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Abstract. We present a new, simple way to estimate the rate of exponential growth
(Lyapunov exponent) of solutions of the finite-difference Schrδdinger equation:

((H - E)ψ)(n) = - W(n 4-1)4- ψ(n - 1)] + μ/(απ + 0)M4

Here / is a non-constant real-analytic function of period 1 and α is irrational. For
λ large we prove that the Lyapunov exponent is positive for every energy E in the
spectrum of H and a.e. θ. In particular, the absolutely continuous spectrum of H
is empty. In the continuum we study the quasi-periodic operator on L2(R)

H = --K2[cosx4-cos(αx4-0)]
dx

for large K and show that for wide intervals of low energies the Lyapunov exponent
is positive. The main idea, which originated from M. Herman's subharmonic
argument [11], is to deform the phase θ to the complex plane. This enables us to
avoid small denominator problems by moving them off the axis, making estimates
much easier to perform. We recover the information for real θ using an elementary
extension of Jensen's formula (subharmonicity).
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1. Introduction

In this paper we shall study the operator on L2(1R)

HC(Θ)=-D2+V, (1.1)

where D2 = d2/dx2 with the potential V = - K2[cosx + cos(αx + θ)], and its
discrete analogue on 12(%)

H(Θ)=-Δ+V. (1.2)

In the discrete case Δ denotes the finite-difference Laplacian (Δg)(n) = g(n + 1) +

g(n—l) and the potential is given by V(ή) = λf(<m+ 0), where/is a real-analytic
function of period 1 with /(R) = [— 1,1]. The coupling constants K and λ are
assumed to be real and the parameter θ is the phase. Notice that if α is rational,
then V in both cases is periodic. It is a standard result in Floquet theory that for
all values of the coupling constants K and λ the spectra of the above operators
consist of bands of purely absolutely continuous spectrum with generalized eigen-
functions of the form (a + bx)eίcxp(x\ where p(x) is periodic. In particular, if E is
in the spectrum of H the Lyapunov exponent y(E\ which measures the exponential
rate of growth of ψ, vanishes. For more information see [17].

When α is irrational, the potential V is quasi-periodic and the underlying
dynamical system θ\-+θ + a is ergodic. As a consequence, both absolutely conti-
nuous and point spectrum are independent of θ for almost all θ [13]. In 1975
Dinaburg and Sinai [7] used K.A.M. analysis to prove that the behavior observed
for rational α persists for most high energies. More precisely, they showed that if
α is diophantine (poorly approximated by rationals) then for any X, σac(//c) ̂  0
and that there are eigenfunctions of the form eiaxqp(x) with qp(x) quasi-periodic.
However, they did not exclude the coexistence of point or singular continuous
spectrum. S. Surace [22] later showed that for small K there is no point spectrum.
Corresponding results for H were proved by Delyon [6]. Recent work concerning
the absence of singular continuous spectrum can be found in [3,8 and 1].

For large λ, Sinai [19] and, independently, Frohlich, Spencer, and Wittwer
[10], proved that for diophantine α the spectrum of// is pure point with exponentially
localized eigenstates. Similar results hold in the continuum at low energies for Hc

[10]. The above authors worked with H by analyzing its Green's function G(E) =
(H —E)"1. When the eigenvalues of H come close to E the Green's function
becomes singular. In order to control these "small divisors" they employed a multi-
scale perturbation scheme of K.A.M. type, which involved difficult induction
arguments.

In this paper we first study H and prove that for large λ the Lyapunov exponent
y(E,0)>0 for every energy E for a.e. θ. This implies, in particular [16], that H
has no absolutely continuous spectrum. We prove a similar result for Hc at low
energies. More precisely, we show that there is a set $ composed of intervals of
width K separated by 0(K ~ 2) such that for £e<ί, y(£) ~ K. Moreover, S n σ(H) ^ 0.
For precise statements see Theorems 2 and 4. In fact, our methods actually can
establish positivity of the Lyapunov exponent for all low energies, for K large
enough, but we do not present details here.
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We do not assume that α is diophantine - only that it is irrational. The price
we pay for this freedom is that we can only prove the absence of absolutely
continuous spectrum; our methods do not distinguish between point and singular
continuous spectra. In fact, for α Liouville H has purely singular continuous
spectrum when / = cos and λ > 2 [9,20].

Although the results of our method are not as detailed as those in [10] or
[19], and we require analyticity, its advantage lies in its simplicity and it allows
some generalizations which would be difficult with the K.A.M.-type methods. For
example, extension to the case of several frequencies is relatively straightforward
with our method and is quite difficult even for two frequencies [4] using other
techniques. In addition, the range of constants is improved significantly: in the case
of H with FM(0) = 2Acos(2π(# + αn))-f ε/(αn + θ) we can prove the absence of
absolutely continuous spectrum for λ > 1 arbitrarily close to 1 provided / is
sufficiently regular and ε is small. This is best one can expect [6] since when λ < 1,
and ε = 0 a duality argument implies that all the spectrum is continuous. By
contrast, the K.A.M.-based methods typically require λ to be extremely large.

Recently, these methods were extended by I. Goldsheid and E.S. to potentials
on strips. Those results will be published separately.

Our analysis of these quasi-periodic potentials was inspired by the work of
Michael Herman on diffeomorphisms of the torus [11], where he considered the
case / = cos. We explain his result in Sect. 3 below.

In order to prove that the solutions of (Hc(θ) — E)ψ = 0 grow we prove that
the Green's function G(x, y, E, θ) decays. To do that we first consider Hc(θ) for θ
complex. The effect of moving θ into C is to move some of the spectrum of H off
the real axis (see Fig. 1) making G a bounded operator, thereby eliminating the
"small divisors" mentioned above. We can then apply a WKB type argument to
obtain the decay of G for θ complex. The information about G(E,Θ) for 0elR is
recovered using a subharmonic argument. See the next section and [11,5].

Some time ago, P. Sarnak [18] studied families of non-self-adjoint operators
closely related to H(θ) for complex θ and obtained pictures very similar to Fig. 1.
These pictures suggest that localization starts in the middle of the spectrum and
extends outward as λ (or K) increases. This phenomenon was observed in numerical
studies [12].

The rest of the paper is organized as follows. In the next section we introduce
some background from ergodic theory and describe the subharmonic argument
(an extension of Jensen's formula) that relates the decay rates of G for real and
complex θ. In Sect. 3 we study H which is technically much simpler - we do not
even need to work with G, but estimate the rate of growth of the solution directly.
Section 4 introduces some more background necessary for the continuum case,
and in Sect. 5 we prove that for complex θ the Green's function decays using
block-resolvent expansion and WKB analysis. Finally, in Sect. 6 we compute a
bound on Arg G, which arises in our version of Jensen's formula.

Fig. 1. The spectrum of Hc(θ) (left) and Hc(θ + iδ) at low energies
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2. Background

To analyze the spectra and the Lyapunov exponent of H, we consider the finite-
difference equation for the generalized eigenfunction ψ corresponding to any E.
Let φ be a solution of the equation Hi// = Eψ and let

Ψ Γ^+iΊ
" ~ L Φn I

(2.1)
L Ψ» J

Then fπ = Mn f„_,=/>„ Ψ0, where

and Pn = Mπ JVf t. (2.2)

Note that DetMB = 1. We choose V, to be:

(2.3)

where K0[/?£(#)] is a real-analytic function of period 1, and Ra:S
1-+S1 is the

rotation by α:

RΛ(Θ) = Θ + OL. (2.4)

Then Pn(θ) is a product of the values of a matrix-valued function 0ι—>M0(0)
evaluated along the orbit of θ under the action of RΛ. Note that since α is irrational
RΆ is ergodic. One consequence of ergodicity is that all the spectrum of H is
essential with no isolated eigenvalues and σac(/ί), σp(H\ and σs(H) are independent
of almost every θ.

The Lyapunov exponent y(E, θ) is defined by:

y(E,θ)= limilog| |PN(£,θ)| |. (2.5)
yv-»oo N

It measures the average rate of growth of the solution ψ. Existence of y is guaranteed
by the Subadditive Ergodic Theorem:

Theorem 1. (Subadditive Ergodic Theorem) [14]. Let (X,38>m) be a probability
space and let T:X -> X be measure-preserving. Let {/„} J° be a sequence of measurable
functions/n:Jf->>]Ru{ — 00} satisfying the conditions:

(aJ/ί eLHm),
(b) for each fc, n ̂  l/B + k g /„ + Λ° T" a.e.

Then there exists a measurable function f:X ~->IRu { — 00} such that

/ + eL1(m), /°Γ = /a.e., lim -/„ = /a.e., (2.6)
«^oo n

and

lim -$fndm = mf-(fndm = (fdm. (2.7)
«^oo n n n

We take S1 with normalized Lebesque measure and Ra as our dynamical system
and /„ = log || Pn \\. It is clear that the hypotheses of the theorem are satisfied.
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Moreover, since #α is ergodic γ(E, θ) is constant for a.e. θ and

y(E] = γ(E, θ) = } γ(E, θ)dθ = inf -J- f log || PN(E, θ) \\ dθ. (2.8)
o N N o

In the sequel we shall prove that for every E the Lyapunov exponent is positive
for a.e. θ.

We shall now explain Herman's result. Let z = e2πlθ and write

V(n, θ) = 2λcos2π(αn -f θ) = λe2πianz + λe~2πi"n - = V(n,z). (2.9)
2

It follows from (2.2) that

is an entire function of z, and, hence, log||zNPN | | is subharmonic. Since |z| = 1,

(2.11)

(2.12)

(2.13)

N N

1

N 2 = 0 N

Hence, y > 0 whenever λ > 1.
The limitation of Herman's approach is that it breaks down under perturbations.

If λ cos 2π(αn + θ) is replaced by λ cos 2π(αn 4- θ) + ε cos 4π(αn -f θ), the bound
becomes y > log ε. We get around this problem with the help of an extension of
Jensen's formula. We include a proof for completeness.

Definition 1. By ^/(r1?r2) we shall denote the annulus {ze(C\rl < \z\ < r2}.

Lemma 1. Let g be meromorphic on ̂  = ja/(r, 1) and continuous on j/, and let {rj
and {PJ} be the roots and poles of g such that r <\ri\,\pj\^l.

Then for z = re2πiθ:

]\og\g(e2«ίθ)\dθ= X los\pj\ + £ log-1 4- ]log\g(re2*»)\dθ + (ΆrgΛog -,
0 P<;e.«r r l 6 Λr Ki l 0 \\z\=r / γ

(2.14)

-ί. J g~(z)dz. (2.15)
=r 2πi | 2 |= r ^

Proof. Let /i be the non-vanishing analytic function defined by g(z) =
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Π(z - PjΓ
 l Π(z - r,)Λ(z). Then:

0 r, 0 pj 0 0

= $\og\h(e2πίθ)\dθ. (2.16)
o

In the last equality we used the fact that

\log\e2πίθ-a\dθ=\log\l-ae2πίθ\dΘ = K~ J log(l - αz)— = 0, (2.17)
o o 2πi \z\ = i z

where a = PJ or rf and \a\ < 1. Similarly,

}\oz\g(re2πiθ)\dθ= £ log|p,| + £ log-1^ }log|ft(re2"w)|dθ. (2.18)
0 pje.c/ r,e,c/ K f | 0

Since log/z is analytic in the slit annulus, Arg h is constant for ίe[r, 1], and

J log I h(e2πiθ) I dθ - j log | h(re2κίθ) \ dθ (2.19)
o o

= <Kj — Arg h = ( Arg h Jlog- = ( Arg 0 )log-. (2.20)
t \z\=t \\z\=r J r \ | z |=r / r

In the last equality we used Arg^ = Arg/7(z — pj)~1Π(z — r f) + Arg/i and |/?j|,
kt l>^

We cannot apply Jensen's formula to || PN \\ directly, but we note that

and that gN(z) is analytic in z in an annulus determined by regularity of/. It is to
gN on that annulus that we apply the Jensen's formula. Since there are no poles
and contribution from the roots is nonnegative we have an inequality:

J logl^ld^ f log|^0 + A r g 0 o g - . (2.22)

The estimates for the right-hand side are done in the next section.
The treatment of the operator Hc is similar, but more complicated. See Sects. 4-6.

3. The Lattice Case

Our first main theorem is:

Theorem 2. Let H = - Δ -h V with Vn(θ) = /(an + θ) for f real-analytic with period
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Then, there exists A0 such that for every λ > A0,

o (3.1)
for every E and a.e. θ.

We shall first establish this theorem in the special case V0(θ) = 2λ cos 2πθ + εf(θ)
with / analytic of period 1 in j/(r, 1) as in Lemma 1.

Theorem 3. Let V0 be as above and H be as in (1.2), with α irrational. Given E and
β > 0 we assume for \z\ = r,

μ - f / l z 2 - £ z | > l + 2 β + |z|, (3.2)

and let εQ(λ) = .
supi/|

sί

Then for \ε\< ε0(λ) the Lyapunov exponent

y = y(E)>log(l+j8). (3.3)

Corollary 1. // λ > 1 and δ > 0, ί/iβn ί/tere exist positive r0 and ε0 such that for
O ^ r < r0 ami |ε| <ε0,

y(E)>log(λ-δ) (3.4)

/or all \E\ < 2λ + 2. /w particular, (3.4) holds for all Eeσ(H).

Remark 1. It follows from the results of Pastur [16] that H has no absolutely
continuous spectrum on any interval of energies where y(£) > 0.

Again, let z = e2πiθ so that r = |z| = £2πί3θ. Let PN be as in (2.2) and

FN(z)=(f\zk}pN(z), (3.5)
\ f c = ι /

where zk = e2πiockz so that

FN(Z)=fl\λ + λz2k-EZk + εZj(Σk} ~Zk] (3-6)
n = l L ^k 0 J

is analytic on j/. Also let
/ jv \

M*) = ( Ylzk)gN(z) (3.7)
\ k = l /

for gN(z) as in (2.21). From (2.21), (2.16), and (2.22), we get:

j log || PN(e2«iθ) \\dθ^$ log I gN(e2πίθ) \ dθ

= $log\hN(e2«iθ)\dθ

> g - . (3.8)
r

Therefore, in order to prove that y(E) > 0, we need only show that the right-hand
side grows linearly with N. The estimate is the content of Propositions 1 and 2
below.
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Proposition 1. Suppose that f is analytic on jtf(r0, I) for some r0e[0, 1) and for some
j3>0αm*re[r 0,l),

inf |λ + λz2 -Ez + εz/(z)| > 1 + β + r. (3.9)
|z |=r

Then for all NeZ

\hN(z)\>(\+βf (3.10)

/or |z| = r.

Proo/. For shorthand, let

Ak = λ + λz2

k-Ezk + εzkf(zk). (3.11)

Then FN in (3.6) applied to a vector (I,*?!/ can be written as:

ZN 0

It is easy to prove by induction that (3.12) equals

~zιirι0 JUJ

(3.13)

i ^
where

Ak/zk - ηk

If \η^\ < 1, then by Eqs. (3.9) and (3.14) \ηk\ < 1 for all k> 1 and

It follows that

J \ / -*• ι \ _ χ > ^ \τ •__ x/» .j ^-x

Proposition 2. Let hN be given by (3.7) and (2.21) and j/,A,z,r0, and r be as in
Proposition 1. Then

ArghN = Q. (3.17)
|z |=r

Proof. When ε = 0/ιN(z) is entire and doesn't vanish on (|z| < r} by Proposition 1.
It follows that (with ε = 0)

Arg/!„ = (). (3.18)
| z |=r

Since Proposition 1 continues to hold with |ε| <ε0, the roots of hN do not cross
|z| = r and thus Arg does not change.

We are now ready to prove Theorem 3.

Proof of Theorem 3. Note that the hypotheses of Theorem 3 imply that (3.9) holds.
The subadditive ergodic theorem, (2.21), (2.16), and Propositions 1 and 2 imply
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that

= m{}~log\hN(e2«iθ)\dθ

•
The argument is essentially the same when the potential is

with / real-analytic with period 1 as in Theorem 2.

Proof of Theorem 2. By the analyticity of / we can choose r arbitrarily near 1
such that on {|z| = r}

f-~ ^m0>0,
/t

where E and λ are from Theorem 2. The positive number m0 can be seen to depend
on / only. Then \λf — E\ > m0λ and with h defined as in (3.7) we have

\hN(z)\^ "

s ii

Also, for λ> λ0

N N

Arg hN(z) = Arg f] (Ak - zkηk) =ΣλτgAk = N + N Arg(Λ/ - E).
N = r 1 1

It follows that

log-V

for λ > λ0 = 3/m0 as in Proposition 1.

for λ sufficiently large since Arg(Λ/ — E) is independent of λ > Λ0.

4. Differential Operator Hc

In the next three sections we shall prove an equivalent of Theorem 3 for the
operator HC9 but we are going to exclude some narrow energy intervals from
consideration. The set $ of admissible energies will be composed of intervals of
width K separated by O(K~2). The precise definition is given in the next section.
See Definition 3.
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Our theorem in the continuum is:

Theorem 4. Let H = H(θ) be as in (1.1) and £ as in Definition 3. Then for Ee^ and
sufficiently large K

K + o(\). (4.1)

Since γ(E) is always positive for Eφσ(Hc\ we need to know that our result is
not vacuous.

Proposition 3. Let an interval I c [inf σ(Hc\ inf σ(Hc) + 200K] be longer thane~κl/β.
Then

0. (4.2)

Proof. See appendix.

We are going to prove that γ(E) > 0 for intervals of energies of length const. K
which by Proposition 3 must contain energies from the spectrum of Hc. The basic
idea is still the same - we will use subharmonicity - but the analysis will be different.
The role of PN is now played by the fundamental matrix Φ = Φθ given by

The underlying dynamical system is the flow R* on the torus T2:

R*(u, v) = (u + x, v + αx). (4.4)

In terms of R * the potential

Ve(x)= -K2[cosx + cos(αx + 0)] = - K2[cosπ1(K^(0,0)) + cosπ2(Λ*(0,0))],

(4.5)

where πf denotes the projection onto the ι t h coordinate of T2. Lyapunov exponent
γ = y(E, θ) is defined as before:

y(E,θ)= lim ~log| |Φβ(T)| |. (4.6)
Γ^oo T

Since α is irrational, Kα is ergodic. It follows that for a.e. θ,

~]πy(
2π o

= lim jilog||<Pβ(Γ)||dθ
Γ->oo 1

= inffilog||Φβ(T)||d0. (4.7)

As in the lattice case we shall obtain lower bounds on

ί^log||Φβ(Γ)μθ. (4.8)

We do that by studying the Green's function of the deformed operator Hc.
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Connection between decay of the deformed and the undeformed G is provided, as
before, by Jensen's formula.

The structure of the argument is the following. Lemmas 2 and 3 below say

that for every ε, yε = y(E + iε) is at least the decay rate of G(E + ιε). We prove in

Sects. 5 and 6 that for every Ee^ (to be specified later) for almost every Θ,
for all small ε Φ 0, and, since yε is an infimum of continuous functions of ε

Lemma 2. Suppose that for all sufficiently large x

I G(x0, x, £ + iε)\ £ 4<Γb|χ-χo1, (4.9)

where G is the Green's function of Hc, and A and b are positive constants independent
of x. Then there is a constant 5eR+ such that

(4.10)

x, E + iε) for x > x0 and let ψ be another solut

u" = (V-E)u such that

Proof. Let φ(x)== G(x0,x, E + iε) for x > x0 and let ψ be another solution of

φψ)(*o)=l (4.11)

Since

(4.12)

for all ξ, expanding φ(x + 1) to second order in Taylor series about x, we get:

|φ'(x)| < (2A + K2)e-b\χ-χ°\. (4.13)

The Wronskian in (4.11) is independent of x (so long as x > x0), and so

1 = \(φψf - φ'ψ)(x)\ £ \φ\ W\ -h I φ ' l \ψ\ £ (1A + K2)e-b\χ-χ°\(\ψ\ + \φ'\). (4.14)

It follows that
b\χ-χ0\

The case when x < x0 is similar.

For the remainder of the paper we are going to drop the subscript c in Hc,
and we shall frequently emphasize dependence on θ or z = e2πlθ by writing H(θ)
or H(z). Let the real and imaginary parts of H be given by

KH=-D2 + KV and 3H = 3K (4.16)

For any interval /, by Hj we shall denote the restriction of H to L2(I) with Dirichlet

boundary conditions and G/(E)= f(/f/ — E)"1. Throughout the discussion we are

going to make frequent use of the "resolvent identity," which is the one-dimensional
analogue of the Poisson Integral formula. Let R a A be any two intervals and let

GΛ(x, y) = GAtR(x, y)+ X G Λ(x, r)G>, y), (4.17)
re8Λ\dR
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where G is the normal derivative of G with respect to r. Note that if x, yeR then
GΛ R(x, y) = GR(x, y) and if dR separates x and y then GΛ R(x, y) = 0.

Lemma 3. For every ε ̂  0,

log|G(0,x,E + M)llim -
*-> + oo X

exists for almost every θ.

Proof. Let Λn = (— oo,2π(n 4- 1)]. Then by the resolvent identity

,x) = G l(0,2π)G(2π,x)= [ G (2π(n- l),
Λ = I n V

It follows that

lim -log|G(0,x)| = lim - £ log|G (0,2π,θ + 2παn)|
*-> + oo X X-+ + CC X n = 1

exists by Birkoff s ergodic theorem.

To estimate the decay of G(E + iε) we first note that it is sufficient to prove that
GΛ(x, y, E + iε) decays for x9yeΛ9 where A is an arbitrarily wide finite interval.
We then estimate GΛ with the help of Jensen's formula.

The next two lemmas show that Jensen's formula is applicable.

Lemma 4. Let GΛ(x, y; z) be the Green's function with Dirichlet boundary conditions
in an interval Afar the operator HΛ(z) = — D2 + F(z), where V is the potential from
(1.1) written in terms of z:

,z)= -K2\ cosx + -(
L 2\

(4.18)

Then z\- >GΛ(x, y z) is meromorphic.

Proof. We first prove that the operator GΛ = (HΛ — E)~i is meromorphic. Let

£eC be given. Since A is a finite interval the spectrum of HΛ is discrete. Therefore,
HΛ can be written as H Λ = F + R, where

the contour Cz enclosing all eigenvalues of HΛ with absolute value less than
1 +2|£|. F, therefore, is a finite-dimensional operator, analytic in z. Since the
spectrum σ(R) of R is at least distance 1 +|£| fr°m E^R — E)'1 exists and is
analytic in z. Therefore, we can rewrite HΛ as

-J_- _!_-- ±- _ L__ (4.20)
HΛ-E R-E + F K-E I + O R - E Γ'F
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and see that (HΛ - E)'1 is meromorphic in z. Indeed, (R - E)'1 is analytic in z
and the only singularities the second factor can produce are the poles at the (finitely
many) values of z for which — 1 εσ((R — E)~1F).

Lemma 5. GΛ(x, y; z) Φ 0 for all x, yelnt A.

Proof. Suppose GΛ(x, y; z) = 0 for some x < yeJR. and ze(C. Let peλ be less than
x. Then by the resolvent identity we have:

GΛ(P, y) = G •> x)GΛ(x, y) = 0, (4.21)

where Ax = Λn(— oo,x]. That is, if GΛ(x,y) = 0, then GΛ(p,y) = 0 for all p as
above. But this is impossible since GΛ(/?, •) is a non-trivial solution of the O.D.E.
u" = (V-E)u on (p, oo).

We now sketch the proof of Theorem 4.

Sketch of Proof. We shall prove that GΛ decays on sufficiently wide intervals Λ.
Lemmas 2 and 3 will then imply that || Φ || grows exponentially; in other words,
y(E) is positive.

Applying Jensen's formula to GΛ we get:

-ί ]" dθlog\GΛ(x, y, Ei eiθ)\ = ~ ]" dθlog\GΛ(x, y, E; rew)\ (4.22)
2π o 2π o

+ Σ log - + Σ loilp,l (4 23)

(4.24)

where r, are the roots and pj are the poles of G(x, y, E; •)• Lemma 5 says that the
first sum vanishes. The sum over the poles is non-positive, so we are left with the
inequality:

— f dθlog\GΛ(x, v, E\eiθ}\ ^— f dθ\og\GΛ(x, y, E;rew)\ -f ( Arg GΛ llog-.
2π o 2π b \\*\=r J r

(4.25)

The right-hand side of (4.25) is estimated with the help of the following two
propositions, which are proved in Sects. 5 and 6, respectively. We shall restrict the
values of E to the set ff defined in Sect. 5.

Proposition 4. For Λ, £, x, and y as in Theorem 4, and 1 — K~5 = r,

I GΛ(x, y, £; reiθ) \ ̂  const, e " κ]x"yl V θ. (4.26)

Recall that δ = \og(\/r).

Proposition 5. There is a constant independent of x, y, and Λ such that

1
A r g G Λ log- ^const.(5K2 |x-);| |log(5|. (4.27)
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The proof of Proposition 4 basically follows from WKB type estimates and
since δ > 0 we can obtain apriori bounds on G (Proposition 7) and this makes
multiscale analysis unnecessary.

5. Decay of GΛ(x,y)

In this section we prove that the Green's function with phase Θ + iδ for δ small
decays exponentially fast. Our plan is to divide the x-axis into 2 kinds of regions:
the wells and the decay regions. The wells W are the neighborhoods of the local
minima of 91 V which are low enough to reach $ - the set of energies that we
consider. (See Definition 3 below.) In the wells the deformation will provide us
with a priori bounds on Gw. (Proposition 7). Outside the wells - in the decay
regions - 5R V > sup S and we can use the WKB expansion to prove that G decays
there (Lemma 10). The information from all these regions is then patched together
in Proposition 8 using block-resolvent expansion which expresses GΛ in terms of
products of Gj, where / is a well or a decay region.

In terms of θ and δ the potential V is:

V(x9 θ + iδ) = - K2[cos x + cos(αx + θ + i<5)] (5.1)

= - K2[cos x + cosh δ cos(αx + θ)] - iK2 sinh δ sin(αx + θ). (5.2)

A quick comparison with (4.18) yields the relation δ= —log r. δ will be chosen
small, with an additional provison that \δ — ε\> δ/2.

Definition 2. A well W is an interval of width K 2/5 centered at 2πk for fce2£. Hw

shall denote the operator H with Dirichlet boundary conditions at dW.

We shall make use of the following fact.

Fact. Let En be the πth eigenvalue of Hw for the well centered at 0. Then for
|0| < K~3/\ n ̂  100 and K sufficiently large

EΛ(θ)=V(x0,θ) + (2n+l)J^^ + 0 ( l ) , (5.3)

where xθ is the critical point of F( ,#) with

Remark 2. The error term in (5.3) is analytic in θ and the formula continues to
hold after 2 formal differentiations. For our potential we get:

En(θ + iδ) = -2K2 + K (θ + lf + 0(K). (5.4)

(5.5)
-for

(5.6)
21 +α

Note that the above implies En(θ) has a unique critical point pn with
|pj < const. K~l.
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Fig. 2. $ lies between the hatched regions /„

Remark 3. If Ek

n(θ) is the nth eigenvalue of Hw for the kth well, then

Ek

n(θ) — En(θ — 2π/cα). (5.7)

In particular, their critical values are the same. This follows from the fact that the
wells are translates of each other by 2πk and

V(x - 2π/c, θ) = V(x, θ - 2π/cα). (5.8)

In order to obtain a priori bounds on GΛ we will need to know that
3En(θ + iδ) Φ 0 for δ φ 0. Since

En(θ + iδ) = En(θ) + E'n(θ)iδ + 0(K2δ2) (5.9)

we need only avoid the energies near the critical values of En.

Definition 3.

def

where In is an interval of \vidth 2K~2 centered at En(pn) - the critical value of En(θ).
See Fig. 2. (Recall that since a is irrational σ(H(θ)) is independent of θ a.e.)

Proposition 6. For all

\Ek

n(θ + iδ)-E\> const, δ. (5.1 1)

Proof. In view of Remark 3 we may assume that k ~ 0. We have:

E'n(θ) = E'n(pn) + Eϊ(ξ)(θ - pn) = E"H(Q(Θ - Pn), (5.12)

where pn is the critical point of £„ and ξe[θ, pj. It follows from (5.12) that

(5.13)
2 « _ £ » ( £ ) _ 2K2

If \E'a(θ)\ ^ (1 + α2)""1'2, then (5.9) implies that

I £,(5) - £| ̂  |3£π(5)| ̂  const. δ, (5.14)

where & denotes θ + iδ. If, on the other hand, \E'a(θ)\ g (1 + α2)~ 1/2, then by (5.13)
and (5.9),

En(3)-En(pn)\<-—2 + 0(K-3). (5.15)
2K.

In particular,

dist[£Λ(5), <?] > -̂  > const. (5. (5.16)
3X
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CL

Fig. 3. σ(Hw) and the contour CL

Having established that σ(Hw) stays away from E for δ > 0 we prove below
that \\GW\\ ^2[dist(σ(/ίfΓ),£)]~1. This inequality holds since for δ small
Hw(θ -f iδ) is near a self-adjoint operator.

Let WH w = - D2 + 9? V be an operator on L2(W\ It is self-adjoint, has discrete

spectrum, and its eigenvalues En are simple. Moreover, they are very close to the Ens:

Lemma 6. Let En denote the nth eigenvalue of Hw. Then for δ < K~3,

Proof.

|| 3H || = |31/| = I K2 sinh δ sin(αx + θ)| g 2K2δ.

(5.17)

(5.18)

In other words, Hw is a small-norm perturbation of WHw. Equation (5.17) follows
from the standard arguments of perturbation theory. See [17].

Let us choose δ ̂  X~ 5 . From Lemma 6 we get:

\En-Em\>K V (5.19)

This allows us to partition Hw into 3 parts. Let E^ be the eigenvalue of Hw nearest
E. (If there are 2, we pick the one with smaller real part.) Let

def — 1 f

2πi iz-£j =

dz
and

def - fPL = - (5.20)

be the projections onto the subspaces corresponding to E^ and to the eigenvalues
lower than £„,, respectively. Define Pυ = 1 — PL — P*. See Fig. 3. P^ and PL

commute with Hw, and P*PL = 0 = PL^^. It follows that P^ is also a projection,
commutes with H^, and PυP* = P^Pυ = PυPL = PLPV = 0.

Let GL(

Lemma 7.

= (PLHW-EΓ1 and GU(E) = (PUHW- E)'1. Then

. 4

K'
(5.21)

Proof. Lemma 6 implies that En lies in the interior of CL iff £„ does. Since
is self-adjoint

1 1

dist(£, σ

. 1
! x '

(5.22)
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Therefore,

PL
1

— E

1

- E

559

<- (5.23)
~

for δ sufficiently small. The estimate on GV(E) is the same.

Lemma 8. Let φeL2(W) be the normalized eigenfunction of Hw with eigenvalue
closest to E and Gw(x, y, E) be the Green's function. Then, if E$σ(Hw),

(5.24)

where φ^ is the normalized eigenfunction of H* with eigenvalue E^.

Proof. Let /, geL2(W) be any test-functions with unit L2 norm. Then

\dxdy f(x)Gw(x,y, E)g(y) = </, G^) = </,

The second term is bounded by:

+ </, GW(PL + P0)g>.

(5.25)

\\GwPv\\)z (5.26)
/c

and becomes the error term in (5.24). To compute the first term we note that

(5.27)
Then

<Φ*,β><f,φy (5.28)

Since φ,φ+9 and Gw(x, y, E) are continuous, letting / tend to δx, g to δy and
combining (5.25), (5.26), and (5.28) we get (5.24).

In order for Proposition 8 to be useful we need to bound H ^ H ^ .

Lemma 9. Let φ be as in Proposition 8. Then

(5.29)

Proof. Let xe W and wedW. Since φ(w) = 0,

\ φ ( x ) \ ί ] \ φ ' ( t ) \ d t (5.30)

(5.31)

(5.32)

(5.33)

since \W\ = K'2'5 and || φ\\2 = ί .

We are now sufficiently armed to bound Gw.



560 E. Sorets and T. Spencer

Proposition 7. For Ee$,

\Gw(x,y,E)\<~ (5.34)
0

for all x,yeW.

Proof. Combining Lemma 9, Lemma 8, and Proposition 6 we get:

K2

\Gw(x,y,E)\^ const. - < const. — Vx,yεW. (5.35)
δ δ

Outside the wells E lies below the minimum of W V and, therefore, the Green's
function decays. The next lemma contains the precise statement.

Lemma 10. Let A be any interval such that

min ft V - max g > K6l5/2. (5.36)
A

Then for all x, yεA with dist( {x, y}; dΛ)>K~ 1/3,

(5.37)

Remark 4. If A contains no wells condition (5.36) holds.

Proof. Let p be a point in the middle of Λ. It is a standard result of WKB theory
(see [15]) that the O.D.E.

u" = (V-E)u (5.38)

has 2 solutions

(5.39)
(p J

and

φ-(y) = (V-EΓll\y)™p\}-(V-Eyι2]{\+ε,(y}} (5.40)
(p J

such that

|ε±(y)U(K-£)-1 / 2(y)ε /

±()?)|^const.lC-1 / 5 |Λ|. (5.41)

Since the Green's function can be expressed explicitly in terms of these functions
(5.37) follows from a straightforward computation.

We have now established the decay and the a priori bounds. It remains to
patch the results together. This will be done in Proposition 8 as soon as we prove
the next lemma.

Lemma 11. Let G be a Green's function in any box A larger than K~ 1/2, finite or
infinite and |G*(x,j;)| ̂  const. e~* | x~y |. Then, for y0edA and \x — y0\ > 1,

|G (x,y0)l^ const. K|x-3'ok~ x | *~ y o 1 . 1 (5.42)
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-H —H—H H
V

Fig. 4. RjS lie between square brackets and W^ between parentheses

Proof. Let G0(x, y9 E) be the free Green's function, i.e., with K = 0. Since

\GQ(x,y,E)\<- and |G (x,y,E)| «rx|*-y|. (5.43)
K

Differentiating the identity

with respect to y, we get:

G•(*, y) = G (x9 y) - GVG (x9y) (5.45)

= G (x9 y) - f G(x, t)V(t)G (t9 y)dt. (5.46)

Therefore,

g const. e-*'*-y| + const. Ke~κlx~yl \x - y\. (5.48)

In the following proposition we combine the local information provided by
Proposition 7 and Lemma 10 to prove the decay of GA. This will be done using
block-resolvent expansion, [21], which can be thought of as a random walk
expansion with steps the size of the blocks. (These sizes need not be equal.) For
our blocks we take the wells {Wt} and the "decay regions" {Rj}. The decay in
{Rj} will offset the size of the Green's function in the wells.

Propositions. Let A be a long interval, x, ye A with dist({x, y}9dΛ) > K~1 / 3, and
\x-y\>K'ί/3. Then for £e^

I GΛ(x, y,E;θ + iδ)\ < const. e'κ^x~y}. (5.49)

Proof. Let the intervals Wi c A be the wells and let Rt c A be the "decay regions"

satisfying the hypotheses of Lemma 10. Let # = { W i 9 R j } be a open cover of A.

(See Fig. 4.) They can be chosen so that

1.
2. Every point of A belongs to at most two members of #. In particular, a boundary
point of each member belongs to the interior of exactly one member.
3. If α,freudQ then | α - b | > K ~ 1 / 3 unless a = b. We also ask that dist({x,j;},
{a,b}}>K^i\

In addition we ask that RjS are as long as Lemma 10 allows, i.e., either Rj intersects
two wells or dΛ9 or \Rj\ = const K1/5.

We are finally ready to start the expansion. For xeA let C(x)e^ be any element
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of ̂  containing x. (If xeu d%, then C(x) is unique.) By the resolvent identity (4.17)

GΛ(x, y) = Gcw(x, y)+ Σ Gcu)(*> Pι)GΛ(Pι, J>) (5-50)
pιedC(x)

= ΣGc%(*.Pι)GΛPι,y) (5.51)
Pi

because y^C(x). Applying the resolvent identity to GΛ(pl9y) and then to GΛ(p2> y)
and so on, we get

GΛ(x,y)= Σ G M(x9Pί)G ( p ι } ( p ί 9 p 2 ) . GΛ(pn,y) (5.52)
Pl,...,Pn

so long as y^C(pk) for /c < n. Let us say C(pn)By. Then after one more step

GΛ(x,y) (5.53)

= Σ G M(x9pl)G ( p ι } ( p l 9 p 2 ) ..G (pn_ι)(pn-^ (5.54)
Pl, ..,Pn

+ Σ G *(*)(•*> Pl)GC(Pl)(Pl > Pz) ''' GC(Pn)(Pn^ Pn+l)GΛ(pn+ί> >>)• (5.55)

Continuing in this manner we express GΛ(x, y) as a sum of series of products with
the sum having as many terms as visits to C(y). Let us estimate a typical term of
a series:

G **)(*> Pι)G£(1M)(pι, P2) ' Gc(Pn)(Pn, y\ (5.56)

If C(pj) is a well, we group G (pf) with the next term G (p.+ ι) which must be a
decay region. (We shall assume for simplicity that y lies in a decay region.) From
Proposition 7, Lemma 10, and Lemma 11 it follows that

^^^^
0 ( P.+ l J

K6

const. —

2-p, + 1| (557)

for K large enough and <5 not too small ( > e~κ/ίQ). Since (5.57) is satisfied by each
^C(PJ) w^^ G(PJ) a decay region, and the total measure of the wells is a small
fraction of |x — y\, we see that the expression in (5.56) is smaller than

const. έΓ5/4J[|χ-yl. (5.58)

Moreover, condition 3 assures us that |p ί+1 — pi + 2\ > K ~1 / 3 an(i so (5.57) is less
than

const. £>-*2/3. (5.59)

In other words, if we regard each factor in (5.56) corresponding to a well and its
successor as a single factor, we can say that each factor is bounded by (5.59). Now,

\GA(x9y9E 9 z 0 ) \ £ l / ε x9yeΛ. (5.60)
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Reinserting the series in (5.53) for each factor with GΛ until each term containing
GΛ has at least const. K~~2/3 log 1/ε terms we see that indeed

-*χ-*9 (5.61)

where const, is independent of ε.

6. Bound on Arg

In this section G will stand for GΛ. We are going to prove that Arg

0(\x -y\ (log51). Recall that δ = log(l/r) and M = r

AτgG(x,y) = — ί— dz. (6.1)
I I ^ * J /^/ \N = r 2πι G(x,y;z)

Lemma 12.

d °° i d /

Proo/. Recall that G = (H - E)~ *. Therefore,

as desired.

It follows that

(x,);) = -̂  f dz ] at - - - - - . (6.4)
=» 2πz | z ) = r -oo G ( x 9 y , z )

We separate the integration with respect to ί into 3 regions:

Region I x < t < y, (6.5)

II t g x, (6.6)

III ί ̂  ̂  (6.7)

By resolvent identity (4.17), in region I G(x, y\z) = G^t(x, ί;z)G(ί, y z), where
Λ f = Λ n ( - oo, t]. Also, G(x, ί; z) = G *t(x, ί; z)G(ί, ί; z). Therefore,

J - - - Λ (6.8)
/ G(x, ̂  z)

;z)^-K(ί,z)Λ, (6.9)
dz
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which in absolute value does not exceed

Σ i f *
Wl<=[x,y] ίw,

+ Σ ί
K.c: [*,>>] Rt

where we used (5.24) in (6.10). By an argument similar to that of Proposition 8

I G(ί, ί; z) I g I GΛ(ί, ί; z) | + const. (6.12)

Therefore, by Lemma 10 contribution from the last term is not greater than

ϊ/ l t **}

ri r J { ' 'h h ή"7EJ ^ Hi uz

G(t,t;z)~V(t,z)
dz

+ 0(K)l (6.10)

dt, (6.11)

Σf2sup |K(ί ,z)-£ | -1/2

i R,
TV(t,z)
dz

dt

(6.13)

Next we estimate (6.10). Let W= W{ be the ί'h well in [x,y]. Since φ^(t) =

2πίJ J E,(θ)-Edz

1 , rrfθ

π -

From formulas (5.4) and (5.5) it follows that \E'\ > 1 when E(θ)φS. Hence,

dθ dθ

Therefore,

. ,, C 1< const. - < const, logo.~

const. X21 log δ I

(6.14)

(6.15)

(6.16)

(6.17)

is the contribution to (6.10) from a single well Wt. Summing over all the wells and
adding the result to (6.13) we see that the contribution to ArgG from Region I is
less than

const.|x->>|(A:2 |log<$| + K2).

Next we consider Region II: ( ̂  x. We use the identity

to rewrite

ί dt

G(x,t;z)-V(t,z)G(t,y;z)
dz

G(x,y;z)

as

dtG(x,t;z)G β,x;z)V(t,z).

(6.18)

(6.19)

(6.20)

(6.21)
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By the results of Sect. 5

I G(x, ί; z) I, I G χ(ί, x; z) | ̂  const, e ' *" ~ *• (6.22)

so that (6.21) converges and is less than const. K2. Integration over the Region III
is handled similarly.

Combining bounds (6.18) and (6.21), we conclude that

ArgG(x,y)\^const\x-y\(K2\\ogδ\) + 0(K2). (6.23)

Therefore, the second term on the right-hand side in (4.25) is 0(K2δ\x — y \ \ l o g δ \ )
and tends to 0 as K-+ oo. This implies that

2π o \x-y\

and y ;>K + o(l).

A Appendix

Proposition 3. Let an interval I c [inf σ(Hc\ inf σ(Hc) + 200K] be longer thane~κί/β.
Then

σ(Hc)nI*0. (A.I)

Proof. Pick Ee[infσ(Hc),inf σ(Hc) + 200X]. Choose a well Wk so that the lowest
eigenvalue E*(0) of the operator Hc(θ) on L2(2π/c -K'215, 2πk + X~ 2 / 5 ) equals £
for some 00. By standard perturbation theory [17] the harmonic oscillator approxi-
mation yields

El(θ) = V(Xβ, θ) + ~~ + 0(1) (A.2)

and

I φ0(x - xθ)\ g const. κll4e-κMχ-χ'P, (A.3)

d2

dx2
where " = — -. We let θ = Θ0 and φQ be the corresponding eigenfunction. Then,

2

^ (\x - xθ\
2 + 3K2)Kll4e~κ/4lx~Xθl2 ^ const. e-us\χ-χ«\\

Therefore,

|| (H - E)φ0 1| 2 g const. J £>-*/5l*-*»l2dχ ̂  const. e~*1/5/5, (A.4)
|x-xo|>^- 2 / 5

which implies that

dist(£, σ(Hc)) < - * - - < const. e~κl/5/5. (A.5)
c " - - ι -
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