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Abstract. In this paper we consider one parameter families of circle maps with non-
linear flat spot singularities. Such circle maps were studied in [Circles I] where in
particular we studied the geometry of closest returns to the critical interval for
irrational rotation numbers of constant type. In this paper we apply those results
to obtain exact relations between scalings in the parameter space to dynamical
scalings near parameter values where the rotation number is the golden mean.
Then results on [Circles I] can be used to compute the scalings in the parameter
space. As far as we are aware, this constitutes the first case in which parameter
scalings can be rigorously computed in the presence of highly nonlinear (and non-
hyperbolic) dynamics.

0. Introduction

In this paper we consider one parameter families of circle maps with nonlinear flat
spot singularities. Such circle maps were studied in [Circles I] where in particular
we investigated the geometry of closest returns to the critical interval for irrational
rotation numbers of constant type. In this paper we apply those results to relate
scalings in the parameter space to dynamical scalings near parameter values where
the rotation number has constant type. That one should be able to establish such a
relation is part of the renormalization philosophy for one-dimensional dynamical
systems. The case we study here constitutes the first example in the presence of
nonlinear singularities where such relations can be rigorously established. We
restrict ourselves to the case where the rotation number is the golden mean.

Let / 0 be a circle map with a flat spot singularity which has bounded
nonlinearity on the left side of the singular interval and has a power-law (x-»xVr)
singularity on the right side. Assume that f0 has golden mean rotation number. Let

ft(x) is nonvanishing.ft be a one parameter family of such maps such that —

Such families occur naturally as truncations of families of smooth bimodal maps.
ί = 0
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Denote by /„ the set of parameter values where ft has rotation number pjqw the
n t b continued fraction approximant to the golden mean. The length \In\ of the
interval /„ tends to zero as n tends to infinity. Define the parameter scaling δ(ή) as

v " \In-l\'

Define the collection of dynamical scalings {σ(ή)} for the map f0 as:

Here d(qmqn + 2) denotes the distance between the qn

th and the qn + 2

nd iterate of the
flat spot. These scalings were studied in [Circles I] . To state the main theorem of
this paper we introduce some notation:

Let {a(ή}} and {b(ή}} be sequences. We write

a(n)^b(n) iff l i m ^ - = l
/i- 00 b(n)

and

is bounded.

Main Theorem. // f0 has golden mean rotation number then:

where v = l if σ(n— 1) is a scaling on the bounded nonlinearity (left) side of the
singularity and v = vr when σ(n—\) is a scaling on the powerlaw (right) side of the
singularity.

Comparing this with Theorem 6.2 of [Circles I] we see that

Corollary.

δ(2n) s σ(2n -1) ^ ^ e x p ( - Cλn},

δ(2n +1) ^ [σ(2n)]Vr ^ ^ exp{ - vrC(λ- ί)λn},

where

and C is a constant depending on the first iterates of the critical orbit.

In more pictorial terms, the meaning of δ(ή) can be explained as follows. In
Fig. 0.1 we have drawn, the parameter plane for a "typical" two parameter family
of circle maps (for example:

ft,k: *-•* + 1 + k sin2 πx(mod 1),

t in [0,1] and k fixed and greater than one, satisfies all hypotheses of Sect. 1).
Denote by TPn/qn the regions where fuk has a well-ordered orbit of rotation number
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Fig. 0.1

„/„ and let pM/gπ be the continued fraction approximants of the golden mean. In
effect, the δ(ή) are the rates at which the boundaries of the left boundaries of TPn/qn

converge to the left boundary of 7^olden m e a n (the region where fu k has a well-ordered
orbit with rotation number golden mean). When one changes fc, the new
convergence rates will be determined by the corollary but with different C
(increasing k corresponds to increasing C).

Remarks. If the rotation number of f0 is irrational and of constant type, one can,
using the same method, also obtain asymptotic relations between δ(n) and various
dynamical scalings. These relations depend on the combinatorics and are
algebraically very awkward (see [Circles I]). Work in progress is to find the right
scalings so that such relations become more transparent. In particular we expect to
find simple relations in the case where the continued fraction expansion is periodic.

The theorem above should be compared with the renormalization theory for
critical circle maps with golden mean rotation number. In that case there is
(assuming the convergence of renormalization) also a relation between parameter
scalings and geometrical data: the parameter scaling δ(n) is the reciprocal of the
spectral radius of the renormalization operator which is defined in terms of the
geometry of the "fixed point" of renormalization, and σ(n) is another eigenvalue of
that operator. For the singularities we discuss, the renormalization theory is more
non-degenerate, in particular, the associated operator is unbounded.

I. Assumptions and Notations

We consider one parameter families {/JίeJ of circle maps with flat spot
singularities, where J is a closed interval in R. We make the following assumptions.
1. For each t the map / ί : S 1 ^ S 1 has degree one.
2. There exists an interval t/ = [/,r] such that ft(U) is a point and ft is strictly
monotone in the complement of U.
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3. In the complement of the flat spot U,ft is C3 and has negative Schwarzian
derivative.
4. In a small left neighborhood of l,ft has bounded nonlinearity; in a small right
neighborhood of r we have ft = Ato χVr, where At has bounded nonlinearity and the
power v r ^l.

5. The map t^ft(x) is C1 and Δft(x): = -rf^x) is C1 in x and positive.

Remark. The conditions that ft be C3 and Sft < 0 can be relaxed to the requirement
that ft be C2, at the cost of extra technicalities.

For most of the notation we refer to [Circles I].
1. Itineraries: denote ft

n(U) by n{t) for n^O (thus 0(ή=U and l(ί) is the critical
value); denote the interval ft~

n(U) by Ut(ή).
2. d(a, b) denotes the distance from a to b. If b is a set then d(a, b) denotes inf d(a, x).

4. We denote spatial derivatives of maps by D:Df"(x)(t)= -τ-ft

n{x).

5. We denote spatial derivatives evaluated at the critical value by: D(n)(t)
= Dft\\{t)). d

6. We denote derivatives with respect to the parameter by Δ : Δft\x): = — ft

n(x).

7. We denote derivatives with respect to the parameter at the critical interval U as:

Λf\U){t)

8. If it is clear that t = 0, we will often write D(ή) or Δ(ή) instead of D(n) (t) or Δ(ή) {ή.
In the rest of this article we will make use of a result which has been proved in

the course of proving Theorem 7.1 in [Circles I]. Let / 0 satisfy the above
hypotheses and suppose further that it has irrational rotation number of bounded
type. The set S1 — [jU0(ί) consists of qn + \ closed intervals denoted by A",
ze{0, ...,#„}. The one interval whose boundary contains the critical point (r) is
called An

0, all the others will be denoted by A".

\A"\
"~2 we have lim =\A\

Lemma 1.1. For allj such that AnjCA"~2, we have lim ,w_ 2 |

 = 0 (uniform in i).
n \At I

II. Calculation of Derivatives

Consider a one parameter family ft as defined in Sect. I. We define natural scalings
in the parameter space and show how they are related to scalings in the
"configuration-space." The crucial part is the relation between configuration
scalings and the long term derivative of the critical value.

Suppose that at parameter value t = 0 the rotation number of ft is the golden
mean. Denote by the sequence {qn} the successive denominators of the continued
fraction convergents to the golden mean. Recall that qn = ̂ n-\qn-\ +qn-2> where
a( = 1 for all I The at are called the continued fraction coefficients. Consider the
following interval in parameter space:

In = {t\ft has rotation number pjqn}.
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One observes that this interval has a subinterval Γn

where a periodic point is contained in the critical interval. Finally we consider an
interval Γn which contains /„

where f0 has rotation number golden mean and ftί has rotation number whose
continued fraction coefficients are given by

at = l for all i + n - 2 ,

(Note that we have assumed that n is even so that tx < 0.) Figure 2.1 shows a sketch
of the location of various points and intervals at time t = 0. The fat arrows indicate
the direction of movement as the parameter increases.

Because — ft > 0, upon decreasing (increasing) the parameter, inverse images of
at

U move to the right (left), forward images move to the left (right). In particular for t
in /„, any point in the forward orbit of the critical interval and any interval in the
backward orbit of the critical interval such that the sum of indices is smaller than
qn, do not intersect, because otherwise one would have periodic points of period
lower than qn. Therefore for k<n — 2, the points qk{t) are sandwiched between the
intervals Uf(qk+1) and l/X^-i). In [Circles I] we proved that there is very little
space between these intervals. As the point qk(t) also moves in the opposite
direction to that of these adjacent intervals without intersecting them, the actual
length of the trajectory of qk(t) is somewhat smaller than the length of the gap at
time ί = 0.

The concern of this section is to prove that for t e Γn the velocity at which qn _ 2(ή
travels is essentially constant and equals, up to a constant, a spatial derivative.
These results are stated in Theorem 2.4 and Proposition 2.5.

The spatial derivative D(n) (t) has been considered extensively in [Circles I]. We
recall the main relations (established in Sects. IV, V, and VI). Recall that for n even
qn is to the right of U, for n odd qn is to the left of U. These relations are evaluated at
ί = 0:

Relation 1: φ ) = - * " ' U)

d(qn-2,U)'

V V V
Relation 2: D(qn) s ~Y~ = - p - (since v, = 1).

σ(n) σ(n)

U0 ( qπ-1>

:qB«0)

Fig. 2.1
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Relation 3: [_σ{2n + 2 ) ] v ^
σ(2n+l)σ(2n)

One observes that Relation 3 implies that the scalings {σ(ή}} tend to zero at least
exponentially fast [see also Circles I. Sect. VI].

For tel'ή and k<n — 2, we can define a ί-dependent scaling:

__d{qk{t\qk+2{t))

Lemma2.1. For ie{l,...,qk_2-l} we have

uniformly in i.

Proof.

In Fig. 2.2 we have drawn the case in which k is even. (But the proof is independent
of the parity of k.) The inverse of/4fκ"2"1 has positive Schwarzian derivative on the
interval (^-3,^-4). Theorem 5.3 of [Circles I] states that scalings decrease to
zero, and Theorem 6.2 states that they do so very fast. Applying the "one-sided
Koebe principle" (3.7) of [Circles I] then gives us that

ln-

is uniformly small in L •

Lemma 2.2. There is a C>0 such that

Proof By definition of Γw we have

|/;|^ JminA(qΛ-

By using the chainrule, one obtains

Qn-2

?„_2(0), 17).

U,

k-5 k-2 'k-6

Fig. 2.2
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Recall that all derivatives are strictly positive, so that Aft

qn~2(O{t)) is bounded from
below. •

Lemma 2.3. For tel'ή, Je{l, ...,gπ_2 — }

Dft

qn " 2 " V(t)) = Dβn ~2 ~ f(f (0))

uniformly in i and t.

Proof

To evaluate the first of these two terms (denoted by /) we use the mean value
theorem together with Assumption 5,

By Assumption^ the quotient ^ is bounded. Since tel"n, Lemma2.2

together with the estimates for d(qn_2Φ\ U) of [Circles I] and Corollary A.2 (see
the appendix) imply that this is (uniformly) close to one.

The second term (denoted by //) requires a bit more work. Recall that by the
monotonicity of fϊoτk<qn_2 — i and teΓw we have (see Sect. 1 for definitions of
Aΐ, A n

u a n d An

0):

for some j . So

-2

expiβ»-^ i-1|>D/X(i>fc)(0)-lnί)/ l((i + fc)(O))]

dx
Dft(x)

Denote the distance (measured in the positive direction from the critical point) by
z. Then by using Assumption 4 and bounded non-linearity away from the critical
point, we obtain that there is a constant C such that:

D2ft(z)

Dft(z)

Thus

ί \dz/z\\.

The integral in this expression has two contributions. One comes from the integral

over a small subset of A"~4 /namely, (\J A"~2\n({J4"~4Y\ Lemma 1.1 implies

that this part decreases rapidly to zero. The other contribution comes from the
integral over
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This set consists of finitely many intervals associated with closest returns studied in
[Circles I]. The fact that all the relevant scalings tend to zero implies that this
contribution tends to zero as well.

Thus the second term (//) tends to one.

Theorem 2.4. There exists a K>0 such that for all tel'ή and k^n — 2 but large

Proof. In this proof t = 0 and we omit any reference to it. From the definition of A
we obtain (chainrule):

fio^Σ
i=ί

and so

We then obtain a recursion relation similar to the one defining the Fibonacci
sequence (qk = qk _ 2 + qk _ J :

D(qk-1) D(qk-\)

1)D{qk-\)

erms on t

is positive and increasing with k. Use the chainrule as before to write

Now observe that all terms on the right are positive. In particular the sequence

Note that max d(qk_1 + i — 1, Ϊ — 1) converges to zero (uniformly in i) as A; goes to
i

infinity according to Lemma 1.1. Therefore, by Proposition A. 3 and A.4 (ap-
pendix) we obtain

Φc-2

i=ί

Thus we obtain from (*) that

2-1) A(qk_2)

We now study the coefficient in this recursion relation. Using Relation 2 we obtain
that for all k,

Df(qk)-σ(k)-Df(qk)-
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Therefore,

^ c σ(h n
D{qk-\) -σ(k-2)Df{qk_2)- l )

(using Relation 3) tends to zero very fast. Now apply Corollary A.2 (see Appendix)

and we obtain that {——^—r > is also bounded from above. Since the sequence is

increasing we obtain that K: = lim — — ^ — is finite. Π

fc-00 D(qk-1)

Proposition 2.5. For t e Γn,

A(qn-2)mA(qn

Proof. We have

Recall that Af is uniformly continuous. In view of Lemma 2.3, we can now apply
Propositions A. 3 and A.4 (Appendix) to obtain the result. •

III. Parameter Scalings

From Proposition 2.5 we conclude that qn-2(t\ teΓή = [tί90]9 travels at roughly
constant velocity to the left as the parameter decreases. From the topological
considerations at the beginning of Sect. 2, we know that the endpoint of the
journey, qn-2{tγ\ is situated to the right of r(0) (see Fig. 3.1). On its journey qn-2(t)
traverses the entire interval Ut(qn__ t) which itself moves to the right. Notice that at
t = tl9 the number qn_ί = qn-2 + qn-3 is not a continued fraction denominator of
the rotation number of the map ft anymore. By definition of the interval JJJ, the
continued fraction denominator now is equal to

(In Fig. 3.1, only "new" continued fraction denominators are used.)
From this information we will now deduce that the distance travelled by qn _ 2(t)

for t e ΐ'n is roughly equal to d(r(0), qn _ 2(0)). In other words: Ut(qn _ x) does not move
appreciably. That result together with Proposition 2.5 is sufficient to prove our
main result about parameter scalings (Theorem 3.4).

To have a convenient notation we define:

x(t) = l( — qn_ 3(ή) if n is even,

x(t) = r( — qn_ 3(ή) if n is odd.

We will assume that n is even, the analysis for n odd is analogous.

1(0) r(0) χ(t)

"qn-2 -I ^ \ -Qn-1 " ( q n-2 + q n-3 ) 1

Fig. 3.1 I

V 2

 (V
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L e m m a 3.1. For tel" l i m t t {,. = 0.
"' A(q)(t)

Proof. Since ft

q" ~ 3(x(ί)) = 1(0) (is constant), we obtain by differentiation with respect
to ί:

So

Df(x(ή) Df<

We now claim that for

uniformly in i and t. To prove the claim, observe first that

and that ft

qn~3~\ i^ l , is invertible on (qn-4.(ή,qn-5(ή). The reasoning of
Lemma 2.1 can now be applied to yield the first equality of the claim. The second
equality is directly implied by Lemma 2.3.

Using the claim and Theorem 2.4, one easily derives that

Df(x(t))~Dfo(qn^2(0y

where for the inequality we have used Assumption 4. Thus using Proposition 2.5
and Theorem 2.4, one finds:

Ax(t)

D(qn_2)(0) . •

Lemma 3.2

Proof. Since the rotation number of ftί is an irrational number of bounded type,
Theorem 5.3 and Lemmas 4.3, 4.4, and 5.2 of [Circles I] apply (these results say
that scalings converge to zero). Thus the interval Ut(qn-2 + ̂ -3) occupies almost
all of the interval (qn-2(h)^(h))' We have (see Fig. 3.1)

which implies:

We divide both sides of the equation by d(r(0), qn _ 2(0)). The lemma is now obtained
by noting that Lemma 3.1 implies that

(l« - 2(0)) + d(qn _ 2(0), x(0)) + d(x(0), x(t,)).

lim ^ ( 0 ) ' * ( t l ) ) = 0 ,
d(qM(h))
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and that Lemma 4.4 in [Circles I] gives:

<%H_2(0),x(0))
l i mΦn_2(θ),κor° D

Proposition 3.3.

KD(qn_2-ί)

Proof. From Proposition 2.5, we deduce that qn-2(t) moves at roughly constant
velocity through almost all of the interval [dl/,gM_2(0)]. Therefore the previous
lemma implies

I wl — A/

-KD(qn_2-\)'

While qn-2(t) moves from qn-2(0) towards dU, almost all of its time is spent in the
interval Ut{qn.γ). This then shows that \I'n\^\Γή\- Since \Γn\S\h\ύ\K\, the claim
then follows. Π

Define the scalings {δ(ή)} in the parameter space as

Theorem 3.4. Let v = vr if n is odd; v — 1 if n is even. Then

Proof. These scalings can be expressed in terms of dynamical scalings for the map
f=f0. We will express the value of the scaling in derivatives and scalings taken at
ί = 0 , and omit reference to ί. Using the previous lemmas and the relations between
the scalings and derivatives mentioned in the beginning of Sect. II, we obtain:

d(qn,U) /)(«._ 2 - l )

d(qn-2,U) D(qn) Df(qn_2)

d(qn,Uγ' σ(n) ^ σ(n)

Finally, applying Relation 3 twice:

where v' denotes 1 if n is odd (the linear side of the singularity), vr if n is even (the
powerlaw side); v denotes 1 if n + 1 is odd, vr if n + 1 is even. Therefore δ(n + 2)

{ } . •
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Appendix

The first part of this appendix is concerned with the solutions {xk} to the recursion
relation:

Here the sequence of coefficients {ak} is fixed and positive.

Proposition A.l. // x1 and x2 are positive then the sequence {xk} is positive and
increasing. Moreover there exists a constant C so that for all k:

Proof. The first statements follow from the positivity of the sequence {ak}. We prove
the inequality by induction. Choose C such that the inequality holds for k = 1 and
k = 2. Assume that the inequality holds up to k — 1. Then we obtain for xk:

ft (ί+ad
1

Π
1

Under the assumptions to the previous proposition we obtain the following
corollary.

Corollary A.2. // the sequence {ak} is summable then the sequence {xk} converges.

Proof Since the sequence {ak} is summable, the sequence {xk} is bounded. Since the
sequence {xk} is also increasing, the limit then exists and if finite. •

Let at (i e N) and b be strictly positive continuous functions from a compact
metric space X to R. Let x φ = {X(0}I6N and y^ = {y(i)}ie^ be infinite sequences of
points in X. Let xk and yk be sequences of sequences converging uniformly to x^
and y^, respectively. Define

Proposition A.3.

Proof.

" a^x^.biyji)) b(yk(ί))~b(yjί))

fe(0) %αo(0) HyJfy

Since X is compact and b is uniformly continuous and bounded from below, we

have that — ^ — ^ converges to zero uniformly in /. The above summation

is a weighted average over terms that converge uniformly to zero. Thus

•-1=0. D
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Proposition A.4. // «*-&&))-*-&»(*)) ^Q uniformly in { as ^ ^ t h m
a(y'(O)

Proof. Using the same method as in Proposition A.3, we obtain that k k' k

is a weighted average of terms fc~ ,—fc~* which converge to zero

uniformly. •
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Erratum

In Figs. 4.1 and 7.1 of [Circles I] "α i n d e x -i" should be " α i n d e x - Γ ' and "^ i n d e x-i"
should be "qindex-Γ\
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