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Abstract. Discrete versions of several classical integrable systems are investigated,
such as a discrete analogue of the higher dimensional force-free spinning top
(Euler-Arnold equations), the Heisenberg chain with classical spins and a new
discrete system on the Stiefel manifold. The integrability is shown with the help of
a Lax-pair representation which is found via a factorization of certain matrix
polynomials. The complete description of the dynamics is given in terms of
Abelian functions; the flow becomes linear on a Prym variety corresponding to a
spectral curve. The approach is also applied to the billiard problem in the interior
of an ΛΓ-dimensional ellipsoid.
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0. Introduction

In this paper we study a class of discrete integrable systems which are closely
related to problems occurring in mathematical physics such as the Heisenberg
model for classical spins or the billiard problem in the interior of an ellipsoid. A
discrete system can be viewed as the iterates of a symplectic mapping, the time
t EΈ being the number of iterations. Such a system will be called integrable if it
possesses sufficiently many integrals which are in involution with respect to a
symplectic structure.

To describe such a discrete system we take as starting point a variational
principle

for a functional S = S(X) defined on the space of sequences X = (Xk), keΈ by a
formal sum

s= Σ &{xk,xk+1).
keZ

Here Xk are points on a manifold Jίn and if is a function onQ2n = Jίn x J(n. The
Euler-Lagrange equation of such a functional are second order difference
equations (see Sect. 1) and keZ plays the role of the discrete time.

This description is to be viewed as the discrete analogue of the Hamilton
principle δS = 0 for

S=i&(q9q)dt,

and the related symplectic flow can, as usual, be defined via the Legendre
transform provided det(c£?44)φ0. Similarly, one can define a symplectic structure
on Q2n under an appropriate nondegeneracy assumption (see Sect. 1, Sect. 2, (8)
and [1]). We will call such a system "integrable" if there are sufficiently many
integrals which are in involution with respect to this symplectic structure.

As an example of this setup we mention the Heisenberg chain with classical
spins, where

and

where J is a symmetric matrix, which we may take to be diagonal.
The corresponding chain of quantum spins \ (so-called XYZ Heisenberg

model) was investigated by Faddeev and Takhtajan [2] in the framework of the
quantum inverse scattering method, using the fundamental results by Baxter [3].
As it was shown by Pokrovsky and Khokhlachev [4], the problem of finding
some special eigenfunctions in the quantum XYZ-model leads to the stationary
equation δS = 0 for the Heisenberg chain with classical spins. For this discrete
system Granovsky and Zhedanov [5, 6] found two algebraic integrals and special
solutions. The integrability of these systems, even for arbitrary dimension n of the
sphere: M = Sn, was shown by one of the authors ([7], see also [1]), where the
general solution was described in terms of ^-functions, generalizing the connec-
tion between the spectral theory of one-dimensional Schrόdinger operators and
the classical Neumann systems derived in [8, 9]).
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The main problem to be discussed in the first part of this paper is a chain of
JV(iV-l)

orthogonal matrices: We take Jin = O{N\ n= , and

where J1 is a positive symmetric matrix. This problem was introduced in [1]
where it was shown that in the continuous limit this problem leads to the Euler
problem for force-free motion of a rigid body as it was generalized by Arnold to
arbitrary dimensions.

Alternately, one could use the positive Lagrangian ^tr((X— Y)J(X — Y)τ).
Indeed, for X, YeΘ(N) this expression agrees with trJ — tΐ(XJYτ), i.e. differs
from — JSf (X, Y) only by a constant.

For the cases JV = 3, JV = 4 this system was shown to be integrable by explicit
construction of commuting integrals [1]. In Sect. 3 we will establish the
integrability of this system for all JV by using the discrete version of the
isospectral technique, which leads to the complete description of the dynamics of
this system in terms of Abelian functions. The flow is quasi-periodic in the
discrete time parameter k and is linear on a Prym variety.

We indicate the approach underlying the solution of this problem. It is based
on the construction of an isospectral mapping on a class of matrices (L) into itself,
analogous to the Lax approach in the continuous case in which the differential
equation is cast in the form L=\L,A~] for some class of linear operators (L).

Finding the class of matrices (L) and the isospectral deformation is a hit-or-
miss game and depends on good guesses. In the discrete case it turns out to be
connected with a factorization of matrices. We recall the beautiful observation by
Symes [11] that the QR-algorithm of Jacobi matrices is closely linked to the
Toda flow: The QR-algorithm, an important device in numerical analysis for
diagonalization of matrices, consists in factoring a real nondegenerate matrix L
into a product L=QR of an orthogonal matrix Q and an upper triangle matrix R
with positive diagonal elements. Now the mapping

gives rise to an isospectral map since Lί = Q~1LQ. It was Symes' observation
[11] that the application of this process to L=expK, where K is a symmetric
tridiagonal (or Jacobi-) matrix leads to an integrable mapping which is inter-
polated by the Toda flow. This idea has been extended to more general classes of
matrices by Deift et al., see [12].

Although this mapping has no variational description, this idea turns out to
be fruitful also for the problems at hand. The main new feature is that we start
with a class of certain quadratic matrix polynomials

and a suitable factorization

1 We denote the "moment of inertia" by J and not, as is customary, by /, to avoid confusion
with the identity matrix
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If such a factorization exists and can be defined in a unique way then it gives rise
to an isospectral mapping Liλj^L^λ) by exchanging the factors:

Lx(λ) = C{λ)B{λ) = B^A) C^A) = B " \λ)L(λ)B(λ).

This can be viewed as a discrete analogue of the Lax representation.
The main difficulty is, of course, to find the class of matrix polynomials

together with a factorization in such a way that it corresponds to the dynamics of
the given problem. Moreover, even if one has such a factorization it is generally
not unique and the above procedure gives rise only to a correspondence, i.e. a
multiple valued mapping; this is in good agreement with the fact that frequently
the difference equation δS = 0 gives rise to such correspondences.

In the problem of orthogonal chains we are able to describe such a class of
matrix polynomials and a corresponding factorization which can be made unique
by specifying a suitable splitting of the spectrum. From this Lax representation
we will find the integrals as well as the algebraic curve on whose Jacobian variety
the flow becomes linear in k. A general theory of factorization of matrix
polynomials can be found in [13]. The special factorization derived here (see
Sect. 1) uses standard ideas from [13]; it involves orthogonal matrices and may
be of interest in itself. Using the ideas of "finite-gap" integration [14] in the
matrix case developed by Dubrovin [15] we exhibit explicit formulas for the
dynamics in the case n = 3 in terms of classical elliptic functions.

In Sect. 2 we discuss some generalizations of this system, including the above
mentioned Heisenberg model with classical spins. We take M as the manifold of
rectangular nxN matrices X, nrg JV for which XXτ = In and define the Lagrange
function by

where J is a symmetric NxN matrix. In other words M is the Stiefel manifold
Vn N of orthonormal n-frames in RΛ For n = l, N = 3 this represents the
Heisenberg model and for n = N we obtain the chain of orthogonal matrices
described above. For n = 1 we show how the factorization procedure leads to the
hyperelliptic curves and formulas involving ^-functions as in [1]. In the general
case ί<n<N we exhibit the corresponding factorization problem without full
treatment.

The last section (Sect. 3) is devoted to the billiard problem in the interior of an
ellipsoid in KΛ This problem also fits into the above framework. The relevant
class of matrices for the Lax representation agree with those introduced in [10]
for the study of the geodesic flow on an ellipsoid - probably the oldest nontrivial
integrable system in arbitrary dimensions. This class of matrices fits into the
procedure of Sect. 1. Finally, we will establish a connection between this billiard
problem and a discrete version of the Neumann problem, where a certain
symmetry of this system, found in [1], will play a crucial role. In the continuous
case such a connection between the geodesic flow on the ellipsoid and the
Neumann system was discovered by Knόrrer with the help of the Gauss mapping
of the ellipsoid [16]. However, the connection described here is of a different
nature.

In the above discussion we referred frequently to a discrete version of a
continuous system, as in the case of the billiard problem inside an ellipsoid and
the geodesic flow on the same ellipsoid - whose orbits are obtained as limits of
tangential billiard shots. Another example is the above mentioned chain of
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orthogonal matrices and the corresponding continuous system of the force free
top. Without trying to be precise we require in all these cases a) that the discrete
system tends to the continuous system under a limit process and b) that both
systems are integrable and are given by "natural" variational problems.

As a rule it is easy to go from a discrete system to a continuous one without
destroying integrability. However, the converse is much more difficult, as is often
the case if one wants to preserve some structure under discretization of a
continuous system. Of course, one could take the "time ε" mapping of a flow but
that is usually not described by a simple variational problem. The difficulty is to
preserve the integrability under discretization. In this sense our method may be
of interest since it provides an approach to the construction of an integrable
discretization for the continuous system with known Lax representation, poly-
nomially depending on an additional "spectral" parameter λ. The importance of
representations of this type became clear after the paper of Novikov [17]. They
exist for most of the known integrable hamiltonian systems and are related to the
theory of Lie algebras (see [18,19]). From this point of view the nature of the
factorization procedure calls for a better understanding. Notice that in all our
examples the matrix polynomials L(λ) have the property L*(/ί) = L(λ\ where L*(/ί)
= LT(—λ\ and the corresponding factorizations L(λ) = B(λ)C(λ) satisfy the con-
dition B(λ) = C*(A).

In a forthcoming paper [29] it is shown that the factorization of certain
linear (!) matrix polynomials, introduced in [10], leads to the billiard problems in
domains on the sphere and the Lobachevsky space, bounded by conic sections.

The present paper was completed in February 1989 and has been circulated as
a preprint of the Forschungsinstitut fur Mathematik Zurich. For various reasons
its publication has been delayed. We added some relevant new references at the
end of this revised paper. In particular, we draw attention to the interesting work
by Deift, Li, and Tomei [32] in which the systems considered in the present paper
are related to loop groups. Moreover, it is shown how the discrete mappings
considered here can be interpolated by integrable Hamiltonian flows.

1. The Discrete Version of the Dynamics of a Rigid Body

1.1. The Equations of "Motion"

We consider the functional S(X\ determined by a formal sum

on the sequences X = (Xk) with Xke0(N% i.e. orthogonal N by N matrices. The
stationary points of S are described by the equation δS = 0 or

(2)

where Λk = AI is a matrix Lagrange multiplier, which is determined in such a way
that XkXk=L Λk is uniquely determined by Xk-ί9 Xk, Xk+i> but as we will see
later, not uniquely by Xk-U Xk\ it is a complicated function of Xk-l9 Xk.

Therefore we use the Euler description of the dynamics. This can be done in
the following way. Rewrite (2) as

Xl^. (3)
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Introducing mk = XkJX\-γ—Xk_γJX\ we see that the last Eq. (3) means that
mfc+1 —mk- The conservation of mh which is the discrete analogue of the angular
momentum in space [20] is the consequence of the left-invariance of £?(X, Y) (see
[1]). In the variables fixed relative to the body we have the "angular velocity"
ωk = Xk

ΓXk-ί=Xk~
ίXk-ί€θ(N) and "angular momentum with respect to the

body" Mk = Xk}1mkXk^1=ωkJ— Jωkeo(N)* and thus Eq. (3) can be rewritten
as a "discrete Euler-Arnold equation" [1]

Mk+ί=ωkMkωk~
1

9

Jωk, ωke0(N). l ;

In the continuous limit when Xk = X(tk)9 tk = t0 + kε, ωk = Xk

 iXk_1πI — εΩ(tk\
ωk = Xk

1Xk-ί and Mk = ωlJ~Jωk^ε(JΩ + ΩJ) = εM(tkk% M = JΩ + ΩJ, this
Eq. (4) becomes the usual Euler-Arnold equations for the motion of the
JV-dimensional rigid body

Ωeo(N). ( 5 )

The main new feature of the discrete system (4) is the connection between M and
ω:

M = ωτJ-Jω, ωeO(N), Mτ=-M, (6)

which we need to solve to find ω. In fact such ω is not unique (see below) and
ωk+ι is not uniquely determined by (4), which therefore leads to a corre-
spondence and not to a mapping.

We discuss the symplectic properties of this correspondence (see also [1]). The
Eq. (2) is a particular case of the Lagrangian equations <5*S = 0 for the functional

S= Σ JS?(X*,Xk+1), XkeJi\ £e = &(x9y) (7)
keZ

(see the Introduction), which in an appropriate coordinate system (x, y) on Q2n

= Jln x Jίn can be written as

(Xk,Xk+in(X^uXk) = 0. (8)

The submanifold Γ2n in Q2n x β 2 n, defined by

determines generally some correspondence between subsets of Q2n.
On Q2n one can define a closed 2-form σ by

d2j? A A
σ = -z—Γ- ax A ay

oxoy

or

where dS£ = -^—άx+ -^-dy is a natural decomposition of the 1-form on Q2n.
dx dy
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The submanifold Γ2n is isotropic for the form σ ' - σ o n Q2n x Q2n. Indeed

(x,y)dx\Γ2n

= - -j-{x9y)dy\r2»- — (x,y)dx\r2n= -

We see that if is the generating function of the mapping, determined locally by
(8) in the domain of nondegeneracy of σ:

det
dxdy

* 0 ,

and therefore this mapping is symplectic with respect to the symplectic structure
σ.

In this connection it is useful to introduce the discrete version of the Legendre
transformation τ of Q2n into T*Jί. It is defined by

τ: (x, y)-+(x, p), pdx = &x{x9 y)dx,

where p is the fiber coordinate and a = pdx the standard 1-form on T*Jί.
Thus the pullback of this form is τ*a = β = £?xdx, and the standard symplectic
form da on T*Jί pulls back to τ*da = dβ = σ, which is nondegenerate when-
ever τ is noncritical. Generally, τ has only a local inverse.

We discuss the concepts in our case where Jt = O(N), <£(X, Y) = tr\XJYT) and

β = tτ{dXJYτ).

To describe the Legendre transformation τ:O(N)xO(N)^>T*O(N) we identify
T*O(N) and TO(N) via the bilinear form tr{ABτ) so that

τ:(X,Y)->(X,P), P= YJ-XSe TXO(N),

where S==ST is so chosen that XTP is skew symmetric, i.e.

P = ±{YJ-XJYTX).

The standard 1-form a = tv(PτdX) is taken into β = tτ(dXJYτ\ since XτdX is
skew symmetric. The standard sympletic form da on T*O(N) is mapped into

σ = dβ = tr (dX J A dYτ).

We record that this 2-form σ is the pullback of the standard symplectic form on
T*O(N) under τ; it is nondegenerate at all noncritical points of τ.

If we define locally a mapping φ: (X, Y)->(Xf, Y') by selecting a branch of the
correspondence

Y'J + XJ = ΛX\ X'=Y; AT = A, (9)

where X, Y9 X', Y'eO(N), then this mapping preserves σ. Equivalently, the
mapping τφτ~ί, locally defined near regular values of τ, preserves the standard
symplectic structure as well as the corresponding Poisson structure on T*O(N).

Since both τ, xp commute with left translation of O(N) we can reduce the map
τφτ'1 to a mapping of o*(JV) by projecting (X,P)-+XTPeo(N). The resulting
reduced mapping ψ:o*(N)->o*(N) is the one defined by (4) taking M = Mk into
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M' = M f e + 1 , i . e .

ψ:M = ωτJ-Jω-+Mf = Jωτ-ωJ. (10)

Here it is crucial to solve the matrix equation M = ωτJ—Jω for ωeO(N\ a
question which will be discussed completely in Subsect. 1.2.

Now it is well known that the reduction of T*0(N) to o*(iV) takes the
standard Poisson structure of T*0(N) (up to a constant nonzero factor) into the
Lie-Poisson structure

= tr(M [/„,&*]), /,geC>(JV)) (11)

on o*(JV) which we identify again with o(N); here fM denotes the skew-symmetric
matrix of partial derivatives df/dM^. This proves that the mapping ψ: M-*M' of
(4) preserves this Poisson structure, which agrees with the Poisson structure
preserved by the usual continuous rigid body motion given by (5).

This reduction is the discrete version of the well known reduction procedure
[20] for Hamiltonian systems. For the derivation of (11) see also [30, 31].

Our next goal is to show that this mapping is integrable, i.e. preserves
sufficiently many functions Fi9 which are in involution with respect to the above
Poisson structure. As a matter of fact it turns out that these "integrals" have the
same form as in the continuous case which are known to be in involution.

1.2. The Solution of the Matrix Eq. (6): ωτJ — Jω — M

We have to solve two crucial problems: a) to define the mapping φ in a unique
way by selecting a branch of the correspondence and b) to verify that this
mapping is integrable. Both these problems can be reduced to an appropriate
factorization problem for a matrix polynomial, as we will show now.

The first problem, to construct a well defined map φ:(X9 Y)->(X', Y') whose
graph belongs to the correspondence (9) reduces to finding a well defined solution
ωeO(N) of the matrix equation:

M' = {ω')τJ-Jω'

for a given skew-symmetric matrix M. Indeed, setting ω=YτX, M = ωτJ-Jω,
Mf = ωMω-ί=Jωτ-ωJi then X\ Γ of (9) is given by X'=Y, Y' = X'{ω')τ.

This problem is, in fact, equivalent to finding a definite inverse for the
Legendre transformation τ:(X, Y)-+(X,P)9 since

Hence a solution ω of this equation gives rise to Y=Xωτ, thus defining τ~ι.
The crucial observation is contained in the following

Lemma. The matrix Eq. (6) is equivalent to the factorization

(I-λM- λ2J2) = (ωT + λ J) (ω - λJ). (12)

The proof is an obvious verification, which shows also that the solution ω is
necessarily an orthogonal matrix. It turns out that the choice of the solution ω is
fixed by the corresponding factorization of the determinant

P(λ) = det (/ - λM - λ2J2)=p{- λ)p(λ). (13)
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We will prove below

Theorem 1. Assume that for the real skew symmetric matrix M the polynomial P(λ)
= P( — λ) admits a splitting

) = p(λ)p(-λ);

with a real polynomial p(λ) satisfying

\p{λ)\ + \p(-λ)\>0 for all λe<E

then there exists a unique matrix ωeO(N) satisfying (12) and

±p{λ) = det(ω-λJ).

We postpone the proof of this theorem to Subsect. 1.4. We discuss the splitting
of the determined P(λ). Since M + M Γ = 0 one has P{λ) = P(-λ) and the set Σ of
all roots of P(λ) satisfies Σ= —Σ. The factorization (13) corresponds to a splitting
Σ = Σ + u Σ _ into disjoint sets Σ+, Σ_ satisfying

where Σ+ is the zero set of the real polynomial p(λ). Here we denote for any set A
C C by A the set of all ά,aeA and by — A the set of (— a\ a e A. Any such splitting
gives rise to such a factorization (12) and thus to a solution of (6). Obviously the
possibility of such a factorization requires that P(λ) has no roots on the
imaginary axis. In this case one factorization is obtained by taking for Σ+ the
roots of P(λ) in the right half plane, and £"_ = — Σ+.

We give an outline of the proof of Theorem 1 under the assumption that the
roots of P(λ) are distinct, leaving the complete proof of the general case for later.
Denote the elements of Σ+ by λl9 λ2,...,λN (and Σ_ = { — λί,—λ2,. .,—λN}).

Then there exist eigenvectors ψk:(l — λkM — Λ|J2)ψ fc = 0. Because of the nonde-
generacy of ωτ + λiJ we have from the factorization (12)

(ω-λkJ)ψk = 0,

or, equivalently

ωψ = JψA,

where ψ is the N by N matrix with columns ψk and Λ = diag(Λ,1? λ2, ...,Λ,N).
If ψ is invertible then

ω = JψAψ~ί (14)

defines the desired solution. It can be shown that ψ is indeed nondegenerate and
that (14) actually defines the solution of (6) which, moreover, is real and
orthogonal. But in Subsect. 1.4 we present another approach to the solution of (6)
which is a bit more general. This proof will also provide the nondegeneracy of ψ
and complete the above considerations. In this connection the concepts of
symplectic geometry will turn out to be useful.

We note that the solutions ω e O(N) so obtained have the property that the
polynomials p{λ)= ±det(ω — λJ) and p( — λ) have no common roots. In other
words, any two eigenvalues λ, λ' oϊωJ~ι satisfy λ + X φ0. We will denote the set
of these matrices by E, i.e.

E = {ωe O(N), \p(λ)\ + \p( - λ)\ > 0 \fλ e <C; p(λ) = det(ω - AJ])}. (15)
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This is clearly an open subset of O(N) containing a neighborhood of the identity.
Since p(λ) does not vanish on the imaginary axis E decomposes into several
components, depending on how many roots of p(λ) lie in the left half plane.

With the aid of Theorem 1 it is easy to define a mapping φ in a unique way. We
do this in the reduced form and rewrite the above factorization (12) in the form

(I-λM-λ2J2) = Aτ(-λ)A(λ); A(λ) = ω-λJ. (16)

Then the image point M' = ψM is given by

(I-λM'-λ2J2) = A(λ)Aτ(-λ), (17)

where the two factors were exchanged. This equation is readily verified from (10).
Thus the determinants P(λ), P\λ) of (16), (17) respectively are identical. By
Theorem 1 any splitting P(λ)=p(λ)p( — λ) gives rise to a unique factorization.
Hence for (17) there exists a unique ω' and A'(λ) = ωf—λJ with

(/ - AM' - λ2J2) = A'T{- λ)A\λ)

with

This gives rise to a well defined mapping ω-+ωr taking E into itself. The uniqueness
is achieved by the requirement (18) which is consistent with iterations of the
mapping.2

Similarly, the mapping φ: (X, Y)-+{X\ Y') is wel} defined on the left invariant set

Q = {X,YeO(N),YτXeE}

and given by (Xf, Y') = (Y, Y{ω')τ) if ω= YTX. We mention that one easily verifies
that Q is precisely the set of regular points of the Legendre transform τ. Thus σ is
nondegenerate on Q making Q & symplectic manifold.

13. Isospectral Deformations

From the above considerations we obtain the desired integrals. For this purpose
we write the mapping in terms of an isospectral deformation. The Eq. (4) is already

ΓΛΠ
in this form but yields only k= — "trivial" integrals tr(M2v), v = l,2, ...,/c, (in
fact, these are coadjoint invariants of O(N)) which is not sufficient for complete
integrability. As was pointed out by Novikov [17] it is crucial to have such a
representation for a matrix depending polynomially on a parameter λ.

In our case we make use of (16), (17) to obtain for the mapping ψ: M-+M' the
form

(7 - λW - λ2 J2) = A(λ) (I-λM- λ2J2)A ~ \λ)

2 We note that this mapping ω -• ω' in E is the product of two involutions: We observe that to any
ωeEcO(N) we can, by Theorem 1, associate a second solution ω* of (6) for which specO^J" 1)
= — spec(ωJ"1), i.e. for which p^{λ) = detίω^ — λJ) = (— l)"p( — λ). The map^ : ω-^ω* is clearly an
involution on E. To bring the spectrum back we use the trivial involution j2\ω-* — ωτ. One
verifies readily that our mapping is given b y ^ <>j29 i.e. ω'=jj2ω
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or equivalently

A-1(λ). (19)

Consequently the polynomials fk(M, λ) = tr(M + λJ2)k are integrals of φ. In other
words, the characteristic polynomial det(L(/l) — μl) is preserved by ψ, or in
homogeneous form

det (vM + λJ2 -μl)= £ v2«λ βμyQaβy(M),

the coefficients Qaβγ(M) for α^ l, 2oc-\-β + y = N provide k2 integrals if N = 2k, or
k(k + l) integrals if N = 2k +1.

These integrals fk(M,λ) or Qaβγ(M) are precisely the same as for the Euler-
Arnold Eq. (5). Indeed, for these equations the Lax representation was found by
Manakov [22] in the form

ίr (M + λ J2) = [M + λ J 2, Ω + AJ]
αί

showing that also fk(M, λ), or Qaβγ(M) are integrals of the motion.
It is well known that these functions are in involution with respect to the

Poisson structure (11) and independent, making the system (5) completely
integrable. Since our discrete map ψ:M-^Mf preserves the same Poisson structure
(11) as well as the functions fk{M,λ) we conclude that ψ is also integrable. We
summarize these results in

Theorem 2. The discrete Euler Eq. (4) is equivalent to the isospectral deformation

where Lk = Mk + λJ2, Ak = ωk — λJ, Mk+ί=xp{Mk). This mapping ψ preserves the
Poisson structure (11) and is completely integrable. It preserves the same Poisson
structure and integrals Ft as the continuous system (5) for the motion of the rigid
body.

The "integration" of this system is now rather straightforward, since the
integration of the continuous case is known: The nonsingular compact level sets
Tc= f]{F~ ct) consist of a finite union of tori, according to well known arguments

i

[20]. Since our mapping ψ preserves the Poisson structure (11) as well as the
functions Ft it commutes with all commuting Hamiltonian flows generated by the
Fi9 defined by M=[M, VFJ. On each such torus our mapping ψ must be a
translation with respect to the affine structure, determined by these flowί In this
case this mapping can be represented as a shift along the trajectory of a certain
integral H (see [1] and Subsect. 1.5).

We will show that in our case Tc is the real part of a complex Abelian variety of
the curve det(M + λJ2 — μl) = 0, and Eq. (4) determines a translation on it. In fact, it
turns out to be the same Prym variety occurring in the integration of the Euler-
Arnold equation (see, for example, [21] and [33]).

1.4. The Symplectic Geometry of Eq. (6)

First of all we write (6) as

ω~ίJ — Jω = M, ωωτ = I,
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and introducing W=ω~ιJ we obtain the quadratic matrix equation

W2-MW-J2 = 0 (20)

with the additional condition WTW=J2. If v is an eigenvalue of W then

β(v): = det(v 2/-vM-J 2) = 0. (21)

Comparing with (13) we see that Q(v) = v2NP{v " x ) . Since 0 φ Σ the splitting Σ = Σ+

KJΣ_ defines the splitting S = S+uS_ of the set S of roots (21):

S + = ( Σ + Γ 1 , 5 _ = ( Σ _ ) " 1 .

We require that this splitting satisfies the following conditions:

S+=S+, S_=S_, S_ = - S + , S+ΓΛS.=Φ. (22)

Such splitting exists if (21) has no purely imaginary roots. Notice that now we do
allow multiple roots but we do suppose that no root belongs to both components
S+ and S_. In particular, purely imaginary roots are excluded.

We formulate Theorem 1 in the equivalent form:

Theorem Y. For any splitting S = S+vS- with the properties (22) there exists a
unique solution W of (20) (and therefore the solution of (6) ω = JW~ι) with
specW=S+.

For the proof the solution of (20) will be played back to a problem of symplectic
geometry, namely the determination of invariant subspaces of a linear Hamil-
tonian vector field.

The real 2N x 2N matrix in question is

We look for an iV-dimensional invariant subspace of A:

z=\γ)u'

X, Y being NxN matrices, i.e.

φ
with some real NxN matrix C, with specC = S+, or equivalently

ίY=XC

If

detX + 0, (23)

i.e. if the invariant subspace can be viewed as the graph y = YX 1x,z=l j then
we obtain for W= YX~\ W

= WXCX'1 = W2,

Eq.(20).



Integrable Systems and Factorization 229

To prove that WTW=J2, we note that A is antisymmetric with respect to the
symplectic bilinear form

(24)

and Az can be viewed as the Hamiltonian vector field with Hamiltonian

Jf = !(H2,z) = i ( - | J x | 2 + | # ) , # = ( ~ 0

J 2 j ) , (25)

since BA = H and

Since

( vI

we have

and the spectrum of A is S+uS_.
Denote the iV-dimensional eigenspaces of A with respect to S+, S_ by F+, F_,

respectively. Because of S+ =S+, S_ =S_ they are real and since μt -f μ/φO for μ/?

μ; e S + they are Lagrangian, isotropic spaces with respect to the symplectic form
[ , ] and the symmetric form J f respectively, as follows from the following lemma.

τ_Λ-vl Λ-{P -ιl)\O v2I-vM-J

Lemma. If Ek

μ = KQr{A-μI)k and μ + vφθ then [£*,£(,] =0 for all kJ^O.

Proof By induction on k + /. For k + / = 0 it is trivial and we assume the lemma for
smaller values of k + /. Consider φeE^ψe E\ and set

Φ^A-μ^φeE*-1, ψ = (A-vI)ψeEι

v'\

so that
μφ = Aφ — $, vψ = Aψ — ψ,

therefore

hence [</>,v>]=0.

Corollary. 77ze subspaces V+, F_ are Lagrangian:

[F + ,F + ] = [F_,F_] = 0 (26)

and isotropic with respect to JΊ?:3tf?(z) = j(Hz,z) = 0 for zeV±.

The first statement follows immediately from the lemma because

V+= span Eμs, μ s e S + , £ μ = Kerμ~μ/) 2 N .
s = 1 , . . . , J V

To prove that V+ is isotropic with respect to Jf consider for φeEμ,\pe JEV,

where $ = (A — μI)φeEμ.
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Note that V+, V- are real subspaces since S+=S+, <S_=5_, while Eμ are
generally complex.

Now we return to the proof of Theorem 2. Let z l 5 ...,zn be any basis in V+;
combining these as column vectors of an JV x 2N matrix

of rank N we have from AV+CV+

for some real NxN matrix C+.
To prove (23) we use the relations (26), yielding for any w, ι;eRN,

Assuming v is so chosen that X+v = 0, we set u = C+υ, so that X+u = X+Cv= Y+v
and we find from the above identity

0 = \Y+v\2,

i.e. Y+v = 0, hence Z+v = 09 i.e. £> = 0. Therefore detX+ ΦO, proving (23).
Thus F + is given by y = W+x. Since V+ lies on the zero energy surface it follows

\Jx\2-\W+x\2 = 0

for all xeWLN proving W+W+=J2, hence ω = JW+1 is orthogonal. Moreover
spec VF+ =iS+ proving Theorem Γ.

y.5. T/zβ Integration of the Discrete Euler Equation

Now we apply our results to finding the solution of (4), following the procedure
which was described in the continuous case by Dubrovin [9,10].

For the initial data Xθ9 Xx e O(N) we define ωx =X\XQ = Xϊ ιX0 e O(N) and
Mx = ω[ J — Jωv As follows from the previous considerations Eqs. (4) define only a
correspondence, but if we fix the splitting S = S + u S _ of the roots of the
polynomial β(v) = (v2/ — μMk — J 2), which in fact does not depend on k, then we
have a well defined mapping fs+tS-

 :(ωk> Mk)-^(ωk+x, Mk+J. In order to "inte-
grate" this dynamics consider the spectral curve Γ:

det (Af + λJ2 - μl) = 0, M = M1. (27)

We will assume that J2 has distinct eigenvalues different from zero: Jf φ J2 for i Φ j ,

2

and Jf ΦO. For generic M, Γ has a genus g = . The eigenvector
2

ψ(λ,μ),

(M + λJ2-μI)ψ(λ,μ) = 0 (28)

normalized by the condition

(29)
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is meromorphic on Γ whose poles define a divisor @ = @1 + ...+@g+N_ί (see
[10,16]). In the points at infinity P t eΓ, where μ&λJf, Λ->oo (i = 1,...,N) we have

V>\Pj) = #j. (30)

This means that ψ\λ, μ) is the basis of the linear space of meromorphic functions
with the pole divisor ^ 2, determined by the conditions (30).

In our case M is skew symmetric, therefore Γ has a symmetry σ: Γ-+Γ, σ2 = id:

σ(λ,μ) = (-λ,-μ). (31)

The divisor Q) also is not arbitrary because of the following proposition. Denote
ψτ( — λ, — μ) by tp*(/ί, μ) and fix λ e C such that the eigenvalues μ l5..., μN of M + ΛJ2

determined by (27) are distinct.

Proposition. Let μ' + μ be two distinct eigenvalues of M + ΛJ2,

ψ*(λ,μ')ψ(λ,μ) = 0. (32)

For μ' = μ £/πs product is different from zero:

(33)

To prove this consider the product ψ*(λ, μ') (M + λJ2)ψ(λ, μ) = μιp*(λ, μ')ψ(λ, μ).
On the other hand

ψ*(λ, μ') (M + λJ2)ψ(λ, μ)=- ((M - λJ2)ψ( -λ,- μ'))τψ(λ, μ)

= μΊp*(λ>μ')ψ(λ,μ).

We see that if μ'φμ then ψ*(λ,μr)\p{λ,μ) = 0. But ψ{λ,μ) for all possible
μ = μ l 5 ..^μ^ form a basis, therefore ψ*(λ,μ)ψ(λ9μ) can't be equal to zero. •

Corollary. The divisor 3) of the poles of ψ satisfies the equation

B, (34)

where B is the set of branch points of μ as a function of λ, and « means linear
equivalence of divisors.

This equivalence is given by the function F(λ, μ) = ψ*{λ, μ)ψ(λ, μ) as follows from
the proposition. Thus 2 belongs to the shifted Prym variety PC J{Γ). We restrict
ourselves to these considerations because the detailed discussion of the algebraic-
geometric aspects of this spectral problem can be found in the literature (see [21]
and references therein). The corresponding problems of real algebraic geometry
are considered in [23].

Now we use the representation (19) for describing the analytic properties on Γ
of ψk for arbitrary L

Fix some splitting Σ = Σ + KJΣ_. As follows from (19)

ψ(λ, μ) = (ωk - λJ)ψk(λ, μ) (35)

is an eigenvalue of Mk+ί + λJ2\

(Mh +! + λ J2) ψ(λ, μ) = μφ(λ9 μ).

This means that we can define ψk+ί as

(36)
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Notice that ψk+1 does not satisfy Dubrovin's normalization (29) which is required
only for ψv

One can see from (36) that ψk+x has N new poles at the "infinities" Pl9..., PN. In
order to find the new zeros consider the hyperbola Jf, determined by the equation

λμ = l (37)

and the intersection JtfnΓ. This intersection is described by the equations μ = λ~x

and
1 2 2

which coincides with (11).
So we have 2N points of intersection which we denote QX,..., ξ)χ, Qΐ,..., Qΰ in

agreement with the splitting Σ = Z + u Γ ~ . A s follows from the construction of ωk

(see Sect. 3) n
This means that QX, . ,6JV are the new zeros of ψk+ί. Thus we have proven

Lemma. For a given splitting Σ = Σ+ul_ the vector eigenfunction ψk+1 (36) of the
matrix Mk+ 1+λJ2 has on the spectral curve Γ the following analytical properties,
which determine ψk+1 uniquely:

1. ψk+1 has a simple pole in Sf depending on the initial data M1 and the poles at the
"infinities" Pu ...,PN with asymptotics in

2. ψk+ί has a zero of order k in Q^, . . . ,6^ .

In particular, we see that the pole-divisor !3k+1 of ψk+x is connected with S)k by
the relation

® k + 1 * ® k + l / , (38)

where U = Pί + ... + PN-Qΐ-...-QN-
For given ψk+1 one can reconstruct ωk+x by using the formula (14), and Mk+1

as ωk+1J—Jωk+ί. To find the solution of (2) Xke0(N):

one can use again Eq. (36). Indeed, from (36) follows that

Φ f e + i=ω f e Φ f c , (39)

where Φk is N x N matrix with ψk(0, μt) as a column. This means that

Φk+ί=ωkωk_ι...ω1Φ1 and X^^Φ^^^X^1. (40)

For ψk+ί one can write the explicit formulas in terms of Prym's ^-functions as it
was done, for example, by Bobenko in [24]. But here we restrict ourselves to the
example of 0(3) (see below).

We summarize the result of this section in the following theorem.

Theorem 3. The discrete Euler Eq. (4) corresponds to the shifts on the Prym variety
PCJ(Γ) (34) by the vector l/ = P 1 + . . . + P Λ r - β 1

+ - . . . - β ^ , depending on the
splitting Σ = Σ+uΣ_.If such splitting is fixed the general solution of (4) and (2) can
be expressed as some abelian function on P in the points zk =
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ί.6. Explicit Formulas for the Discrete Dynamics
of the 3-Dimensional Rigid Body

We consider here Eqs. (2), (4) for N = 3. In this case the solution can be expressed by
elliptic functions. The spectral curve Γ (27) has the equation

det

λJ\-

-M

~M

-μ

12

13

M 1 2

λJ\-μ

- M 2 3

M

M

λJ2

13

23

—

= 0

or

(λJf - μ) {λJ\ - μ) (λJl -μ) + Hλ- M2μ = 0, (41)

where H = J\M\2 + J2

2M
2

ί3 + J\M\Z.
In the new variables

x = μ/λ, y = λ,

(41) has the form

y2Q(x) = H-M2x

with β(x) = (x —Jϊ)(x —J2)(x —J|). After another change of variables

we obtain the standard form of the elliptic curve

w2 = R(X) = (χ- Jj) (x - J2

2) (x - j\) (H -M2x). (42)

The involution σ:(λ,μ)-»( — λ, —μ) in these variables is σ(w,x) = ( —w,x) and the
Prym variety coincides with J(Γ)&Γ. The "infinities" Pu P2, P3 correspond to the
branch points x — J\, x = Jl, x = J\. The fourth branch point x = H/M2 corre-
sponds to the point λ = μ = 0, so we choose it as the zero 0 on Γ. Let xί<x2

<x3<x4 be the ordered roots of R(x), i.e. the numbers Jj, J\9 J\, H/M2 (notice
that min {JJ ^ H/M2 ^ max {Jj).

The elliptic integral

= ί

gives the equivalence of Γ and C/Zτ 1+Zτ 2, where τx = 2 J
X3 dx

τ2 — 2\ τx is real, τ2 is purely imaginary.
χ2 γR(x)

The equation μλ = 1 in the variables x, w has the form

(x - J\) (x - Jl) (x - Jl) - x(H - M2x) = 0; (43)

it determines on Γ the set of six points, which we denote as Qϊ, Q2, Q3, Qϊ, Q2,
Qΐ according to the splitting Σ = Σ + vΣ_ (see Fig. 1)

This figure depicts the situation, corresponding to J\<H/M2<J\<3\ and
sufficiently small M2 and H, when all roots of (43) and P(λ) are real numbers. The
condition that P(λ) has no purely imaginary roots, which is sufficient for the
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Fig.1
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solvability of Eq. (6) (see Sects. 1.2 and 1.4), is equivalent to the absence of negative
roots for Eq. (43). This leads to a certain restriction on the integrals M2 and H. The
shift U is given by

because of Px + P2 + P3 = 0.
Using the results of the previous section one can easily express ψk + ί(z) in terms

of the classical elliptic σ-function and the initial position of the poles ψt: (ζl9 ζ2, C3).
For example, the function

) l V

has all analytic properties of the first component of ψk+ί(z) (see the lemma in
Sect. 1.5) and therefore coincides with it. We can write now explicit formulas for ωk,
Mk, and Xk as it was explained in the previous section.

Omitting nonessential multipliers in (44) we define a matrix Φk+i as

where

(Φk+i)ij
σ\zj ~

(45)

σ{z-Qt)σ{z-Qt)σ{z-Qt)

3i z. (i = l,2,3) correspond to λ = 0 in (41):

H
, Z 2 i 3 = ± j

dx

HIM* ]/R(χ)
(X=CXD).

Finally we have from (40)

XΪ=Φk+ίΦ;ιXTo,

with Φk defined by (45).

(46)
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In the continuous limit for M = εMo e-*0 the curve Γ remains

f= (-jΐ = (x-J2)(x-J2Hx-J2)(Hc-M2x)s,

but Eq. (43) becomes

(x - J2) (x - J2

2) (x - J\) - ε2 x(Hc - M2

cx) = 0.

When ε = 0 we arrive at

(x-Jl)(x-J2

2)(x-Jl) = O.

This means that Qf, Q}, Qi tend to Pl9 P2, P3 when e->0 and the shift U = ΣQi

0. One should observe that the continuous limit corresponds to the
special splitting Σ9 where: Σ+ contains all roots in the right half plane of P(λ) of (13)
Sect. 1.2, which becomes here

(λ2J2-l)(λ2J2-l)(λ2J2-l) + Hλ*-

As was shown before this continuous limit coincides with the classical problem
about the force free motion of a rigid body, the explicit solution for which in terms
of elliptic functions were found by Jacobi [25]. The comparison of this formula and
the continuous limit of (46) may be complicated.

2. The Discrete Dynamics on Stiefel Manifolds and the Heisenberg Chain
with Classical Spins

In this section we generalize the previous results and consider the functional
S=£tr(X f cJX f c + 1) on the sequences X = (Xk) of n + N matrices Xk, l^n^N

k

satisfying the condition
xkx

τ

k=in. (l)
The rows of such matrices are orthogonal unit vectors in 1RΛ Such matrices form
the Stiefel manifold Vn N. The function of the interaction if = tr(XJYτ) is a
symmetric bilinear function, invariant under the action of O(ri):X->sX, Y-±sY,
s e O(ή). We show that some results of Sect. 1, which correspond to the case n = N,
can be generalized for n < N.

For n = ί our results agree with the solution of this problem proposed in [1].
Notice that for n = 1, N = 3 we have the problem about the stationary states of a
Heisenberg chain with classical spins (see [1, 5-7] and Introduction).

2.1. The Equation of the Dynamics and Isospectral Deformations

The variation of S under the condition (1) leads to the equation

Xk + 1J + Xk_1J = ΛkXk, (2)

where Λk = Λk is an (n x n) matrix multiplier. We assume J to be symmetric and
nondegenerate.

Theorem 4. The Eqs. (2) are equivalent to the equation of isospectral deformations

Lk + 1(λ) = Λk(λ)Lk(λ)Λk

1(λ) (3)
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with Lk(λ) = J2 + λMk-λ2X^ 1Xk_uMk = Xl_xXkJ-JX\Xk_t,
Ak{λ)=J- XX\Xk _!. Moreover,

Lk=(J + λXτ

k- ,Xk) (J - λXτ

kXk _ t) = Aξ{ - λ)Ak{λ), (4)

so that

Lk+x = Aτ

k+ί(-λ)Ak+1(λ) = Ak(λ)Aτ

k(-λ). (5)

The proof follows by a direct calculation. The determinant of Lk has the form

P(λ) = det Lk(λ) = det Aj[( - λ) det Ak(λ)

= det J 2 det(/M-A2(Xk_! J - 1Xfe)
2), (6)

where we used the Weinstein-Aronszajn formula, see [10]. Therefore P(λ) is an
even polynomial in λ of degree 2n. The factorization (4) determines the splitting
Σ = Σ + vΣ_ of the set Σ of zeros of P(λ):Σ+ = {λ:detA(λ) = 0}9

Σ_ = {λ:dQtAτ( — λ) = 0}. This splitting satisfies the conditions

Σ+=Σ+9 Σ.=Σ-9 Σ+ = -Σ_. (7)

If such a splitting is fixed and all zeros of P(λ) are distinct then for given Xk_ί,Xk

the matrix Xk+1 can be defined as follows.
Consider the "eigenvectors" ψt of Lk+ί = Ak(λ)A%( — λ), corresponding to

λteΣ+9

and combine these vectors to an Nxn matrix ψ as columns. Then because
Σ+ = {λ:dQtAk+1(λ) = 0} we have from (5),

or

Jφ-XΪ+1XkΨΛ = 0 (8)

with yl = diag(/l1, ...,λn), λιeΣ+. If the nxn matrix Xkψ is invertible then

\Xkxpyι (9)

is reconstructed uniquely.
Leaving the further discussion of the general case 1 ̂  n < N we now turn to a

detailed treatment of the case n = 1 in the next section. In this connection we want
to mention the work of Adams, Harnad, and Previato [26], in which the matrices
introduced in [10] are generalized.

2.2. Discrete Version of the Neumann System
and the Heisenberg Chain With Classical Spins

For n = 1 we have the functional

S(x)= Σ (Xk,JXk + i), (10)
feeZ

where x = (xk), xk belong to the unit sphere S^"1 in IR^: |xfc| = 1 and J =
diag(J1?..., Jn). For N = 3 we have unit vectors in R 3 which can be interpreted as
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classical spins. In this case the functional S (10) defines the energy of a spin chain
in the Heisenberg model (see [1, 6-8]). The equations of the stationary configu-
ration have the form

or
xk+ι + xk-ι —AkJ

 xk-

The multipliers λk (1 x 1 matrix) can be found from

therefore
A kμ k |J- 1x k | 2-2(J- 1x t ox f c . 1)) = 0. (12)

We have two possibilities: λk = 0 or

4=2(j-1x f c 5x f c_1)/μ-1χ f c |
2. (13)

In the literature (see, for example, [5, 6]) usually the second possibility is
considered because only in this case it is possible to have the continuous limit. This
can be seen as follows. Let J = I + ε2Jc and xk = x(t0 + kε) for small ε, then from (11)
we have for x(t) the equations

or

x" + 2Jcxπμx (14)

with μ = (λ — 2)ε~2, i.e. the Neumann system describing the motion on the unit
sphere under the influence of the potential U(x) = (Jcx, x) [8, 9, 27]. For this reason
we call the system (11), (13) a discrete version of the Neumann system.

Now we explain how this system can be integrated with the help of Theorem 4.
The matrix Lk (3) has the form

L= J2 + λx A Jy - λ2x®x, (15)

where x = xk-ί9 y = xk, XΛy = x®y—y®x. This is a special case of the matrix
introduced and investigated in connection with the classical integrable systems in
[10]. The determinant L has the form

detL=detJ2(l-/l2(x,J-1);)2) (16)

and the zeros λ= ±(x,J~ιy)~1. So we have two possible splittings of this set
Σ = Σ + KJΣ_ :Σ+=(x,J~ίy)~i or Σ+ = —(x,J~ίy)~1. It is easy to see that they
correspond to two solutions of (12). This means that the procedure proposed in the
previous section actually determines the dynamics.

In order to get explicit formulas we have to consider the spectral curve Γ of L:

μ/) = 0, (17)

or using the formula (see [10])
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Φμ(χ,Jy)=Qμ(χ)-(Qμ(χ)Qμ(Jy)-Q2

μ(χ,Jy)), Qμ(χ,z)=(-(j2-μir
1x,z), Qμ(x)

= Qμ{x, x), we obtain the hyperelliptic equation

λ2L(Qμ(χ)Qμ(Jy)-Q2

μ(χ,Jy))-Qμ(χ)~] + 1 = 0 . (19)

The function φμ(x, Jy) can be represented as

Ψμ(x,Jy)= Σ ^ 4 , (20)
ί= 1 μ — J i

where

are the involutive integrals of the system (11), (13) (see [1, 8]). Denoting the roots of
φμ(x9Jy) by μl9...,μN_1 we can write

T V - 1

Π (μ-t*d
φ(x9 Jy) = i^ί (22)

and the equation of Γ as

Π (μ-Jf)
i=ί

I V - 1 N

Π (μ-μd Π (μ-J])> (23)

N-ί

where v = A fj (μ—juf). We see that the mapping (11) is the shift on the Jacobi
i=ί

variety of the hyperelliptic curve (23). To find this shift we follow the same
procedure as in Sect. 1.5; namely the eigenfunction ψk+ί of the matrix Lk+1 can be
obtained as ψk+ί = Ak(λ)ψk or

Ψk + i={J-λXk®Xk-i)Ψk- (24)

We see that ψk + 1 has a new pole at "infinity" P^ corresponding to μ= oo for (23)
and a new zero in one of the points P+ : μ = 0, λ = + (x, J ~ * y) ~1, determined by the
splitting Γ = Σ + u I ' _ . So the shift is l/ = P 0 0 —P + . Following the procedure
proposed in the previous paragraph one can write the explicit formulas for ψk and
xk in terms of hyperelliptic β-functions. Such formulas were found first in [7] (see
also [1]) by another approach, requiring some unmotivated steps. These results
are in a good agreement with those of [1, 7], as one can verify.

3. The Billiard Inside an Ellipsoid

Now we apply the above procedure to describe the billiard motion inside a domain
ΩclR1* bounded by the ellipsoid Q = dΩ given by the equation

(Ax,x) = l, (1)

where A is a positive symmetric N by N matrix. This application has some
surprising features. In particular, it leads in a natural way to a mapping φ which is
not directly related to the system under consideration while φ o φ = φ2 is. In other
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words this mapping can be viewed as a "square root" of the billiard mapping.
Moreover, this mapping φ commutes with the billiard mapping, hence takes a
billiard orbit into another billiard orbit. Such a symmetry of the billiard problem
was found in [1], We begin with the construction of this mapping φ.

The dynamics of the billiard in the domain Ω can be described as the stationary
points of the functional S:

S =
keΊL

The equation of motion can be written in the form (see Fig. 2):

(-^ - , | | I?

) xk + 1 ~~ xk — rkyk + 1 /̂ x
j A J W /

where yk = (xk — xk- ι)/\xk — xk- J, \yk\ = 1 be the momentum, the multipliers μk, vk

are determined from the conditions \yk\ = 1, (Axhxk) = l:

μk=-
(Λxk,Λxk)'

Fig.2

Consider the "skew-hodograph" mapping φ\(x,y)-+{x\y') determined by the
formulas

( Λ/ ' — C~*Λ) — C~*{\) —I— \) Λ Y ^

= -C iχ ( )

with C = A ~1 / 2 (compare with [1]). One can easily check that if (xk5 yk) is a solution
of (3), so is (xfc, yj. Moreover, x̂ r = Cyk +1 = - xk + u y'k' = - C " ^ = - yk + 1 ?

showing that the dynamics of φ "contains" the billiard dynamics.
In the continuous limit this symmetry means only that if x(s) is a geodesic on the

ellipsoid (1) parametrized by the length then the trajectory of the vector x(s)
— Cx(s) is also a geodesic line on the same ellipsoid (but in general s is not the
length of x(s)). This geometrical fact was observed in [28]. Notice that the operator
C transforms the unit sphere into the ellipsoid Q, whose equation can be rewritten
as

3.1. The Splittings and Isospectral Deformations

Consider the matrix L(x, y, λ) given by

L=A~1 — λx Ay — λ2y®y (5)
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which was proposed in connection with the geodesic flow on the ellipsoid in
[10, 9]. For xeQ this matrix L can be factored:

L(x,y,λ) = (C + λy®ξ)(C-λξ®y) (6)

with ξ = C~ιx, \ξ\ = l. If x = xk, y = yk then (6) corresponds to the splitting
Σ = {λ:detL=0} = Σ+vΣ- into the positive and negative part correspondingly.
Indeed, it is easy to show (see [10]) that for xeQ, \y\ = l,

detL=det^~1(l-/l2(Ax,)/)2) (7)

and Σ+ = {λ:dct(C-λξ®y) = O} = {(C-1ξ,yyί} = {(C-2x,yΓ1} = {(Ax,y)-ί}.
But (Axk, yk) > 0 (see Fig. 2) therefore in this case Σ + consists of the positive root of
(7). We will call such splitting natural.

Together with such splitting of L(x, y, λ)

L=(C + λy®ξ)(C-λξ®y), ξ = C~1x, |ξ| = |y| = l,

we consider the matrix L'(x,y,λ) obtained by exchanging the factors:

L' = (C-λξ®y)(C + λy®ξ), (8)

and split it again in the natural way

L = (C + λy'®ξ')(C-λξ'®yf), \ξ>\ = \y'\ = l. (9)

Theorem5. The mapping (x9y)->(x' = Cξ',y'=—ξ) determined by (8), (9) and
describing the isospectral deformations of the matrix L-+L, coincides with the
mapping φ of (4).

Proof The second equation / = — ζ= — C~1x coincides with that of (4). In order
to prove the same for the first equation compare (8) and (9) with y'= —ξ:
C2-λξΛCy-λ2ξ®ξ = C2 + λCξ'Λξ-λ2ξ®ξ(ξ\ξ'). We see that ξΛ(Cy-Cξ')
= 0or

ξ'-y^aC-'ξ (10)

for some α e R , | £ f = 1. But ̂ \2 \y \ \y\ (

and therefore we have two possibilities α = 0 and α= 1

 ?

2 = — ——'—--.
|C ς| (Ax, Ax)

One can easily check that the second possibility corresponds to the natural
splitting and leads to the first equation of (4).

The explicit formulas for the ellipsoidal billiard were found in [1] by using the
connection with the spectral theory of the difference operator. Now we are also
able to incorporate these formulas into the framework of Sect. 2.

Corollary. If (xk9yk) is the solution of the billiard system (3) then the matrices
Lk = L(xk, yk9 λ) satisfy the equation

Lk + 1=AkLkAk

ι (11)

k = A-ί-λ(xk®yk-yk+1®xk)-λ2yk + 1

Indeed,

= (C + λξ'®ξ)(C-λξ®y)Lk(C-λξ®yy
= ALA
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since ξf = yk + 1, ξ= — yk, Cξ = xk. Clearly, (11) can also be checked by a direct
calculation.

3.2. Connection Between the Ellipsoidal Billiard
and the Discrete Neumann System

Replacing x'k, y'k by xk+1, yk+1 we rewrite the system φ of (4) as

or as

Xfc+i + Xfc-i^fcC"1**. (12)

Denoting C~1xk = qk, \qk\ = l we have

ft + i + f t - i ^ C Γ 1 ^ \qk\ = \ (13)

which coincides with (11) of Sect. 2.2 with J = C.

Theorem 6. // (xk, yk) is a solution of the system (4'), connected with the ellipsoidal
billiard (1) as explained before, then qk — C~1xk *5 the solution of the discrete version
of the Neumann system ([12], Sect. 2) with J = C. Conversely, if qk is the solution of
(13), then xk = Cq2k{—\)k is a trajectory of the billiard's point in the ellipsoid (1) with
A = J'2.

This theorem, reminiscent of the connection between the geodesic flow and the
Neumann system of [9], can, however, not be considered as a "discretization" of
Knόrrer's result [16]. First of all instead of the Gaussian mapping we have a linear
mapping C. The second new feature is the appearance of the mapping φ.
Moreover, this connection is unexpected because of the different character of the
transition to the continuous limit for this discrete system: for the billiard it
corresponds simply to the dynamics near the diagonal in Q x Q, but for the system
(11), Sect. 2.2, the diagonal is not invariant, so we have to use another limit process.
There is another possibility in considering the dynamics near the zero level of the
integral F = (J~1xk,xk-1) which corresponds to λk&0, xk+ί-

3rxk^i

ιx0 [see
formulas (5), (6), Sect. 2]. This possibility leads to the ellipsoidal billiard, as follows
from Theorem 6.

Remark. A natural question arises whether or not the solutions for our discrete
systems have the form xk = x(kA), where x(i) is a solution of the corresponding
classical problem. The answer is: in general not. This can be seen in the example of
the ellipsoidal billiard. Suppose that every orbit lies on one geodesic. Fix q0 on a
symmetry plane Oxy: qΌ = (xθ9 y0,0), x0: y0 φ 0, and choose q _ t on the intersection
of the ellipsoid with the plane, orthogonal to Oxy and containing the normal to the
ellipsoid in q0. Obviously qλ = σ(q.ι\ σ(x,y,z) = (x,y, —z). For q0 and q^x being
close there exists a unique geodesic line y, passing through q0 and g_ v From our
assumption it follows that it passes also through qv From the uniqueness σ(y) = y
and therefore the tangent to y in q0 is orthogonal to Oxy. Thus y passes through q0
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in a definite direction and therefore γ does not depend on g _ v This means that γ
coincides with our planar curve and therefore cannot be a geodesic.
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Communicated by J. N. Mather

Note added in proof. Recently P. Deift succeeded in answering the question whether the discrete
version of the spinning top [formula (4) of Sect. 1] is identical with the "time τ" map, for some
τ > 0, of the continuous flow given by Eq. (5). Even though both systems have the same integrals
the answer to this equation is negative (as one would hope). Using the formalism of [32] Deift
constructed an interpolating flow described by the equation

M = [_M,B], B = B(M) (*)

for which the "time 1" map gives rise to the discrete system (4). Comparing (*) and (5) he found that
for small \M\ the system (*) has the form

M = [M, £] = [M, Ω] + K(M) + O(\M\5),

where K(M) is a quartic polynomial which is not identically equal to zero. He shows thus that both
flows do not agree; but the discrete system (4) can be viewed as a discretization of (5) agreeing with
the continuous flow up to third order.






