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Abstract. In string theory and in topological quantum field theory one encounters
operators whose effect in correlation functions is simply to measure the topology
of 2d spacetime. In particular these “dilaton”-type operators count the number
of other operators via contact terms with the latter. While contact terms in general
have a reputation for being convention-dependent, the ones considered here are
well-defined by virtue of their simple geometrical meaning: they reflect the geometry
of the stable-curve compactification. We give an unambiguous prescription for
their evaluation which involves no analytic continuation in momenta.

1. Introduction

Usually the various n-point correlation functions of a quantum field theory are
related to each other in complicated, indirect ways. One obtains such relations,
for example, from unitarity of the scattering matrix. In certain limiting cases one
obtains very simple results, for example the famous low-energy theorems relating
amplitudes with and without a zero-momentum pion. String theory reflects such
relations on scattering amplitudes via affiliated relations between an N-point
amplitude and the integral of an (N + 1)-point amplitude over the location of the
last point. More generally, the latter integral can be regarded as the change of the
n-point functions of some conformal field theory as we deform the theory slightly.
The statement then becomes that certain deformations modify amplitudes in very
simple ways.

The most famous low-energy theorem in string theory is the statement that the
zero-momentum mode of the dilaton is the string coupling constant. Thus deforming
any amplitude by this operator merely multiplies it by (14 ¢)™, where ¢ is the
strength of the perturbation and M is the order in which the given n-point function
enters in string perturbation theory. In other words, the (N + 1)-point function
involving a zero-momentum dilaton, integrated over 2d spacetime, must equal M
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times the corresponding N-point answer; M in turn is proportional to 2g —2 + N,
where g describes the topology of spacetime. But other 2d theories can have
additional relations of this sort. Topological gravity [1-3] is an example par
excellence: according to [4], all amplitudes are determined from just a couple of
basic ones by application of a family of recursion formulas generalizing the one
just mentioned.

Suppose that N =0, so that we are considering the dilaton 1-point funetion.
How can the answer be a topological invariant, independent of the shape of the
spacetime X'? The basic observation is that the dilaton corresponds to a field
cd*c — ¢0*¢ in the 2d theory which fails to satisfy the usual physical state condition,
and so its insertion depends on a choice of normal ordering. Similar states show
up in the heterotic string [5] and superstring. If we normal-order with the help of
a metric on X (“Weyl normal ordering”), we get a curvature factor whose integral
is the Euler number [6]. If we normal-order by choosing local coordinate families
we directly recover the Cech definition of the Euler number [7, 5].

It remains to understand N > 0. At first it may seem that we again get 2g — 2,
since the obstruction to finding a smooth family of coordinates seems to depend
on g, regardless of other insertions. Similarly, the choice of a smooth metric again
leads to the integral of the curvature. We could propose to use a metric with
singularities at the N “other” points [4], but this prescription raises various
troubling issues. It seems to depend on which vertex we choose to integrate first;
apparently we can choose any kind of singularity we like. Nor is this an unfamiliar
lament. To count the number of other punctures we want the dilaton vertex to
have “contact terms,” §-functions in its correlations with anything else. Such terms
do not seem to appear in the original framework of CFT [8]. They have in other
contexts been interpreted as convention-dependent, essentially describing a con-
nection over the space of CFT’s [9] whose magnitude can be adjusted by some
kind of “gauge transformation.” And yet in the present context we claim that they
are well defined and moreover universal, the same regardless of what operator the
dilaton hits.! This suggests an interpretation for them purely in terms of the
geometry of moduli space.

We will give such an interpretation for the bosonic string dilaton, leaving
topological gravity for the future. We will review the ideas of [10, 11], as well as
the insertion prescription of [5, 7]. Then we will develop the notion of a degenerating
family of punctured surfaces with coordinates.? Our construction has both a clear
physical and mathematical meaning, and it gives both the contact term and the
dilaton—dilaton pole we need. Presumably in topological gravity the pole is absent,
since there is no tachyon.

Other approaches to 2d contact terms in string theory require the use of 2d
auxiliary fields [18], analytic continuation in momentum, or even relaxing
conservation of momentum [197]. In more general 2d theories it is not clear what

! There is an exception when two dilatons collide. In the bosonic string two dilatons at zero
momentum can fuse to form a tachyon and hence a quadratic divergence. This pole too is hard
to obtain if one simply considers one dilaton as measuring curvature induced by the other, but
we will see it emerging automatically from the geometry.

2 Sonoda and Zwiebach have addressed this issue in the framework of string field theory [12, 13].
For discussions of the stable-curve compactification see e.g. [14,15], and in the present context
[16,17]
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these mean; for example the bosonic string has no auxiliary fields, whie topological
gravity has no momentum! Still other calculations write the amplitude as the
integral of a total derivative [20]; here the delicate issue is evaluating the boundary
contribution. The present approach has none of these technical issues. We simply
get a smoothed-out J-function when we interpolate between normal ordering
appropriate to a singular surface and that appropriate to a non-singular one. The
answer does not depend on how we do the interpolation, except of course for the
divergent two-dilaton case.

Finally, the reader may wonder at all the formalism lavished on just one field,
c0*c — ¢0%¢. Can we not just omit it? The answer is no. This state appears in the
propagator; amplitudes factorize on it as is crucial for consistency of loop
corrections [5,6]. Moreover, as mentioned, in topological gravity all states are
generalizations of this one; all fail the usual physical state condition, either in the
formalism of [4] or in that of [2]. This is of course precisely why they can all
measure topological properties of the line bundles #; described in [1]. Nor is the
need for local coordinates at insertions some sort of pathology of the operator
formalism. Any method of defining amplitudes with fields of this sort will have to
face the same problem (see e.g. [21]).

2. Operator Formalism

2.1. The Measure. We recall how one builds a measure in the operator formalism,
following [6, 7, 11]. The basic observation is that to insert an arbitrary state |y >
into a Riemann surface X we need to choose not a point but a finite parametrized
hole on X. Equivalently one can choose (the germ of) a local complex coordinate
z, and consider the loop {z = €%, 0 < <2n}. We can then remove the disk inside
the loop and put boundary conditions on the worldsheet fields corresponding to
[¥ >. The resulting path integral may be regarded as the pairing of | ) with a state
(Z,z|. Conformal invariance implies that this state depends only on the iso-
morphism class of the pair (X, z). Accordingly we introduce the space 2, ; of such
isomorphism classes. This is an infinite-dimensional space. Clearly we can map

P, — M, by forgetting everything about z except the location of P = {z = 0}.

When we have several punctures we similarly construct 2, y — 4, 5.
The Virasoro algebra and its conjugate act on £, ,. Replacing z by ¢oz=
z—ez"*, n 2 0 makes an infinitesimal motion in 2, ; which we associate to the

real vector® ¢/, + &/,€ Vect ® Vect. Here Vect is the Lie algebra of meromorphic
0 . .
vector fields on € generated by £, = — z"*! P For n <0 ¢, again acts, in general

z
to change (X, P) as well as z. We cut X into D ={|z| <1} and X\D, then reglue
these pieces with the help of z— ¢(z). We will refer to this operation as “Schiffer
variation of (X, z) by ¢ at P.” For example e/ _, + &/_, takes (X, z) to (X,z — ¢) and
so moves P. For n £ — 1, however, the action is trivial. Converting the vector field

3 The appearance of the conjugate term may seem surprising. Bear in mind that (Z, z) and (X, @°z)
are both points of the manifold £, ; and as such must be connected by a real tangent vector.
But /_,,7_, separately generate complex tangents in T1°2 and T°', respectively
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z"“a3 on € to a holomorphic vector field v and X near P, if v extends
z

holomorphically to to X\ {P} then the regluing just mentioned can be undone by
an analytic map of X\D to itself. Thus we introduce the vector space B(X,z) of
vector fields on € whose images v on X near P extend to Y\P, and we find
T'°2, |z = Vect/B(Z,z). Similarly one finds

TP, \lson..., = [Vect @ - ® Vect/B(Z, 2y, zy). @.1)

This time the “Borel subalgebra” B(X,z,,...,zy) consists of N-tuples of vector
fields in Vect, (vy,...,vy). Taking each v; to a vector field on X near P; = {z; =0}
using z;, all must be the restrictions of a single v holomorphic on X\{P;,...,P,}.
Ifv=(vy,...,vy) does not lie in B(X, z,,...) then it generates a nonzero tangent
vector 175 to #, 5 at (£,z,...). We want to show that given any set of states
[W1,...,[Yx> we get a differential form on 2, y of degree 3g —3 + N. Let

b[T]= Z $b0(2)v7(2)dz,

an operator on #®", Here b{)(z) is the ghost field, an operator-valued form on
the z-plane acting on the i-th copy of #. Then we let

Q(Vla V3g 3+N> Vh V3g—3+N)|():,zl,...)

= <Z’ZI,"'Ib[vl]"'b[v3g—3+N]E[51]"'5[539—3+N]|¢1>P1® “‘®|¢N>PN-
(2.2)

Here V, are in T"°2, yat(Z,z,,...), V; are their conjugates, and U, is any N-tuple
representing V;. The subscnpt on |y ;»p, means it is to be paired thh the i-th slot
of the vector <E Ziyeod.

Expression (2.2) can be generalized in the obvious way to arbitrary complex

vectors V;e T¢?, with representatives 7; = (v;;, 0;4,...)e Vect ® Vect @ --- and
N
b[T]1= Y [$bY(2)vf(2)dz + §bP(2)0i;(2)dz].
i=1

Then Q is certainly antisymmetric in the V’s. It is also well defined. For, suppose
V,€B(2,zq,...). Then (X, z,,...|b[V;] =0 by the operator formalism construction
of (X,z,,...|(see Ref. [11]). In path integral language we can take one of the terms
$bJv;;dz and deform the contour to the other insertion points, where it cancels the
other terms. N

Of course we do not really want a form 2 on 2,.y. We instead want a form
2 on M, y, so that we can integrate it to get answers. In fact, however, one
sometimes finds that 2 is simply the lift of the desired form:

Q=1*Q. (2.3)
This happens whenever the |y, all satisfy [11],
SPSC: L[y >=b,Jy>=L,|y>=b,ly>=0 nz0. 24

We will call (2.4) the “strong physical state condition.” As is well known, states
[¥> of ghost number 2 obeying the SPSC correspond to transverse, on-shell
particles in string theory.
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2.2. Weak Physical States. Another option was given in [7]. Even if |, ) fail the
SPSC we can imagine choosing a section ¢:.#, y— %, y and taking

Q=c*0. (2.5)

Thus very roughly speaking, given (X, P ,,..., Py) we plug the (X,z,,...,zy) given
by o into (2.2). Of course now the measure £2 depends on the choice of g, but this
is only what one expects from off-shell states. It may happen, however, that @ is
a closed differential form. In this case if we change o to a nearby ¢’, the difference
can be written as the action of a vertical vector field V on 2. Then for ¢ « 1,

Q' =(0)*D =o*Q +eL; D) = Q+ ed[0*(1;2)], (2.6)

since 4 = 0. Thus the measure is a well-defined cohomology class. If we specify
the behavior of ¢ at the relevant boundaries of ./, y then we get a well-defined
integral for Q. 5

As is well known, is indeed closed whenever the |/;> obey a weaker condition
than (2.4), namely

Q5+ Qp)lY> =0, 27

where Qp is the BRST operator. Thus we admit states which are not transverse,
though still on shell.

Actually (2.7) is too weak. It is not possible to find a global smooth section o.
Consider for example .4, ;. A choice of ¢ means that for every PeX we have zp(-)
depending parametrically on P and centered at P i.e., zp(P)=0. Thus dzp|p is a
nonzero 1-form at P. Varying P we get a smooth, nowhere-zero 1-form field on
X, which is impossible if g # 1. However, there is a way out. We can always find
a section everywhere smooth and defined up to constant phases. Thus as P varies
we allow zp(Q) to jump to ePz,(Q), where o is a real function independent of Q.
If @ does not “feel” such jumps then we again get a good 2 from (2.5).* The
conditions for this to happen are a subset of (2.4) [7]:

Q5+ @p)l¥> = (Lo — Lo) Iy > = (bo — bo) 1Y/ >- (2.8)

At this point it is convenient to note that the dilaton state, as well as its cousins
in topological gravity, all satisfy a slightly stronger condition than (2.8). While not
strictly necessary, this stronger condition will save us a bit of algebra. Accordingly
we introduce the “weak physical state condition”

WPSC: QulY) = Lol > =boly> = Qpl¥> =Loly> =bol¢>=0. (29)

For states obeying the WPSC both the overall scale and phase of the family z(+)
are irrelevant. Higher Taylor coefficients will in general matter, however. For
example the state

ID)=(cic-q1—C1C_)|1)

can tell the difference between zp and z, + (zp)%. Here |1) is the SL(2)-invariant state.
We should pause to comment on the generality of our prescription. When

4 Recently an explicit slice o, defined up to phase, has been constructed using string field theory
methods by Zwiebach [13]. It would be very interesting to apply this slice to topological gravity
computations
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constructing £ any holomorphic anticommuting (2, 0) field # would have worked
in place of b, since all we required was that § Bvdz be invariant and that contour
deformation worked. When constructing £ we could have used any operator 2
V\I'vith 2*=0and {2,8} =T, 2=¢§.7 for some holomorphic current .#. For, then

Y (%,z|29 =0 by contour deformation and the appropriately modified (2.7)
i=1

guarantees that Q is closed. More generally we map 2-cohomology to ordinary
deRham cohomology of moduli space [22]. Similar remarks apply to super
geometry [5, 23]. This generality means that the methods of this paper carry over
to topological gravity, where 2 = Qp + Q, and & can be b, G, or some combination.
Here Q, is the scalar supersymmetry charge § by and G is the super partner of the
stress tensor T. As mentioned earlier all the observables of topological gravity fail
the appropriately modified version of the SPSC (2.4).

2.3. A Warmup. To fix notation we briefly recall the story of the one-point function
[5-7]. The state |D)=%(Qp+ 0Qp)(co—o)I1) is_BRST-exact, yet does not
decouple. This is because while its 1-point measure £2 = dg, still & is not insensitive
to phase changes of slice because (c, — Cp)|1) fails even the WPSC, (2.9). Cutting
X into patches we find [5] that across patch boundaries the change in a = ¢*d is
itself a total derivative, and thus we build up a Cech 2-class, the Euler class of X,
times the partition function.

Let us do the calculation directly on S, without the total-derivative trick just
used. This will illustrate how we compute the insertions b[o,(V)]. Let { be the
usual, fixed, coordinate on the plane. Throughout most of the Riemann sphere we
can take a slice {,(*) = {(*) — {(Q), the “conformal normal ordering (CNO) slice”
[21]. At { = oo this clearly breaks down. We can instead try wy(-) ={(-) ™' — {(Q) 7,
but near the equator this choice does not agree with {,(*) even modulo U(1).
Indeed one finds

Wo = —CQC(Q)_Z + (CQ)ZC(Q)_B‘ + e

Hence one must interpolate. This is good news. If we just use {, then moving Q
makes a constant shift in {,, which is the action of /_,. This means that the
modulus associated to Q gives b[c,(0/0{(Q))] =b_,,so weinsert b_,b_,|D) =0.
Thus whenever we use {, (or wy) we get zero; any contribution to the 1-point
function must come from the interpolation region.

Let { =¢e*% For 0 < y < ¢ consider the slice

29="{o— & YQ)(Q) '(o)* + .

The ellipsis denotes higher powers of {; since b,| D) =0, n > 1, we need not bother
with such terms. Thus for y <0, y > ¢ the slice z, matches {, and wy, respectively,
up to a (Q-dependent) constant. Also we will work to lowest nontrivial order in
y, which will be seen to justified as ¢ —0. Recall that z,, {, are functions while
{(Q) is just a number. We now vary Q:

2y

azQ _ 2y
) =~ agye 0o

a —
%0 : (2g)? + O(23). (2.10)

1
aLQ)  2¢1LQ)
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The fact that z, is not holomorphic in Q is crucial in order for either term of |D)
to contribute. Near y =0 we have [{(Q)| ~ 1 so

() () )

1. -
= (b_1 +2—8b1 + (b, terms, n = 0) + (b, terms,n > 1)>(c.c.)(clc_1 —¢c_ )|y

1
. (2.11)

The extra terms beyond b_ b_, amount to the b prescription of Polchinski [6,7].

. . 0o . .

Note that the push-forward of a holomorphic vector like is not holomorphic
. . 0z(Q)

because o itself is not.

Recalling that d{ A d{ = —2idy A d6 + 0(y), the contribution from the strip

0<y<eis —2i(2n) [(—&')dy Z = 4miZ = —2niyZ. Here Z is the 1-point function
0

of |1), i.e. the partition function, and y = —2 is the Euler number of S2. Outside
the equatorial strip we get zero. Moreover generally on any X we also get [6]

D)) = —2niyZ,
where {{--->)> means the string integral.

3. Degenerating Curves with Coordinates

We have seen that the correlation functions of WPSC states (like the dilaton) in
general depend on the behavior of the slice o:.4, y— 2, y near the boundary of
moduli space. However, there is a notion of a “good” slice near the boundary,
which essentially fixes this ambiguity.

Given a completely pinched surface X, we can build a family of surfaces
degenerating to X by separating X into X, X and rejoining the two halves with
the universal “plumbing fixture” (see e.g. [14]). Thus we choose coordinates z;
and zg near the attachment points P, Py and identify the punctured neighborhoods
via

zp~q/zg. (3.1)

The resulting g-dependent family of curves includes the original pinched curve at
q=0.

This construction of course generalizes to the case when X ; have additional
marked points. We join them via the plumbing fixture (3.1) to obtain X with
marked points. Following [10], we denote this joining operation by

(Z1sQ1s-»Onp» 21) 0 (ZRs ZRs Oy 4 15+ - ON) = (2, Q1 -, Q)

We stress that the only g-dependence that we allow is in the plumbing fixture, and
that the punctured surfaces X;, ¥z are completely g-independent (though they
may depend on the other moduli). This description of the moduli space is only
good in the neighborhood of ¢ =0.
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Now, in this construction, the neighborhood of the node on X is modeled on
two disks, with the centers of the disks (the points P, Py) identified. In the family
of degenerating surfaces, the double point is replaced by a narrow neck joining
the two disks, whose size shrinks to zero as g —0. As is familiar to string theorists,
there is a conformally equivalent picture, in which rather than being joined by a
narrow neck, the two sides of the surface are joined by a long thin tube, whose
length goes to infinity as ¢ — 0. In discussing the physics associated to degenerating
surfaces, this is perhaps the more appropriate picture to use.

Let us, therefore, describe an alternative form of the plumbing fixture
construction which is more appropriate to the “long thin tube” picture. Let u;,ug
be coordinates centered at the attachment points P;, Pr. Now we glue together
the neighborhoods of the attachment points via the identification

1 — e ~g/(1 — e"®), (3.2)

This is the same surface we obtained by old plumbing fixture construction (3.1),
provided the new local coordinates are related to the old ones by u; z=log(1 —z ).
But now notice the crucial change in perspective. Whereas the boundaries of the
disks which we joined, |z| = 1, were a finite distance from the attachment points
in the z-plane, they are now an infinite distance away in the u-plane. This logarithmic
change of coordinates is simply the change of coordinates appropriate to describing
the cylinder, rather than the disk. We will denote this modified plumbing fixture
construction, using (3.2), by

(ZL, Ql""aQNL:uL)#(ZR’ uR’ QNL+19"'9QN)=(Z’ le'*aQN)‘

The “long thin tube” picture is also appropriate to describe the neighborhood
of a puncture, where the vertex operator insertion is thought of as creating an
infinitely long thin tube. Thus, when vertex operators approach each other we
should also use the logarithmic coordinates described above. In the standard
plumbing fixture construction, the “collision” of two vertex operators is described
by sewing a 3-punctured sphere onto the rest of the Riemann surface (Fig. 1):
(Z,P,0)=(Z,2)0(P, ¢, P,Q). Here £7! is a local coordinate near infinity on
the Riemann sphere. As ¢ — 0, rather than the two vertex operators approaching
each other, the sphere pinches off. Just as there is a universal plumbing fixture to
describe all degenerations, there is a universal 3-punctured sphere with local
coordinates at the puctures. By SL(2, €) invariance, we can locate the punctures
at £ = {00, 1,0}. An appropriate set of “long thin tube” local coordinates is

(P*,log (1 — &7 %), log (¢), log (1 —&)). (3.3)

Note that each of the three punctures is “infinitely far” from the others in these
local coordinates, and that the local coordinates are invariant (up to sign) under
the meebius transformations that permute the three punctures.> We now glue this

5 This last condition, of meebius invariance, was the motivating criterion of Sonoda and Zwiebach
[12], who were looking for the most general 3-string vertex in closed string field theory. They
found an infinite class of 3-punctured spheres with local coordinates, invariant under meebius
transformations which permuted the punctures. For any of the solutions found in [12], one can
find a compatible sewing prescription analogous to (3.2). The resulting dilaton contact terms will
be exactly the same as the ones we calculate here
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Fig. 1. Sewing to get two colliding points

3-punctured sphere with local coordinates onto the rest of the Riemann surface
using (3.2) (see Fig. 1):

(Z,1og (1 Lo )#(P", log (1 —¢71), log (¢), log (1—¢&))
=(Z,1og((o/q), log(1—{o/q)). (3-4)

The pinching parameter g and the location of the attachment point Q' are the two
moduli in (3.4). Here {,.(*) is some family of local coordinates at the attachment
point Q’, which depends on the other moduli, but is independent of q. Similarly, if
there are other punctures on X, the local coordinates at those punctures are also
chosen to be independent of q. The only dependence on g is in the plumbing
fixture.

Because of the meebius invariance of (3.3), it doesn’t matter which of the three
points we glue onto the rest of the surface. Indeed, there are higher codimension
components of the boundary of moduli space, such as when a puncture approaches
an already existing pinch on the Riemann surface, in which case two of the three
points on the P! are glued onto the rest of the Riemann surface. This too is
described by the universal construction (3.2), (3.3), and though it is not relevant
to the bosonic string, it is important for topological gravity.

The modified sewing prescription (3.2) thus has both a conceptual advantage
over (3.1) and a mathematical one. Conceptually, it corresponds to the desired
physical picture of long thin tubes. Mathematically, it allows us to take the
manifestly meebius-invariant “universal 3-punctured sphere with local coordinates”
(3.3) and sew it onto the rest of the Riemann surface in a uniform way. Of course,
any punctured Riemann surface with coordinates constructed using (3.2) could
also be constructed using (3.1) provided we choose appropriate coordinates at the
attachment points. In so doing, however, we would break the manifest meebius
invariance of the 3-punctured sphere (3.3).

Long thin tubes are very nice, but, away from g = 0, another coordinate family
is much easier to work with. Instead of (3.4), we take

(2,80 — 4, o) (3.5)

Here (, is a local coordinate centered at Q and our two moduli are again the
location of Q@ and g ={,(P). As we will discuss more fully below, (3.5) vastly
simplifies the task of integrating over the location of P. Furthermore, as we saw
in Sect. (2.3), we can, almost everywhere, choose {, to be conformal normal ordered
(CNO) [21], and hence the dilaton measure vanishes in those regions.

Since we have argued that we must use (3.4) near g =0, what we really want
is a slice which interpolates between (3.4) and (3.5). Such a slice can be gotten as



282 J. Distler and P. Nelson

f(iql)

o v
€ lql

Fig. 2. The interpolating function f

follows. Let f(]q|) be some smooth function which rises from zero near [gq| =0 to
one for |q| > ¢ (see Fig. 2). Then let

1
zp() =7|q|f((CQ(')/q)f— 1),

zo(*) =%lqlf((1 —Lo()gY — ). (3.6)

For small |q|, f goes to zero, and zp = log({y/q), zo =log (1 — {y/q), which agrees
with (3.4). For |q|>¢, f=1 and zp =(|ql/q9) ({o — 9), 2o = —(|q|/9){g, Which agree
with (3.5) up to a U(1) phase (which is good enough, since the dilaton obeys the
WPSC (2.9)). So, for any choice of the smooth function f(|q|), we have a slice
which interpolates between CNO coordinates and the degenerating “long thin
tube” coordinates.

We will show in the next section that the slice (3.6) allows us, in a precisely
controlled way, to smear out the “contact term” when a dilaton approaches a
state obeying the SPSC (2.4). The lesson to be learned is that nonanalytic terms,
like o-functions, arise not from some failure of conformal field theory itself, but from
the fact that the degenerating slice (3.4) used to insert states cannot in general be
analytically continued to all of moduli space. It can, however, be smoothly
interpolated, and it is the interpolation (3.6) which introduces the nonanalytic
behavior.

4. Contact Terms

4.1. Dilaton—Strong Physical State. Now we turn to the calculation of the contact
term which results when a dilaton at P approaches a state | ¥) obeying the SPSC
at Q. For g not too small, we can use the coordinate family (3.5) and, locally, we
can take {, to be a conformal normal ordered (CNO) coordinate {, ={ —{(Q)
[21], in which case, as we saw in Sect. 2, the dilaton amplitude vanishes identically.
However, for small g, we must use the slice (3.6), which is not holomorphic. The
contribution from this region looks like

{dq A dgb[o,(0/09)1b[0,(0/09)1ID>p®| ¥Dqg. (4.1)
Our first task is to evaluate the push-forward of d/0q. Since the coordinates at
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other punctures on the surface are chosen in a g-independent way, we push-forward
only has support on the circles around P and Q. Moreover, the vector d/0qg moves
the point P, but by construction it does not move the point Q. The push-forward
certainly has positive frequency contributions, #,, n =0, at Q (after all, the
coordinate z, does depend on g). But it has no /_, piece at Q. Since the state | ¥)
is annihilated by all the positive frequency modes of b, we can safely ignore the
contribution to the push-forward from the circle around Q. The contribution at
P must be calculated, but fortunately, that’s not too hard. By an argument similar
to (2.10),(2.11) (see also [5]),

" 0 02,, 0 +6zp 0
P\oq) oq 0zp  0q 0zp
_lal’ f > Iql

q — Al + - (lo—1Co)—

2 f(IqI)logIQI(fo+fo)

'qlf(lql)lql e+ 7))+ (42)

where ¢, = —zp*10/0zp. This means that the b insertions are

b[0,(9/09)1b[0,(0/04)] —mf (Igh®PBL;, — BBy + -,

where the b oscillators act at P, and the dots indicate terms which annihilate the
state. The dilaton state, again, is |[D) =(c,c_; —¢,C_,)|1). Plugging this into
(4.1), we get

qu Adq

2|q]

Now, the unit state at P can simply be erased, for it corresponds to the identity
operator acting on the Hilbert space at Q. If we write the g-integral in polar coordi-

nates: dq A dg = —2i|q|d|q| A dO, the angular integral can be done immediately,
and we get

S UgDITDp @1 ¥,

2ni [ dlql f' (19D ¥Do = —2mi| ¥)y. 4.3)

Compare this with the contribution to the dilaton from the surface, which we
calculated in Sect. 2.3. There we found that integrating the dilaton over the surface
gave us a factor of —2miy, where y =2g — 2 is the Euler characteristic of the
Riemann surface. We now see that we get an extra contribution from the
neighborhood of each SPSC puncture equal to —27i. So the full result of integrating
over the location of the dilaton is —2#i(2g — 2 + N), where N is the number of
other punctures. As expected, the result of integrating out the dilaton is proportional
to the Euler characteristic of the punctured Riemann surface.®

Note that we never had to integrate all the way down to g =0. Indeed, we
could cut off the integral at some small, but finite, value of |g| for which f = f' =0
and obtain the whole value of the “contact term.” The entire contribution to the

¢ To make it precisely equal to the Euler characteristic of the punctured surface, we could multiply
the dilaton state by the conventional factor of i/2n



284 J. Distler and P. Nelson

integral came from the interpolation region where f is turning on from 0 to 1, i.e.
from the “shoulder” region, where the “long thin tube” is attached to the rest of
the surface. Note further that the details of the shape of f completely drop out of
(4.3). Any function which interpolates from zero to one gives the same answer.
This is as expected — the integrand in (4.3) is a total derivative, df, on that patch
of moduli space. So the integral just measures the jump in f across the patch.

This calculation suggests an alternative derivation of the results of Sect. 2.3.
Consider the coordinate family

oL (LOY _ )C(Q)
7o) = 7L <<C(Q)) Hivor

where f(]{(Q)|) is some smooth function which goes from +1 when {(Q) =0 to
—1 when {(Q) lies on the equator. This family interpolates from z4(") = {(*) — {(Q)
near the origin to zy(-) = —({(Q)/IL(Q)1)*(¢(-) "' — (@)~ ") near the equator. This
is exactly the sort of interpolating family we sought in Sect. 2.3. But we have just
calculated the resulting dilaton measure. The result is

DYy = =2mi [d|LQ) f(IL@))Z
= —2mi(—2)Z.

4.2. Strong Physical State—Dilaton. In the previous subsection, we found that if
we integrate over the location of the dilaton (P), there is a “contact term” when
P approaches the location of a strong physical state (Q). We expect that there
should also be a contact term if we put the SPSC state at P, and the dilaton at Q.
But our treatment of the two points was rather asymmetrical, so we should check
whether this is indeed the case.

The best way to approach the problem is to be slightly more general and to
consider integrating both over g, the relative positions of P and Q, and over r = {(Q),
the position of Q. To this end, let us write our coordinate family (3.6) explicitly as

zp(-)=}|q|f<(%1)f— 1>,
1 N—r\S
ZQ(')=7|‘1|I<<1-C(){1 r) —1),

and calculate the state

g\ o NI
[dr A dF A dg A dq(l—ql—f) <|47)

d d d 0
.b[a*5]!;[0*%]1)[0*%})[0*55]1 5, @D, 4.5)

The factor of (q|q|~/)-(4|q|~ )" deserves comment. The states at P,Q are
inserted with the local coordinates (4.4). However, we would like to compare this
with the insertion of a state onto X using the “standard” CNO coordinate { — {(Q).
In evaluating (4.1) in the previous subsection, the state which resulted after all the
dust had settled obeyed the SPSC, and so it didn’t matter what coordinate we
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used to insert it. When the dust settles here, we will have to insert the state
b_,b_,|¥), which, though primary, has L, = L, = 1, and so does depend on the
coordinate used to insert it. But it doesn’t depend very much. Only the scale factor
in the change of coordinates matters, and the effect of this scale factor is taken
into account precisely by the above factor.

So now, we need to evaluate the push-forward of the vector fields d/0r and
0/0q using the coordinate family (4.4), and fold the result into the b-insertions in
(4.5). Keeping only those terms which do not annihilate either an SPSC state or
a dilation, we get

0 0 0 0
ol a]

= |g[* = VB, 5P, @) @)

P ﬁ; [67,5, (5@, — BOBE)) + b, B, (5B, — BPFE))]

1 oo Tz
=N =f+1q1)GPDL 6P + BT bPbE)). (4.6)

+ J—

4lq*

Note that each term comes with the appropriate power of |q|Y ~ ! to cancel the
explicit power of |g|Y " in (4.5). The first term takes two SPSC states and gives
the traditional answer for the integrated form of the vertex operators. The second
term has two pieces, one of which is responsible for the contact term we calculated

in the previous subsection for |D »» ® | ¥ >,. The other piece gives the contact term
for |¥)p®|D),. Plugging (4.6) into (4.5) and doing the g-integral, we get

fdr A dFf1>®b_,b_,|¥) ~[dr ndFb_,b_,|¥). 4.7)

This is very satisfying. Despite the gross asymmetry in the treatment of the points
P, Q in the slice (4.4), the resulting integration measure is completely symmetrical.
We should have expected this. After all, (3.3) is completely symmetrical, and the
detailed form of the interpolating slice should not matter.

4.3. Dilaton-Dilaton. Flush with success, having reproduced the expected contact
terms between a dilaton and an SPSC state, we plunge on to consider two dilatons
approaching each other. What do we expect? There ought to be a contact term,
but at first glance, it may be hard to see. We know that the dilaton measure
vanishes wherever the dilaton is inserted with local coordinate depending holo-
morphically on the moduli. Since we assumed that the “background” coordinate
{pis CNO, this suggests that the resulting contact term will vanish. That is indeed
correct, but it is also easy to fix. Instead of the slice (4.4), let us take the more

general slice
y=Ligv Cc(‘))’_ )

A\S
zQ<-)=%|q1f<<1 —%%) - 1), 438)
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where
Lo()=L0C)—r+7BLC) =7 + - 4.9)

This family interpolates to the non-CNO coordinates {, — g and {, centered at P
and Q, respectively. Here f3 is a real constant which one can think of as measuring
the background curvature of X' at Q' (see Fig. 1) [6,7]. To first order in g, the
effect of considering this more general family is to add a term to (4.6),

0 0 0 0
oovie pl bl e L o+)
B

= e g 2 BB~ PR - BEE)

()-GO HOB + BB FOR)]

and indeed, from this term we get the expected contact term between two dilatons
which is proportional to f.

Somewhat surprisingly, even in the flat-space limit, when f = 0, the two-dilaton
measure does not vanish. The third term in (4.6) still contributes to the measure,
and the contribution is quadratically divergent! Using the slice (4.4),

_ _ 0 0 0 0
[dr A dF A dg A dg b[a*g]b[a* a—f]b[a*%]b[a* 0_q:||D>P® DY
1
2lql*
The origin of this divergence is very simple. In the bosonic string, two zero
momentum dilatons can fuse into a zero momentum tachyon (the state ¢,¢,|1)).
The zero momentum tachyon, being off-shell, contributes to the quadratic

divergence of the string measure. This could have been expected from the start,
but is rather hard to see in other approaches to the dilaton.

=[dr ndF Adq A dGs— (1= )1 = f+1q1f)I1Dp® 1), (4.10)

5. Some Comments

The surface X can pitch in many different ways. Instead of P — Q with everything
else fixed, we can have several punctures all coming together, etc. In fact so far we
have neglected any other punctures altogether. Let us see why this is justified.

We have made extensive use of the fact that b; |D) # 0. Actually, however, this
is the only positive mode of b which violates the SPSC, Eq. (2.4). While this situation
is not generic in topological gravity (the higher @, do not have it), it is very
convenient for our purposes, as it implies

MPSC: b, b,.b,|DY=0, all n2—1 (5.1)

together with similar relations with some or all b’s replaced by b’s. We will refer
to these conditions plus (2.9) as the “medium physical state condition.” Note that
any state satisfying the SPSC (2.4) automatically satisfies (5.1) as well, since b,b, = 0.
Again the MPSC (5.1) is not strictly necessary. Let us see what it buys us when
satisfied.
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The usefulness of (5.1) lies in the following observation. Equations (2.2), (2.5)
certainly define a volume form on .4, 5. Moreover, we have a natural projection

Mgy 1 —wfl .~ Which forgets the k-th puncture. Our plan is to integrate 2
along the ﬁbers of p, and compare it to the N-point measure times 2g —2 + N.
Things will certainly be simple if the latter two forms are equal, but from the
discussion of Sect. 2.2 it is clear that in general they can disagree by a total derivative.

Let us recall what the formula (2.5) for the measure means. Suppose we are
given (X,Q,,...,Qy+,) and tangents V,,..., V3, _, .y to M, 5., (We will suppress
the conjugate quantities). We are supposed to find a number, Q(V,,...,V3,_ 2. y).
To this end we evaluate the right-hand side of (2.2) at the point a(E Q:5-..)
substltutmg o, (V) for V.. The ensumg expression is in general comphcated to
get a given moduli deformatlon we in general must insert b[v] where ¥ has
nonzero bits at every puncture! This is very inconvenient for our plan. We would
prefer to separate the V’s into two sets: V,,, which moves the first puncture keeping
everything else fixed, and W,,..., W;,_; .,y corresponding to the moduli of ./ y
We would like ¥V, to lead to a b insertion just at P = Q, while the W’s lead to
insertions just at Q;,i > 0. Indeed we never even mentioned the W’s in Sect. 4. Was
this justified?

In fact our procedure works when the MPSC (5.1) holds. We begin with
(2,Q4,...,Qn)eM, y, which we suppose at first to be nonsingular. In particular
none of the Q; may coincide. We want to introduce a zeroth point P, insert a
dilaton there, and integrate “holding everything else fixed.” To do this choose a
basis Wi,..., Ws,_3.y tangent to .4, y. Choose any additional point PeX and
let ¥, be a vertical tangent to .#, y,; which moves only P. Let V;,..., Vy be any
tangents projecting to Wy,..., Wy under (py),. The measure Q2(V,,Vy,...,Vy)
should depend only on ¥V, and the W’s, not on the choice of Vs, since any two
choices for V; differ by a multiple of V,,. Everything so far makes sense even if P
coincides with one of the Q;.

Next we choose a nice slice. Let ¢:.4, y— 2, y be some slice defined near
(2,Q4,...,Qy). If P avoids the Q; then we extend 6 to o:.4, y, =P, y+, simply
by choosing a family of local coordinates at P. Thus ¢ has the key property that
the local coordinate at each Q,, while in general depending on all of the {Q;}, is
independent of P. We have already seen in Sect. 3 that as P — Q; we have to relax
this stipulation, with interesting consequences. But away from ¢=0 the slice (3.5)
did have this property, and even at P=Q; it was independent of the Q;, j #1i.

Consider o, (V,). Since ¥, moves P leaving (£, Q,, ..., Qy) unchanged, and since
the coordinates at Q; are independent of the location of P, we see that o, (V,) is
just a Schiffer variation at P. The corresponding ghost insertion b[o,(V,)] then
lives entirely on the first copy of . Reinstating the conjugate quantities we get
bO[c,(Vo)16@[0,(V,)]. Then if we insert a state like | D) (i.e., obeying the MPSC)
at P, we find by (5.1) that no more b, insertions, n= — 1, are allowed at P.

Next consider a,(V;) (a vector on &, y.,) versus 6,(W)) (a vector on Z, ).
Suppose that the latter is represented as a Schiffer variation by (v;,,...,v;y).” Then
the former can be represented by (v;q, 0;1,. - -, ;y), Where the last N entries are the

7 Recall our convention that v refers to a vector field on X, V, W refer to tangents to ., and V
is tangent to &
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same as before (and hence independent of P), while v, involves only the generators
£,,n= — 1. This follows since ¢ at Q; is independent of P, while V; differs from W,
only by a term which moves P. But we have just argued that §b®v;, can be
neglected in view of (5.1). In other words, the utility of the MPSC is that, with the
nice choice of ¢ made above, it ensures that P’s moduli insertions live entirely at
P and are independent of the others, while the others live entirely away from P
and are exactly the same for the (N + 1)- and N-point functions. This makes it easy
to integrate P holding everything else fixed.
We can thus imagine trying to prove

(29 =2+ N)QYWs,..., W) = (const): | dzpdZpQyss(Vo, Viseoos Vi) (52)

where V; correspond to W, as before and z, is a coordinate near P normalized so
that its derivative along V, equals one. Equation (5.2) may seem a bit mysterious.
If the insertion of | D) is independent of all the other moduli, how can the right-hand
side of (5.2) “know” how many other punctures are present? But again we saw in
Sect. 3 that when P collides with one of the Q; then we cannot continue to ask
that ¢ be “good,” i.e.,, that ¢ at Q; be independent of P. Instead we invented a slice
o which smoothly interpolated between the required behavior for P~ Q; and
convenient behavior elsewhere. Taking the results of Sect. 4 and introducing the
W, j#1i as spectators we do indeed obtain (5.2); the interpolation builds up a
smoothed d-function which contributes to the factor of N on the left-hand side.
Equation (5.2) at once implies the “dilaton equation” of [4] when integrated over
M.

yThe structure of (5.2) deserves comment. Since the multiplicative factor is a
topological invariant, as the original (X, Q,,...,Qy) approaches a singular surface
nothing happens to this prefactor. We therefore get no surprises at the boundary
of moduli space other than the one alluded to as P — Q,. This fact can be related
to the MPSC as follows.

Suppose a pinch separates X into parts of genus g;,ggr with N, + |, Ng +1
punctures, N; + Np = N, and suppose g;,gg > 0. We want to see how our answers
depend on a change of slice o, to see whether d-function contributions are also
possible at this pinch, as we just claimed they were for P— Q;. We therefore must
evaluate the second term of (2.6). But the vector V effecting the change is some
positive 7, acting at one of the punctures; i; thus puts an extra b, n =0 at one
puncture [22]. By the MPSC this Kkills the whole term, and there is no change.
How do we avoid this conclusion when P — Q,? In this case one component is a
sphere, gg = 0, with three punctures. The sphere has conformal Killing vectors, and
so some b insertions are absent and we do not kill the pinching term.

We learn two things. First, when inserted states obey the MPSC (5.1) then extra
pinching terms will not appear in recursion formulas, as implied by (5.2). But when
they do not obey it we do expect such terms; this is exactly what is claimed in
topological gravity for the ¢, n> 1 [1,4].

6. Conclusion

It is well known that not just any degeneration in a Riemann surface should be
allowed in the string integral, and more generally in the deformation of any CFT.
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Bad degenerations include those with anything worse than a double point. Good
degenerations correspond to the physical picture of long thin tubes; they lead us
to the mathematical notion of a stable family of curves, originally developed for
other reasons. What we have done in this paper is in a sense to extend this notion
to “stable” families of curves with coordinates. We have not specified the actual
coordinates at colliding points; clearly there is no natural choice. Instead we
specified the relation between the coordinates at P and Q using the universal fixture
(3.3) and (3.2). Again we were led to this construction by the physical picture of
long thin tubes. We think that the precise mathematical elaboration of this notion,
and its link to [13], would be quite interesting.

What we found was a conflict between families of curves with coordinates which
are good in the above sense near the pinched locus and families which are good
elsewhere. More precisely one cannot find a global holomorphic family of such
curves. This is quite different from the situation with pointed curves without
coordinates: there the only obstruction to finding a complex universal curve was
modular identifications. With coordinates, however, one is inexorably led to
introduce nonanalytic families, as we did in (3.6). This is the origin of nonanalytic
behavior, like contact terms, not some failure of the axioms of CFT itself.

We have pointed out that the presence of pinching terms in topological recursion
formulas like those of [1, 4] is to be expected for generic states satisfying the weak
physical state condition (2.9). For dilatons the story is simpler, however, and the
desired dilaton equation follows quite simply. In particular the contact terms arise
without ambiguity. It would of course be quite interesting to extend this analysis
to the rest of the hierarchy of states in topological gravity.
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Note added in proof: The analysis of this paper can be applied to 2d topological gravity as well;
details appear in refs. 24.
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