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Abstract. Using the duality equations of Moore and Seiberg we define for every
primary field in a Rational Conformal Field Theory a proper Markov trace and
hence a knot invariant. Next we define two nested algebras and show, using results
of Ocneanu, how the position of the smaller algebra in the larger one reproduces
part of the duality data. A new method for constructing Rational Conformal Field
Theories is proposed.

1. Introduction

In the past few years several attempts have been made to find the basic underlying
principles and structures governing Rational Conformal Field Theories (RCFT).
In one approach, quantum groups are proposed as the underlying algebraic
structure of RCFT [21]. In [21] the philosophy is that the quantum group can be
seen as the centralizer of a representation of the braid group. This approach is in
particular successful for WZW models, where one can compute braid matrices
using the analogue of 6/-symbols. The result of this construction for arbitrary
RCFT is, however, unclear.

In another approach, Rational Conformal Field Theories are seen to be
intimately related with three-dimensional topological field theories [16, 3]. Here,
the Hubert space associated to a constant time slice with charges in the three-
dimensional theory is equal to the space of conformal blocks of a RCFT. The
observables of the three-dimensional theory are knotted links whose expectation
values can also be computed (as we will show) from RCFT.
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In this paper we will take a look at these two approaches from a somewhat
different angle. Instead of quantum groups we will end up with inclusions of certain
II1 factors. These are infinite dimensional algebras that can be obtained by taking
a certain limit of finite dimensional ones. They arise as algebras of paths on a graph
constructed from the fusion rules, and a primary field φ. The graph is closely
related to the fusion graph, but not necessarily identical to it. For instance for a
field φ with the fusion rule φ2 = 1 + φ the graph is the Dynkin graph A4.

An outline of the contents and the results of this paper is as follows:
In Sect. 2 we will give a review of the duality relations that govern RCFT. Using

these it will be shown in Sect. 3 how one can obtain link invariants from arbitrary
Rational Conformal Field Theories, by construction of a proper Markov trace.
Some examples will be given where the invariant is equivalent to some well-known
knot invariant. In particular this shows that there exists a well-defined three-
dimensional topological field theory, where the expectation values of links agree
with the link invariant obtained from RCFT. One could in principle use this to
properly define expectation values of graphs as well, as has been done for Chern-
Simons theories in [14], and more recently for arbitrary RCFT in [5].

In Sects. 4-6 we will explain the relation between ϊl1 factors and RCFT, using
Ocneanu's path algebras [9]. The algebras presented in those sections have the
properties that their representation theory coincides with part of the fusion rules,
and that the intertwiners between these representations are (up to a normalization)
braiding matrices. In the case that the special chosen field φ is self-conjugate, our
construction should give the same resulting algebras as in [21], suggesting a close
relation between quantum groups and path algebras. The precise relation is,
however, unclear, and must presumably be sought along the lines of Witten's work
[15].

As a by-product of our graphic representation of the string algebras we find in
Sect. 7 a relation between the positive half of the Virasoro algebra and the
Temperley-Lieb algebra. These results are also valid for certain statistical
mechanical models, because we can define an IRF model based on the same string
algebras, where the Boltzmann weights are braiding matrices. In this context the
elements of the string algebras can be seen as transfer matrices.

The final part of this paper consists of a study of the reverse process, namely
constructing Rational Conformal Field Theories out of inclusions of factors. We
establish some necessary (but, unfortunately, not sufficient) conditions for
inclusions to produce Rational Conformal Field Theories, and present some
examples.

2. Duality in CFT

Rational Conformal Field Theories are conformal field theories in which the
Hubert space decomposes into a finite sum of irreducible representations of the
(maximally extended) chiral algebra s

The physical correlation functions in such a theory can be expressed in terms of
finite sums of holomorphic times antiholomorphic functions, which are called the
conformal blocks. Whereas these conformal blocks are multivalued functions, the
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Fig. 1. Different sewing procedures for the 4 punctured sphere

physical correlation functions are constructed out of the conformal blocks in a
monodromy invariant way. Graphically, we can represent a n-point conformal
block ^φu ,tψn as a skeleton diagram. For example, a 4-point conformal block on
a genus two surface can be represented as

The number of blocks can be easily computed from the fusion rules N^, which for
the above case gives

number of blocks- £ Ύv(NφίNφ2Np)Ίr(NpNφ'Nφ4),
P

where (N% = Nfj.
The idea here is that a punctured Riemann surface can be formed by sewing a

number of trinions (i.e. three holed spheres). This sewing procedure gives the
different conformal blocks when one sums over the intermediate states in the
channel that is formed by the sewn holes. Of course, the same punctured Riemann
surface can be obtained by different sewing procedures. For example, the four
punctured sphere can be obtained from two different sewing procedures, as shown
in Fig. 1. These different sewing procedures give rise to different conformal blocks.
Now, the basic axiom of duality in Conformal Field Theory [1] assures that the
vector space spanned by the conformal blocks is independent of the sewing
procedure. This means that the conformal blocks obtained from one sewing
procedure are linear combinations of conformal blocks obtained from another.
The matrices representing these linear transformations are called "duality
matrices."

Moore and Seiberg [2] have shown that the duality data of a Conformal Field
Theory are contained in the braiding and fusion matrices and the modular matrix
S(j) (see below). Furthermore, they have proven that the conditions on these
duality matrices, stemming from the requirement of duality and modular
co variance on arbitrary genus, can be represented by a finite number of equations,
the polynomial equations. We will review these polynomial equations below.

The basic duality data for genus zero are contained in the braid matrix

Bp
(ε) or the fusion matrix F ,which are defined in the following
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Fig. 2. Braiding on a simple conformal block
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(ε = ± depending how the braid is performed). A particular simple example of the
braid matrix, which we will denote by Ωk

p is given in Fig. 2. We always can make a
"choice of gauge" such that Ωkj becomes (At denotes the conformal weight of the
primary i)

(2.1)

where ε^ (not to be confused with the ε which denotes the orientation of the braid)
can be +1. For WZW models we can use the fact that for representations εkj is
—/ + depending on whether k appears (anti)symmetrically in the tensor product of
i and . In more general situations ε^ has to be determined consistently from the
polynomial equations. Note that if ί=j we also have B(ε) = F~1Ω(ε)F9 which
implies that in this case B{ε) has the same eigenvalues as Ω($).

The braid and fusion matrices are not independent, in fact

which can be easily deduced when one applies the simple moves shown in Fig. 3.
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Fig. 4. Proof of the hexagon identity
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Fig. 5. Proof of the pentagon identity

From (2.2) we have B(ε)° B( — ε) = l, which is obvious. Furthermore, since f2*(ε)
= Ω( — ε) and F* = F v , we have J5*(ε) = £ v (— ε), where B v denotes the braid matrix
with the fields φ{ replaced by their duals φ? (recall that the dual φ v of a field φ is
the unique field with which φ has the fusion rule φxφy =1 + ...). One can easily
prove that this implies that the braid matrix B(ε) is in fact unitary.

Applying a series of B and F moves or^special cojriformal blocks one can easily
Γ
/_

and Seiberg guarantee that all these identities are in fact equivalent to just two
identities, which we will now derive. The first is called the hexagon identity and is
expressed graphically in Fig. 4. In terms of the fusion matrix it reads

derive lots of identities for the Bn . The results of Moore

F(Ω(ε)®l)F = (2.3)

The second fundamental identity is called the pentagon identity. Its graphic
derivation is given in Fig. 5, which gives the following expression in terms of fusion
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Fig. 6. Proof of the Yang-Baxter equation

Fig. 7. Proof of the genus one identity

matrices:

Γ 12^23 = J \3F12, (2.4)

where P is the permutation operator. Using (2.3) and the connection between the B
and F matrix as in (2.2), we can rewrite (2.4) as

B12(ε)B23(ε)B12(ε) = B23(ε)B12(ε)B23(ε) (2.5)

whose graphic interpretation is given in Fig. 6. Equation (2.5) is the Yang-Baxter
equation and is due to the fact that the B matrices form a representation of the
braid group.

In addition to the genus zero equations which we have derived above, there are
of course duality constraints from higher genus. One of the surprising results of
Moore and Seiberg is that the only new fundamental duality equations come from
genus one. We will now derive these equations. First, the new duality data in genus
one are given by the modular matrices S(j) and T, where S(j) represents the behavior
of the one point functions on the torus under the transformation τ-> — 1/τ, and T
equals T^^δ^e2^^'012^. Since the modular matrices S(j) and T should form a
(projective) representation of the modular group, we have the following two
identities

SOTSO^T-^OJT-1, (2.6)

S2Q)=±e-iκΔJC, (2.7)

where C is the charge conjugation matrix Cί<7 = iV? 5 which maps the field φt to its
d l ^ v

Besides these two identities we have one more genus one relation, which can be
represented pictorially as in Fig. 7, and which gives the following constraint on the
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duality matrices:

(S®l)F(l®Θ(-)Θ( + ))F~1(S~1®l) = FPF~1(l(g)Ω( — )). (2.8)

The idea [6] of Fig. 7 is that one inserts a primary p on the torus, where p is some
field contained in the operator product expansion of j 1 and j 2 - Then one "defuses"
to get an insertion oϊj1 a n d ^ instead of p. Subsequently, one transports y2 along
the aor b cycle of the torus, and fuses it again with Ί t 0 E e ί a n insertion of some
other field 5. The two processes of transporting along the a orb cycle are related via
the modular transformation S:τ-+ — 1/τ. Schematically, SaS~ι=b. Performing
the moves explained here one arrives at (2.8), where Θ(±) acts as

J

Θ(±)i

so for the case of Fig. 7 we have l®Θ(-)Θ( + ) = e2iπ{Λι~Δp\
Note that if we take j 1 =j2=

:j and p = s = 0 in Fig. 7 this implies [6, 2],

NU = Σ Sim — Sjm , (2-9)

where

| ^ = ~ i | ^ E ^ 0 m p . ;vl(-)βMOp. .'vl(-). (2 io)
ύ 0 0 ύ 0 0 ^00 m U J J Ll J J

and where we used the "tetrahedron" symmetry

^SQI/SQQ) which can be proven from the pentagon identity (2.4).
From (2.6) and (2.9) we also have

= Σ ^ N*e2 i*<* + ^ - ^ > . (2.12)1 Σ ^
So we see that we can make the following consistent "gauge choice":

\ι J \(e)—
Lι J J

Taking the tetrahedron symmetry into account this is in fact the only gauge choice
consistent with (2.1).

The above Eqs. (2.3-2.4) and (2.6-2.8) are the polynomial equations which
encapture the fundamental duality relations of a Conformal Field Theory. In the
next section we will explore these polynomial equations to show that we can define
for every primary field in a Conformal Field Theory a topological invariant of
knots (or more generally links). As we will see, these invariants are intimately
connected with so-called Markov traces, which already appeared in a slightly
different context in [40]. In the next section we will give a proof of the existence of
such traces in Conformal Field Theory using the polynomial equations of Moore
and Seiberg.
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3. Topological Aspects of CFT

To define a topological invariant of links for Rational Conformal Field Theories
we first have to discuss the relation between knots or links and braids. The braid
group defined on n strands will be denoted by Bn and is generated by the simple
braids <σ1? ...,σM_1> which satisfy

p \i-j\^2. (3.2)

The Bpq encountered in the previous section form a representation of the
|_/c /J

braid group, and the Yang-Baxter equation (2.5) is a direct consequence of (3.1).
To discuss links in terms of braids, we will take a two dimensional point of view

towards links. When one projects a link down to two dimensions to get a knot
diagram, as in Fig. 8, the question which diagrams give equivalent links arises. A
theorem in knot theory [4] states that knot diagrams give equivalent links when
they can be transformed into each other via so-called Reidemeister moves, shown
in Fig. 9. A link invariant defined on the level of these diagrams should of course be
invariant under these Reidemeister moves to be a true topological invariant.

It is more or less obvious that every link can be obtained by the closure of a
braid. Such a closure of a braid α (see Fig. 10) will be denoted by d According to a

Fig. 8. A knot diagram

XOC-X

Fig. 9. The Reidemeister moves

Fig. 10. Closure of a braid
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theorem of Markov, this means that an invariant L(ά) defined in terms of braids α,
should satisfy the following properties:

L&β) = L(βa), aι,βeBn, (3.3)

L ( ^ P ) = L(dc), aeBn, (3.4)

where the trace property (3.3) is clear when one closes the braid, and (3.4) is the
consequence of the first Reidemeister move. Conversely, these properties are
sufficient to guarantee that L defines a link invariant.

The representation π of the braid group Bn that we will study here is a
representation on special conformal blocks. These are genus zero blocks with n
external φ lines and one "spectator" field; [21]

-J-
Pi Pn-2

Such conformal blocks will be denoted as ̂ " ) . The dimension dφj of the vector
space spanned by these conformal blocks is easily computed as

So for a fixed spectator field j the braid matrices π(σf) are elements of Ma,t(d$j9 C),
the space of complex square matrices of dimension d{

φ]y We can use this to build
finite dimensional C*-algebras C{

φ

} as follows:

This gives us a sequence of inclusions of C*-algebras

C^CC^C.CC^C.., (3.5)

with the inclusion matrix given by Nφ [13].
To define a link invariant for Rational Conformal Field Theories we will first

look for a so-called Markov trace Mφ, which is defined on Cφ = [j C{

φ\ and
n

satisfies the following properties:

M(π(l)) = l , (3.6)

M(π(φ) = M(π(j8α)), α, β e Bn, (3.7)

M(π(ασJ) = zM{π{a)), α e Bn, (3.8)

M(π(ασΠ"')) = zM{π{a)), α 6 Bn, (3.9)

where z is called the Markov parameter. Once we have such a Markov trace we can
easily define a topological invariant out of it, as follows:

-\w(α)/2

M(π(α)), α e 5 n , (3.10)

where w(α) is the wraith of the braid α, i.e. the number of overcrossings minus the
number of undercrossings in a knot diagram (with the choice that the σt generate
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overcrossings and the σ,"1 undercrossings). Note that we have the following
normalization:

The idea now is that in order to study knots or links we first write them as the
closure of braids, and then assign numbers to these braids as follows. We perform
the same braids on the conformal block of (3.5), which then equals

Σ *£...,».-,;„,....,..-,(«) X
Ql Qn-2

-J,

where Bj f ...,Pn_ 2Jβl,...,βn _2(°0 is a product of the braiding matrices Bpq\ . . Lso

it is a map from the braid group Bn to C^}. Taking the trace inside each Cff we
get another map tf from C^ to C

and tf(π(oc)) is the number we want to associate with the braid α.
The reason we restricted ourselves to the conformal blocks of (3.5) is that since

we want to study links in terms of braids, all the external lines have to be the same,
otherwise the braid cannot always be closed.

The final step is to construct out of the numbers tf(π(oίj) a Markov trace
Mφ(π(ot)). A proposal for such a Markov trace is given in [21, 40] (and im-
plicitly in [16]). We will not repeat the arguments leading to this proposal here,
but simply state the result

(^)n l^ή(π(α)). (3.12)

Note that due to (2.9) Mφ(π(l)) = 1. We will now prove that this proposal for the
Markov trace indeed satisfies the Markov properties (3.7) and (3.8). As one can
easily verify the trace property (3.7) is fulfilled due to the fact that we have taken the
trace inside each Cft.

To prove the second Markov property (3.8) we first have to determine what it
means in terms of the braid matrices. Setting α = 1 in (3.8) and evaluating it on #^fj
gives for the Markov parameter z

iπ(2Δφ-Λj)
e

0 0

which we will show to be equal to
-2ίπAφ
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Fig. 11. Working out (3.8) on a general conformal block

The implication of (3.8) for general conformal blocks and general braids α is
worked out in Fig. 11. From (3.12) and Fig. 11 we deduce that (3.8) becomes

j ^ 0 0

p
PP [ί ί — z-

oo

fΦ
pk- (3.15)

Note that for fc = 0 this equation reduces to (3.13), so to show that (3.12) defines a
good Markov trace we only have to prove (3.15). Using (2.13) we can rewrite the
left-hand side (l.h.s.) of (3.15) as

p φ' P Φ'

_ ^Op ^Qφ e2ίπ(Δv-Δφ-Ak) -

SOP_SO

^ 0 0 ^ 0 0

• 2iπ(Ap-Aφ-Ak)Qk ( \

3 0 0

linΔφ jsjφ
1 y pk ' (3.16)

where going from the first to the second line we used (2.2) and from the second to
the third we used the Yang-Baxter equation. So we have proven that (3.12) indeed
satisfies the Markov properties with the Markov parameter z given by (3.14).

We thus have produced for every primary field φ a link invariant given by

with (3.11) replaced by

G H

(3.17)

(3.18)

If we specialize the above invariant to the case of a SU(N)k WZW model, with φ
corresponding to the fundamental representation, φ = •, our invariant is in fact
the Jones polynomial [7]. This can be proven as follows. The fundamental
representation for SU(N) has the "fusion" rule

m.
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The weights of the fields appearing in this product are given by

_(N-1)(N+1) _(N-2)(N+ί) (N-ί)(N + 2)
π 2N(k + N) ' B N(k + N) ' m N(k + N) '

which implies that the eigenvalue equation for the braid matrices π(σ )̂ becomes

O (3.19)
2ίπ

(here q = ek+N) which (after some renormalization) is the Hecke relation.
From (3.19) we can derive the following property of the link invariant (3.17):

- 4-) ^D , (3.20)

where LQ stands for the value of a link with at some point an overcrossing, L^ is
the value of the same link with the overcrossing replaced by an undercrossing and
LQ is the value of the link with the crossing removed.

Graphically, we can represent (3.20) as the "skein" relation

(3.21)

This skein relation can be used to disentangle the knot. Together with the
normalization (3.18) it completely determines the polynomial LD. This polynomial
equals the Jones polynomial as given in [16], since the skein relation we derived
here is identical to that of [16]. In a similar way we can prove that for φ = • in
SO(N)k or Sp(2N)k WZW models, our invariant is equivalent to the Kauffman
invariant [8]. In fact, we can use (3.17) to construct many new knot polynomials,
namely one for every primary field of an arbitrary RCFT (and not just for WZW
models, which would give the same polynomials as Witten derived from (2 + 1)-
dimensional Chern Simons theory). Although we should note that in practice the
evaluation of the braid matrices appearing in (3.12) can become quite cumbersome.

Before we close this section we return to the issue of inclusions of C*-algebras,
as given in (3.5). We will argue that we can complete πiB^) = Cφ = [j CjJ0 such that

n

it becomes a so-called II x factor. First we will review the definition of a II x factor.
An algebra A is a factor if:

- A is a von Neumann algebra, i.e. an algebra of bounded operators on a Hubert
space J f, such that it contains the identity, it is closed under taking adjoints, and it
is closed in the ultraweak topology1.
- the center of A is trivial.

It is of type ϊl1 if it is infinite dimensional and admits a finite normalized trace
tr:^4-»C such that

tr(l) = l ,

tτ(ab) = tτ(ba), a,beA, (3.22)

tr(α*α)^0, aeA.

This trace is always unique.

This means if tpl9 ψ2e<%?, aneΛ, aeB{2tf) and (ψ1\anψ2y-*(ψ1\aψ2) then aeA as well
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Jones has shown [10] how to associate to a II x factor M and a subfactor N, a
number [M: iV], called the index, which measures "how many times N fits into M,"
similar to the index [G: /f] for finite groups. The index need not be an integer
however.

There is one more property we will need: a factor is hyperfinite if it contains a
dense increasing sequence of finite dimensional sub *-algebras Aγ C A2 C... C A. Up
to isomorphism there is only one hyperfinite II 1 factor [11] usually denoted by 01.
In a sense 01 is the smallest possible II x factor [12]: Any II x subfactor of 01 is again
isomorphic to ^?, and any II x factor contains 0ί. Another property of ^ is that the
range of the index [β: 0t'\ where St1 runs over all possible subfactors of ^ , equals
[10]

\β: 3Γ\ e <4 cos2 - 1 u [4, + oo]. (3.23)

Using the Markov trace Mφ we can define an inner product on π(BO0) = Cφ,

(x\y} = Mφ(x*y). (3.24)

Using this inner product we can take the weak closure of π ^ ^ ) . It can be
proven, unless φ is simple [26], that this closure niB^) satisfies all the requirements
in the definition of a hyperfinite II 1 factor, so we see that it is in fact isomorphic to
the hyperfinite II1 factor <M.

With this factor, naturally comes a subfactor as follows. Take for B'^ the braid
group generated by the elements <σ2,σ3, ...>, then n^B'^) is a subfactor of n{B^).
The index of this subfactor can be calculated as

Σ(Nφ+1)φj /c \2
:π(B>Jl= lim J

ψττ^~ = ^ , (3.25)

since Soφ/Soo is the largest eigenvalue of Nφ.
For the special value 3 of the index, Jones [34] noted that (for φ = • in SU(2)4)

π{B'J C fciBJ, is equivalent to the pair 0lΌ2> C ̂ Z 2 , where 0lG denotes the set of fixed
points of 0t under an outer action (i.e. not of the form gxg~x) of the finite group G.
Furthermore, at this value of the index the link invariant (3.17), in this case the
Jones polynomial, is equal to + i times a power of ]/3, for any link L. A similar
situation occurs for index equal to 5. Here, (φ — • in Sp(4)2) πiB'^) C ^(B^) can be
described as ^ 5 c ^ Z 2 , and the link invariant (3.17), now called the Kauffman
invariant, is equal to + i times a power of j/5.

To understand these peculiarities we will consider the more general situation of
&D2p + 1C&Z2, and show that similar things happen here, thereby generalizing the
results of [34]. The "principal graph" (see Sect. 9) one gets for 3$D2p + 1c&Z2 is
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As will be explained in Sect. 9, to get an inclusion of factors from RCFT which is
equivalent to $D2p + 1C$Z2, we have to find a primary field which has (3.26) as its

fusion graph. Such a primary Φ is given by the field which corresponds to the |

representation (p blocks) in a SO(2p -f 1)2 WZW theory, except for p = 1 for which
φ= • in S17(2)4 and p = 2 for which Φ = • in Sp(4)2.

The conformal weight of the field Φ is given by Δφ— -, and the weights of the
o

fields which appear in the product of Φ with itself are given by

The group theoretical factor ε for these models is

J —ΛJ2+j) j — f) n
bΦΦ — ι

 J J — υ ? ? y -

From this we deduce that the eigenvalue equation for the braid matrices π(σf)
becomes

P

11 u THOiJ —* ω ; = u> ( A z / ;
7 = 0

2iπ

where ω = e2p+ί. We can rewrite this product such that it becomes

Π (ip/2π(σ i) + Γ l > V 2 ) = 0. (3.28)

This allows us to take for the σ{ the so-called "Gaussian" representation [34],

where the ut satisfy

uiuί+1=ω2uί+ιuί,

since the eigenvalue equation for π(σt ) with σt defined in this way is equivalent to
(3.28).

Now it is shown in [34] that the Markov trace evaluated on a braid in the
Gaussian representation gives (up to some constant C which is a power of 2p+1)

X ω<v>v\ (3.29)
υefii(S;Z2p+i)

where S is a Seifert surface for the closed braid, and < , > is the Seifert pairing (for
an explanation of these terms, see for example [4]). For the link invariant L φ given
by (3.17) this implies that, whenever 2p + 1 is prime, |Lφ(ά)| equals C(2p + l) v + / x / 2 ,
where (μ)v is the number of (non)zero eigenvalues of the Seifert pairing.

With the Gaussian representation at our disposal, we can now easily show why
π(j5/

Q0)Cπ(500) is equivalent to &D2p + 1C@Z2. Following [34] we deduce that the
completion of the algebra generated by ui9 denoted by A = Alg(uί9u2,...)9 is
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isomorphic to @l. On A we have the following Z2-action: t^-mf1, whose fixed
points are the π(σf), so π(B(X)'^0ϊL2. Furthermore, we have an Z 2 p + 1-action on A
given by:uί-+ωuί and w,-^- for i^2, whose fixed point algebra is generated by the
<w2, w3?... >. Since D2p+1 = Z 2 xι Z 2 p + 1 5 this implies that the U1 factor generated by
the <σ2, σ3,.. .>, i.e. πfΊ^), is isomorphic to MDlp + K So we can finally conclude that
π{B'JCπ(BJ is equivalent to ^D2p Z

4. II, Factors Coining from RCFT

In this section we will define what a coupling system is and how they can be
obtained from Rational Conformal Field Theories. Some background material on
coupling systems and their relation with inclusions of factors is gathered in
Appendix A.

Let ^ be an unoriented graph. A path of length n on <§ has the obvious meaning.
The vertex where a path ξ starts will be denoted by s(ξ) (source), the endpoint by
r(ξ) (range). In particular a path of length one is just an edge with an orientation.
The reverse £~ of a path ξ is the same path walked along in the opposite direction.
If we have two paths ξt and ξ29 and ξ2 starts, where ξ1 ends, ξ1

oξ2 will stand for the
path "first ξί and then ξ2" The set of all paths of length n starting at x and ending
at a vertex y will be denoted by Path" r the length of a path by \ξ\.

A standard finite measure graph is a finite connected graph 9 with a
distinguished vertex * = *^ adjacent to only one other vertex **^ via one edge, and
with a natural Z 2 grading given by the distance of a vertex to *. The even vertices
will be denoted by ^eyen9 so * e ^ e v e n , and the odd vertices by ^ o d d . Let A be the
incidence matrix of ^ , then by Perron-Frobenius theory A has a unique
eigenvector with only positive entries and such that its entry at * is 1. The
eigenvalue will be denoted by \\Λ\\9 and the components will be labeled by Fx,
where x is a vertex of <§.

We have the following definition: a local coupling system is a quadruple
(&,,&, τ,W), where ^ and 3^ are finite standard measure graphs with \\A9\\
= \\Aπ\\. Furthermore τ is an involution on the set of vertices of ^ u J f, satisfying

W is map which associates to any cell (α l 5 a2, a3, α4) consisting of four oriented
edges with τ(r(ai)) = s(ai+ι), a number W(a1,a2,a3,a4)eC satisfying five axioms
which we will give below.

Consider a RCFT and pick a field Φ. We make a graph by taking 2N vertices if
N is the number of primary fields in the theory, and label them by φ{ and φ'j9 where i
runs from 1 to N. Next we draw NJ

Φ. edges from φt to φ). Let 9 be the connected
component of the resulting graph containing the identity operator 1, and let *«? = 1.
Also let 2tf be the connected component containing Γ and let * ^ = Y. From now
on we will usually identify φt and φ[. We see that & is the graph obtained by
alternatingly fusing with Φ and its dual field Φ v , and J f is obtained by the same
process, starting however with Φ v . Therefore, as graphs ^ and J f are identical.
Note that not all fields need occur in ^ and jίf. The eigenvalues for the Perron-
Frobenius eigenvector are given by \\A^\\ = \\A^>\\ =S0Φ/S00. The contragradient
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map is defined by τ(φi) = φ^ or τ(φi) = φ'i
y (compare with the charge conjugation

matrix C of Sect. 2). This can be done in such a way that it is compatible with the
demands stated above in the definition of a coupling system. The Perron-
Frobenius eigenvector has components Ft = Soφi/Soo.

The definition of W for RCFT's is a bit more involved. Fix once and for all an ε,
which may be either + or —. Consider a cell (al9 α2, α3, α4) consisting of four edges
((Φi,φ%), (Φi>Φl\ (Φ^Φl\ (ΦtoΦi))- We have to consider four different cases:

Φi e ^ o d d - W1>(α1,α2)α3,α4) = βψvψv | j j * J (ε) [ / ί l ^ i , (4.2)

(4.3)

^ J j g (4.4)
/Ft V /ft I 4 / ri τ-1

J f e ψ ^ (4.5)
For ΛΓφ( > 1 a pair of vertices does not specify an edge and we would have to

include into the definition of W also a dependence on couplings ε, which are
elements of a Nk

φi dimensional vector space. We have suppressed these as they
would just complicate the expressions. Furthermore, Ocneanu has defined a
notion of equivalence of two coupling systems, stating that two coupling systems
are equivalent precisely when they differ by a unitary transformation in the space
of couplings, and therefore everything is independent of a choice of basis in the
space of couplings.

In order to check the axioms that W has to satisfy, let us recall some of the
symmetries of the braid matrices,

ΐ ] | j ί φ (4 7)

where (4.6) is a consequence of (2.2) and (2.11), (4.7) is due to our convention for the
conformal blocks and (4.8) is a direct consequence of (4.6) and (4.7).

First we will check the three axioms that Ocneanu calls local [9].

The first axiom is that of inversion symmetry: for any cell (αl5 α2, α3, α4) we must
have

W(μl, α3~, fl£, aϊ)= W(al9 α2, α3, α4). (4.9)

From now on we will assume that

(a^a^a^aJHiΦuΦΪKΦ^ΦsUΦ^ΦDΛΦ^ΦΪ))- (4.10)
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In order to check the inversion symmetry we would in principle have to distinguish
between four cases, depending on whether φλ is in ^ or in #?9 and whether it is an
even or odd vertex. We will just prove it for one case, the other three being
completely similar. So assuming ^ G ^ , we have

~,a2,aϊ)=Wi3\(φi,φ4),(φ4,φ3\(φ3,φ2\(φ2,φ1))

= Bφ4φ2\ , v , v | ( e ) l

- The next axiom is the axiom of rotation symmetry,

W(a2, α3, α4, α,) = W(aua2, a3, aA)*. (4.11)

To check this, take for example φt e^ e v e n . We have

^ 3 ) (α 2 ,α 3 ,α 4 ,α 1 ) = B φ W ^

φ φ

where in the second line we used B*(ε) = Bv( — ε), see Sect. 2.

- The third and last local axiom is the axiom of bi-unitarity. This axiom states that
the connection is a unitary matrix, after a certain renormalization. In our case that
means that we have to check whether the braid matrices in (4.2-4.5), without the
normalization factors, are unitary. This fact was already noted in Sect. 2 below
Eq. (2.2), and therefore the third axiom is also satisfied.

This completes the proof that the connections obtained from Rational
Conformal Field Theories satisfy all the local axioms.

Next we want to prove the two remaining axioms, which are called the global
axioms, to make the coupling system a global one. To state these, one needs to
extend the definition of W from cells to more general surfaces, using Ocneanu's cell
calculus, where the map W is extended to a map defined on contours. A contour
consists of four paths (ξl9 ξ2, ξ3, ξ4) in either ^ or Jf, with |ξx | = \ξ3\, \ξ2\ = \ξ4\ and
s(ξi+ί) = τ(r(ξ$. A surface s is a family of cells c(ij) = (c(i9j)l9 c(i9j)29 c(i9j)39 c(i9j\)
(i = l, ...,m, ; = !,.. .,π) having matching walls: c(i + ί9j\ = c{i9β2 and c(ij + ί)±
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B m n Φl

Fig. 12. The braid matrix as the expectation value of a graph

Fig. 13. The boundary of Γ(c)

= c(i,j)3. The boundary of 5is a contour (ξl9 ξ29 ξ3, ξ4) with ξι = c(n, 1)°... °c(l,l)
etc. For a surface s, one defines

(U)) (4.12)Π
and for a contour c,

(4.13)

where the sum is taken over all surfaces having boundary c.
To see what these expressions mean in RCFT, observe that W(c) consists of a

sum of products of braid matrices. As we have seen, similar expressions are
encountered in the computation of knot invariants for RCFT's. So it is tempting to
find a knot whose expectation value in 3-d topological field theory equals W(c).
However, as it turns out, we need a graph instead of a knot. This is because braid
matrices are related to expectation values of graphs rather than knots. The precise
relation [14] is given in Fig. 12. From now on we will take ε = + if one takes ε = —
instead one just has to replace overcrossings by undercrossings and vice versa.

If we have a graph projected onto a plane and a preferred "time" direction, the
computation of the expectation value involves a summation over all possible ways
to fill in the graph, as explained in [14]. This corresponds precisely to a sum over
all surfaces with a fixed boundary as in Eq. (4.13).

Consider now an arbitrary contour c=\ξl9 ξ2, ξ3, ξ4\ and suppose that

with similar expressions for ξ29 ξ39 and ξ4. The boundary of our graph will consist
of the rectangle with the labeling of the fields as indicated in Fig. 13. Next we have
to fill this graph with a set of horizontal and vertical lines in such a way that is
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Qodd

ι~[*even

Qodd

Kodd

yeven

Ήodd

ft™

Qodd

'['even

Qodd

Ή-odd

yeυen

Ήodd

it-even

Qodd

'['even

Qodd

nM

ft™

Fig. 14. The interior of Γ(c)

Fig. 15. An example

compatible with the grid depicted in Fig. 14. A typical example we might get in the
case m = 4, n = 6 and tpo1*eleven *s shown in Fig. 15. The unmarked lines in the
graph will always represent our special chosen field Φ. Again we might also have to
include labels, at every vertex of the graph where three lines meet, to represent the
couplings. As remarked before, we will not do this, but the reader should keep in
mind that it is always possible to explicitly include the couplings at any stage.

Denote the graph obtained in this way by Γ(c). A careful computation of
<Γ(c)>S3 based on the results of Witten [14], using as time direction south-east to
north-west, shows that this expectation value precisely equals W(c\ up to a
normalization factor. This normalization factor can also be computed, where one
has to pay special attention to the boundary of the graph (see also [15]). The result
is

f

Using this formula we can now prove that the two global axioms a global coupling
system has to fulfill are also valid.

The first one, the parallel transport axiom, states that for any contour c with

W(c) = δ(ξ1, ξl)δ(ξ2, ξZ) (4.16)

In this case, let us take for example r(^) = s(ξι) = *9, the graph Γ(c) consists of two
disconnected components, as shown sketchy in Fig. 16. Due to the topological
invariance in this theory we can move the two pieces apart and using Eq. (4.15) we
find

(4.17)
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Fig. 16. The first axiom

Expectation values of graphs are topological invariant. One can also prove this
directly where invariance under the Reidemeister moves (Fig. 9) is due to the Yang-
Baxter equation (2.5), and invariance under moving a line over a vertex where three
lines meet is due to the pentagon identity (2.4).

Now it remains to compute <Γ1> s 3. Using Witten's cutting prescriptions
[14,16] based on the fact that for one-dimensional Hubert spaces we have
<α|fe> (c\d} = (a\d} < φ > , it follows that

1-2

n-2

(4.18)

s3

From Sect. 3 we have (cf. Eq. (3.18))

which implies

(-
Using this result we find

/ / T \ ψ \ 3=F Γ̂ iV Vi]
\ 1Vi/ 7 s 3 ΦOLψ2 WU

v/v2

Putting everything together the final result is

w{c)=δ(ξl9ξϊ)δ(ξ29ξ;)

(4.19)

(4.20)

(4.21)

(4.22)

as requested.
Finally, the global contragradient axiom states that for any vertex

there is a contour (ξl9 ξ2, ξ3, ξ4) with s(ξ1) = s(ξ3) = *e or *^, s(ξ2) = x and s(ξ4)
= τ(x), and such that W(c) φ 0. For such a contour we find

(4.23)

where Γt is given in Fig. 17, for the case s(ξx) = s(ξ3) = *<$. Cutting along the dashed
line in Fig. 17 shows that

<A>S3 = <Ψ{

2

U • • • tfliWϊl i Ψ?>, (4-24)
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/ τ(x) \

J
Fig. 17. The contragradient axiom

i.e. the inner product of two states in the Hubert space of the punctured two-sphere
with charges as those occurring along the dashed line. Now if we let the φ's vary,
both states in this inner product run through a basis of this Hubert space, so it is
certainly possible to choose them such that this inner product is nonzero.
Therefore, the connection also satisfies the global contragradient axiom, and this
completes the proof that the connection obtained from RCFT gives rise to a
coupling system.

Due to the one-one relation between coupling systems and irreducible finite
index finite depth inclusions of II1 factors [9], this proves that for every RCFT
together with a field Φ there is a corresponding inclusion of such II1 factors (in fact
there are two, as we can take both ε = + and ε = —, but these two choices need not
be inequivalent), see also [41, 42], An immediate consequence is that we always
have

^ 6 {cos "
00 I

u[2,oo]. (4.25)

Although this method would enable one to construct many examples of
irreducible inclusions of IIX factors, and maybe even new ones, we will be mainly
interested in the reverse process: given an inclusion, when does this correspond to
a RCFT? To answer this question we will first take a closer look at the ll1 factors
coming from RCFT.

5. The String Algebras

First we construct the string algebra on ^ . A string is a pair (ξu ξ2) of paths of
length n starting at * and ending at the same vertex x. Write ξί = (*9ψ

(ι\...,
{ 2==(*51Pi2)5 "^Ψ^-uχX s o Λat \pψ = ψψ = Φ. Now define

(5Λ)
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Fig. 18. The closure of Ω

in the case n is even. If n is odd, the definition is the same, only the direction of the
four arrows at the bottom of the picture has to be reversed. From now on we will
always display one special case, the others being obtainable via a minor
modification.

The box in this definition should be seen as a part of a graph embedded in S3, or
alternatively as a state in the Hubert space of a punctured two-sphere. Given two
such Ω's, they can be multiplied with each other: one has to multiply the constants
in front and put the graphs next to each other, after which one has to glue them
together in an obvious way. The closure of Ω is the graph (including the constant in
front) obtained by identifying the in- and outgoing lines as shown in Fig. 18, and
will be denoted by Ω.

The algebra An is the algebra having as basis the Ω(ξl9 ξ2), where (ξί9 ξ2) runs
over all strings of length n, and with the multiplication rule explained above. The
adjoint of Ω{ξli ξ2) is equal to Ω(ξ2, ξj. The algebra An constructed this way is
isomorphic to the algebra Mnr\N' occurring in the derived tower [Eq. (A.6)].
Actually, the multiplication rule is very simple. Using the techniques similar as
those used in the proof of the global parallel transport axiom [cf. Eq. (4.18)] one
can easily derive

ω (5.2)

(5.3)

An is imbedded in Λn+, via

where the sum is over all edges starting at x. A trace on An compatible with this
imbedding An-+An + ί is given by

= FxFφnδ(ξ1,ξ2). (5.4)

This trace can be used to complete uAn into a von Neumann algebra A, This
algebra A is in fact a subspace of the space of all conformal blocks. A similar
construction works for Jf where the paths start at *^. The graphs occurring in the
definition of Ω have in this case all the arrows of the in- and outgoing lines reversed.
In this way one gets algebras Bn which may be completed into a von Neumann
algebra B. The notation used here for the operators Ω(ξί9 ξ2) is more or less similar
to the notation used for instance in [17,40] to label the bases of spaces of
intertwiners.

In order to define other operations on the string algebras An and Bn, it is
convenient to extend the definition (5.1) to two paths starting at a vertex y and
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ending at a common vertex z. In that case we define

1
1 *

1

1

1

n / 2 « I

1

1

1

h

/ ( I ) y (2)

n-L χ π - l

(5.5)

Again we only have displayed the case y, z e ̂ e v e n or y, z e Jtfodd. The definition in
the other cases is similar.

Using this extended definition we define a homomorphism φ:An-^Bn+ί as
follows: let Ω(ξί,ξ2)eAn and (ζl9ζ2) be two arbitrary paths on Jf of length n
starting at Φ v and having a common range. Let e denote the path of length one on
Jf from *^ to Φv. Then φ is defined by

φ(Ω(ξuξ2)) = oίi, (5.6)

Define in a similar way a map φ: Bn-+An+U and let A : An-*An + 2 be φoφ. This is
what Ocneanu [9] calls the canonical shift. In fact, A plays the role of a
generalization of the comultiplication for these string algebras. The map φ can be
used to define a homomorphism φ:A^>B, and the inclusion of II ί factors
belonging to this coupling system is precisely the inclusion φ(A)cB.

To see how the even vertices of 0 correspond to A —A modules, fix a vertex
x e êven> a n c * consider a pair (α, β) of paths of length n, having common range,
while α starts at *^ and β starts at x. These pairs (α, β), so-called open strings,
together form the basis of a linear space An(x). Let Ω(ξίf ξ2) e An, then Ω(ξl9 ξ2) acts
on (a,β) from the left as follows:

(5.8)

To define the right action we need a generalization of (5.5)

ye Paths, r ( α )

What goes into this definition is precisely Ocneanu's notion of parallel transport.
We see that An(x) is a An — An bimodule and after taking an appropriate completion
we get a A — A bimodule A(x). These are irreducible [9]. Therefore we have the
interesting result that the irreducible modules of the string algebras correspond to
certain primary fields of the underlying RFCT.

If we consider vertices in ^ o d d or in J f we must also consider left and right
actions of Bn. Again, the expressions are the same as those occurring in (5.7) and
(5.8).

2 It is an interesting exercise to check that this right action is indeed compatible with the algebra
structure on An
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6. Tensor Products and the Number of Paths

How do the fusion rules arise in this context? Take for simplicity two even vertices
of 0, say (x, y\ and let (α, β) be a pair of paths starting at respectively x and y having
common range. On the linear space An(x, y) which has as basis the pairs (α, β) one
can again define a left and a right action of Aw similar as in (5.8),

Ω(ξuξ2)-(a,β)= Σ (i?^F;1<Ω(ξ l sί2)Ω((x,y)>S3)(y,j5)> (6.1)
yePath£,r(α)

(a,β)-Ω(ξuξ2)= Σ (F^F ^Ωiξ^ξJΩiyJ^s^y). (6.2)
yePath5,r(α)

An(x,y) will decompose into irreducible An — An modules: An(x,y)=@An(z). We
will present some dimensional arguments why we expect that

An(x,y)=®N*UyAn(z), (6.3)
z

where φx is the field corresponding to the vertex x etc. Actually, An(x, y) is precisely
what one finds when one studies the tensor product of the representations A(x) and
A(y) using the generalized comultiplication. Therefore, we see that the fusion rules
are just the rules for decomposing the tensor product of representations of the
string algebras.

Let fijif) be the generating function for the number of paths from i to j ; that is,

fij(t)= Σ IPathfJt*. (6.4)
k = O

It is easy to check that ftJ{t) = (1 — tΛ#)ΰ \ where 1 represents the unit matrix. We
would like to check whether

or equivalently whether

giJ{t)=ΣNhgok(t), (6.6)
k

where
gij(ί) = d e t ( l - ί ^ ) ( l - ί ^ ) i 7

1 . (6.7)
Using

and (S2)ij = C = δijv, SS* = 1 one can derive the following expressions for ftj{t) in
terms of the modular matrix S

1 ~ " ';ven or ̂ o d d , (6.8)
1 - ί 2 ><χφ

1-ί 2

1 _ j

SxJ, ie<$eveπ,je%odd, (6.9)

(6.10)
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Similar expressions are valid for f̂, where Saφ/Sa0 is replaced by its complex
conjugate. The last relation we need in order to put everything together is

It is now obvious that relation (6.5) is fulfilled, and that we therefore have a perfect
agreement with the decomposition rule (6.3), at least as far as dimensions are
concerned.

As a side remark, observe that

lim
foi(t) = Ft

fo,(t) Fj'
(6.12)

so in a sense Ft measures how many paths there are from * to L A remarkable fact is
that [33]

(6.13)

where the character χt is the trace of q{Lo c / 2 4 ) in the representation corresponding
to φt. We thus see that the number of states in the ιth representation grow
asymptotically at the same rate relative to each other as the number of paths.

Another way to obtain the fusion rules from path algebras has been studied in
[31, 32], by techniques similar to the ones in Sect. 9.

7. Algebras Hidden in the Path Algebras

The projections ek e Mk+1 [see (A.3)] descend to Λk+1. Instead of expressing them
in terms of the basis (5.1), we will express them directly in terms of (pieces of) a
graph. Let l>k then ek can be represented in Aι as

k- l

(7.1)

l - k - 1

I

I

I

1

1

D
1

1

1

1

c

These ek indeed satisfy a Temperley-Lieb algebra

(7.2)

The last two of these equations follow directly by gluing graphs together, the first
one follows from Eq. (4.19). Because [M:N~] = Fφ2 this algebra is the same as the
one appearing in (A.4). Similar pictures to represent the Temperley-Lieb algebra
have already been given in [18]. The generators ek can be expressed in terms of the
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basis (5.1) of Ax via the identity

ek= Σ (7.3)

We want to define another set of elements of Ak. These also do not have a very
simple expression in terms of the basis (5.1), but can be defined using a graph as for
the generators of the Temperley-Lieb algebra. The definition of the element Θ%b is
(for the case b ^ a)

e[rl = FZ

b-a

(7.4)

Θ(a\ is an element of Λr+2b. The sequence {Θ(£b}r^0 converges to an element of A,
the closure of vAn = A00. Call this element Θab. These elements satisfy the
following algebra, which can be found using (4.19):

®a,b^c,d ~ ^max(α,c-b + a),max(d,b + d-c)

If we now define for n ̂  0,

we find that for n, m ̂  0,

Ln= Σ
k = 0

lLn,Lm~]=(n-m)Ln+m,

(7.5)

(7.6)

(7.7)

i.e. the positive half of the Virasoro algebra! Using graphs we can express these Ln

formally in terms of the generators ek of the Temperley-Lieb algebra (7.2). Let
ek = Fφek, then

Π i
k = — oo

(7.8)

This can be seen as an indication of the suspected relation between the Virasoro
algebra and the Temperley-Lieb algebra [19, 20]. It would be interesting to have
the negative half of the Virasoro algebra as well, although it seems difficult to
express them in a similar way as in (7.6).

8. Reconstruction of RCFT

We would now like to consider the reverse problem: given an irreducible finite
index finite depth subfactor of the hyperfinite factor 01, when does this inclusion
correspond to one obtained from a Rational Conformal Field Theory?
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First recall how to get the graphs <S and j f from RCFT. We took IN vertices
labeled φt and φ'j and drew NJ

φi edges from φt to φ'j. Call the resulting graph Γ,
which in general will consist of several connected components. If 1 and Γ are in the
same connected component, ̂  and jf will be the same graph, having a Z2-
automorphism with no fixed points (mapping φt to φ^. Otherwise 9 and #P will be
different but identical graphs. Let Γ1...Γr denote the other connected components
of the graph, i.e. those not containing 1 or Γ. At first sight they could be anything,
but in fact the possibilities are quite restricted due to the following

Theorem. The graphs Γt have the following properties:

spec(Γ£)C spec(^), (8.1)

(8.2)

The spectrum of a graph means here the set of eigenvalues of the incidence
matrix, not counting multiplicities. Note that the graphs Γt also have no loops of
odd length, just like ̂  and Jf. These conditions on the graphs Γt do not determine
them completely, but usually only a few possibilities are left. (For more on graph
spectra, see e.g. [13, 22].)

To prove the theorem, define the 2N x 2N matrix A

A = A^(@A^)®AΓί© ... ®AΓr, (8.3)

and let3 , ,
ω7 = arg(-^M (8.4)

with the convention that arg(O) = 0. Now we define 2N eigenvectors of A called v{p);
they are defined by the values they take at the vertices corresponding to φj and φ'j
indicated by labels j and /. The index p takes values in the same set. We put

ι > y > = - ^ , (8.5)

v^) = eiωJ/2^P9 ( 8 > 6 )

Op

(8.7)
>Op

V(PΊ=_eiωj/2_JP_t (38)

These 2N orthogonal eigenvectors all have the value 1 at the vertex *^
corresponding to the identity 1. Therefore, all eigenvectors vip) correspond to an
eigenvalue of A occurring in spec(Λ^). This shows that

spec(Λ) = spec(Λ^). (8.9)

Property (8.1) now follows from

spec(Λ) = spec(Λ^) (uspec(Λ^>))uspec(ylΓl)u... uspec(ΛΓr) (8.10)

arg means the argument of a complex number: &rg(reιφ) = (
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and property (8.2) is a direct consequence of the fact that SOi/Soo > 0, so that v(0) is
the Perron-Frobenius eigenvector of A.

Part of the reconstruction of a RCFT now goes as follows:

- Start with an inclusion 91' C 91 and determine ̂  and Jf the first constraint here
is that as unlabeled graphs, ^ and 2tf must be identical.

- If ^ and ^f have a Z2-automorρhism with no fixed points, we may have to omit
Jf altogether.

- Label the vertices of 0 (and 2tf) with φt and φ[ in a way consistent with how 0
(and Jf) were constructed (i.e. τ(φι) = 0f

v or φ f

v', 1 = *«? (lr = *^) and there are only
edges between primed and unprimed fields).

- Try to determine the S-matrix and check whether S = S*; if this is not true, try to
repeat the procedure with extra graphs Γf satisfying (8.1) and (8.2).

- Try to determine T from (ST)3 = S2.

In general this procedure will grow more and more complex as we take more
graphs Γi9 so the best thing to do is to use the smallest number of graphs possible.
The reason why we expect this to give a well-defined conformal field theory is that
in the original graphs ^ and Jf7 we automatically have good fusion rules and
braiding matrices, and the hope is that they can be extended to the other graphs Γf

as well. The only severe restrictions here are S* = S and the fact that ^ and jf must
be identical as graphs. In the latter case we will call the inclusion factors self-dual,
because as paragroups Jf can be considered as the dual of 9. In the case of finite
groups this would restrict us to abelian groups only. Later on we will do some
speculation on the meaning of S' = S.

Another remark concerns the solution of (ST)3 = S2. This equation only
determines the value of the central charge modulo 8 and of the conformal weights
modulo 1, but certainly not all possibilities are realized. The two constraints we
know of are that the following two numbers must be nonnegative integers:

\M{M-l) + M(Ai + Aj+Ak + Aι)-ΣWjNu. + WkNjis + Ns

aNjks)Js, (8.12)
S

where JV is the number of primary fields, 1^ = ̂ ^ ^ and ij, k, I are arbitrary.
These conditions follow from considerations of the characters of RCFT's [23, 24].

9. Examples

We will now give several examples of inclusions of factors of type Π^ We start with
inclusions with index smaller than 4, so that the index equals 4 cos2(π/m) for some
m^3. Then | |^| | =2cos(π/m) and the only possible graphs are the Dynkin
diagrams Aw Dn and £ 6 , EΊ9 and Es belonging to m = n +1, 2n — 2, 12, 18, and 30
respectively. According to Ocneanu, ̂  cannot be equal to EΊ or Dn with n odd, but
the other possibilities do indeed occur. Inclusions producing the Dynkin diagrams
An can be constructed in terms of the ek occurring in (7.2).

Given an inclusion we try to find RCFT's, which correspond to this inclusion in
the way outlined in the previous sections. However, to prove this correspondence,
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one would in general also have to compare the connection obtained from the
inclusion with the braiding matrices of the Rational Conformal Field Theories. We
will not do this, but we believe that this will not cause any problems, for the
following reason. Usually, the number of possible connections is very small (at
most two if the index is smaller than four [9]), certainly if one identifies the
connections that are related to each other by an automorphism of the graphs.
Therefore, we think that in the examples that follow, and it is certainly true if the
index is smaller than four, the only possible connections are equivalent to those in
Eqs. (4.2H4.5) with ε= + or - .

Index 1: In this case ^ = , the Dynkin diagram A2. As ^ has a Z2-
automorphism with no fixed points, we may omit Jf. Assuming there are no
further graphs Γh the field identification is 1 Γ and this corresponds to a
holomorphic theory [25]. An example is the (E8)ί WZW theory. If we do not omit
Jf, a labeling giving a symmetric S-matrix is

Jtr-.l'm— Φ, #:1 — Φ' (9.1)

corresponding to SU(2)V Allowing extra graphs Γb these must all be equal to ^ ?

since this is the unique graph with norm one 4. Examples producing an arbitrary
number of Γt are rational Gaussian models, and RCFT's having Φ as a simple
current [26]. In particular this shows directly that the condition that Φ is a simple
current is equivalent to ΦΦy = 1, and to SOΦ/SOO = 1 as well.

Index 2: ̂  = . We also need #f here. The labeling (no extra Γ's) is

Φ

Γ \p'1 # — % — V (9.2)

and some corresponding models are the Ising model, SU(2)2 and (E8)2.
Index(3 + |/5)/2 = 4cos2(π/5): ^ = . Omitting jf gives a

theory with fusion rules Φ2 = l + Φ, known from e.g. the Lee-Yang singularity,
(G2)1 and (FJj. Including Jf gives SC/(2)3. The only possible graph Γt is the
Dynkin diagram A4. Including one of these gives a situation existing in SU(3)29

reminiscent of the SU{N)k*-+SU{k)N duality [27].
Index 3: For the first time we have two possibilities for ̂ : either ^ = A5 or

^ = D4. First, consider ̂  = A5. How do we find the S-matrix? In general we can use
(6.7) to determine the polynomials gtj and then use (6.6) to try to find the fusion
rules. Diagonalizing these gives the S-matrix. Another technique is trying to
express all fields as polynomials in Φ. Labeling A5 as

1 J_^2__^3__^4

gives for instance (assuming Φ = Φy)Φ2 = l + ψ2, so ψ2 = Φ2 — 1, ψ3 = Φψ2 — Φ
= Φ3 — 2Φ, and φ 4 = Φ4 — 3Φ2 +1 . The sequences of polynomials one finds in the
case of An are Chebyshev polynomials of the second kind. We also must have
Φψ4 = ψ3, giving Φ5 — 4Φ3 + 3Φ = 0, which is precisely the equation
det(Φl — Λ9) = 0. We can now consider {1, Φ, ψ2, ψ3, ψ4} as being a basis of the ring
Z[Φ]/(Φ5 — 4Φ3 + 3Φ). Taking the product of two fields and writing it as a sum of
basis elements in this ring reproduces the fusion rules. Furthermore,

= Φ(Φ2-l)(Φ2-3) (9.4)

The norm of a graph Γ is \\AΓ\\
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has roots {± | /3 , ±1,0} and computing ψi(Φ) for these values of Φ gives the
numbers Sψik/SOk which can be used to compute the S-matrix. However, this
method has in general problems if the graph has an automorphism leaving 1
invariant.

g = #e = A5 are graphs obtained from Sl/(2)4. If 9 = Jf = D 4, there is a problem,
because we cannot construct a symmetric S-matrix. Including extra graphs Γf

which must necessarily also be equal to D 4 according to (8.1) and (8.2) might
resolve this problem, but we do not know of any example where this occurs. (This
case has also been considered in [37] where it was found to be inconsistent with the
duality relations of RCFT.)

Index4 cos2(π/ll): & = Alθ9 omitting J<f gives (E8)3 or (F 4 ) 2 , including Jί? gives
SU(2)9.

Index 4 cos2(π/30): Apart from A299 & can also be the Dynkin diagram E8. Let
us label the fields as follows

1 Φ Φ2 Φj Φj Φβ Φj

(9.5)•— — — — — — ,
where we have again assumed a self-dual situation, Φ v =Φ. We can use the
technique given above in the index 3 case to try to find the fusion rules belonging to
<&. Instead of working with Φ as an independent variable, it is more convenient to
use Φ = ω + ω~1. Computing det(Φl — ΛEf) = 0 gives

l = 0 (9.6)

and it is straightforward to express the fields in terms of ω

φ5(ω)=

Taking products of these polynomials and using (9.6) to express the result in terms
of the fields, gives the following new fusion rules:

Φi x Φβ = Φi + Φs + Φβ > Φ*
 x
 Φs =

 φ
 + Φs + Φ5 + Φβ >

4 + Φi τ Φβ
 x
 Φβ = 1 + Φi + ΦA + ΦΊ >

The characters λ{ of this fusion algebra can be found by computing φ£ω ), where
coj = eiπkj/3° and kj = 1,7,11,13,17,19,23,29. In the case of a RCFT the characters
of the fusion algebra are just the numbers S^/SQ^ If we try to compute the S-matrix
in this case, we find that there does not exist a symmetric S-matrix. Maybe using
extra graphs Γi9 which must in this case be equal to E8 as well, it is possible to find
an (exotic?) RCFT giving this E8 diagram.

The E8 case does however exhibit a feature that is shared by all Rational
Conformal Field Theories, namely
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Theorem. For any RCFT, Sij/Soj is always a finite sum of roots of unity with integer
coefficients. The proof of this can be found in Appendix B.

We proceed with the index four case: there are infinitely many graphs with
norm 2, namely the A, 25, and E series. The A series are ruled out as candidates for
*§, because they have no distinguished vertex *. Subfactors of 01 producing graphs
of type A, D, and E can be constructed as follows [13]: realize the hyperfinite factor

00

St as the completion of (x)M2(C), where Mn(C) denotes the algebra of complex
nxn matrices. SU{2) acts on & by conjugation on every M2(C), so in particular
any finite closed subgroup G of S 1/(2) acts on 01. In the same way we can define an
action of G on ^ ® M 2 ( C ) . Consider the inclusion

^ G C ( ^ ® M 2 ( C ) ) G , (9.7)

where 0tG stands for the elements of St left in variant by the action of G. Then the
principal graph is precisely one of the A, D or E series, giving the McKay
correspondence between affine Dynkin diagrams and finite subgroups of SU(2).
One can obtain the graphs directly from G: take as fusion rules the representation
ring of G, and let Φ correspond to the 2-dimensional representation of G obtained
by restricting the fundamental representation of SU(2) to G. Then the construction
as in Sect. 4 yields the corresponding A, D, and E graphs.

Take for example the graph D3.9 . Then the graphs Γt must be A^
A6, or β3. Omitting J f and including Γx = A4 gives a situation as in SU{2)4, where
Φ is the field corresponding to the spin-1 representation. Including also Γ2 = A6 is
what happens in a holomorphic D3 orbifold [25].

For another example take $ = Jif = E6

(9.8)

We can take Γ1 = A6, giving a set of graphs occurring is SU(3)3.
Actually, all possibilities occur in the c = 1 models that are SU{2) orbifolds [25].

In particular, SU(2)/DN gives (with an appropriate choice of Φ) @ = βN. The total
field content of the Sl/(2)/DN-models is organized as follows: 0 = Jf = DN, and
there are N + 1 extra graphs Γf: A2N occurs N — 1 times, and the other two graphs
are of type A4. The total number of fields is 2x(iV + 3) + (ΛΓ-l)x2JV + 2 x 4
= 2(iV2 + 7), in agreement with the results in [25]. Of course we get twice the
number of primary fields, because we are counting primed fields as well as
unprimed fields. Using this result one can for instance compute the S-matrix of
SU(2)/D3 and show that it is just the tensor product of SU(2)1 and the holomorphic
£>3-orbifold.

As a final class of examples, consider the following situation: suppose the finite
group G acts outerly on ^ . Suppose furthermore that G is the semidirect or crossed
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product of two subgroups H and A9 G = H xi A, such that A is a normal and abelian
subgroup of G. In that case we can start with the inclusion

G (9.9)

or equivalently with 0lG C &tH, to try to find Rational Conformal Field Theories,
because in this case the graphs ^ and J f are equal (cf. [29] and [30, par 8.2]). The
even vertices of ^ correspond to the irreducible representations of G, the odd
vertices correspond to the irreducible representations of H, and the number of
edges between a representation nγ of G and a representation π 2 of H is given by the
number of times π 2 occurs in the restriction of π x to H. The Perron-Frobenius
vector ("the SOφ/Soo") has the value d i m ^ ) at the vertex corresponding to π l 9 and
the value ]/{G:H] dim(π2) at π 2 . In particular the index \β x G: 01 xi W] = [G: H~]

An example of this is 01 xi S 2 C ^ x -S3 giving back the graph ^45

1 2 1

1/3 l^
Another example is 0tx Z 3 C^>J ^44. Here ^ is the alternating group on n
elements. This inclusion gives back the graph E6

Another set of examples is 01 xi Z 2 C ^ xi D2n+U where D 2 n + 1 is the dihedral
group. We have already seen this case in Sect. 3, where it was related to special knot
invariants. It has the following graph:

Including apart from ^ and Jf two graphs Γf equal to ^ gives a situation occurring
in the Z 2 orbifold J / 4 / J + 2 / Z 2 of the rational Gaussian model <stf4n + 2 [25]. Indeed
the total number of fields is 4(n + 4) which is equal to 2(^(4n + 2) + 7) as requested.
We can also consider 01 xi Z 2 C ^ XJ D 2 n, which has ^ and j f equal to
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Adding two graphs which look like

299

gives the situation of j/ 4 n /Z 2 . Again the total number of fields equals 2(n + 5)
+ 2(n + 2) = 2(^(4n) + 7). The inclusions ^?xιZ2C^xi/)M are also found in the
statistical mechanical context in the Fateev-Zamolodchikov model [39].

10. Concluding Remarks

Let us make a few comments on the condition S = S*. We believe that this condition
is related to a self-duality of the underlying algebraic structure of Rational
Conformal Field Theories, for which S has the interpretation of a sort of
generalized Fourier-transform. If for example the fusion rules are those of an
abelian group, the S-matrix is symmetric, because the abelian group is self-dual.
More generally, suppose the fusion algebra contains the representation ring of a
finite group, which happens for instance in holomorphic orbifold theories [25]. In
that case, there are also twist fields, needed to make the S-matrix symmetric. The
underlying algebraic structure is the quantum double of the algebra of functions
on the group, which is self dual [35]. The quantum double of a Hopf algebra A is
defined as A®A0 [36], where A0 is the algebra dual to A with the opposite
comultiplication. The quantum double is obviously self dual. Also quantum
groups and Kac-Moody algebras are in a sense self-dual, because the Borel
subalgebras b~ and b+ are dual to each other. What happens for instance in the
SU(2)/G models we have just discussed? Here the underlying algebraic structure
must be something like A® A0 xi Z2, an algebra of dimension 2(dimG)2. Using the
analysis of SU(2)/Dn we find that in that case the following isomorphism of
algebras

A®A0x Z2~C4®(M2(C))n2-ί®(Mn(C))4
(10.1)

There are a lot of possible constructions which produce new inclusions from
given ones. Some of these seem remarkably similar to certain constructions in
Rational Conformal Field Theories

tensor products
coset construction
orbifold construction
extended algebras

For instance, we have seen that stf2JZ2

 c a n be realized as &DnC&Z2, which
looks like a Z 2 orbifold of 0lZn C ̂ ?, which would then correspond to $t2n. However
in general there is a problem with models like sίw as they always give the trivial
inclusion $ C ̂  for any choice of field Φ. Our construction seems to forget about
any abelian structure present in the theory.

Another remark concerns the central charge. It would be nice to have a simple
interpretation of the central charge in terms of subfactors. If we consider the
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examples of the previous section, then we find a wide variety of central charges in
the models giving the same subfactors. The only constraint seems to be that eiπc

must be in the same ring Z [ω] as Sij/SOj and in particular the index (S0φ/S00)
2 (see

Appendix B).
A related issue we have not touched upon is the problem of the classification of

modular invariants. This can in certain cases also be accomplished using
techniques similar to those occurring in our string algebras [38]. However, this
technique does not seem to have a direct natural interpretation in the II1 language.

To conclude, we have established a precise connection between Rational
Conformal Field Theories and II x factors. It would be very interesting to translate
the remarks above into precise conditions on inclusions, thus providing us with a
new handle on the wide variety of solutions of the duality equations.

A. Appendix: Inclusions of Factors and Coupling Systems

In [9] Ocneanu has introduced a machinery to study the position of a subalgebra
in a larger one. If A c B and A! C B' are two inclusions of algebras, A and A' have the
same position if there is an isomorphism f.B^B' such that f(A) = A'. Associated
to such an inclusion is an invariant object called a paragroup. It is invariant in the
sense that if A and A! have the same position, the paragroups will be the same as
well. In paragroups, the underlying set of a group is replaced by a graph, the group
elements are substituted by strings on the graph, and a geometrical connection
stands for the composition law.

Of special interest is the case where A and B are ϊl1 factors, and in particular
when they are both isomorphic to the hyperfinite factor 3% (see Sect. 3).

Ocneanu [9] has given a complete classification of irreducible subfactors 3k0 of
3k of finite index and finite depth, in terms of so-called coupling systems, which are
particular presentations of paragroups. Here irreducible means that J " o n ^ = C,
that is, the only elements of 3k that commute with all of ^ 0 are the scalar multiples
of the identity. What finite depth means will be explained in a moment. In Sect. 4
we have shown how given a RCFT and a particular primary field Φ one can define
a coupling system, and hence a subfactor 3k 0 of 3k, with index

Let us first explain how to construct a coupling system from an inclusion NcM
of factors. First of all, one constructs the infinite tower

M 0 = i V c M 1 - M c M 2 c M 3 C . . . (A.2)

by iterating the fundamental construction of Jones [10]. Equivalently, one can
take Mk + ί = Mk®Mk_ίMk, Mk + 1 = EndMkl(Mk), the endomorphisms of Mk

viewed as a right Mfc_!-module, orM f c + 1 = <Mfc, ek}, the Π1 factor generated by
Mk and ek on L2(Mfc, tr). This requires some explanation: let trk be the faithful
normalized trace on Mk9 then by L2(Mk,trk) = Jf we mean the Hubert space
obtained by completing Mk with respect to the inner product <x|y> = trfc(x*y). The
left multiplication of Mk extends to an action of Mk on L2{Mk, trk), so that Mk is
realized as a subalgebra of B(Jίf). Now let ek be the orthogonal projection5

ek: L
2(Mk, trfc)->L2(Mfe_ l9 trfe_ J . (A.3)

5 The restriction Ek of ek to Mk is what is called the conditional expectation from Mk to Mk _ x for
xeMk and yeMk^1 we have tΐk(xy) = trk-1(Ek(x)y)
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Note that trk_ 1 is equal to the restriction of trk to M k_ v These projections ek satisfy
a Temperley-Lieb algebra

(A.4)

Furthermore the trfe's are Markov traces in the sense that

t ( ) xeMk. (A.5)

A nice account of these topics can also be found in the book [13].
Given the tower M o C M x C M 2 c ... one can construct two unoriented bipartite

graphs ^ and Jf, i.e. graphs that admit a Z2-grading of the vertices, so that no two
vertices with the same grade are connected via an edge. Equivalently, the graph has
no loops of odd length, or it is bicolorable. The even vertices of ̂  represent the
inequivalent irreducible N—N subbimodules of M o , Mu M 2 , . . . , the odd vertices
of ^ correspond to the inequivalent irreducible M — N subbimodules, and the even
and odd vertices of J f correspond in the same way to irreducible M — M and
N — M subbimodules respectively.

The number of edges between an N — N bimodule X and a M — N bimodule Y is
given by the number of times X occurs in Y if the left action of M is restricted to N.
The number of edges between a M — M and & N — M bimodule is determined
similarly.

Furthermore there is a map τ from the set of vertices of ̂ u Jf to itself mapping
P — Q modules to Q — P modules by interchanging the left and right actions. If P
acts on the left on X via p x^px then it acts on the right via x p->p*x. This map
τ is called the contragradient map.

The last ingredient of a coupling system is the connection. Given a N~ N
bimodule X and a M — M bimodule Y, there are two ways to induce X to Y: via
M — N and via N — M bimodules. The way in which these two results differ is
expressed in terms of a complex number W associated to each set of four
bimodules, one of each type. The map W is called the connection.

The inclusion N c M is said to be of finite depth if the number of vertices of 9
and 2tf is finite. Actually ^ is equal to the principal graph of the derived tower of
finite dimensional algebras

dM/dN = N'nM0cNfnM1cN'nM2C..., (A.6)

the finiteness of ^ means here that the Bratelli diagram for dM/dN eventually
becomes periodic.

To see why a coupling system can be seen as a generalization of group theory
consider the example 01C01 xi G. Here ^ xi G means the crossed product of M by
the finite group G: suppose G acts on 01 by outer automorphisms ρg and ρgρh = ρgh.
Then 01 xi G has as elements £ αguφ where ug is unitary, αg e 0t, and ugαu^ = ρg(α). In
this case the coupling system reproduces all the information contained in G. The
graph ^ has one odd vertex and the even vertices are in one-one correspondence
with the elements of G, while J f has one odd vertex and one even vertex for every
irreducible representation of G. So tf can be considered as being the dual of <3%
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B. Appendix: A Proof

In this appendix we will supply the proof of

Theorem. For any RCFT, S^/SQJ is always a finite sum of roots of unity with integer
coefficients.

The idea of the proof is to use a famous theorem in algebraic number theory by
Kronecker and Weber stating that a field extension of Q is contained in a
cyclotomic field Q [ω] if the extension is normal and has an abelian Galois group

TO is..)
Let L be the field extension of Q generated over Q by the set < —- > . The

S-. (soj)ij

numbers —— for fixed i are the roots of the polynomial

det(λl-NJ = 0, (B.I)

where Nt is the matrix ( iV^ = Nfp. Therefore this is a normal field extension of Q.
Now let g be an element of the Galois group of L, geGal(L/Q). Because the

S
numbers — -̂ are precisely the inequivalent solutions of the fusion rules,

f̂ -Σ f̂̂  (B.2)
and the fusion rules are invariant under the action of the Galois group, we must
have

g (s s

with k independent of i, so we can put k = g(j). Because SS* = 1 we find

(B.4)

and combining Eqs. (B.3) and (B.4) yields

1

= ( ^ 0 ))2. (B.5)

We now use the fact that S = Sf so that (B.5) must be symmetric as well; this implies
that (Sig{j))

2 = (Sgd)j)2 and taking i = 0 gives in particular

§ = +1. (B.6)
Og(j)
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Take now arbitrary g, /zeGal(L/Q). We have

On the other hand

Since g(±l)= ±1 we see from (B.6) that (B.7) and (B.8) are in fact the same.
Therefore, the action of gh and hg on Lis the same, and we conclude that Gal(L/Q)
is abelian. Applying the theorem of Kronecker and Weber now tells us that L
CQ[ω] for some root of unity ω. Since Sij/SOj is a solution of Eq. (B.I), which is a
polynomial with integer coefficients and leading coefficient one, these numbers are
also algebraic integers. The subring of algebraic integers of Q [ω] is precisely Z [ω]
[28], and this completes the proof that Sij/SOj is a sum of roots of unity with integer
coefficients.

Acknowledgement. We would like to thank K.-H. Rehren for useful discussions.
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