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Abstract. We establish a connection between the Azema martingales and certain
quantum stochastic processes with increments satisfying ^-commutation relations.
This leads to a theory of g-white noise on g-*-bialgebras and to a generalization
of the Fock space representation theorem for white noise on *-bialgebras. In
particular, quantum Azema noise, g-interpolations between Fermion and Boson
quantum Brownian motion and unitary evolutions with ^-independent multi-
plicative increments are studied. It follows from our results that the Azema
martingales and the ^-interpolations are central limits of sums of g-independent,
identically distributed quantum random variables.

1. Introduction

The Azema martingales (Xt)t>o are square integrable martingales with sample
paths which are right continuous and have left limits such that

where pί,̂ ]; denotes the quadratic variation of Xt and where q is a real
parameter. For q = 0, J. Azema proved the existence of such a process in [6].
Then Emery [14] constructed Xt for arbitrary q and proved that, for \q\ < 1, Xt

has the chaos completeness property. The processes Xt were the first examples of
martingales with this property which are not classical stochastic processes with
independent increments. The quantum stochastic integral equation

LτdΛτ+At (1.1)

was treated by Parthasarathy in [28]. The integrators Λt and At are the preser-
vation and annihilation processes of quantum stochastic calculus in the sense of



590 M. Schύrmann

Hudson and Parthasararthy [20] on Boson Fock space. It was shown in [28] that,
for \q\ < 1, the process L* + Lt of operators gives rise to a commuting family
of self-adjoint operators and that, in the vacuum state, this process is the Azema
martingale. For q — 1 the sum Lt -f Lt is standard Brownian motion on Fock

space whereas the pair (Lt, L*) is Boson standard quantum Brownian motion as
introduced by Cockcroft and Hudson [11]. Moreover, if Jst denotes the second
quantization of the linear operator on L2(R+) which maps a function / to the
function fχM + qfχ[S,t) +fX[tt<x>) then for q = -1 the sum L*J0ί + JotLt is the

Clifford process [10] and the pair (JotLt,L*Jθί) is Fermion quantum Brownian

motion on Boson Fock space (see [21]). We have for Lt = J^tLtίq-\

(1.2)

which makes sense for q e 1R. The processes (Lt, Lt) form an interpolation
between Fermion and Boson quantum Brownian motion as q varies from —1 to
+1. This also fits into the framework of [24]. In the language of [24] the process

Lt arises from the bounded cocycle given by the function on IR+ x IR+ which is
equal to q on {(s, ί) :s < t} and equal to 1 on {(s, ί) :s > ί}; cf. Definition 5.2. of
[24].

The present paper arose from the discovery that, in a sense, the "quantum
* v v*

Azema noise" (Lt,Lt) and the "quantum g-Brownian motion" (Lί? L r ) can be
regarded as processes with "^-additive" increments; see [34]. More precisely, let
Lst be the solution of (5 < ί)

LndΛτ + (At - A,).
J
S

Then for r < s < t

Lrt — L,rsJst -f- Lst - O *)

The corresponding equation for

t
ί

Lst = I JsτdAτ

IS

Lrt
 = Lrs -\- JrsL,st . (1-4)

Quantum Azema noise and quantum g-Brownian motion are examples of an
independent, stationary increment process (or white noise) on a *-bialgebra in the
sense of [3] if we choose an appropriate *-bialgebra; see [34]. In both cases, the
underlying *-algebra is the one generated by x and x* and a hermitian generator
y with the relation xy = qyx. For the quantum Azema noise the comultiplication
is defined by

Ax = x®y + l®x, (1.5)

Δy = y®y (1.6)
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and for quantum g-Brownian motion (1.5) is replaced by

Ax = x®l + y®x. (1.7)

Equations (1.1) and (1.3) and (1.2) and (1.4) reflect the coalgebra structures
given by (1.5) and (1.6) and (1.7) and (1.6) respectively. Moreover, if q ^= 0 we
may treat both cases simultaneously by adding another generator y~{ satisfying
yy~l = y~ly = 1. Then xy~l satisfies (1.7) if x satisfies (1.5) and y~lx satisfies
(1.5) if x satisfies (1.7).

The next observation is that the process

has additive increments, i.e.
Brt = Brs -f- Bst .

The same is true for

Bst — JfoJst -

Moreover, we have for 0 < s < t < sf < tf,

BS't'Bst = qBstBs't' ,
* * (I o)

Bs't'Bst = qBstBs>t> ,

and
BstBs

ft' = qBS't'Bst ,
v v * v * v (I'")

BS't'Bst = qBstBs>t' .

Notice that, for real q, if we take the adjoint of both sides of the second relations
of (1.8) and (1.9), we obtain the same relations but with the time order of the
intervals (s, ί) and (s', £;) reversed. Thus, in the case of real q, the second relations
of (1.8) and (1.9) hold for all s, t, sr, tf with (s, t) Π (sf, tf) = 0.

Relations (1.9) follow also from Proposition 5.6. of [24] if we apply it to the
above mentioned bounded cocycle. They were treated in [8] where a realization
was given with the help of a "^-scalar product" in Fock space. If we also take into
account the fact that for both Bt and Bt = Lt the additive increments^ factorize
in the vacuum state for disjoint intervals, we have examples Bt and Bt of (left
and right) g-white noise in the sense of this paper.

However, there are a lot of other examples. For a general "commutation
factor," again denoted by q, we introduce the notion of a left and a right q-*-
bialgebra in a natural way. We reduce g-*-bialgebras to ordinary *-bialgebras
(by which we mean g-*-bialgebras with trivial q) by adding a generator with
certain commutation relations and by defining an appropriate comultiplication
on the enlarged * -algebra. Using this procedure, we obtain the result that q-
white noise on a g-*-bialgebra can always be reduced to white noise on an
associated *-bialgebra. Thus the representation theorem for white noise on an
ordinary *-bialgebra [35] yields a representation theorem for g-white noise on
g-*-bialgebras which, on the other hand, is a generalization of the ordinary
representation theorem. In other words, a g-white noise can be realized as a
solution of quantum stochastic differential equations.

As a consequence, we get a characterization (up to a canonical equivalence)
of all families (jBί)ί>o (or (Bt)t>$) of operators on a pre-Hilbert space D such
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that Bst = Bt- Bs (or Bst = Bt - Bs) satisfy the relations (1.8) [or (1.9)] if we
also require the existence of a "stationary product state" in D. The Bt (or Bt)
are given by equations of a type similar to (1.1) [or (1.2)] on a Bose Fock space.
This generalizes the results of [33] to the g-case. Since q can be any complex
number, there are many ways of interpolation between the Fermion (q = — 1)
and the Boson (q = 1) case. In all cases, the #-interpolations satisfy "g-canonical
commutation relations"; cf. [28, 24]. The operators Bt (or Bt) form an additive
q-white noise which plays the same fundamental role as in the case q = 1, in the
sense that an arbitrary g-white noise is the solution of an additive g-white noise
quantum stochastic integral equation.

The product property of the state is a translation of the classical independent
stationary increment property to the non-commutative (quantum) case. It was
used in [22] as the basic axiom for quantum white noise. However, an additional
algebraic independence condition (like (1.8) or (1.9); see also [23]) seems to be
necessary to have a realization of white noise on Fock space and to have a
quantum Ito's formula.

As for additive white noise, the characterization of unitary white noise (which
is called "unitary evolution with independent, stationary increments" in [32]) can
be generalized to the case of ^-independence by applying the general theory to a
^-version of the non-commutative coefficient algebra of the unitary group; for the
definition and structure of the ordinary non-commutative coefficient algebra see
[40, 3, 17]. Using our methods, it can be shown that unitary g-white noise arises
from ordinary unitary white noise by multiplication with the second quantization
of a multiplication by powers of q operator on Fock space.

The left and right g-*-bialgebras associated with Bt and Bt respectively are q-
versions of the tensor *-bialgebra which plays an important role in the theory of
infinitely divisible representations of Lie algebras [26, 38]. The tensor *-bialgebra
is used in [15, 41] to formulate an algebraic central limit theorem; cf. also [13,
19] for an analytic version of this theorem. The limiting functionals of [15, 41]
are moment functionals of quasi-free (or gaussian) states in the Boson [15] and
Fermion [41] case. One would like to identify the distributions of Bt and Bt as
central limits. We show that, at least as far as moments are concerned, this can

be done by using a —^-normalization as in the Bose and Fermi case. The proof
yn

rests on a general limit theorem for graded coalgebras; cf. [30].
Another interpolation between Boson and Fermion Brownian motion based

on "free independence" is described in [9]. A central limit theorem for the
interpolating distributions in this case is established in [36].

One of the basic constructions used in this paper (the triplet (D,η,ρ) in
Sect. 3) generalizes a construction for groups which is part of the well known
Araki-Woods embedding theorem [4, 5, 18, 29, 37]; see also [31].

The paper is organized as follows. In Sect. 2 we introduce the notion of q-
*-bialgebras and show how they can be reduced to ordinary *-bialgebras. We
also treat the questions of positivity connected with the convolution product. In
Sect. 3 the representation theorem for general g-white noise is proved. In Sect. 4
and 5 we treat the special cases of additive and of unitary g-white noise. Section
6 contains the central limit theorem for graded coalgebras, and, finally, in Sect. 7
we apply this theorem and our theory of q- white noise to prove the q -central
limit theorem.
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2. #-*-Bialgebras

The vector space tensor product s£ <8> stf of a * -algebra stf with itself is turned
into a * -algebra in the usual way by setting

(a ® b) (d <g> b') = ad ® W (2.1)

and
(αΘh)* = α * ® f t * (2.2)

for a9a',b,b' G J/. This can be generalized to ^-graded *-algebras (a ι— ̂  α* is
required to be even) by putting in the scalar factors (— l)ε^)Φ') an(j (_i)Φ)Φ)
on the right-hand sides of (2.1) and (2.2) respectively, where α,α',fo,// are ho-
mogeneous and ε(α) denotes the degree of a. The trivial graduation yields the
non-graded case above. Now let us assume that jtf is Z-graded. For a complex
number q ^ 0 we build in qε^ε(a'^ on the right-hand side of (2.1) to obtain
an associative algebra structure on s#. However, if we build in qε^ε^ on the
right-hand side of (2.2) the map α® b ι-> (αΘb)* is not self-inverse unless \q\ = 1.
This problem can be overcome as follows. We assume that jtf carries another
Z-graduation which also turns <stf into a graded algebra but with the property
d(α*) = — d(α) instead of evenness of a t— > α* (here d(α) denotes the degree of
a with respect to the second graduation). Then we put in gd^)Φ') an(j g-d(^)Φ)
on the right-hand sides of (2.1) and (2.2) respectively, and one easily checks that
this defines a * -algebra structure onf ja/Θ<£/ for arbitrary real q =/= 0. This setting
can be generalized for arbitrary "commutation factors" q, and then the general
case of a complex scalar q ̂  0 is included.

We proceed with the general theory. An involutive semi-group is a semi-group
A with an involution, that is a selfinverse mapping λ f-> λ* on A such that

for all λ\9 λ2 G A. Let Λ and Γ be two abelian, involutive semi-groups (written
multiplicatively!). Let C* denote the multiplicative group of non-zero complex
numbers. We say that

q:A xΓ -»(C*

is a Λ-Γ -commutation factor if

~
q ( λ , γ ) =q(λ,γ)

for all λ,λι,λ2 G A and 7,71,72 G Γ.
In the applications we will always be in one of the following situations. A

will be the cyclic group Zv = TLjvTL of order v G N or the integers TL itself
(now written additively). We put TL^ = %. The involution for A is the taking of
inverses. Γ will be a direct product ZVl x ZV2 with vi, v2 G N U {oo}, and the
involution of ZVl x ZV2 is given by

(nι,H2)* = ("I,-"!),

n\ G Zvu ^2 G ̂ V2. The following is straightforward.
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2.1. Proposition. Let v , v ι , V 2 6 Nu{oo} and consider A and Γ as above. Let q\ be
a real number not equal to 0 and let q2 be a complex number of modulus 1 such
that q\ = q\ = 1 if v < oo, q\l = 1 if v\ < oo, and qv

2

2 = 1 ι/v2 < oo. Then the
mapping

(Mm.nzN^ίΓβΓ
is α Λ-Γ -commutation factor. Conversely, any A-Γ -commutation factor q is of
this form, and one can choose q\ — g(l,(l,0)) and q^ = g(l,(0, 1)). Moreover,
ϊ / v , v ι , V 2 > 1, q\ and qi are uniquely determined by q. D

A complex number q ^ 0 generates a cyclic (multiplicative) subgroup of
R\{0} which is isomorphic to some Zv(q), v(q) e NU {oo}. Moreover, q gives rise
to a Λ-Γ -multiplication factor with v = v(q), vi = v(\q\) and v2 = v(q/\q\) if we
set q\ = \q\ and q2 = q/\q\. We use the same letter q for the complex number
and for the corresponding commutation factor !

Proposition 2.1 gives a classification of all commutation factors for the case
when A and Γ are of the form Zv. For the only involutions on Zv are the identity
and the taking of inverses, and one has to distinguish the two cases that the
involutions in A and Γ are of the same or of different type which correspond
to vi = 1 or V2 = 1. If the involutions are of the same type the commutation
factors are given by complex numbers of modulus 1, and if the involutions are
of different type they are given by real numbers not equal to 0. The need for two
different involutions arises only if one wants to use commutation factors which
are not of modulus 1.

We return to the general theory. Let j/ be a A-Γ -graded algebra, that is j/ is
a yi-graded and a Γ -graded algebra; we write

λeΛ

and

^ =γeΓ

We denote by d(α) and ε(a) the grades of an element a e j/ (assumed homo-
geneous) relative to the A and Γ graduations respectively. In the sequel, if we
write ά(ά) or ε(a) the element a is always understood to be homogeneous without
further mention. We call si a A-Γ -graded *-algebra if j/ is a *-algebra and

d(α ) = d(α) and ε(a ) = ε(a) .

The proof of the following proposition is a straightforward computation; see also

[7]

2.2. Proposition. Let q be a A-Γ -commutation factor and let sέ be a A-Γ -graded
*-algebra. There is a unique A-Γ -graded *-algebra structure «$/ ®q s0 on the alge-
braic graded vector space tensor product si <8> $0 such that

(a 0 b) (d 0 bf) = q(d(af), ε(6)Γ W <χ> bb' ,
r *

(a Θ b) = q(d(a),ε(b))a ® b . D

We obtain a A-Γ -commutation factor q from q if we set
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If we regard jtf as a Γ-Λί-graded *-algebra we obtain another *-algebra structure
on j/ Θ J/ which we denote by ja/ ®q stf .

For yl = Γ the trivial group, we have q = 1 and we have the usual algebraic
tensor product of algebras. If A = Γ = TLi with the trivial involution and
q(m, n) = + 1 depending on whether both m and n are odd or not, we have the
graded tensor product of the 2^-graded *-algebra stf with itself. In both cases,
d ®qstf = at ®q d.

We will embed stf Θ^ j/ and jtf ®q stf into an ordinary tensor product of
*-algebras. Let stf be a Λ-Γ -graded *-algebra. Denote by CΓ the semi-group
algebra of Γ which means that CΓ consists of formal finite linear combina-
tions of semi-group elements with the multiplication given by the semi-group
multiplication. CΓ becomes a * -algebra if we extend the involution on Γ to an
involution on CΓ. Denote by J#r,q = ^r the *-algebra obtained from the free
*-algebra product j/*CΓ (see [7, Chap. Ill]) by dividing by the ideal in j/*CΓ
generated by the elememts

ay - q(ά(a},y)ya

for a e stf and y e Γ. The *-algebra sup becomes A-Γ -graded if we set
d(y) = ε(γ) = 1 for all y e Γ. We have

2.3. Lemma. The equation
ι(a <8> b) = αε(fe) ® b (2.3)

determines a graded, infective * -algebra homomorphism

This is also true if we replace stf ®q stf by stf ®q stf and (2.3) by

ι(a®b) =a®ε(a)b. (2.4)

Proof. We have

The injective linear mapping from jtf ® ja/(y) to s$r ® «δ/Γ given by right multi-
plication by y (x) 1 uniquely determines a graded, injective linear mapping ϊ from
j/®j/ to j/r ®^r satisfying (2.3). We show that i is a *-algebra homomorphism.
We have

((a Θ ft) (d ® &')) =

- aε(b)a'ε(b') (8) &&'

= ι(α® ft)ι(α'® ft')

and

* "*" ~ '-* / 7 λ *α* ®&* = (ϊ(α®b))*,

where we made use of the relations in

We come to the notion of a g-*-bialgebra. Let & be a Λ-Γ -graded *-algebra
and suppose that $ is also coalgebra with comultiplication Δ and counit (5 . If Δ
and <5 are graded *-algebra homomorphisms where we consider on & ® & the
*-algebra structure ^ ®^ $, then ^ is called a left g-*-bialgebra. If $ ®^ J^ is
replaced by J*®g J* we say that ̂  is a right g-*-bialgebra. Notice that every right
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g-*-bialgebra is a left g-*-bialgebra and vice versa. A graded linear operator on
a g-*-bialgebra J* is called an antipode if it is the inverse of the identity with
respect to the convolution product of linear operators on J*.

2.4. Theorem. Let & be a left q~*-bialgebra. Then the equations

AΓ\& = ιoA, ΔΓy = y ® y (2.5)

uniquely determine a graded * -algebra homomorphism

ΔΓ :JV -*ΆT ®@Γ

and ΔΓ is a comultiplication. The equations

δr\@ = δ, δ r ( y ) = l

uniquely determine a graded * -algebra homomorphism

δy :@Γ -» <C

and δp is a counit. Thus &r forms an ordinary *-bialgebra with comultiplication
ΔΓ and counit δr Moreover, if S is an antipode of J* and if Γ is an involutive
group then the equations

SΓ(b) = ε(bΓlS(b), SΓ(y)^γ-1 (2.6)

determine a linear mapping Sr on &r and Sr is an antipode. If $ is a right
q-*-bialgebra everything remains valid if we replace (2.3) by (2.4) and (2.6) by

Proof. By Lemma 2.4. there is a unique graded * -algebra homomorphism

2ί :Jf*<CΓ -> @Γ ®@r

satisfying (2.5) (if we replace ΔΓ by Δ). We show that Δ vanishes on by —
q(d(b),γ)γb.Let

Δb =

Then

Δ(by) = q(d(bli),y)q(d(b2i\y)(y ® y)

Next we show that ΔΓ is coassociative. We have

((Δ ® id) o Δ) (b) = (A®i

= ((id ® J) o A) (b) .

We show that 5r is a counit. But

((id ®δr) oΔΓ)(b)

because 5 vanishes on ̂ (τ) unless y is the unit element of Γ. For the same reason
δr is a left counit. Now let S be an antipode for &. We claim that
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This follows from the fact that both

and
b ® c H-> q(d(c), ε(b)ΓlS(c)S(b)

define an inverse of the multiplication in J* with respect to the convolution
algebra structure of L(β ®q $, J*), where we define the coalgebra structure on
gβ ®q $ in the natural way by

b ® c H->

We have that

ε(bcΓ{S(bc) =

= ε(cΓlS(c)s(bΓlS(b)

and

defines an anti-homomorphism from ^ into J^ * CΓ . We extend S to an antiho-
momorphism on the whole of $ * CΓ by setting S(y) = y"1. Next we have

$(by) = γ-lε(bΓlS(b) = q(d(b))y)ε(bΓ1S(b)y-1 = q(d(b),γ)S(γb),

so that S gives rise to an anti-homomorphism Sr on <%Γ. Finally, we show that
SΓ is an antipode. We have

(id*SΓ) (b) - X bii£(b2^(b2ir
lS(b2i) = δ(b)l

and
(SΓ * id) (b) = £ BfaΓ^bώ^Sφώbx = εφΓ^b) = δ(b)l . D

Since 1 -parameter convolution semi-groups of states will play an important
role, we are interested in the question under which conditions on a linear
functional ψ on a q-*-bi algebra ^ the convolution exponentials exp* ίφ are
states (i.e. positive, normalized linear functionals) for all t e R+. For *-bialgebras
this holds if and only if ψ is conditionally positive which means

¥>(!)= 0,

ψ (b ) = ψ (b) for all b € @ , (2.7)

) > 0 for all Z > £ K e r n < 5 .

For the more general case of Z^-graded *-bialgebras one has to restrict oneself
to even linear functionals to get the same result. All rests on the question under
which conditions the convolution product ot two positive linear functionals is
again positive. For *-bialgebras this holds in general. For ^-graded *-bialgebras
one of the functionals has to be even. Let us denote by J**^ the convolution

subalgebra of J** consisting of the linear functionals that vanish on J^, λ e Λ,
inless λ — e, e the unit element of A. We call the elements of ^^ even. Clearly,

if A is trivial J*^ = J** and if A = Z2 our notion of even linear functionals
coincides with the usual one.
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2.5. Proposition. Let & be a left (right) q-*-bialgebra and let φ and ψ be positive
linear functions on &. If φ is even (ψ is even) then φ * φ is again positive.

Proof. Let ̂  be a left g-*-bialgebra and let φ and ψ be positive with φ even.
Then

(φ* V) (&*&) = ^(d(bι^υO,ε(MΊ~V(/>^υOtp(φ2;) > 0. D

Next we show that SΓ can be embedded into (3&r)* in such a way that
positivity is preserved for even linear functionals.

2.6. Proposition. Let φ be a linear functional on the left q-*-bialgebra &. There is
a uniquely determined linear functional φr on &Γ satisfying

φr(by) = φ(b) (2.8)

for all b e J*, y e Γ .Moreover, the mapping φ H-> φr from &* to (&r)* is a graded
algebra homomorphism. The restriction of this homomorphism to 3$*^ preserves posi-
tivity and conditional positivity. The theorem holds also for right q-*-bialgebras if
(2.8) is replaced by

φr(yb) = φ(b).

Proof. Let (bi)ieι be a vector space basis of the left *-bialgebra &. Then (fe/yj/e/^er
forms a vector space basis of <%Γ - We define the linear mapping

rr :&Γ -> ̂

by
rr (bty) = hi .

Then
(rr ® rr) o ΔΓ = A orr

which means that rp is a coalgebra homomorphism. This gives the first part of
the proposition. Now let φ be even and positive. Then

VF ( ( Σ αΆΛ ("Σ ^yfbify'\\ = Σ άiyαίy(jo(feΓ^) > 0,
\ \ i,y / \ i'y' / / i,γ,i',y'

because
<Pr(yby') = q(d(b),yΓlφr(byyf) = φ(b).

Similarly, it can be shown that φr is conditionally positive if φ e 38*^ is. D

Remark. By Theorem 2.4. and Proposition 2.6., the diagrams

ΔΓ

and
rr

commute.
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The following theorem is now an easy corollary of the preceding proposition
and of Theorem 3.5. of [31] which it generalizes.

2.7. Theorem. For an even linear functional ψ on a (left or right) q-*-bialgebra
the following conditions are equivalent
(i) ψ is conditionally positive

(ii) exp* tip is a state for all t > 0. D

3. <7-White Noise

We introduce some quantum probabilistic language. Let ̂  be a Λ-Γ -graded
* -algebra and jtf a * -algebra, and let Φ be s tate on jtf. A homomorphism j
from J* to jtf is called a random variable on $ over (s/9 Φ) if the state φ = Φ o j
on J* is even. We say that φ is the distribution of j. For a Λ-Γ -commutation
factor q an n-tuple (j\, . . . , jn), n e N, of random variables over the same (X, Φ)
is said to be left ^-independent if

jk(b)jι(c) = q(d(b), ε(c))jι(c)jk(b) , (3.1)

and if
Φ ( j ι ( b ι ) . . . j n ( b n ) ) = φι(bι)...φn(bn) (3.2)

for b, c € 3&, k < I, and for b\, . . . , fen G J*, where φ/c is the distribution of 7 .̂ If
we replace (3.1) by

jk(b)jι(c) = «(d(c),e(ft))-V/(c)Λ(&)

then (ji, . . . , jn) is said to be right ^-independent. If ̂  is a left g-*-bialgebra the
convolution product j\* .. .*jn of random variables j\, . . . , jn is again a random
variable if (yΊ, . . . , _/„) is left ^-independent, and the distribution of yΊ * ... * jn is
equal to the convolution product φ\ * . . . * φn of the distributions φ^ of j\. The
same holds if we replace "left" by "right." A quantum stochastic process on &
in the sense of Acccardi, Frigerio, and Lewis [2] is a family (jk)kei of random
variables on & over some fixed (ja/, Φ). We call a quantum stochastic process
(Λί)o<s<ί on a left g-*-bialgebra J> a ^-independent, stationary increment process
(or a g- white noise) if the following conditions are fulfilled
(a) (increment property)

jrs * jst = in for r < s < t

jtt=δl

(b) (^-independence of increments)
for all n e N and t\ < ... < tn+\ the n-tuple (yίlί2, . . . , jtntn+l) of random variables
is left ^-independent
(c) (stationary of increments)
the distribution φst of jst only depends on the difference ί — 5, i.e. φst = φo)t-s
= Ψt-s

(d) (weak continuity)

φt(b)-+δ(b) as ί |0 for all b e ^ .

If ̂  is a right g-*-bialgebra we replace "left" in (b) by "right."
Our definition of ^-independent, stationary increment processes (which, for

trivial graduations, was already given in [3]) splits into two parts. The first is
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the algebraic ^-commutation relations between the increments. The second is the
"classical probabilistic" condition

... jtntn+l (&„)) = Vtι-tί (fci) - - - 9tn+ί-tn (bn) (3.3)

for all n G N, t\ < ... < ίπ+ι, b\, . . . , bn £ ,̂ which we express by saying that Φ
is a stationary product state for the process (jst).

Although a right g-*-bialgebra is a left g-*-bialgebra, in general a right q-
white noise is not a left g-white noise, because the generator of a g-white noise is
required to be even with respect to the Λ-graduation whereas the generator of a
q- white noise is required to be even with respect to the Γ -graduation. However,
in the special case when both graduations agree the two notions coincide in the
sense that a right q-white noise can be regarded as a left g-white noise.

It is not difficult to see that (a) and (3.3) imply that [φt:t G R+} forms a
1 -parameter convolution semi-group of states on ̂ . There are a couple of results
which are analogous to the case when A and Γ are trivial. We state them without
proof.

3.1. Theorem. The 1-parameter convolution semi-group {φt} of even states associ-
ated to a q-white noise on a (left or right) q-*-bialgebra 3$ is pointwise differ en-
tiable at t = 0. Moreover,

φt(b) = (exp* ίτ/>) (fe) ,

where
d

ψ(b) = — φt(b)ε\t=Q,

and the linear functional ψ is even and conditionally positive. D

We call ψ the generator of the process jst.

3.2. Theorem, (i) Two q-independent, stationary increment processes on a (left or
right) q-*-bialgebra are equivalent in the seme of Accardi, Frigerio and Lewis if
and only if they have the same generator.
(ii) For a given even conditionally positive linear functional on a (left or right)
q-*'bίalgebra & there exists a q-independent, stationary increment process on &
with generators ψ. D

The next theorem shows how q-white noise on a left g-*-bialgebra can be
reduced to white noise on a *-bialgebra.

3.3. Theorem. Let ψ be an even conditionally positive linear functional on a left
q-*-bialgebra 3$. Let jr(s,t) be a white noise on the *-bialgebra $r with generator
\pr Then

jx(b)=jr(0,s)(ε(b))jr(s,t)(b),

b e &, s < t, form a q-white noise on $ with generator ψ.

Proof. One checks that jst satisfies the axioms of q- white noise and that its
generator is equal to ψ. D

Formally, for right g-*-bialgebras

is the right thing to look at. As j> (ί, oo) (ε(fc)), in general, makes no sense, we
need some additional information on jr which is given by the representation
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theorem for processes with independent, stationary increments. It is established
in [33, 32] for special cases. In [16] it is given for the case of bounded operators.
Finally, in [35] the general case is treated. We give a brief review of some of the
results of [35].

Let J> be a *-algebra and let δ : J* -> <C be a *-algebra homomorphism. A
linear functional ψ on 38 is called conditionally positive if it satisfies (2.7). For a
given conditionally positive linear functional ψ on $ we quotient J* by the null
space of the sesquilinear form

(b,c)»ψ((b-δ(b)l)*(c-δ(c)l))

to obtain a pre-Hilbert space D whose completion we denote by H. Let η : ̂  —> D
be the canonical mapping. A *-representation ρ of & on D is given by

ρ(b)η(c)=η(b(c-δ(c)l)).

This construction generalizes a crucial part of the well known Araki-Woods
embedding theorem for groups [4, 5, 18, 29, 37]; see [31] for the case of cocom-
mutative bialgebras which include groups and tensor algebras. We call (D,η,ρ)
the triplet associated with ψ. Now let J* be a *-bialgebra and let φ be a con-
ditionally positive linear functional on .̂ Denote by J^H the Bose Fock space
over the Hubert space L2(R+,/f) of //-valued square-integrable functions on
3R+. Then ^H is the direct integral

where (̂ , μ) is the symmetric measure space of the measure space (1R+,A), λ
Lebesgue measure, (see [18]) and #ω denotes the number of elements of the
finite subset ω of 1R+. Thus J^# consists of measurable functions F on £f where
F(ω) G #Θ#ω with

V(ω)||2μ(dω)<<X).

se

Denote by Q) the dense linear subspace of J*Ή consisting of functions F with the
properties
(a) There exists a bounded subset KF of R+ such that F(ω) = 0 unless ω c Fp.
(b) There exists a finite-dimensional linear subspace EF of D such that F(ω) e
(£F)

Θ#ω.
(c) There exists a constant CF e IR+ such that ||F(ω)|| < C#ω.

The quantum stochastic integral equation

jst(b) =δ(b)ίd+

has a unique solution on S> for all b € @t, and, in the vacuum state, the jst form
a white noise on the *-bialgebra 3$ with generator equal to ψ. Using the kernel
method (see [25, 27]), a solution of the integral equations can be given explicitly
[35].
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We want to apply the representation theorem to our case of g-white noise.
For a linear operator T on D and s, t e [0,oo], s < t, we denoze by Jst(T) the
linear operator on 2 given by the kernel

( Π A(r) (T - id) if σ = ρ = 0 and τ c ω Π [s, ί]
/c(σ,τ,ρ) - < ^τ

[ 0 otherwise.

Here λ(r) (T), r e ω, denotes the operator on DΘ#ω which acts on the rth factor
like T; see [35]. We call Jst(T) the (s,f)-second quantization of T.

Let ψ be an even conditionally positive linear functional on a g-*-bialgebra
J* and let (D,η,ρ) and (DΓ,ηr,Qr) be the triplets associated to ψ and φr

respectively. Clearly, η (b) H- > 77 Γ (b) is an isomorphism from D to Dp We identify
D and DΓ, and, in this sense, η(b) = ηr(b) and ρ(b) = Qr(b) for b G ̂  c ̂ Γ.

3.4. Proposition. Lei φ foe an eι>en conditionally positive linear functional on a
(left or right) q-*-bialgebra &, and let jp(s,t) be the realization of the white noise
on έ% with generator ψp on Fock space. Then jr(y), y ^ Γ, is the (s,t)-second
quantization Jst(ρr(y)) °f Qr(y) Moreover,

Qr(y)η(b) = q(d(b),γΓ{η(b). (3.4)

//, in addition, A is a group and λ* = λ~l for all λ G A then D splits into the direct
sum

λeΛ

of orthogonal linear subspaces η(&(λ)) of D.

Proof. Since ΔΓ (y) = y<8>y and ηp (y) = 0, ψr (y) = 0, we deduce from Proposition 2
of [35] that jr(s9t) (y) = Jst(ρr(y)) We have

\\(Qr(y)-q(d(b)9γΓl)η(b)\\2

= \\η(yb)-q(d(b),yΓlη(b)\\2

= ψΓ(b*y*yb)+ε\q(d(b),γ)ε\-\(b*b)-2K{q(d(b\

= 0,

where we used the relations in 36 Γ and the fact that ψ is even. Now assume that
A* = A"1. Then

(η(b)9η(c))=ιp((b-δ(b)l)*(c-δ(b)l))=Q

if d(b*c) = d(b)~ld(c) φ e, because ψ is even. Since η(&) = D and J> - 0 %}

the remaining part of the proposition follows. D λeA

Thus in the case when A is a group and the involution on A is the taking
of inverses we have a very simple description of Qp (7), y e Γ . Namely, D splits
into orthogonal eigenspaces Dμ) of ρr (y) and the eigenvalue for Dμ) is equal to

q(y, λ)~l. We have also shown that for a given φ the operator ρr (y) is well-defined
by (3.4). We now come to the

3.5. Representation Theorem for 0-White Noise. Let ψ be an even conditionally
positive linear functional on a left q-*-bialgebra & and let (D,ρ,η) be the triplet
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associated to \p. Then the quantum stochastic integral equation

t

jst(b) = δ(b) + js<(bli)J0<(Sr(t(b2i)))

X (άA* (η(b2ί)) + άΛτ (Q(b2i) - δ (b2ί) id)

+ dAτ(η(b*2i))+ψ(b2i)dτ)}. (3.5)

has a unique solution on 3) for all b € 38. In the vacuum state, the jstform a q-white
noise on Ά with generator equal to ψ. For a right q-*-bialgebra ί% the equations
for the associated process jr on ΆΓ are (b € ^)

jr (s, t) (b) = δ (b) + Σ Jr (s,τ)

dΛτ(ρ(ε(bli))ρ(b2i)-δ(b2i)id)

άAτ(η((b2i)*)) + ψ(b2ί)dτ)]. (3.6)

In the vacuum state,

j s t ( b ) = j r ( s 9 t ) ( b ) J t t a Q ( ρ Γ ( B ( b ) ) ) (3.7)

form a q-\vhite noise on J* with generator ψ.

Proof. For a g-*-bialgebra let jr(s,t) (b) be the solution of

ί

jr (s, t) (b) = δ (b) + ί ( Y \ j r (s, τ) (&ue(&2))

X (d< (η(b2i)) + άAτ (ρ(62f) - δ (b2i) id)

+ dAτ(η((b7if))+ψ(b7i)dτ)\

Then by Theorem 3.3. and Proposition 3.4.

is a realization of g-white noise with generator ψ. We multiply the above integral
equation by JQS(ρr(ε(b))) = jr(0,s) (ε(6)) and use

jQS(Qr(ε(b)))jr(s,τ) (busfai}) = jst(bu)JQτ(ρr(φ2i)))

to obtain (3.5). For the right case, we use Proposition 3.4, the homomorphism
property of ρ, and the facts that η is a 1-cocycle and that ψ is even to arrive at
formula (3.6). One checks, like in Theorem 3.3 for the left case, that (3.7) is a
g-white noise with generator ψ. D
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In the right case, a calculation shows that (3.6) can be rewritten in the form

jΛ(b)=δ(b) +

X (<L< (ηr (efaΓ^ώ) + dAτ (ρr (efoίΓ1^) - δ (b2i) id)

21 Ψ 2l τ )

where the integrals are to be understood in the obvious way.

4. Additive q-White Noise

The most fundamental white noise is the one where the increments are additive;
cf. [33]. The underlying *-bialgebra is the tensor algebra.

Let F be a vector space which splits into two linear subspaces F+ and F_, i.e.
F = F+ © F_. Assume that there is a conjugation on F (that is an antilinear,
selfinverse mapping v h-> t;*) such that F+ is mapped into F_. The tensor algebra

00

T(V) = 0 V®n

n=0

(F®° = (C) becomes a *-algebra if we extend the conjugation on F to an
involution on T(F) (in the only possible way). T(F) can also be described
as the free *-algebra generated by indeterminates Vk, k G /, where {vk'.k G /}
forms a vector space basis of F+. In other words, Γ(F) is the *-algebra of non-
commutative polynomials in Vk and v*, k € /. If we assign to every homogeneous
polynomial in T(F) its degree this gives an N-graduation of Γ(F) and T(F)M =
Vm is the linear subspace of homogeneous elements of degree n. Of course,
any N-graduation gives a Z-graduation if we put the linear subspaces of the
Z-graduation equal to {0} for negative degrees. Moreover, if we assign to a
monomial the difference between the number of VkS and the number of u*'s
occurring this defines another Z-graduation of T(F) and

W[»]=0 0 vk®...®vlk
/c=ε(m) (/ι,...,/fc)e{+l}

is the linear subspace of homogeneous elements of degree m. For v G N U {00}
we put

T(V)[n] v = 0 T(V)[k]

k=n mod φ

and
T(V)[m]tV= 0 T(F)t/]

/=mmodv

to obtain the ^-graduations

rτ-ι/τ/ \ / i N T ^ / T / Λ ί w l V ί l \ T / T / Λτ(y) = (ΰ τ(γrJ> = (& τ(V)[m],v
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of T(F). For v,vι,v 2 € N U {00} the algebra T(V) becomes a Λ-Γ -graded
* -algebra with A = 32V, Γ = ZVl x 2£V2 and the involutions as in Proposition 2.1.

Let q be in <C*. Equip T(V) with the Λ-Γ -graduation as above with v = v(q),

V{ = v(\q\), V2 = v(q/\q\):> see the remark following Proposition 2.1. Then q gives
rise to a Λ-Γ -commutation factor which we also denote by q. If we set

A(v) = ϋ ® l + l ® ι ?

and (5(ι>) = 0 for v e F then A and (5 extend, in a unique way, to algebra
homomorphisms

q T(V)

and
<S:T(F)->C,

and we obtain a left g-*-bialgebra. If we replace T(V) ®q Γ(F) by T(V) ®q T(V)
we have a right g-*-bialgebra. An antipode of T(V) is, in both cases, given by
S(υ) = -υ,v€V.

We describe T(V)Γ,q for some special choices of q. In the left case with q real
and \q\ φ 1, the *-bialgebra T(V)z,q is obtained from T(F) by adding generators
y and y"1 with the relations

/=y;(y~ 1)*=r 1, (4.2)
Vky = qyvk (4.3)

If g is complex with \q\ = 1 but not a root of unity, (4.2) is repaced by y* = y~l.
If q is a root of unity we have these latter relations plus the relation yv = 1. The
comultiplication of T(V)r# is given by

AΓ(υ) = υ®l + y®v. (4.4)

In the right case, (4.4) is replaced by

AΓ(v) = v ® y -f- 1 ®v.

The antipode Sr of T(V)r,q is given by

Notice that, in the left and right case with q real and \q\ -φ 1, v € V and y
generate the sub-*-bialgebra T(V)^,q of T(V)z,q This *-bialgebra also makes
sense for q = 0, we denote it by Γ(F)M,O

For a pre-Hilbert space S we denote by H(@) the * -algebra of linear operators
F on & with the properties that dom(F*) ID 0 and F*^ c 0. If F = (FΛ)fe€/ is
a family of elements in H(@) then tkere is a * -representation 7^ of T(V) on ̂
given by y>(b) = b(F^), where for a polynomial b € T(F) and elements α/t, fc € /,
of a * -algebra «s/ we use the notation b(ak) for the element in si obtained from
b by replacing Vk by dk and y* by (α^)*- Clearly, the random variables on T(V)
can be identified with families F of operators on 2 together with a unit vector
Ω in .̂ The distribution of F is then the linear functional φ on T(V) given by

= (ΩJF(b)Ω). A ^-independent (̂  ^ 0), stationary increment process on
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the left g-*-bialgebra T(F) can be identified with families (Ft)t>Q, Ft = (Ftίk)kei>
Ft,k € E\β], 9> a pre-Hilbert space, satisfying (we put (Fst)k = Fttk — FStk)

(Fst)k(Fs>t>)k> =
ι * (4-5)

((Fst)k) (Fs^)k'=q-l(Fs^)k'((Fst)kΓ

for 0 < s < t < s' < ί', k,kf € /, with the additional property that there is a
stationary product state for the increment process j>(S)t) on T(V) determined by
Ft and that the φt are even and 1 1— > φt is weakly continuous. In the right case,
(4.5) is replaced by

Let us call a process Ft with these properties a left (right) additive g-white noise
on V. Notice that, if \q\ = 1, any right additive g-white noise can be regarded
as a left additive g-white noise, beause the two graduations are the same in this
case. We have

4.1. Theorem. Let there be given
• a family (D(m))meA of pre-Hilbert spaces
• a family (Bk)keί, Bk € H(D), D = 0 D(m}, such that Bk maps D(m] to D(m+i}

meΛ
• two families (ζk)kei and (ζk)kei of vectors in D(i) and D(_i) respectively
• a family (hk)kel of complex numbers with hk = 0 unless q = 1.

Then (£ί)ί>o

τ (Bk) + dAτ (ζk) + hkdτ) , (4.6)

in the vacuum state, is a left additive q-white noise. Here JQ{ = Jot(Qr(y)) vviί/i
Qr(y) the linear operator on D which is equal to multiplication by q~m on D(m). In
the right case, the solution of the quantum stochastic integral equation

t

Ltt = J Lτ,kdΛτ (ρr (y) - id) + A* (ξk) + At(Bk) + At(ζk) + hkt

o

exists on Q), and, in the vacuum state, the process (Bt)t>Q with

is a right additive q-white noise. Conversely, any left (right) additive q-white noise
is of the type (Bt)t>o((Bt)t>o) above. More precisely, let ψ be the generator of the
process with associated triplet (D,ρ,η). Then one can choose
• D(m]=η(T(V)(m})
• Bk = ρ(vk)
• ξk = η(vk) and ζk = η(v*)
• hk = ιp(vk).

Proof. This is a direct consequence of Theorem 3.5. D

Formula (3.8) for the right case becomes

Bt,k = J

o

tfc)) + dΛ(»ί(»t )) + ψMdτ) . (4.7)
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In comparing (4.6) and (4.7) with (3.5) and (3.8), one sees that the integral
equations for a general g-white noise involve integrals against additive g-white
noise.

5. Unitary q-White Noise

For d G N let M<c{<ί} be the free *-algebra generated by d2 indeterminates x^,
fe, / = 1, . . ., d. Then M<c{d) is the free algebra generated by 2d2 indeterminates
Xki and x*/9 fe, / = 1, ..., d9 with the involution given by (x&/)* = x*/. We define a
Zv-graduation, v e Nu{oo}, on M<c{d) by setting d(xfe/) = k — l and d(x*/) = l — k.
If we set yi and Γ equal to 2ζv with the involution given by the taking of inverses
then M<c(d) becomes a Λ-Γ -graded *-algebra with both graduations equal to the
one above. Let q be a complex number of modulus 1. W set A = Γ = Zv(qy9

see the remark following Proposition 2.1. Since it is not necessary to distinguish
between left and right g-*-bialgebra structures on M<c{d), in this section, by a
g-*-bialgebra (g-white noise) we always mean a left g-*-bialgebra (left g-white
noise). We turn M$,(d) into a g-*-bialgebra by setting

d

n=l

and
δxki = δki (Kronecker delta)

and extending A and δ to a *-algebra homomorphism

and

One checks that the ideal «/ in M<z(d) generated by the elements

n=l n=l

fe, / = 1,... ,d, is a graded *-ideal and a coideal. We denote by Jf(d) the Λ-Γ-
graded *-algebra M^(d}/J>. It inherits from M^(d] the structure of a g-*-bialgebra
which may be regarded as a q -deformation of the so-called non-commutative
coefficient algebra of the unitary group (the latter was introduced in [40] see also
[3, 17, 32]). The *-algebra J^(d)Γ is obtained from Jf(d) by adding generators y
and y~{ with relations

yy~l =jr13> = ι,
/ = y-1 (plus yv(q} = 1 if v(q) > oo) ,

The comultiplication of the *-bialgebra ^r(d)Γ is given by
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If U is a unitary operator on <Cd ® tf , tf a Hubert space, then a * -algebra
homomorphism 7*17 from $f(d} to B(j^f) is uniquely determined by

ju(xu) = UM,

where we identified U with the corresponding d x ίf-matrix (l/fc/)fc,/=ι,...,d with
Uki G B f f l ) . A g-white noise on Jf (d) can be identified with a family (l/t)t>o of
unitary operators on a Hubert space <Cd (8) J4f satisfying (we put Ust = U~l Ut)

for 0 < 5 < ί < s! < ί', fe, /, fc', /' = 1,... 9d, with the additional properties that
there is a stationary product state for the process ju(s,t) °n jΓ(d) determined by
Ut and that φt are even and t \-* φt is weakly continuous. We call a process with
these properties a unitary q- white noise (with d-dimensional initial space).

The next theorem shows that unitary g-white noise arises from special forms
or ordinary unitary white noise by multiplication with a second quantization of
multiplication by powers of q operator.

5.1. Theorem. Let there be given
• a family (H(m))m€A of Hilbert spaces
• a unitary operator B — (Bkι)ki on (Cd ® H , H = &)meΛ H(m), such that Bkι maps
H(m) tθ H(m+k-ϊ)

• a d x d-matrix ζ_ = (ξki)kι with ξkι e H(k-i}

• a hermίtian complex d x d-matrix h = (hki)kι with hkι = 0 unless k — I = Q.
Denote by dlt the d x d-matrix of differentials with

(dlt)u = (Jot) (Qr (y))k~l d< ((Bξ)u) + dAt(Bkl - δkl id)

/ 1 \r \ \
+ dAt(ξιk) + I ihki - 2 Σ ^ '̂ ̂  ) d ί)'

where QΓ (y) is .the unitary operator on H which is equal to multiplication by qm on
H(m). Then the solution of the equation

t

/ t/τd/τ

in the vacuum state, forms a unitary q-white noise (Ut)t>Q. Conversely, any unitary
q-white noise (Ft)ί>o is equivalent to one of the type (Ut)t>o above. More precisely,
let ψ be the generator of (Vt)t>Q with associated triplet (D,η,ρ). Then one can
choose
• H(m) the completion o f η ( J F ( d ) ( m ) )
• Bkι = ρ(xkι)

• ηu = η(x*k)
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Moreover,
ΰt = ut/t

with (/t}ki = δkiJot(Qr(y))k, in the vacuum state, form an ordinary unitary white
noise (Ut)t>Q.

Proof. This follows from an application of Theorem 3.5, and from

(χ^n)Θ (χ>*yl) D

n=l

6. A Coalgebra Central Limit Theorem

This section serves as a preparation for Sect. 7. The following simple lemma will
be crucial.

6.1. Lemma. Let φnk, n e N, k = 1,... ,kn (kn € N), be linear functionals on a
coalgebra %> satisfying

(i) φni9".9φnk commute for each n 6 N w.r.t. convolution
(ϋ)

lim max |(φn/c — δ) (c)| =0

/or all c e C.
(iii)

n->co

SUp

r all ce <$.
Suppose further that there exists a linear functional ψ on Ή such that for all

<- &

£ (φnk-δ)\(c)=ψ(c). (6.1)

Then
( * \

lim Π φnk] (c) = (exp* ψ) (c) (6.2)

for all c € ^ (where the product f| is ί/ie convolution product).

Proof. Let (φn^) satisfy (i), (ii), (iii) and (6.1). For c G ̂  there is a finite-dimensional
sub-coalgebra ^c of ̂  containing c by the fundamental theorem on coalgebras.
The linear operators Tnk = (id ®φnk) ° A onΉ leave Sc invariant. By (ii) and (iii)

lim max \\Tnk\@c-\ά\\ =0
n-*oo l</c</cn

and
sup Σ \\Tnk\@c-id\\ <oo.
"eN

Moreover, by (6.1)

im
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with R = (id (g>φ) o δ. Since by (i) the operators Tnι, ... , Tnkn commute for each
n e N we can use the same arguments as for complex numbers (see e.g. [12,
p. 184]) to obtain

lim Π Tnk\@c = exp(R\@c). (6.3)
H-+QO

\<k<kn

If we apply the counit δ to both sides of (6.3) and evaluate at c this gives
(6.2). D

As a consequence we have the following.

6.2. Proposition. Let φn, n e N, be linear functional on a coalgebra Ή such that

lim n(φn — δ ) ( c ) = φ(c)
n— >oo

for some linear functional ψ on %> and for all c 6 (6. Then

lim (φn)*n(c) = (exp* φ) (c)
«— » oo

/or Λ// c e #.

Proof. This is immediate from Lemma 6.1 if we put kn = n and φn/c = φn. Π

For an N-graded coalgebra # and a complex number z we define the linear
operator s(z) on # by

s(z)c = ze(c)c,

where ε(c) denotes the degree of c. Then for linear functionals φ and ψ on ̂

(φ * φ) o φ) = (φ o s(z)) * (ip o 5(z)) .

6.3. Theorem. Let %> be an N-graded coalgebra and let K G M. If a linear functional
φ on ̂  satisfies
(i) φΓ* ( 0=0 /or 0 < / < κ9

(ii) φΓ*(0)=5[*(0),
ίfeen /or α/ί c G ,̂

Jim (φ*n o s(n"«)) (c) = (exp* gφ) (c) ,

where gφ denotes the linear functional on Ή with

=0 for all l^k,

Proof. This is a corollary to Proposition 6.2. For, if we put φn = φ o s(n~«) then
for c G # with ε(c) > K

n(φn - δ) (c) = nφ(c) = n - n~^φ(c)

which is equal to φ(c) if ε(c) = K and tends to 0 for ε(c) > K. Moreover, by
assumption n(φn — δ) (c) = 0 for ε(c) <κ. D

For K = 1 the above theorem is a law of large numbers and for K = 2 it is
a central limit theorem; cf. [15, 41] where the special case of a graded tensor
algebra with "Boson and Fermion convolution" was treated.
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7. A ^-Central Limit Theorem

We now come to an application of Sects. 4 and 6. First we describe what will be
the logarithm of the limiting functional of our central limit theorem. Let Q be a
positive definite sesquilinear form on V which is also even, i.e. Q(v, w) = 0 unless
d(ι ) = d(w). We denote by gρ the linear functional on T(V) given by

Gfow) if M = ϋ * w , t ? , w € 7
0 otherwise (7'1}

for M e T(F) a monomial. Clearly, gρ is even and conditionally positive.
It follows from Theorem 2.7 that exp* gρ is an even state. If q G {±1} any
sesquilinear form is even, but if q £ {±1} we have Q(V*,VI) = Q(vk,v*) = 0 and

Q is built up from the two positive definite matrices α = (%ki)kjei, KM — Q(v*> U0
and £ = (βkι)k,iεi, βki = Q(vk,vf). In this case, we write gQ = g^.

A linear functional φ on T(V) is called centralized if φ(v) = 0 for all i; € V.
(If q =£ 1 all even functional are centralized.)

7.1. Theorem. Let q G (C* and ίeί φ fee an et en, centralized state on T(V). Then
for both the left and the right q-*-bialgebra structure

lim φ*

where Q is the even non-negative definite sesquilinear form with Q(v,w) = φ(v*w).
if qφ {±1} we have gQ = ga,/? with akί = φ(vkv*) and βu = φ(v*Όι).

Proof. Since φ is even we must have φ(vfy = φ((v*)2) = 0 for all k £ I in the case
when q £ {±1}. But then everything follows from Theorem 6.3. D

We also have a version of this central limit theorem for T(F)jN,o

7.2. Theorem. Let φ be a state on T(F)κ,o such that

φ(y) = φ(y2) = l. (7.2)

Then

for b € T(F)]N,o, where gα,o is again defined by (7.1) and the matrix α with akι =
φ(vkVι ) is positive definite.

Proof. From (7.2) we obtain for b G T(F)N,o,

\φ((y - l)b)2 < φ((y - l)2)φ(b*b) = 0

which gives

for all fci, ki G N, b G T(V). If we set ε(y) = 0 we can extend the N-graduation
of T(F) to an N-graduation of T(F)N,o Then T(F)N,o is an N-graded coal-

gebra, and we know from Theorem 6.3. That φ*n f b ί —= } , y ) converges to
\ \ vn J J
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(exp* gφ) (b) for all b G T(F)κ5o But from (7.3) and from the relation Vky = 0 in
we obtain

/3) = 0

for all /q, k2, k3 G N and kjel. Finally,

which is 0 unless ki = 0. D

Using Theorem 4.1, we wish to identify our central limit exp* gg as the
distribution of quantum Azema noise and quantum g-Brownian motion. For
simplicity, we assume that dim V+ = I. Thus V is spanned by x and x*9

x G K+\{0}. We write <C(x,x*) for T(V). For α, )9 G 1R+ the linear functional gα,β

on <C{x,x*) is even and conditionally positive. Non-diagonal covariance matrices
Q are only admitted if q G {±1}. That is why we now restrict ourselves to
diagonal Q. For simplicity, we also assume that q G 1R\{0} or \q\ = 1 for the rest
of the paper. For ψ = g^β the corresponding ψr is

( qk2<* if M=/1x/2x*/3

(q)'k2β if M=/1x*^xfc f c 3

0 otherwise

for M a monomial. If both α and /? are non-zero we have dim D = 2, and if
α = 0 or β = 0 but α + β ̂  0 we have dimD = 1. The 1-cocycle ηp is given by

if M = y

< 0 otherwise.

For the representation ρr we have ρr (x) = 0 and

The equation for the corresponding q-white noise is

in the left case, and

0
0\ ^

' = [ L d/t ί ( q ~ l °J' J τ \\ 0 (q)~l -
o

+ At
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in the right case. If q = 0 we have for ψ = gαjo on C(x,x*)κ,o that dimD = 1
and η(M) = 0 unless M = x*yk2 and η(x*yk2) = ^/ύ. Moreover, ρ(x) = 0 and

= 0. The equations for the corresponding white noise on C{x,x*)M5o are

(7.6)
j
o

(left case) and
D Γ T ff\\DI = .LffJfQo^UJ,

(7.7)
LτdΛτ + 1/άίAt

(right case). For α = 1 and β = 0 we are back to Eqs. (1.1) and (1.2) of the
introduction.

Before we proceed with the q -central limit theorem, we prove the following
generalization of the canonical commutation (q — 1) and anti-commutation
(q = — 1) relations. These relations can be proved using quantum Ito's formula
(for real q and α = 1, β = 0, see [28, 24]). We here show that the relations follow
from the *-bialgebra structure of

7.3. Theorem. The process Bt given by (7.4) or (7.6) satisfies the commutation
relations t t

BrB* - qB*Bt = (α - qβ) / J0τ(J0τ)*dτ + (1 - qq~l) f BτdB* .

o o

Proof. Using yy* = y* y, a short computation shows that

AΓ(xx* — qx*x) = (xx* — qx*x) (x) 1 -f (yy*) ® (xx* — qx*x)

Moreover, η(xx* —qx*x) — 0, ρ(xx* — qx*x) — 0 and gOLtβ(xx* —qx*x) = u — qβ,

and ρ(x) = 0, t/;(x) = 0, η(x*) = ( . ] and η(x) — [ m} which proves the
theorem. D V 0 / \VβJ

Denote by Ω the vacuum state in ^H> We have the

7.4. ^-Central Limit Theorem, (a) Let φ be an even, centralized state on C(x,x*).
Then, with respect to the left q-*-bialgebra structure on C(x,x },

\imφ*n(b(^=]]=(Ω,b(Ll)Ω),
n-^ co \^ \^ ^jn J J

where L\ = B\ is given by (7.4) with β = φ(x*x) and α = φ(xx*). With respect to
the right q-*-bialgebra structure,

where LI is given by the solution of (7.5) with β = φ(x*x) and α = φ(xx*).
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(b) Let φ be a centralized state on C{x, X*)N,O satisfying (7.2). Then, in the left
case,

lim φ*» (b (^ y]} = (Ω,b(Lι, Joι(0))Ω> ,
V \\A / /

LI is gΰ erc by (7.6) with α = φ(xx*). /n ffee rigίiί

lim φ*n (b (^ y]} = (β,&(Lι,Joι(0))β>,
V V \ A / /

w/iere LI is given by the solution of (1.1) with α = φ(xx*).

Proo/ Application of Theorems 7.1, 7.2, of the formulae (7.4)-(7.7) and of the
fact that (Ω,b(Bι)Ω) = (Ω,b(Lι)Ω). D

The convolution product of states on C(x,x*} generalizes the convolution
product of moment functionals of probability measures on R2 (see [33]), and
the moment functional of the distribution of a sum of ^-independent quantum
random variables is the convolution product of the moment functionals of the dis-
tributions of the summands (see the beginning of Sect. 2). In this sense, quantum

* V V*

Azema noise (Lί? Lt ) and the g -interpolations (Lί? Lt ) appear as central limits of
sums of ^-independent, identically distributed quantum random variables.

Acknowledgement. The author thanks R. Speicher for many useful discussions.
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Communicated by H. Araki

Note added in proof. Remark on Theorem 7.4. The moments are the same in the left and in the
right case. However, the multi-time correlations of the processes differ. Theorems 7.1 and 7.2 yield
q-analogues of the Donsker invariance principle and for these analogues the left and the right case
must be distinguished.






