 1(l +x 2 )( l + * i * 2 )

~ 2(x1x2)
β3 + 1(l + x j α + x2)

— 8(X )m i n( a2,a3) + ai + 2/^. \min(ai,a3) + a2 + 2 (4 6)

The following two results are easily verified from Eqs. (4.5-4.6).

Lemma 5. With the above definitions and conventions, let λ0 be a point lying on
precisely one A2 vanishing line P(no,αo). Then

lim /( i , ε) - lim /(ί , ε) = e(λ0)2χ-no<x2

no^f(λ0 - n o α o ); (4.7)
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where the sign function e(λ0) is given by

{•fl if α0 = α 1 o r α 2 ,

-hi if αo = α3 and λo + pφC, (4.8)

— 1 if αo = α3 and λ + peC,

and where C is the fundamental Weyl chamber of A2, that is,

C = {λeh*'.fa,h) ^ 0 and (α2,h) ^0} .

Lemma 6. With the above definitions,

lim / μ ) = ( l + x 1 ) - 1 ( l + x 2 ) - 1 ( l + x 1 x 2 ) " 1 - (4-9)

But now we have derived the signature characters for almost all A2 highest
weight representations.

Theorem 7. In the above notation, the normalised A2 signature characters for V(λ)
are given by

(4.10)

Proof This follows from Theorem 3 and Lemmas 4, 5 and 6.
Thus we have signature characters for V(λ) for all λeR. We proceed to deduce

the signature characters for the remaining A2 highest weight representations.

Theorem 8. // λ lies on a vanishing line section bounding (only) the two regions
R(a^\ a2

ί], α(

3

υ) and R{aψ, a2

2), aψ), the normalised A2 signature character for V(λ) is

i — 1

σ( J = 2 ( Γ ^ x ? ) ( l x ^ ( l ( x x ) 2 )

Proof This follows from Lemma 2 and Theorem 7.
Now we calculate σ(λ) for λ lying on the intersection of two or more vanishing

lines. Any such λ clearly lies either on one of the P ^ α J or on one of the P(n,a2)
(possibly both).

Theorem 9. // λ lies on the intersection of two or more vanishing lines, one of which
is P(ni9 oίi) for i = 1 or 2 and some ni9 let the regions that have λ as a corner point
and a section of P(nh αf) as an edge be R(aψ9a!^9aψ) for j= 1,2,3,4. Then the
normalised A2 signature character for V(λ) is

Proof First let us suppose that λ0 lies on the intersection of two or more vanishing
lines, one of which is P(nl9a1) for some n{. If λ0 lies on the intersection of precisely
two vanishing lines, denote the second vanishing line by P(no,αo); if λ0 lies at a
triple intersection, denote by P(n0, α0) the line of the form P(n2, α2) on which λ0 lies.
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The following facts are known about the representation V(λQ). Besides the
vector \λo},V{λo) contains highest weight vectors voeV{λo)noιxo and v^eV(λo)nιocr

Other than vo,V(λo) contains no highest weight vectors not lying in U(n-)υί.
U(n-)v0 forms a representation of g isomorphic to V(λ0 — noαo). We set

Define the fundamental weights Ax and Λ2 by (AhGCj) = <5fj ; define coordinates
(ί,ε) for λeh* by λ = λ0 + tAx + εΛ2. We write F(ί,ε) for V(λ) and |ί,ε> for μ>,
and we adopt the convention that any vector written in the form w(ί, ε) belongs
to K(ί,ε). Define the neighbourhood N(δ) of λ0 as the coordinate region with \t\<δ
and |ε| < <5, and choose δ0 such that for non-zero ε < δ0 the representation V(0,ε)
contains a unique descendent highest weight vector t>i(0,ε)eK(0,ε)Πιαi; set
1 (̂0,0) = Uj. We can express v^O) as α|0,0>, where αe(7(n_). Define the vectors
υo(0,ε)GK(0,ε)Πoαo by ι;o(0,ε) = α|0,ε>.

If μ + n1(x1φΛ- and μ -f n oα o^/l_ then the inner product matrix Mμ(λ) is non-
singular in N(δ0) and its signature is constant throughout the neighbourhood.
Now we consider Mμ(λ) for μ such that μ-^n1oίιeΛ. orμ-f πoαoeΛ_. Reducing
^ 0 if necessary, we choose

aMU(n.))μ+nχΛί for 1 ̂  i ^ P(μ + ^ α j ,

6ie(t/(n.))M + l l o e o for P(μ + ^ α j + 1 ̂  i£P(μ;λo) + P(μ + π ^ J , (4.14)

c,e(l/(n_))μ

such that, setting

faiVl(O,ε)

Wj(O, ε) = < biVo(O, ε)

U|O,ε>

for

for

for

for

1 ^ i S P(μ + n^),

iθiί\ (4.15)

the set {wf(0, ε): 1 ̂  ί ^ P(μ)} forms a basis of K(0, ε)μ for ε ^ δ 0 .
In this basis the inner product matrix Mμ(0, ε) has the form

/0 0 0

0 εM'(ε) εA(ε) . (4.16)

J
We have that M"(ε) = M'r(0) + O(ε) and we know that M"(0) is non-singular, since
if it were not K(0,0) would contain a highest weight vector not descended from
v0 or vι. Hence there is a new basis in which Mμ(0,ε) has the form

'0 0 0 \

0 εM'(0) + O(ε2) 0 . (4.17)

v 0 0 M"(0) + O(ε)j

Now a generalisation of the Shapovalov formula obtained by one of us (A.K.)



Signature Characters for A2 and B2 11

implies that the submatrix

(β2) 0 \

0 M"(0) + O(ε)J

has determinant of order ep{μ;λo\ (For completeness, a proof of this last result is
given in an appendix.) Hence M'(0) must be non-singular, and we have that

σ(0,0) = - ( lim σ(0,ε)+ lim σ(0,ε) J. (4.19)
2\ε-0 + ε^O- /

Equation (4.12) follows.
When λ lies on the intersection of two or more vanishing lines, one of which

is P(n 2,α 2) for some n2, the argument is similar. This completes the proof.
The case when λ lies on a triple intersection of vanishing lines is particularly

interesting. Here, Theorem 9 gives us two expressions for σ(λ). Moreover, since
these representations are unitary, the (unnormalised) signature character equals
the ordinary character, which has a well-known expression given by the Weyl
character formula. However, it is easy to see that the three expressions are equal.
Explicitly, if λ — {r1Λί + r2A2\ for non-negative integers rx and r2, then Theorem 9
implies that

+ xr

2

2 + 1 (x 1 x 2 ) r i + 1 - ( x 1 x 2 ) r i + r 2 + 2). (4.20)

This gives us an alternative proof of the well known result that V(λ) is unitary if
λ = (rίΛί+r2Λ2\ for non-negative integers rί and r2.

Corollary 10. Let λ = (r1Λι -f r2Λ2) for non-negative integers r1 and r2, and let
V'(λ) be the maximal proper submodule ofV(λ). Then the bilinear form <, >' induced
on the representation V(λ)/V'(λ) by <,> is positive definite. (In other words, the
irreducible representation with highest weight λ is unitary.)

Proof The quotient module V'(λ) is the submodule of V(λ) generated by all the
states veV(λ) such that (v,w} =0 for all weV(λ). So the representation V(λ)/V'(λ)
has the same signature character with respect to <, >' as V(λ) does with respect
to <(, >. In other words,

f{V(λ)/v{λ)) = (l - Xιr \ι - χ2Γ Hi - X1X2Γ1

= χ(V(λ)/V'(λ))9 (4.21)

the last equality following from the Weyl character formula. This completes the
proof.

Finally, we note that the signature characters on R can be re-expressed in a
suggestively simple way. Denote the Weyl reflection corresponding to αe4+ by
rα and let C o = C be the fundamental Weyl chamber for Λ2. Denote the other
Weyl chambers for A2 by C^r^C, C2 = ra2C, C3 = rΛιrΛ2C, C4 = ra2raιC, C5 = raiC.
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Then

/(A) = , -foi '^) ( 4 2 2 )

for λeR(aι,a2,a3) such that A + peC, , where

2x 2

2 + ' (

f2(aua2,a3) = (1 - x2)(l + X l ) ( l + x ^ ) - 2x^'+ x(l - X l x 2 ) ( l + x2)
+ ι(ί - x2)(l + X

/sίαi,a 2,a 3) = (1 - X l ) ( l - x 2 ) ( l - x t x 2 ). (4.23)

5. Signature Characters of B2

The B2 Cartan matrix and symmetrised Cartan matrix are given by

Λ ' 1 2 / "" V - l 2

With this choice the simple roots are α l 5 α 2 with aι the short root. The other
positive roots are α3 = a1 + α2 and α 4 = 2αx + α2. The Weyl group of B2 is the
dihedral group Z)4 and there are thus eight Weyl chambers. We denote these as
follows.

C — C C — r C

C 4 = r 2 r 1 r 2 r 1 C , C 5 = r2r1r2C,

C6 = r2riC, CΊ = r2C. (5.2)

The element pefo* is given by p = ̂ (4αχ + 3α2). The region R splits into a union
of connected subspaces

Λ = u%,f l 2 ) f l 3 , f l 4 ) (5.3)

where

Λ(βl,α2,α3,β4) = JAeft*:α; = maxfθ,| 2 ^ ϋ i ± ^ h i (5.4)
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If λeR(aί,a2,a3,a4.) and λ + peCt then the normalised signature character of V(λ)
is given by

σ(λ =

where the ft are defined as follows.

fo(aι,a2,a39a4) = (\ +x 1 )( 1 +

1, (5.6)

, α4) = (1 - x t)(l + x2)(l + X!X2)(1 + x 2 x 2 )

-2x5 I + 1(l H-XJXI - x , x 2 ) ( l + x j x 2 )

- 2 ( x 2 x 2 Γ + x(l - X!)(l + x2)(l + X!X2)

+ 2(x 1 x 2 Γ + 1(l ~Xl)[l - x 2 ) ( l - x 2 x 2 )

'(xj)"^Hi + x2)(l - x?
β4 + 2 (l-x?x 2 ) .

J2(aua2,a3,α4) = (1 - Xι)(l + x 2)(l A

- 2 x 2

2 + 1 ( l + * i ) (

- 2 ( x 1 x 2 Γ + 1(l -
^ 2 φ2), (5.8)

f3(a1,a2,a3,a4) = (1 + x2)(l - xx)(l - XjXzKl - * 2 x 2 )

-2x a

2

2 + 1 ( l -Xi)(l -X1X2KI - x 2 x 2 ) , (5.9)

/ 4 (α 1 ( a 2 ,a 3 ,α 4 ) = (1 - xx)(l - x2)(l - x xx 2)(l - x 2x 2), (5.10)

f5(aua2,a3,α4) = (1 + x j ( l - x2)(l - XjXzKl - x 2 x 2 )

φ2), (5-11)

- 2X0!1 + x(l + x2)(l -

- 2 ( x 2 x 2 Γ + 1(l +X
ιxa

2*
 + ι{\ - XiX2)(l - x 2x 2), (5.12)
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and

f^a^a^a^a^) = (1 + x ^ l - x2)(l + xιx2)(l + x\x2)

-2x° 1 + 1(l + x 2 ) ( l + x 1 x 2 ) ( l -x\x2)

+ 2(x2

ιx2)°< + 1(l-x1)(l-x1)(l-x1x2)

-2(Xιx2Γ
 + 1(l +Xi)(l - x 2 ) ( l +x\x2)

-8xα

2

5 + 1xa

1

1 + α 3 + 2 ( l - x 1 x 2 ) ( l + x 1 x ε

2 ) , (5.13)

where

% = [ j J
and

ε = 2a5 — a1 — α3 — 1. (5.15)

A. Appendix

Here we establish formulae for the determinants of certain submatrices of the inner
product matrices of A2 highest weight representations. We consider the inner
product matrix Mμ(λ) on V(λ)μ, where μ= — (mί0Lί +m2a2) is an A2 weight, in
the basis {v^X): 1 ̂  i: ̂  min (m l 5m2) +1}, where

For rx and r2 positive integers with rx ^mγ and r2 :§m2, define the submatrices
M*μ

urι(λ) and M«2'Γ2(A) of Mμ(λ) by

(Mac

μ

urί(λ))ij = <ί?mi_Γl + 1 + f, ι;mi_ri + 1 + J > for 1 ̂  i, j ^ min(m l 5m2) — mx -f r1 ?

(MΛ2tr2(λ))ij = <ι;m2_r2 + 1 + i ,ϋ m 2 _ Γ 2 + 1 + J ) for 1 ̂  ί, j ^ min(m1?m2) — m2 -f r2,

(A.2)

with the convention that the matrices are null if the ranges of i and j are empty.
The result quoted in the proof of Theorem 9 is a corollary of the following.

Lemma 11. In the above notation, consider Mμ

urί(r1A1 + r2A2), for fixed positive
integer r1 ? as a matrix of polynomials in r2. Similarly, consider Mμ

2'r2(rίAί 4- r2A2\
for fixed positive integer r2, as a matrix of polynomials in r1. Then

det(M^((rx - \)ΛX + r2Λ2)) = C, ( f ί (r2 - P + 1)^("
\P=1

Π (r2 + p) β ( m i m 2 ' ' p > ) (A.3)
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and

( m i

Π (r^p)* 0" 2 ' 1" 1 ' 1" 2 ' 1 0) (A.4)
P=l /

where C1 and C2 are non-zero constants and

:-p)+l,O)

t1-r1-p,m2-p)4- 1,0)

'Ί^2~r1-p)4-l,0)

4- max (minim! — r t — p, m2 — rx — p) 4-1,0),

iχ — p4- l,0),max(m2 — p4- 1,0))

ί(m1 - rx 4- l,0),max(m2 - p 4-1,0)). (A.5)

Proof. We prove Eq. (A.3); the proof of (A.4) is similar. Fix rλ and consider λ of
the form (r1 — \)AX 4- r2A2 (for any r2). The vector v(λ) = (£_α i)

r i |A> is a highest
weight vector in V(λ); it generates a submodule (7(n_)ι;(A) of V(λ); we write
£/μ(Λ,) = [/(n_)i)(l)πF(l)μ. Now the submodule embeddings of the modules V(λ)
are known to be such that for r2 = p — 1 and p a positive integer with 1 ̂  p ̂  m2

the null space of Mμ(λ) has dimension dim(Uμ(λ)) 4- A(m1,m2,r1,p); that for
r2= — p and p a positive integer with 1 ̂  p ̂  (JΊ — 1) the null space of Mμ(λ) has
dimension dim(Uμ(λ)) 4- B(ml9m2,rl9p)m

9 and that for all other r2 the null space of
Mμ(λ) has dimension dim((7μ(A)). The vectors in the set {t;f(λ):m! — rx + 2 ^ i ^
min(m1? m2) 4- 1} span a subspace of (V(λ))μ complementary to Uμ(λ)9 and MΛ

μ

uri{λ)
is the matrix of their inner products. Let p be a positive integer with 1 ̂ p ̂  m2.
Then we have that Mμ

uri((r1~ l)A1+r2A2) has a null space of dimension
A(m1,m2,r1,p) at r2 = (p— 1). So det(M*1'Γl((r1 — \)Aγ 4-(p— 1 4- ε)Λ2)) is at least
of order ε

A(m^^2,n,P)^ τ h u s det(Ma

μ

lirι((rί-l)Λί+r2Λ2)) is divisible by
(r2 — p+ \)Mmum2>rup\ A similar argument shows that it is also divisible by
(r2 + p)B(mi'm2'rup) if p is a positive integer with l ^ p ^ ( r x —1). Hence the
polynomial

m2 \ /

p = l

divides d e t i M * 1 ' ' ^ ^ - \)AX 4-(p- \)A2)\ Now the order of the determinant as
a polynomial in r2 is at most max(m2(min(m1,m2) —m! 4-r!),0), since this is the
order of the product of the diagonal elements, which dominates all other contri-
butions. But it is easy to verify that

£ A(mum2,rl9p)\ + [ £ jB(m1,m2,r1,p)
P=l ) \ P = 1

= max(m2(min(m1,m2) — mι 4-r!),0). (A.7)

Thus Eq. (A.3) must hold for some constant Cί. Finally, since the matrix
Ma

μ

uri((rί — 1)AX 4- r2A2) is non-singular for non-integer r2,Cί must be non-zero.
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